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ShieldDB: An Encrypted Document Database
with Padding Countermeasures

Viet Vo, Xingliang Yuan, Shi-Feng Sun, Joseph K. Liu, Surya Nepal, and Cong Wang

Abstract—Cloud storage systems have seen a growing number of clients due to the fact that more and more businesses and
governments are shifting away from in-house data servers and seeking cost-effective and ease-of-access solutions. However, the
security of cloud storage is underestimated in current practice, which resulted in many large-scale data breaches. To change the status
quo, this paper presents the design of ShieldDB, an encrypted document database. ShieldDB adapts the searchable encryption
technique to preserve the search functionality over encrypted documents without having much impact on its scalability. However,
merely realising such a theoretical primitive suffers from real-world threats, where a knowledgeable adversary can exploit the leakage
(aka access pattern to the database) to break the claimed protection on data confidentiality. To address this challenge in practical
deployment, ShieldDB is designed with tailored padding countermeasures. Unlike prior works, we target a more realistic adversarial
model, where the database gets updated continuously, and the adversary can monitor it at an (or multiple) arbitrary time interval(s).
ShieldDB’s padding strategies ensure that the access pattern to the database is obfuscated all the time. We present a full-fledged
implementation of ShieldDB and conduct intensive evaluations on Azure Cloud.

Index Terms—Data Security and Privacy, Management and Querying of Encrypted Data, Padding Strategies.
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1 INTRODUCTION

The adaptation of cloud storage by various governments
and businesses is rapid and inexorable. It has brought
many benefits to the economy and user productivity im-
provements, and caused a huge upheaval in the data cen-
ter infrastructure development. However, data breaches in
cloud stores are happening quite frequently in recent time,
affecting millions of individuals [1]–[3]. This phenomenon
calls for increased control and security for private and sen-
sitive data [4]–[7]. To combat against such “breach fatigue”,
encrypted database systems recently receive wide atten-
tion [8]–[13]. Their objective is to preserve the query func-
tionality of databases over encrypted data; that is, the server
can process a client’s encrypted query without decryption.
The first generation of encrypted databases [8], [9], [14], [15]
implements property-preserving encryption (PPE) in a way
that a ciphertext inherits equality and/or order properties
of the underlying plaintext. However, inference attacks can
compromise these encryption schemes by exploiting the
above properties preserved in the ciphertexts [16], [17].

In parallel, dedicated privacy-preserving query schemes
are investigated intensively in the past decade. Among oth-
ers, searchable symmetric encryption (SSE) [18], [19] is well
known for its applications to ubiquitous keyword based
search. In general, SSE schemes utilise an encrypted index to
enable the server to search over encrypted documents. The
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server is restricted such that only if a query token (keyword
ciphertext) is given, the search operation against the index
will be triggered to output the matched yet encrypted doc-
uments. This ensures that an adversary with a full image of
the encrypted database learns no useful information about
the documents. In that sense, SSE outperforms PPE in terms
of security. Apart from security, SSE is scalable, because it is
realised via basic symmetric primitives.

In this paper, we design an encrypted document
database system based on SSE, for which the client can
add encrypted documents to the database and query en-
crypted keywords against it. However, deploying SSE in
practice is non-trivial. With recent emerging inference at-
tacks against SSE [20]–[22] introduced, it raises doubts
whether SSE achieves an acceptable tradeoff between the
efficiency and security. As a noteworthy threat, the count
attack [21] demonstrates that an adversary with extra back-
ground knowledge of a dataset can analyse the size of
the query result set to recover keywords from the query
tokens. The above information is known as access pattern,
and can be monitored via the server’s memory access and
communication between the server and client. If SSE is
deployed to a database, access patterns can also be derived
from database logs [23]. This situation further reduces the
security claim of SSE, since the adversary does not have to
stay online for monitoring.

Using oblivious-RAM (ORAM) is an quintessential ap-
proach to enable encrypted search without exposing access
pattern [24], [25], but it is shown as an expensive tool [20],
[26]–[28]. Alternatively, using padding (bogus documents)
for inverted index solution [19] is proven as a conceptu-
ally simple but effective countermeasure to obfuscate the
access pattern against the aforementioned attacks [20], [21],
[29]. Unfortunately, existing padding countermeasures only
consider a static database, where padding is only added at
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the setup [27], [29]. They are not sufficient for real-world
applications. In practice, the states of database change over
the time. Specifically, the updates of documents change the
access pattern for a given keyword, and new keywords
can be introduced randomly at any time. Hence, exploring
to what extend adversaries can exploit such changes to
compromise the privacy of data and how padding coun-
termeasures can be applied in a dynamic environment are
essential to make SSE deployable in practice.
Contributions: To address the above issues, we propose
and implement an encrypted document database named
ShieldDB, in which the data and query security in realistic
and dynamic application scenarios is enhanced via effective
padding countermeasures. Our contributions are as follows:

• ShieldDB is the first encrypted database that sup-
ports encrypted keyword search, while equipping
with padding countermeasures against inference at-
tacks launched by adversaries with database back-
ground knowledge.

• We define two new types of attack models, i.e., non-
persistent and persistent adversaries, which faithfully
reflect different real-world threats in a continuously
updated database. Accordingly, we propose padding
countermeasures to address these two adversaries.

• ShieldDB is designed with a dedicated system ar-
chitecture to achieve the functionality and security
goals. Apart from the client and server modules
for encrypted keyword search, a Padding Service is
developed. This service leverages two controllers,
i.e., Cache Controller and Padding Controller, to enable
efficient and effective database padding.

• ShieldDB implements advanced features to further
improve the security and performance. These fea-
tures include: 1) forward privacy that protects the
newly inserted document, 2) flushing that can reduce
the load of the padding service, and 3) re-encryption
that refreshes the ciphertexts while realising deletion
and reducing padding overhead.

• We present the implementation and optimization of
ShieldDB, and deploy it in Azure Cloud. We build a
streaming scenario for evaluation. In particular, we
implement an aggressive padding mode (high mode)
and a conservative padding mode (low mode), and
compare them with padding strategies against non-
persistent and persistent adversaries, respectively. We
perform a comprehensive set of evaluations on the
load of the cache, system throughput, padding over-
head, and search time. Our results show that the high
mode results in much larger padding overhead than
the low mode does, while achieving lower cache load.
In contrast, the low mode results in higher system
throughput (accumulated amount of real data) but
requiring a higher cache load. The evaluations of
flushing and re-encryption demonstrate the effective
reduction of the cache load and padding overhead.

Organisation: We present important related works in Sec-
tion 2. Section 3 overviews the design of ShieldDB and
demonstrates non-persistent and persistent adversaries. Sec-
tion 4 demonstrates padding countermeasures and other
optimisation features supported in ShieldDB. Section A

analyses the security of the system. Sections 6 and 7 present
system deployment and evaluations. Conclusion is in Sec-
tion 9.

2 BACKGROUND

In this section, we introduce the background knowledge
related to the design of our system.
Dynamic symmetric searchable encryption. Considering a
client C and a server S, the client encrypts documents in a
way that the server can query keywords over the encrypted
documents. Functions included in an SSE scheme are setup
and search. If the scheme is dynamic, update functions (data
addition and deletion) are also supported. Let DB represent
a database of documents, and each document is a variable-
length set of unique keywords. We use ∆ = {w1, ..., wm} to
present all keywords occurred in DB, DB(w) to present doc-
uments that contain w, and |DB(w)| to denote the number of
those documents, i.e., the size of the query result set for w.
In SSE, the encrypted database, named EDB, is a collection
of encrypted keyword and document id pairs (w, id)’s, aka
an encrypted searchable index.

In setup, client encrypts DB by using a cryptographic
key k, and sends EDB to server. During search, client takes
k and a query keyword w as an input, and outputs a query
token tk. S uses tk to query EDB to get the pseudo-random
identifies of the matched documents, so as to return the
encrypted result documents. In update, C takes an input
of k, a document Di parsed as a set of (w, id) pairs, and an
operation op ∈ {add, del}. For addition, the above pairs are
inserted to EDB. For deletion, the server no longer returns
encrypted documents in subsequent search queries. As an
output, the server returns an updated EDB. We refer readers
to [30], [31] for more details about dynamic SSE.

The security of dynamic SSE can be quantified via a tuple
of stateful leakage functionsL = (LSetup,LSearch,LUpdate).
They define the side information exposed in setup, search,
and update operations, respectively. The detailed definitions
can be referred to Section A.
Count Attack. Cash et al. [27] propose a practical attack
that exploits the leakage in the search operation of SSE.
It is assumed that an adversary with full or partial prior
knowledge of DB can uncover keywords from query tokens
via access pattern. Specifically, the prior knowledge allows
the adversary to learn the documents matching a given
keyword before queries. Based on this, she can construct
a keyword co-occurrence matrix indicating keyword coex-
isting frequencies in known documents. As a result, if the
result length |DB(w)| for a query token tk is unique and
matches with the prior knowledge, the adversary directly
recovers w. For tokens with the same result length, the
co-occurrence matrix can be leveraged to narrow down
the candidates. In this work, we extend the threat model
of the count attack to the dynamic setting, which will be
introduced in Section 3.2.
Forward Privacy. Forward privacy in SSE prevents the
adversary from exploiting the leakage in update (addition)
operations. Given previously collected query tokens, this
security notion ensures that these tokens cannot be used
to match newly added documents. As our system consid-
ers the scenario, where the documents are continuously
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Fig. 1: High-level design of ShieldDB

inserted, we adapt an efficient scheme with forward pri-
vacy [32] proposed by Song et al. This scheme follows
Bost’s scheme [33] that employs trapdoor permutation to
secure states associated to newly added (w, id)’s. Without
being given new states, the server cannot perform search on
the new data, and those states can be used to recover old
states via trapdoor permutation. Specifically, we optimise
the adapted scheme in the context of batch insertion and im-
prove the efficiency, which will be introduced in Section 4.3.

3 OVERVIEW

3.1 System Overview
ShieldDB is a document-oriented database, where semi-
structured records are modeled and stored as documents,
and can be queried via keywords or associated attributes.
Participants and scenarios: As illustrated in Figure 1,
ShieldDB consists of a query client C, a trusted padding
service P and an untrusted storage server S. In our targeted
scenario, new documents are continuously inserted to S,
and required to be encrypted. Meanwhile, C expects S to
retain search functionality over the encrypted documents.
To enhance the security, P adapts padding countermeasures
during encryption. In this paper, we consider an enterprise
that utilises outsourced storage. P is deployed at the enter-
prise gateway and in the same network with C, and P en-
crypts and uploads the documents created by its employees,
while C is deployed for employees to search the encrypted
documents at S. Note that the deployment of P is flexible. It
can be separated from or co-located with C.
Overview: ShieldDB supports three main operations,
i.e., setup, streaming, and search. The full protocols of
ShieldDB is presented in Figure 4. Apart from the main func-
tions, ShieldDB also supports optimisation features deletion
and re-encryption, and flushing operations (Section 4.3).

During setup, P receives a sample training dataset ∆stp

from C, and then it groups keywords into clusters L =
{L1, · · · , Lm} based on keyword frequencies. After that, the
module App Controller in P notifies L to the module Cache
Controller to initialise a cache capacity Li for each keyword
cluster. App Controller also notifies L to the module Padding
Controller to generate a padding dataset B.

During streaming, P receives an input, in = {(doc, id)}
containing a collection of documents, each element is a
document doc with identifier id, sent from C. Then, P parses
them into a set of keyword and document identifier (w, id)
pairs, i.e., index entries for search. Then, Cache Controller
stores these pairs to the caches of the corresponding key-
word clusters. Based on the targeted attack model, Cache
Controller applies certain constraints in PaddingCheck to
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Fig. 2: Strawman padding against non-persistent adversary

flush the cache (Algorithm 1). Once the constraints on a
cluster are met, Cache Controller notifies the satisfied cluster
to Padding Controller for padding. In particular, Padding Con-
troller adds bogus (w, id) pairs extracted from the padding
dataset to make the keywords in this cluster have equal
frequency. Then, P encrypts and inserts all those real and
bogus index entries as a data collection in a batch to EDB
(see streaming lines 7− 30 in Figure 4).

During search, for a given single query keyword w, C
wants to retrieve documents matching that keyword from S
and P. First, C retrieves the local results from Cache Controller
in P, since some index entries might have not been sent
to EDB yet. After that, C sends a query token generated
from this keyword to S to retrieve the rest of the encrypted
results. After decryption, C filters padding and combines the
result set with the local one. For security, C will not generate
query tokens against the data collection which is currently in
streaming; this constraint enforces S to query only over data
collections which are already inserted to EDB. Following
the setting of SSE [19], [34], search is performed over the
encrypted index entries in EDB, and document identifiers
are pseudo-random strings. In response to query, S will
return the encrypted documents via recovered identifiers in
the result set after search.

Apart from padding countermeasures, ShieldDB pro-
vides several other salient features. First, it realises forward
privacy [33] (an advanced notion of SSE) for the stream-
ing operation. Our realisation is customised for efficient
batch insertion and can prevent S from searching the data
collection in streaming. Second, ShieldDB integrates the
functionality of re-encryption. Within this operation, index
entries in a targeted cluster are fetched back to P and the
redundant padding is removed. At the same time, deletion
can be triggered, where the deleted index entries issued and
maintained at P are removed and will not be re-inserted.
After that, real entries combing with new bogus entries are
re-encrypted and inserted to EDB. Third, Cache Controller
can issue a secure flushing operation before meeting the
constraints for padding. This reduces the overhead of P
while preserving the security of padding.
Remark: ShieldDB assigns P for key generation and man-
agement, and P issues the key for C to query. In addition,
C also gets the latest state of the query keyword from P,
and together with the key, to generate query tokens and
send them to S. In our current implementation, P and C
use the same key for index encryption, just as most SSE
schemes do. This is practical because SSE index only stores
pseudorandom identifies of documents, and documents can
separately be encrypted via other encryption algorithms.
Advanced key management schemes of SSE [35], [36] can
readily be adapted; yet, this is not relevant to our problem.

Like many other SSE works [29], [37]–[39] that focus
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Fig. 3: Strawman padding against persistent adversary

on search document index, we only present that streaming
in ShieldDB updates real/bogus document identifiers via
(w, id) pairs to the index map EDB. Real and padding
documents containing these pairs can be uploaded sepa-
rately by P to S via other encryption algorithms. In search,
once the identifiers of real/bogus documents matching the
query keyword are uncovered, S retrieves the corresponding
documents and returns them to C. Note that, we omit
presenting the physical document management in S in the
rest of the paper since it does not affect the security of
ShieldDB against the non-persistent and persistent adver-
saries as proposed in Section 3.2.

3.2 Attack Models

ShieldDB mainly considers a passive adversary who mon-
itors the server S’s memory access and the communication
between the Server and other participants. Following the
assumption of the count attack [21], the adversary has access
to the background knowledge of the dataset and aims to
exploit this information with the access pattern in search
operations to recover query keywords. In this paper, we
extend this attack model to the dynamic (streaming) setting.

Before elaborating the attack models, we define the
streaming setting. In our system, streaming performs batch
insertion on a collection of encrypted (w, id) pairs to S. Giv-
ing a number of continuous streaming operations, encrypted
collections are added to a sequence over time. Accordingly,
S orders the sequence of data collections by the timestamp.
We define the gap between any two consecutive timestamps
is a time interval t, and C is allowed to search at any time
interval. Note that at a given t, S can only perform search
operations against the collections that have been completely
inserted to EDB.

In the dynamic setting, we observe two new attack
models, which we refer to as non-persistent and persistent
adversaries, respectively.
Non-persistent adversary: This adversary controls S within
one single arbitrary time interval ti, where i is a system
parameter that monotonically increases and i ≥ 0. During
ti, she observes query tokens that C issued to S, and the
access patterns returned by S. She knows the accumulated
(not separate) knowledge of the document sets inserted
from t0 to ti.
Persistent adversary: This adversary controls S across mul-
tiple arbitrary time intervals, for example, from t0 to ti. She
persistently observes query tokens and access patterns at
those intervals, and knows the separate knowledge of the
document sets inserted from t0 to ti.

For both attack models, S cannot obtain the query tokens
against the encrypted data collections streamed in the cur-
rent time interval. It is enforced by our streaming operation
with forward privacy (see Section 4.3).

Strawman padding service against the adversaries: We
note that a basic Padding Service P that only maintains
one single cache for batch streaming cannot mitigate the
proposed adversaries as presented in Figures 2 and 3.

In Figure 2, we show that the non-persistent adversary,
capturing query tokens of w1, w2, and w3, and their cor-
responding access patterns (i.e., result lengths ST [w1].c,
ST [w2].c, and ST [w3].c) at time t = 2, can uncover which
tokens used for what keywords if she has the corresponding
background knowledge of DB at time t = 2 (i.e., DB2). The
reason is due to the unique result lengths introduced in
EDB at time t = 2 (i.e., EDB2) when P adds bogus pairs
to equalise the number of pairs for keywords sent to EDB
during every streaming operation.

In Figure 3, we demonstrate that the persistent adversary
can detect when new keywords are inserted in EDB. For
example, she might know the states of the database DB at
time t = 1 and t = 2 as her background knowledge, and
the query results of w3 in EDB1 and EDB2 are different.
Then, she knows the occurrence of a new keyword w3 is
introduced in EDB2 at t = 2. Then, she is able to identify
the query token of w3 during search at t = 2.
Real-world implication of the adversaries: We note that the
proposed attack models are new for leakage-abuse attacks,
which have not been investigated and formalised in any of
the prior works [20], [21], [40]. We stress that non-persistent
adversary could be any external attackers, e.g., hackers
or organised cyber criminals. They might compromise the
server at a certain time window. We also assume that this
adversary could obtain a snapshot of the database via
public channels, e.g., a prior data breach [16]. Because the
database is changed dynamically, the snapshot might only
reflect some historical state of the database. On the contrary,
the persistent adversary is more powerful and could be
database administrators or insiders of an enterprise. They
might have long term access to the server and could obtain
multiple snapshots of the database via internal channels.
Other threats: Apart from the above adversaries,
ShieldDB considers another specific rational adversary [22]
who can inject documents to compromise query privacy.
As mentioned, this threat can be mitigated via forward
privacy SSE. Note that ShieldDB currently does not address
an active adversary who sabotages the search results.

4 DESIGN OF SHIELDDB
In this section, we present the detailed design of
ShieldDB in Setup, Stream, and Search. Then, we present
some advanced features of ShieldDB to further improve the
security and efficiency.

4.1 Setup

We consider ∆stp = {w1, w2, ..., wl} is the training dataset
for the system. During Setup(∆stp), P invokes Cache Con-
troller to initialise the cache for batch insertion, and Padding
Controller to generate bogus documents for padding.

To reduce padding overhead, ShieldDB implements
cache management in a way that it groups keywords with
similar frequencies together and performs padding at each
individual keyword cluster. We denote L = {L1, · · · , Lm}
as caching clusters managed by Cache Controller, where m is
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setup (1λ,∆stp)

Client:
1. Transfer dataset ∆stp to P;

Padding Service:
2: {k1, k2}

$←− {0, 1}λ;
3: Initialise a map ST ′ and a tuple T ;
4: Run Setup(∆stp) (see Section 4.1);

Server:
5: Initialise an index map EDB;

streaming (in = {(doc, id)})

Client:
1. Transfer in to P;

Padding Service:
2: Parse in to M = {(w, id)};
//cache and check padding con-
straints
3: V ← PaddingCheck(M) (Algo-
rithm 1);
//if there is no real/bogus pairs re-
turned by Padding Controller
4: if V = {∅} then
5: return;//not sending to Server
6: else: //perform encryption
7: foreach w in V do
8: ke

$←− {0, 1}λ;

9: kw ← F (k1, w);
10: kid ← F (k2, w);
//let b is the current batch
11: if ST ′[w] 6= ⊥ then
12: (stw(b−1)

, cw(b−1)
)← ST ′[w];

13: else
14: stw0

$←− {0, 1}λ, cw0
← 0;

15: end if
16: stwb

← F (ke, stw(b−1)
);

17: i← 0;
18. foreach id that matches w do
19: u← H1(F (stwb

, i) ‖ kw);
20: v ← H2(F (stwb

, i) ‖ kid)⊕ id;
21: T ← T ∪ (u, v);
22: i← i+ 1;
23: end foreach
24: cwb

← i;
25: ST ′[w]← (stwb

, cwb
);

26: uwb
← H1(F (stwb

, cwb
) ‖ kw);

27: vwb
← H2(F (stwb

, cwb
) ‖ kid)

⊕ (ke ‖ cw(b−1)
);

28: T ← T ∪ (uwb
, vwb

);
29: end foreach
30: Send T to Server;

Server:
31: foreach (u, v) in T do
32: EDB[u] = v;
33: end foreach

search(w)

Client: //receive ST ′[w] from P
1: if ST ′[w] 6= ⊥ then
2: kw ← F (k1, w);
3: kid ← F (k2, w);
4: (stwb

, cwb
)← ST ′[w];

5: Send (kw, kid, stwb
, cwb

) to Server
6: else
7: Search w in P, return R;
8: end if

Server:
9: R← ∅, sti ← stwb

, ci ← cwb
;

10: while ci 6= 0 do
11: for j = 0 to (ci − 1) do
12: u← H1(F (sti, j) ‖ kw)
13: v ← EDB[u]
14: id← v ⊕H2(F (sti, j) ‖ kid);
15: R← R ∪ (u, v);
16: end for
17: uk ← H1(F (sti, ci) ‖ kw);
18: vk ← EDB[uk];
19: (ki ‖ ci−1)← vk ⊕

H2(F (sti, ci) ‖ kid)
20: sti−1 ← F−1(ki, sti)
21: sti ← sti−1, ci ← ci−1;
22: end while
23: send R to Client

Fig. 4: Forward-private SSE protocols in ShieldDB. In streaming, ke is an ephemeral key generated for batch insertion.
P maintains the master state ST ′[w] = (stwb

, cwb
) for each keyword w, where stwb

is the master key to derive entries
for (w, id) pairs in the same latest batch b, and cwb

presents the result length w (i.e., the number of real and bogus ids
containing w) in that batch b. The result length of w in the previous batch cw(b−1)

is embedded in vwb
(see streaming

protocol line 26). In search, sti and ci present the state key and the result length of w in batch i. H1 and H2 are hash
functions, and F is AES cipher.

the number of cache clusters. This approach is inspired from
existing padding countermeasures in the static setting [21],
[29]. The idea of doing this in a static database is intuitive;
the variance between the result lengths of keywords with
similar frequencies is small, which can minimize the number
of bogus entries added to the database. We note that it is
also reasonable in the dynamic setting, where the keyword
frequencies in specific applications can be stable in the long
run. If a keyword is popular, it is likely to appear frequently
during streaming, and vice versa. Therefore, we assume that
the existence of the training dataset, where the keyword
frequencies are close to the real ones during streaming is
reasonble (see Section 7.2 for that distribution evaluation).
We further suggest alternative training data collection ap-
proaches in Section 7.3.

Given ∆stp, Cache Controller partitions keywords based
on their frequencies by using a heuristic algorithm. The
objective function in Eq. 1, such that the clustering can be
formed as [(w1, . . . , wi) , (wi+1, . . . , wj) , . . . , (wk, . . . , wl)].
We note that the minimum size of each group α is subjected
to α ≥ 2. For security, the keyword frequency in each cluster
after padding should be the same, i.e., the maximum one,
and thus Cache Controller computes the padding overhead γ

as follows:

γ =

(
i ∗ fwi −

i∑
t=1

fwt

)
+

(
(j − i) ∗ fwj −

j∑
t=i+1

fwt

)
+

. . .+

(
(l − k − 1) ∗ fwl

−
l∑

t=k

fwt

)
(1)

This algorithm iterates evaluating γ for every combination
of the partition. We denote by m the number of clusters.
After that, the Cache Controller allocates the capacity of
the cache based on the aggregated keyword frequencies

of each cluster, i.e., |L|
i∑
t=1

fwt , |L|
j∑

t=i+1
fwt , . . ., |L|

l∑
t=k

fwt ,

where |L| is the total capacity assigned for the local cache.
We denote by Li.threshold() the function that outputs the
caching capacity of cluster Li.

After that, Padding Controller initialises a bogus datasetB
with size |B|, where the number of bogus keyword/id pairs
for each keyword wi is determined via the frequency, i.e.,
|B|(fw − fwi), where fw is the maximum frequency in the
cluster of wi. The reason of doing so is that it still follows
the assumption in cache allocation. If the keyword is less
frequent in a cluster, it needs more bogus pairs to achieve
the maximum result length after padding, comparing other
keywords with higher frequency, and vice versa. Then the
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Algorithm 1: Padding strategies

1 function PaddingCheck()
Input : M = {(w, id)}: entries for streaming,

{L1, · · · , Lm}: cache clusters,
ST : a map that tracks keyword states,
B: bogus document set;
mode: padding mode (high or low);

Output: V : a set of real and bogus entries
2 push entries in M to {L1, · · · , Lm};
3 V ← {∅};
4 if padding against non-persistent adversary then
5 for cluster Li ∈ {L1, · · · , Lm} do
6 if Li.capacity() ≥ Li.threshold() then
7 for w ∈ Li do
8 if ST [w].f lag = false then
9 skip padding for w when executing

PaddingByMode(); //not
occurred yet

10 end
11 end
12 Mi ← PaddingByMode(Li, ST,B,mode);
13 add Mi to V ;
14 end
15 end
16 end
17 if padding against persistent adversary then
18 for cluster Li ∈ {L1, · · · , Lm} do
19 if Li.firstBatch=true & ST [w].f lag = true for

∀w ∈ Li then
20 Mi ← PaddingByMode(Li, ST,B,mode);
21 add Mi to V ;
22 else if Li.capacity() ≥ Li.threshold() then
23 Mi ← PaddingByMode(Li, ST,B,mode);
24 add Mi to V ;
25 end
26 end
27 end
28 return V ;

controller generates bogus index pairs. Once the bogus pairs
for a certain keyword wi is run out, the controller is invoked
again to generate padding for it through the same way.
Remark: We assume that the distribution of the sample
dataset is close to the one of the streaming data in a running
period. We acknowledge that it is non-trivial to obtain
an optimal padding overhead in the dynamic setting due
to the variation of streaming documents in different time
intervals. Nevertheless, if the distribution of the database
varies during the runtime, the setup can be re-invoked.
Namely, keyword clustering algorithm can be re-activated
based on the up-to-date streaming data (e.g., in a sliding
window), and the cache can be re-allocated. Additionally,
our proposed re-encryption operation can further reduce the
padding overhead (see Section 4.3) if the streaming distribu-
tion only differs on particular keyword clusters. We discuss
the distribution difference detection in Sections 7.2 and 7.3.
We also note that there are applications and scenarios where
the distribution does not vary much, like IoT streaming data
for environment sensors. In such applications, the range of

Algorithm 2: Padding modes

1 function PaddingByMode(Li, ST, P,mode)
Input : Li: cluster for padding,

ST : a map that tracks keyword states,
B: bogus dataset;
mode: padding mode (high or low)

Output: Mi: a set of real and bogus entries
2 Mi ← ∅;
3 stmax ← max{ST [w].c} for ∀w ∈ Li;
4 let cw is the length of the currently matching list of
w cached in Li;

5 if mode = high then
6 let cmax is max{cw,∀w ∈ Li};
7 C ← stmax + cmax;
8 for w ∈ Li with ST [w].f lag = true do
9 add (C − cw) bogus entries from B[w] to Mi;

10 add all cw cached entries of w in Li to Mi;
11 ST [w].c← C ;
12 end
13 else
14 // mode is low
15 let cmin is min{cw > 0,∀w ∈ Li};
16 C ← stmax + cmin;
17 for w ∈ Li with ST [w].f lag = true do
18 m← C − ST [w].c;
19 if m > cw then
20 add (m− cw) bogus entries from B[w] to

Mi;
21 add all cw cached entries of w in Li to Mi ;
22 else
23 //do not add bogus entries for w;
24 put (m) cached entries of w in Li to Mi;
25 //the remaining (cw −m) entries of w are

still cached in Li;
26 end
27 ST [w].c← C ;
28 end
29 end
30 return Mi;

numbers/indicators are already specified by the vendors.

4.2 Padding Strategies

During streaming, documents are continuously collected
and parsed as M = {(w, id)} in P. Then, P executes
PaddingCheck(M) to cache and check padding constraints.
In details, these (w, id) pairs are cached at their corre-
sponding clusters by Cache Controller. Once a cluster Li is
full, Padding Controller adapts the corresponding padding
strategy to the targeted adversary, encrypts and inserts all
real and bogus pairs to EDB in a batch manner. We elaborate
on the padding strategies against the non-persistent and
persistent adversaries, respectively. The details are given in
Algorithms 1 and 2.
Padding strategy against the non-persistent adversary:
Recall that this adversary controls S within a certain time
interval t. From the high level point of view, an effective
padding strategy should ensure that all keywords occurred
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Fig. 5: High mode padding against non-persistent adversary

in EDB at t do not have unique result lengths. There are
two challenges to achieve this goal. First, t can be an arbi-
trary time interval. Therefore, the above guarantee needs
to be held at any certain time interval. Second, not all
the keywords in the keyword space would appear at each
time interval. It is non-trivial to deal with this situation to
preserve the security of padding.

To address the above challenges, ShieldDB programs
Padding Controller to track the states of keywords over
the time intervals from the beginning. Specifically, each
keyword state ST [w] includes two components, a flag
ST [w].f lag that indicates whether the keyword has existed
before in the streamed documents, and a counter ST [w].c
that presents the number of total real and bogus (w, id)
pairs already uploaded in EDB of the keyword w. Note
that ST [w].f lag = true is kept permanently once w has
existed in the documents streamed to the server. Padding
Controller only pads the keywords in a cluster Li if the
number of cached real (w, id) pairs of the cluster, denoted
by Li.capacity(), exceeds Li.threshold() defined in setup
(see Algorithm 1 line 6).

Based on the states of keywords, Padding Controller per-
forms the following actions. If the keyword has not existed
yet, the controller will not pad it even its cluster is full (see
Algorithm 1 line 8). The reason is that the adversary might
also know the information of keyword existence. If C queries
a keyword which does not exist, S should return an empty
set. Otherwise, the adversary can identify the token of this
keyword if padded. Accordingly, only when a keyword w
appears at the first time (i.e., ST [w].f lag = true), padding
over this keyword will be invoked (see Algorithm 2 lines
8 and 17). Once ST [w].f lag = true, this keyword will
always get padded later, as long as the cache of its cluster
Li.capacity() ≥ Li.threshold(), no matter it exists in a
certain time interval or not. The padding ensures that all
existing keywords in the cluster always have the same result
length at any following time interval.
Padding strategy against the persistent adversary: Recall
that this adversary can monitor the database continuously
and obtain multiple references of the database across mul-
tiple time intervals. Likewise, the padding strategy against
the persistent adversary should ensure that all keywords
have no unique access pattern in all time intervals from
the very beginning. However, directly using the strategy
against the non-persistent adversary here does not address
the leakage of keyword existence.

To address this issue, Padding Controller is programmed
to enforce another necessary constraint to invoke padding.
That is, all keywords in the cluster at the first batch have
to exist before streaming. Formally, we let Li.firstBatch
be the constraint that evaluates the existence of all prede-
fined keywords in Li. Then, Li.firstBatch = true implies

Padding Service ServerClient
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Fig. 6: High mode padding against persistent adversary

ST [w].f lag = true for ∀w ∈ Li. The constraint remains
false if there is ∃wj ∈ Li, ST [wj ] = false. As a trade-off,
Cache Controller has to hold all the pairs in the cluster even
the cache is full, if there are still keywords yet to appear
(see Algorithm 1 line 18). For subsequent batches of the
cluster, the padding constraint follows the same strategy for
the non-persistent adversary (see Algorithm 1 line 21).
Padding modes: ShieldDB implements two modes for
padding, i.e., high and low modes. These two modes both
are applicable to the above two padding strategies (see
mode in Algorithm 1). The padding mechanism of these
modes are described in Algorithm 2. In the high mode,
once the constraint for the cache of a cluster is met, the
keywords to be padded have the maximum result length
of keywords in this cluster (see Algorithm 2 lines 9-11).
Accordingly, the cache can be emptied since all entries are
sent to Padding Controller for streaming. On the contrary,
the low mode is invoked in a way that the keywords to
be padded have the minimum result length of keywords
in this cluster. Therefore, some entries of keywords might
still be remained in the cache (see Algorithm 2 lines 24-
25). Yet, this mode only introduces necessarily minimum
padding for keywords which do not occur in random time
intervals. The two modes have their own merits. The high
mode consumes a larger amount of padding and execution
time for padding and encryption, but it reduces the load of
cache in P. In contrast, the low mode introduces relatively
less padding overhead but heavier load of P.

Figure 5 demonstrates the padding strategy against
the non-persistent adversary by using high padding mode.
Given a cluster Lj containing three keywords wi,∀i ∈ [1, 3],
P tracks their keyword state ST [wi].c and ST [wi].f lag and
applies padding when real cached pairs exceed the capacity
of the cluster. Then, P adds bogus pairs to ensure they have
the same result length in EDB at t = 1 and t = 2. Note
that, there is no padding applied for w3 at time t = 1 due to
ST [w3].f lag = false at that time. At t = 2, P pads all the
keywords to the maximum result length among them in the
cluster (i.e., ST [wi] = 3,∀i ∈ [1, 3]).

In Figure 6, we demonstrate the padding strategy against
the persistent adversary by using high padding mode for a
cluster Lj = {wi},∀i ∈ [1, 3]. P only performs padding
and inserts encrypted real/bogus entries to EDB when all
keywords in Lj have appeared (i.e., waiting for w3 occurs
at t = 1). Querying any wi of the cluster prior this time
does not make the client C send query tokens to S. The
reason is because C only receives ST ′[wi] =⊥ sent by
P to do search. We note that P only updates ST ′[wi],
(i.e., keyword state of wi for encryption) (see ST ′[w] in
streaming and search in Figure 4) when wi in the cluster
is ready for encryption after padding applied. We note that
Lj .firstBatch = true once all keywords in Lj have been
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TABLE 1: Time complexity of Padding Service and Server

Padding Service Server
padding encryption update/search(streaming) (streaming)

|B|(fw − fwi) O(nr + nb) O(nr + nb)

appeared. Then, subsequent batches at t > 1 of Lj does not
need to check keyword occurrence. Instead, it follows the
padding strategy addressing the non-persistent adversary.
The reason is because wi is always padded in the following
batches once it had appeared at the first time. The strategy
aims to ensure there is no new keyword introduced at any
random time interval to address the persistent adversary.
Complexity analysis of padding: We note that during
setup, the Padding Service initialises a padding (bogus)
dataset B with size of |B|. Then, the total number of bogus
pairs used for the keyword wi during the streaming phase
is |B|(fw − fwi), where fw is the maximum frequency in
the cluster of wi found in the setup. The asymptotic com-
plexity to encrypt real/bogus pairs of wi in the streaming
is O(nr + nb), where nr and nb present the total number of
real and bogus pairs of wi, respectively. In streaming (resp.
search), upon receiving the update (resp. query) token(s)
of wi, the Server inserts (resp. retrieves) the entries (resp.
search result) based on encrypted labels of wi from the map
EDB (i.e., O(nr +nb)) by following the forward-private SSE
protocols (see Figure 4). The performance is summarised in
Table 1.
Security guarantees: Our padding countermeasures ensure
that no unique access pattern exists for keywords which
have occurred in EDB. For the persistent adversary, the
padding countermeasure also ensures that the keyword
occurrence is hidden across multiple time intervals. Note
that padding not only protects the result lengths of queries,
but also introduces false counts in keyword co-occurrence
matrix, which further increases the efforts of the count
attack. Regarding the formal security definition, we follow a
notion recently proposed by Bost et al. [29] for SSE schemes
with padding countermeasures. This notion captures the
background knowledge of the adversary and formalises the
security strength of padding. That is, given any sequence
of query tokens, it is efficient to find another same-sized
sequence of query tokens with identical leakage. We extend
this notion to make the above condition hold in the dynamic
setting in Section A.

Remark: Our padding strategies are different from the ap-
proach proposed by Bost et al. [29], which merely groups
keywords into clusters and pads them to the same result
length for a static database. Directly adapting their approach
for different batches of incoming documents will fail to
address persistent or even non-persistent adversaries. The
underlying reason is that the above approach treats each
batch individually, while the states of database are accumu-
lated. Effective padding strategies in the dynamic setting
must consider the accumulated states of the database so that
the adversaries can be addressed in arbitrary time intervals.

4.3 Other Features
ShieldDB provides several other salient features to enhance
its security, efficiency, and functionality.

Forward privacy: In streaming and search, ShieldDB re-
alises the notion of forward privacy [32], [33] to protect
the newly added documents and mitigate the injection
attacks [22]. In particular, our system customises an effi-
cient SSE scheme with forward privacy [32] to our context
of batch insertion. The detailed algorithm for encryption
and search can be found in Figure 4. Our forward-private
scheme is built on symmetric-key based trapdoor permuta-
tion and is faster than the public-key based solution [33].
The ephemeral key ke of permutation is embedded inside
the index entry to recover the state (stw(b−1)

, cw(b−1)
) of the

previous entries in batch (b − 1) (see Figure 4, lines 16-27
in streaming, and lines 17-21 in search protocol). To reduce
the computation and storage overhead, we link a master
state ST ′[w] = (stwb

, cwb
) to a set of entries with the same

keyword in the batch b (see streaming at lines 19-20).
Upon receiving ST ′[w] of the query keyword w sent

from P, C generates a query token and sends to S (see
Figure 4 line 5 in search protocol). We note that ST ′[w] is
different from the state ST [w] used for padding in Padding
Controller. The benefit of our forward-private design is that
S can be enforced to perform search operations over the
completed batches. The batches which are still transmitted
on the fly cannot be queried without the latest keyword state
ST ′[w] from C.
Re-encryption and deletion: ShieldDB also implements
the re-encryption operation. This operation is periodically
conducted over a certain keyword cluster. Padding Service
P first fetches all entries in this cluster stored in EDB from
S. After that, P removes all bogus entries and re-performs
the padding over this cluster of keywords. All the real
and bogus entires are then encrypted via a fresh key, and
inserted back to EDB. The benefits of re-encryption are
two-fold: (1) redundant bogus entries in this cluster can
be eliminated; and (2) the leakage function can be reset to
protect the search and access patterns. During re-encryption,
ShieldDB can also execute deletion. A list of deleted doc-
ument ids is maintained at P, and the deleted entries are
physically removed from the cluster before padding.
Cache flushing: During streaming, the keywords in some
clusters might not show up frequently. Even the cache
capacity of such clusters is set relatively small, the constraint
might still not be triggered very often. To reduce the load
of the cache at P and improve the streaming throughput,
ShieldDB develops an operation called flushing to deal with
the above “cold” clusters. In particular, Cache Controller
monitors all the caches of clusters, and sets a time limit
to trigger flushing. If a cluster is not full after a period of
this time limit, all entries in this cluster will be sent to
Padding Controller. Note that the padding strategies still need
to be followed for security and the high mode of padding is
applied to empty the cache.

5 SECURITY OF SHIELDDB
ShieldDB implements a dynamic searchable encryption
scheme Σ = (setup, streaming, search), consisting of three
protocols between a padding service P , a storage server
S, and an querying client C . We note that a database
DBt = (wi, idi)

|DBt|
i=1 is defined as a tuple of keyword and

document id pairs with wi ⊆ {0, 1}∗ and idi ∈ {0, 1}l at the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Cache  
Controller

Padding  
Controller

Orchestrator

Cluster1 Cluster2 ... Clusterm

process-safe
access

Streaming Daemon

SE Client

Padding Daemon

shared memory

socket notification

checksum request

response
HTTP

EDB
Controller

EDB 
Wrapper

EDB

API Provider

Fig. 7: Implementation of ShieldDB
time interval t ≥ 0. DBt presents the accumulated database
up to time t. The security of ShieldDB can be quantified via
a leakage function L = (LStp,LStream,LSrch). It defines
the information exposed in setup, streaming, and search,
respectively. The security of ShieldDB ensures that it does
not reveal any information beyond the one that can be
inferred from LStp, LStream, and LSrch.

We adapt the notion of constrained security [29] to
formalise the knowledge the information known by the
non-persistent and persistent adversaries. Formally, we
model the fact that the non-persistent adversary knows
the database by considering the constraint set CDBt =
{CDBt ,DBt ∈ DBt}, where DBt is a computable database
set at the time t (see Appendix A-B and A-C). Then, with the
knowledge of DBt, the leakage function of ΣNP is formally
defined as LNP = (LStp,LSrch,Lα−pad), where LStp and
LSrch reveals the leakage in Setup at t and Search against
EDBt, respectively, and the new leakage Lα−pad reveals the
minimum size of clusters induced by Lα−pad. We define
the IndSSE,A,LNP ,CDBt ,α game for the non-persistent in
Definition 5 in the supplementary material.

We state the following theorem regarding the security
of ShieldDB against the adversary as follows (full proof is
provided in the supplementary material Section A-C) .

Theorem 1. Let ΣNP = (Setup,Search) be our SSE scheme, and
CDBt a set of knowledge constraints. If ΣNP is LNP -constrained-
adaptively-indistinguishable secure, and CDBt is (LNP , α)-
acceptable, then ΣNP is (LNP ,CDBt , α)-constrained-adaptively-
indistinguishability secure.

Then, we generalise the knowledge of the non-persistent
adversary over the time to be the persistent adver-
sary’s knowledge of databases. Namely, we denote by
(DBt=0, . . . ,DBt=T ) such knowledge, where T denotes the
streaming period. We also make use of the constraint set
CDBt = {CDBt ,DBt ∈ DBt} to formulate C[1,...,T ] =
{CDB0 , . . . ,CDBT } the generalisation of constraint sets
over the period such that we know every CDBt(LNP , α)-
acceptable, ∀t ∈ [0, T ].

The security of a scheme ΣP = (Setup,Stream,Search)
against the persistent adversary over a streaming period
T . We start adding a padding mechanism against the
persistent adversary in Algorithm 1 (i.e., Padding Strate-
gies) to ΣP such that, ∀Gi,t in Γt = {G1,t, . . . , Gm,t}
induced by Searcht (i.e., searching at time t) against
EDBt, Gi,t always has the same size |Gi,t| = |Gi,t′ |,
where Gi,t′ in Γt′ = {G1,t′ , . . . , Gm,t′}, ∀t′ 6= t.
Let LStream[1,...,T ] = {LStream1 , . . . , LStreamT }, and LSearch[1,...,T ] =

{LSrchNP,i}, for i ∈ [1, . . . , T ], where LSrchNP,i = (LSrchi ,Lα−padi )

is the search leakage at time i, where Lα−padi ) re-

veals the sizes of clusters induced by Lα−padi . Then,
the leakage function of ΣP can be quantified via the
leakage function LP = (LStp,LStream[1,...,T ] ,LSearch[1,...,T ]). The
IndDSSE,A,LP ,C[1,...,T ],α,F game is given in Definition 7.

We state the below theorem regarding the security of
ShieldDB against the persistent adversary. Security proof is
provided in the supplementary material in Section A-D).

Theorem 2. Let ΣP = (Setup,Streaming,Search) be our
DSSE scheme, and C[1,...,T ] = {CDB0 , . . . ,CDBT } is a
set of constraint sets. If Σ is LP -constrained-adaptively-
indistinguishable secure, and C[1,...,T ] is (LP , α,F)-acceptable,
then Σ is (LP ,C[1,...,T ], α,F)-constrained-adaptively-
indistinguishability secure.

6 SYSTEM IMPLEMENTATION

A simple way to implement the padding service P of
ShieldDB is that Cache Controller and Padding Controller are
maintained synchronously in a single process. That is, Cache
Controller is idle while Padding Controller performs padding
and encryption, and vice versa. Then, encrypted batches
are uploaded to the server S. We observe that this single
process becomes extremely slow in the long run because
Cache Controller and Padding Controller cannot make use of
CPU cores in parallel. As a result, there are a very few
batches uploaded to S.

To address the above bottleneck, we propose Orchestra-
tor, a component bridging data flow between Cache Con-
troller and Padding Controller. Orchestrator enables ShieldDB
to maximise the usage of CPU cores by splitting two con-
trollers to process in parallel. Figure 7 depicts the implemen-
tation of the system. In details, Cache Controller and Padding
Controller are spawned as separate system processes during
setup. Orchestrator acts as an independent proxy manager
managing the cache clusters in P’s shared memory. It pro-
vides process-safe access methods of collecting, clearing,
and updating data in a given cluster.

The communication between Cache Controller and
Padding Controller is performed by sockets during the
streaming operations. Cache Controller acts as a client socket,
and notifies Padding Controller in the order of clusters that
are ready for padding as per padding strategy. Then, Cache
Controller awaits a checksum notified by Padding Controller.
The checksum reports the number of keyword and doc-
ument id pairs in the cached cluster. Note that Padding
Controller only collects necessarily cached data for padding
upon the high or low padding mode.

Apart from these components, ShieldDB contains
Padding Daemon, Streaming Daemon, and SE Client. They are
activated by App Controller during setup. Padding Daemon
provides Padding Controller with the access to a bogus
dataset, and maintains the track of remaining bogus entries
for each keyword. It will generate a new bogus dataset if
it is run out. Streaming Daemon allows App Controller to
setup HTTP request/response methods to S’s address. SE
Client deploys our encryption protocols at C, as presented
in Figure 4. This service is separated so that later protocol
updates are compatible to other components in the system.

At S, API Provider provides RESTful APIs to serve C’s
HTTP requests. By calling streaming API requests, API
Provider then passes collected batches in streaming to the
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Fig. 8: Cache capacities

TABLE 2: Batch processing results

Setting Batch Insertions Avg. time/batch (ms)
α = 256 α = 512 α = 256 α = 512

NH 30 5 7047.2 51384.41
NL 1919 497 113.94 456.87
PH 45 6 5280.58 45734.16
PL 1916 549 138.34 465.09

EDB Controller. This component executes the insertion pro-
tocol as presented in Figure 4. ShieldDB introduces a compo-
nent called EDB Wrapper, which separates EDB Controller’s
protocols from any database storage technology.

7 EXPERIMENTAL EVALUATION

We evaluated ShieldDB to understand the applicability of
the padding strategies by investigating (1) the streaming
throughput, padding overhead, and local cache load of
the Padding Service when using different padding strategies
against the non-persistent and persistent adversaries, (2) the
corresponding EDB size and search latency relating to the
padding overhead, and (3) the efficiency of flushing in re-
ducing the cache load and the padding overhead reduction
when re-encryption is applied.

7.1 Setup and Overview

ShieldDB is developed using Python and the code is pub-
lished online1. We use standard packages of Pycrypto (2.6.1)
to implement cryptographic primitives (SHA256 for cryp-
tographic hash functions and AES-128 cipher for pseudo-
random functions) and NLTK (3.3) for textual processing.
We deploy ShieldDB in Azure Cloud and run on an isolated
DS15 v2 instance (Intel Xeon E5-2673 2.4GHz CPU with
20 cores and 140G RAM), where Ubuntu Server 17.1 is
installed. The controllers of the padding service are im-
plemented by using Python multiprocessing package. For
simplicity, we co-locate the Client and Padding Service at
the same instance. At the server side. API Controller works
on top of the Flask-a micro web framework, while EDB is
realised by RocksDB, a key-value storage.

We select the Enron data set2, and extract 2,418,270
keyword/document id pairs from the top 5,000 most fre-
quent keywords in the dataset as the keyword space in our
experiment. We group them and allocate the cache capacity
for each keyword cluster based on their frequencies, as
introduced in Section 4.1. Figure 8 presents the normalised
cache capacities of these clusters at different values of α.
Recalled that α indicates the minimum number of keywords
in each cluster (see Section 4.1). During the setup, ShieldDB
generates a padding dataset for the keyword set. In our
experiments, the dataset is estimated empirically enough
to be used in streaming data up to 175 seconds for both

1. https://github.com/MonashCybersecurityLab/ShieldDB
2. Enron email dataset: https://www.cs.cmu.edu/∼./enron/

α = 256 and α = 512. In details, the dataset contains
1,859,877 bogus pairs (≈ 389 Kb).

To create the streaming scenario, the Client groups every
10 documents in the Enron data set as a batch (approx.
560 stemmed keyword/id pairs) and continuously inputs
batches to the system. Note that we do not limit the pro-
cessing capability of the Padding Service P and we let it
continuously handle batches in a queue sent by the Client.
In every batch, P performs the padding and encryption, and
then continuously streams encrypted batches to the Server.
To faithfully understand the performance of padding, we
deploy the client and server to the same dedicated instance
so that the impact of network I/O is minimised. Note that
we begin to record the performance of ShieldDB after the
cold start period of 75 seconds.

We experiment ShieldDB with different combinatorial
settings of padding strategies and modes. They are denoted
as NH (strategy against non-persistent adversary via high
mode), NL (non-persistent padding strategy via low mode),
PH (strategy against persistent adversary via high mode, and
PL (strategy against persistent adversary via low mode). The
performance of ShieldDB is evaluated via a set of measure-
ments such as system throughput, local cache size, used
bogus pairs, EDB size, and search time. Here, the system
throughput represents the total accumulated number of real
(w, id) pairs that have been encrypted and inserted to EDB.

Remark: Our focus is to analyse the system performance
with different settings of padding strategies and modes
related to the security as mentioned in Section 4.2. The
empirical settings of 175 second streaming period and 10
documents per batch are used for the evaluation under a
stable workload, not causing performance bottleneck, when
the Client and Padding Service are co-located at the same
Azure instance. Other parameters of a streaming period
expects to result in the same observation as we obtained.
The batch size can be adjusted empirically based on the
application and client’s resources.

7.2 Evaluation
We measure the performance of ShieldDB at both Padding
Service and the untrusted server S over a 175-second stream-
ing period. In details, Fig. 9 summarises the performance of
Padding Service with the three different metrics of accumu-
lated throughput, local cache size, and padding overhead
when setting α = 256 and α = 512. Then, Fig. 11 describes
the performance of S by observing EDB size, search time,
and the average result length of query keywords.
System throughput: We first measure the accumulated
throughput over time when ShieldDB is deployed with
different padding modes of NH (non-persistent using high
padding mode), NL (non-persistent using low padding
mode), PH (persistent using high padding mode), and PL
(persistent using low padding mode). We also monitor the
number of batch insertions and the average batch process-
ing time of Padding Controller to evaluate the throughput
difference between these padding strategies.

Fig. 9 shows that these padding modes have similar
throughput at a lower α = 256. However, the overall
throughput reduces nearly a half when setting α = 512. It
is explained that padding overhead and encryption cost are
higher when more keywords are allocated in each cluster.

https://github.com/MonashCybersecurityLab/ShieldDB
https://www.cs.cmu.edu/~./enron/
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Fig. 9: Evaluations on the accumulated throughput, local cache size, and number of used bogus entries, respectively

Consequently, the throughput will be decreased. Table 2 also
supports that finding when fewer batches are inserted to S
and the average processing time per batch takes a longer
time when setting α = 512.

Furthermore, when setting α = 512, Fig. 9 shows that
low mode promotes more real keyword/id pairs to be in-
serted to EDB than high mode. In details, the throughput of
NL is 1.23 times higher than the throughput of NH, and PL’s
is about 1.51 timer higher than PH’s. Table 2 also supports
this finding when it reports that low mode creates more
batch insertions than high mode, while its average batch
processing time is completely negligible compared to that
value of the latter. This observation shows the efficiency
of low mode since it only performs necessarily minimum
padding for keywords in every batch. In contrast, Padding
Controller takes longer time under high padding mode due
to higher padding overhead and the longer encryption time
taken by the large number of bogus pairs.
Cache size: To investigate the overhead at the padding
service, we monitor the local cache as shown in Fig. 9. In
general, low mode results in a larger number of cached pairs
in cache clusters than high mode, regardless of padding
constraints. The cache in NL consumes 150%∼197% larger
space than the cache in NH. The load of cache in PL is
1.8∼2.5× higher than the load of the cache in PH.
Padding Overhead: We rely on the number of used bogus
entries reported in Fig. 9 to compute the padding overhead
of different combinatorial settings of padding strategies and
modes. The padding overhead is estimated as the ratio
between the bogus and real (throughput) pairs. We see
that although high padding mode achieves a lower load
of cache than low mode, it utilises more bogus pairs from
the generated padding dataset than the latter. In details,
the padding overhead of NH ranges from 3.8∼4.1 and from
5.6∼5.8 for α = 256 and 512, respectively. In contrast, the
padding overhead of NL ranges is marginal, varying from
0.07∼0.13 and 0.06∼0.16 for α = 256 and 512, respectively.
The reason is that a portion of streamed keyword/id pairs
are still cached at the padding service. It also demonstrates
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Fig. 10: Flushing operation with α = 256

that when α is large, PH generates a larger padding over-
head than NH does. Specifically, the padding overhead of
PH is in the range of 6.4∼8.9 for α = 512. The reason is that
PH will add bogus pairs for keywords that do not appear in
the current time interval, while NH will not if the keywords
have not existed.
EDB size: We report the number of real and bogus pairs
in EDB over the time in Fig. 11. It demonstrates that high
mode generates more data in EDB than low mode due to the
selection of all cached pairs in clusters for padding and the
large number of used bogus pairs.
Search time: To demonstrate the search performance, we
configure the client to query 10% randomly selected key-
words in EDB at timestamps, i.e, t = 75, 100, 125, 150,
and 175. Fig. 11 shows that high mode makes querying a
keyword take a longer time, because S decrypts more bogus
pairs. In contrast, the search time in low mode is shorter due
to the fewer used bogus pairs. The search time in NH and
PH is fluctuated due to the change of the result lengths of
keywords in EDB as given in Table 3 and Table 4.
Flushing: We select two largest cache clusters to simulate
the flushing operation. In particular, we set a small time
window, 20 seconds, to trigger flushing. If these clusters do
not exceed up to 75% of their original capacities, then the
flushing operation is invoked. Figure 10 reports EDB size
and cache size over the time with a scanning window of 20
seconds. The operation occurs at t = 73, 45, 80, 121, 144,
189, 222, 272, and 331 seconds. We observe that the cache
size drops significantly at these timestamps since Cache
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Setting Time intervals
t = 75 t = 100 t = 125 t = 150 t = 175

NH 593.78 669.94 778.45 811.25 903.53
NL 109.856 144.66 164.40 171.56 186.04
PH 562.86 660.22 593.18 579.30 714.12
PL 89.25 82.38 107.92 110.57 126.43

(a) α = 256
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TABLE 4: Result length with α = 512

Setting Time intervals
t = 75 t = 100 t = 125 t = 150 t = 175

NH 668.02 843.22 837.01 840.85 861.44
NL 81.64 140.95 147.73 168.17 174.40
PH 577.06 610.02 614.34 857.73 879.63
PL 51.66 85.33 89.21 93.82 112.32

(b) α = 512

Fig. 11: Evaluation on the EDB size and search time

Controller flushes the cached pairs to Padding Controller. Note
that the EDB and cache sizes are flat while Padding Controller
performs padding and encryption. Empirically, we observe
that flushing operation averagely reduced the cache load
efficiently up to 1.9 ∼ 2.8× across the padding strategies
in the same streaming period.
Re-encryption: To investigate the performance of re-
encryption, we experiment ShieldDB after 175 seconds op-
erated with NH at α = 256. We select the keyword clus-
ter that has the most entries stored in EDB for the re-
encryption. This keyword set is also re-used as the query
set to benchmark the query performance before, during, and
after re-encryption. There are 180,677 real entries associating
with 256 keywords of this cluster. Table 7 demonstrates
the performance of the re-encryption. This operation takes
131.3 seconds for fetching process, and 103.11 seconds for
padding and re-insertion. During the operation, the average
query time per keyword is the smallest due to the deletion
of all entries in the selected cluster. Note that this query
time takes into account the search over local cache clusters
if the keyword is not available in EDB. After re-encryption,
the number of bogus entries used for the cluster is nearly
reduced by 64.1%, making the average search time shorter.
Overall performance: Table 5 summarises the performance
of Padding Service regarding three critical measurements of
throughput per second, average cache size at every second,
and the overall padding overhead. As seen, there are no
perfect padding strategies that can achieve a great balance.
Low padding mode makes a higher throughput value and
lightens padding overhead, but it incurs a significant cache
load. In contrast, high padding mode makes the cache load
lightweight, but it introduces a higher overhead.

Note that the padding strategies against the persistent
adversary are also applicable to the non-persistent adver-
sary. The firstBatch condition can theoretically make some
clusters might be not achieved in a long time if some
keywords never appear. However, this is not the case in our
current experiments. Therefore, the throughput for PH and
NH, and PL and NL is close, respectively.

The value α relates to the number of keywords in
clusters. A higher value indicates that more keywords are
co-located in the same cluster. Hence, they all will have
the same result length after padded. From the results,
ShieldDB shows the tradeoff when selecting a higher value
of α. That is, the throughput is declined nearly double while
padding overhead increases almost twice (see Table 5).

Comparison with baselines: We further investigate the
security and performance trade-off between ShieldDB and
two baselines. The first baseline (aka Baseline-I) is an inse-
cure system for which batches of un-encrypted keyword/id
pairs without padding are streamed to the server’s storage.
We define the batch size as 256 pairs. The second one (aka
Baseline-II) is also the streaming system without padding,
but it realises our searchable encryption scheme with for-
ward privacy, presented in Figure 4, to encrypt the pairs of
every batch insertion.

We measure the overall performance of these baselines
by using the same streaming database and the measurement
metrics as evaluated for ShieldDB (in Section 7.1). It is clear
that Baseline-II brings 2.5× overhead in addition through-
put compared to Baseline-I. The reason is because that the
encrypted entries of keywords in the same batch indeed are
generated from the ephemeral key of the batch and key-
word’s extracted state. We note that Baseline-I maintained
a constant throughput and completed streaming within 55
seconds, while Baseline-II finished in 162 seconds (Table
6). The throughput overhead ShieldDB brought forward
is about 6.04 ∼ 6.5× (resp. 10.7 ∼ 11.74×) lower than
performance of Baseline-II when setting α = 256 (resp.
512). We note that overhead is caused by the encryption of
additional bogus pairs introduced in every batch insertion.
The average result length for keywords streamed to the EDB
of ShieldDB is about 1.8 ∼ 2.3× (high padding mode used)
greater than that value if Baseline-II is deployed. The search
latency of ShieldDB is almost double (1.7 ∼ 2.1×), slower
than Baseline-II. We observe that the security enhanced by
the padding and forward privacy would overall bring the
streaming throughput per second ∼ 16.3× (resp. ∼ 27×)
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TABLE 5: Overall performance of ShieldDB throughout a 175-second streaming period

Setting Adversary Target Throughput per second Avg. cache load Padding overhead
α = 256 α = 512 α = 256 α = 512 α = 256 α = 512

NH Non-persistent 2, 634.27 1, 459.62 99, 347.8 82, 267.8 3.8 ∼ 4.12 5.6 ∼ 5.8
NL Non-persistent 2, 779.77 1, 515.74 168, 681.4 164, 960 0.07 ∼ 0.13 0.06 ∼ 0.16
PH Persistent 2, 702.05 1, 289.64 97, 351.6 97, 557.6 4.8 ∼ 6.3 6.4 ∼ 8.9
PL Persistent 2, 833.46 1, 590.46 195, 702.2 196, 413.6 0.08 ∼ 0.14 0.08 ∼ 0.23

TABLE 6: Overall performance of the insecure streaming system and the forward-private SSE streaming system

insecure system Forward-private system
t = 75 t = 100 t = 125 t = 150 t = 162

Throughput (pairs/s) 4.3× 104 1.73× 104 1.71× 104 1.71× 104 1.73× 104 1.74× 104

Avg. result length (#pairs) 483.66 281.5 384.8 476.53 513.61 483.61
Search latency (ms) 5.12 20.9 24.62 33.75 40.95 43.59

Storage overhead (#pairs) 2.41× 106 1.3× 106 1.7× 106 2.14× 106 2.17× 106 2.41× 106

TABLE 7: Re-encryption on the largest cluster
Before During After

Bogus entries used 643, 131 230, 715 230, 715
Search time (ms) 379.37 0.03 210.18

slower than Baseline-I when setting α = 256 (resp. 512).
Empirical analysis of streaming distribution: Next, we
investigate how the streaming distribution of real data
outsourced by ShieldDB to EDB changes over the time.
To do this, we consider the training distribution used to
generate the padding dataset and cluster’s caches extracted
from the training dataset in the Setup, (in Section 4.1), as the
baseline distribution. Note that the training distribution was
different with respecting to α (i.e., the minimal number of
keywords in every cache cluster) (see Equation 1). Then, we
monitor the streaming distribution of real data at different
times t when ShieldDB employs different combinatorial
settings of padding strategies and modes. In particular, we
use the Kullback–Leibler (KL) distance [41] to measure the
difference between such streaming distributions and the
baseline distribution (Figure 12).

Our observation shows that the streaming distribution
was different compared to the baseline at the early stream-
ing time (i.e., t = 75 − 150). Then, it tended to converge
to the baseline when the streaming dataset was almost
outsourced completely (t ≥ 175). At this time, the padding
dataset was also almost used. The reason for that is because
the completed streaming dataset shares the same distribu-
tion with the training dataset. However, at the earlier time,
the difference was large because there was some keywords
in the training distribution that did not appear yet in these
early streaming batches. We note that, with α = 256, the
persistent padding settings (i.e., PH and PL) have the largest
distribution difference since it requires the existence of all
keywords in the cluster at the firstBatch (in Algorithm 1).
With α = 512 (i.e., more keywords required in clusters), the
distribution difference was double (i.e., 0.8 ∼ 1.0 KL unit)
since the setting causes a longer waiting period before the
padding strategies meet, under the same streaming rate.

7.3 Discussion on Deployment

We note that the above experiments consider the keyword
frequency distribution in setup is similar to the one in a pe-
riod of streaming operation. We deem that the assumption
and the corresponding setting of ShieldDB for deployment
can be practically held in practice.
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Fig. 12: The difference in streaming distribution

First, this setting is applicable to streaming applications
for which the underlying distribution does not change much
over time or it is known in advance, like the known data
range of the IoT sensors [42], [43]. Second, in our observa-
tion (Figure 12), we show that the streaming distribution
changes towards the training distribution over a streaming
period, not requiring the exact matching between them for
any particular interval. Therefore, the assumption can at
least be hold for that duration, and better than assuming
that the streaming and training distribution are close for
any particular time interval. In addition, we note that the
setup operation can be re-invoked again to re-cluster key-
words based on up-to-date streaming data if the streaming
distribution is different from the training distribution. In
that way, the re-clustering can use that up-to-date streaming
distribution as the training distribution.

We are aware that the keyword distribution difference
can cause a long tail effect when applying the proposed
padding strategies to low frequent keywords. For instance,
if a keyword only occurs in the first batch of that keyword’s
cluster and disappears for all subsequent batches, Padding
Controller still pads that keyword during subsequent batches
when padding strategies NH and NL are used. As seen
in the above experiments, such different distribution can
happen at the early streaming stages. We also note that,
when the streaming distribution differs from the training
distributions, it may cause some “cold” clusters and/or
the intensive usage of the padding datasets in some “hot”
clusters. As a results, the overall streaming throughput can
be slowed down.

To mitigate the above issues, ShieldDB offers flushing
and re-encryption operations regarding the highly varied
frequency of streaming keywords. As experimented, flush-
ing could quickly reduce 1.9 ∼ 2.8× the cache load to boost
the “cold” clusters. In addition, re-encryption could lowered
64% the amount of bogus pairs used by re-padding all
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keywords in the “hot” cluster. The above result is obtained
when we checked and applied the operations for every fixed
time window. Nevertheless, it is non-trivial to optimise the
padding overhead in the streaming setting and we leave it
as future work.

8 RELATED WORKS

Searchable symmetric encryption: ShieldDB employs
SSE [18] as an underlying building block to enable single-
keyword encrypted search. Curtmola et al. [19] and Kamara
et al. [34] formalise the security of SSE for static and dy-
namic databases respectively, and devise concrete construc-
tions with sublinear search time. A line of schemes [31], [36],
[39], [44]–[46] (just to list a few) are proposed to improve
performance and expressiveness of SSE. Driven by leakage-
abuse attacks [21], [22], [47], new schemes [33], [37], [38],
[48] with less leakage in search and update are proposed to
achieve forward and backward security. Note that, although
oblivious RAM [49], [50] provides the highest protection for
the Server’s memory access pattern, we do not consider it
for ShieldDB due its inefficient capability in the streaming
setting. In details, the approach requires more computation
and storage at the Client, and the communication between
the Client and the Server. Also, ORAM does not hide the size
of the query results, unless there is non-trivial padding.

In the meanwhile, padding countermeasures [20], [21],
[29] are considered as an effective approach to obfuscate the
leakage during search operations of SSE. In particular, Islam
et al. [20] propose the first padding countermeasure for SSE;
keywords are grouped into different clusters, where each
keyword in a cluster matches a set of identical document
ids. This requires another data structure to help the client
to differentiate real and bogus document ids after search,
since all bogus ids are selected from the real ones. After that,
Cash et al. [21] propose another approach; the number of ids
in each keyword matching list is padded up to the nearest
multiple of an integer, aka padding factor. To guarantee ef-
fectiveness, this factor needs to be increased until no unique
result size exists. However, this padding factor is a system-
wide parameter, and incrementing it introduces redundant
padding for all other padded matching lists. To reduce
padding overhead, Bost and Fouque [29] propose to pad
the keyword matching lists based on clusters of keywords
with similar frequency. Their proposed clustering algorithm
achieves minimised padding overhead while thwarting the
count attack in the static setting. Very recently, Xu et al. [51]
investigate the formal method to quantify the padding secu-
rity strength, and propose a padding generation algorithm
which makes the bogus and documents similar. Again, all
the above padding countermeasures focus on the static set-
ting, where the dataset remains unchanged after the setup.
We note that the assumption in this setting is not always true
in practice, and therefore ShieldDB is designed to embed
padding countermeasures in the dynamic setting, where the
keyword existence is a matter in online streaming.

Recent works [52], [53] propose volume-hiding encryp-
tion schemes to mitigate the leakage-abuse attacks. We note
that those schemes are focused on the static setting, as
they resort to specialised data structures and constructions.
First, they are not dynamic friendly. Specifically, multi-
hashing and cuckoo hashing techniques are adopted as the

underlying data structures. It is not easy to insert new
data into those data structures, and we are not aware any
existing volume-hiding schemes support efficient updates.
Second, volume hiding schemes may hide the size of the
query result, but it is not clear whether they can protect
the relationships between different query keywords when
applying them into the context of keyword search.
Encrypted database systems: ShieldDB can also be fit into
a line of research on designing encrypted database systems.
Most of existing encrypted databases [8], [10]–[13], [54]–[56]
focus on supporting rich queries over encrypted data in
SQL and NoSQL databases. They mainly target on query
functionality and normally integrate different primitives
together to achieve the goal. Like the issues in SSE, inference
attacks against encrypted databases [16], [57] are designed
to compromise their claimed protection. To address this
issue, one approach is to use advanced cryptographic tools
such as secure multi-party computation [10], [12]. Note that
padding can also be adapted to mitigate inference attacks.
A system called Seabed [11] proposes a schema for RDBMS
that introduces redundant data values in each attribute of
data records to hide the frequency of the underlying data
values. Compared with the above systems, ShieldDB fo-
cuses on the document-oriented data model and supports
keyword search over encrypted documents.

9 CONCLUSIONS

ShieldDB is an encrypted database system that supports
keyword search over encrypted documents with advanced
security features. Our system employs the SSE framework to
implement encrypted data structures for efficient queries. To
defend against leakage-abuse attacks against SSE, ShieldDB
includes effective padding countermeasures targeting ad-
versaries in the dynamic setting. To demonstrate the perfor-
mance of our system, we develop a prototype, and perform
intensive evaluations on various metrics. We show that our
proposed padding strategy is practical and deployable to
real-world streaming applications/systems that require the
privacy preservation on data stream.
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APPENDIX A
SECURITY OF SHIELDDB
A.1 The leakage of dynamic searchable encryption
scheme
ShieldDB implements a dynamic searchable encryption
scheme (DSSE) Σ = (Setup,Streaming,Search), consist-
ing of three protocols between a padding service P , a
storage server S, and an querying client C . A database
DBt = (wi, idi)

|DBt|
i=1 is defined as a tuple of keyword and

document id pairs with wi ⊆ {0, 1}∗ and idi ∈ {0, 1}l at the
time interval t ≥ 0. We first formalise the SSE-based leakage
functions of ShieldDB as follows.

Setup(DB0) is a protocol that takes as in-
put a database DB0, and outputs a tuple of
(k1, k2, {L1, . . . , Lm}, st, B,EDB0), where k1, k2 are
secret keys to encrypt keywords and document ids, a set
{L1, . . . , Lm} contains cache clusters, st maintains keyword
states, and B is a bogus dataset to be used for padding, and
EDB0 is the encrypted database at t = 0.

Streaming(k1, k2, Lu, st, B, {(wi, idi)}; EDBt−1, {(ui, vi)})
is a protocol between P with inputs k1,k2, and Lu
(1 ≤ u ≤ m) the cache cluster to be updated, the states st,
the bogus dataset B, and the set of keyword and document
id pairs {(wi, idi)} to be streamed, and S with input EDBt−1
the encrypted database at time t − 1 (t ≥ 1), and {(ui, vi)}
the set of encrypted keyword and document identifier
pairs for batch insertion. Once P uploads {(ui, vi)} to S,
st and B gets updated, Lu is reset. At S, once EDBt−1 gets
updated by {(ui, vi)}, it changes to EDBt.

Search(k1, k2, q, st; EDBt) is a protocol between C with
the keys k1, k2, the query q querying the matching doc-
uments of a single keyword wi, and the state st, and S
with EDBt. Meanwhile, C queries P for retrieving cached
documents of the query keyword.

The security of ShieldDB can be quantified via a leakage
function L = (LStp,LStream,LSrch). It defines the informa-
tion exposed in Setup, Streaming, and Search, respectively.
The function ensures that ShieldDB does not reveal any
information beyond the one that can be inferred from LStp,
LStream, and LSrch.

In Setup, LStp = |EDB0| presenting the size of EDB0, i.e.,
the number of encrypted keyword and document id pairs.

In Streaming, ShieldDB is forward private as presented in
Streaming protocol. Hence LStream can be written as

LStream({(w, id)}) = L′({id})
where {(w, id)} denotes a batch of keyword and id pairs w,
and L′ is a stateless function. Hence, LStream only reveals
the number of pairs to be added to EDB. ShieldDB does
not leak any information about the updated keywords. In
particular, S cannot learn that the newly inserted documents
match a keyword that being previously queried.

In Search, LSrch reveals common leakage functions [19]:
the access pattern ap and the search pattern sp as follows.

The ap reveals the encrypted matching document iden-
tifiers associated with search tokens. For instance, if an
adversary controls EDBt, she monitors the search query list
Qt = {q1, . . . , qn−1} by the time order. Then, ap(qi) (with
1 ≤ i ≤ n− 1) for a query keyword wi is presented as

ap(qi) = EDB(wi) = {(uwi
, vwi

)}

where uwi and vwi are an encrypted keyword and document
id entry associated with wi in EDBt.

The sp leaks the repetition of search tokens sent by C to
S, and hence, the repetition of queried keywords in those
search tokens.

sp(qi) = {∀j 6= i, qj ∈ Qt, wj = wi}

Next, we detail the leakage during the interaction be-
tween C and S over Qt on a given DBt. We call an instantia-
tion of the interaction as a history Ht = (DBt, q1, . . . , qn−1).
We note that the states of keywords in DBt do not change
during these queries. The leakage function of Ht is pre-
sented as

L(Ht) = (|EDB(wi)|, . . . , |EDB(wn−1)|, α(Ht), σ(Ht))

where |EDB(wi)| (1 ≤ i ≤ n− 1) is the number of matching
documents associated with the keyword wi mapping to
the query qi, α(Ht) = {ap(q1), . . . , ap(qn−1)} is the access
pattern induced by Qt, and σ(Ht) is a symmetric binary
matrix such that for 1 ≤ i, j ≤ n − 1, the element at ith

row and jth column is 1 if wi = wj , and 0 otherwise.

A.2 Constrained security in ShieldDB

We note that the database knowledge of non-persistent and
persistent adversaries falls outside the traditional SSE for-
malisation [29]. The reason is because the notion is limited
by the fact that knowing the DB, the query list is uniquely
defined by the acceptable leakage of SSE. Namely, there is
already the uniqueness of a history given the knowledge of
the adversary. Therefore, we want to define new constrained
security that can formalise the adversary’s knowledge inHt.
But, given the constraint, there are multiple histories at time
t satisfying the leakage function (i.e., making Ht no longer
unique). In this way, one needs to find two different lists
of queries generating the exact same leakage with the same
DBt. As a starting point, we extend the Definition 3.1 in [29]
to formalise Ht satisfying the constraint C iff C(Ht) = true
as in Definition. 1.

Definition 1. A constraint C = (C0, C1, . . . , Cn−1) over a
database set DBt and a query set Qt = {q1, . . . , qn−1}, is a
sequence of algorithms such that, for DBt ∈ DBt, C0(DBt) =
(flag0, st0), where flag0 is true or false and st0 captures
C0’s state, and for q ∈ Qt, Ci(q, flagi−1) = (flagi), (i ≥ 1).
The constraint is consistent if Ci(., false, .) = (false, .) (the
constraint remains false if it once evaluates to false).

For a history Ht = (DBt, q1, . . . , qn−1), we note C(Ht) the
evaluation of

C(Ht) := Cn−1(qn−1, Cn−2(. . . , C0(DBt))).

If C(Ht) = true, we say that Ht satisfies C . A constraint C is
valid if there exists two different efficiently constructable histories
Ht and H ′t satisfying C.

After defining the knowledge in Ht known by the adver-
sary, we also formalise some elements (i.e., queries) in Ht

that are unknown to the adversary. Namely, they are left free
from the constraint C. We note that Bost et. al. [29] already
defined free components in static database setting (i.e., not
time interval t) for constraint security. Therefore, we extend
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the Definition 3.2 in [29] to formalise free component in C
regarding Ht in below Def. 2.

Definition 2. (Free history component) We say that C lets the
i-th query free if for historyHt = (DBt, q1, . . . , qn−1) satisfying
C, for every search (resp. update) query q if qi is a search (resp.
update) query, H ′t = (DB′t, q1, . . . , qi−1, q, qi+1, . . . , qn−1) also
satisfies C, where DB′t ∈ DBt.

The idea behind of letting i-th query free is that there
exists some other queries in the history H ′t such that H ′t still
satisfies C (and both L(Ht) = L(H ′t)) without modifying
the leakage L(H ′t).

Now, we also define the acceptable constraint notion,
so that, given a constraint C , and a leakage function L,
for every history Ht, we are able to find another history
satisfying C with the same leakage.

Definition 3. A constraint C is L-acceptable for some leakage L
if, for every efficiently computable history Ht satisfying C, there
exists an efficiently computable H ′t 6= Ht satisfying C, for H ′t =
(DB′t, q1, . . . , qn−1), such that L(Ht) = L(H ′t).

A set of constraints C is said to be L-acceptable if all its
elements are L-acceptable.

Now, after giving background definitions, we start to
investigate the query at time t. We recall that the Client
only triggers the search on completely outsourced data in
EDBt, where (t > 0) is a random interval upon receiv-
ing search query tokens. Therefore, we consider that the
leakage function only depends on the query itself, and
on the state of DBt: L(q) can be presented as a stateless
function of fL(q,DBt). We make an observation on EDBt
that: let C be a constraint, Ht = (DBt, q1, . . . , qn−1) an
history satisfying C , and q, q′ be two queries such that
H̃t = Ht||q = (DBt, q1, . . . , qn−1, q) and H̃ ′t = Ht||q′ =
(DBt, q1, . . . , qn−1, q′). Then, if fL(q,DBt) = fL(q′,DBt),
then both H̃t and H̃ ′t with the same leakage satisfying C .
This observation can be iterated to create multiple (i.e.,
more than 2) histories using the same DBt and they are both
satisfyingC with the same leakage. Therefore, we can define
a clustering Γt = {G1, . . . , Gm} of queries induced by the
leakage L after history Ht is a partition of a query set Qt,
for which, in every cluster, queries share the same leakage
after running the history Ht as below.

m⋃
i=1

Gi = Qt

∀i 6= j Gi ∩Gj = ∅

and ∀q, q′ ∈ Gi,L(q,Ht) = L(q′, Ht)

where L(Ht, q) is the output of L(q) after having been run
on each element of Ht. Note that, we omit the subscript
t in Γt in the clear context of Ht; otherwise, we state it
separately. We denote ΓL(Ht) the clustering induced by L
after Ht. We can see that it is impossible to merge different
clusters in ΓL(Ht) with the same leakage. Therefore, for-
mally, for ΓL(Ht) = {G1, . . . , Gm}, where m is the total
number of clusters, we have:

∀i 6= j,∀q ∈ Gi,∀q′ ∈ Gj ,L(Ht, q) 6= L(Ht, q
′)

We present ΓL,C(Ht) the L-induced clustering applied on
history Ht satisfying C such that a subset of queries Qt in

queries q gives C(Ht||q) = true. We can see that, in the
singular query q earlier, L(q) only depends on q and DBt.
Therefore, more generally, when q is a set of queries with
C(Ht||q) = true, ΓL,C(Ht) only depends on DBt. Indeed,
the clustering ΓL,C(Ht) acquires at least two elements in
every cluster. Otherwise, an history Ht can be constructed
without any different history H ′t. Namely, we need at least
|Gi| > 2 for ∀i ∈ [1,m], to make sure that there are at least 2
constrained histories can be found. Therefore, we can extend
Def. 3 to have an acceptable constraint C with α histories,
where |Gi| > α. We note that the notation α here is inline
with the clustering algorithm in setup in ShieldDB (Section
4.1).

Definition 4. (Extended acceptable constraint) A constraint
C is (L, α)-acceptable for some leakage L and integer α > 1
if, for every efficiently computable history H0

t satisfying C
(i.e., C(H0

t ) = true), there exists (α−1) efficiently computable
{Hi

t}1≤i≤α−1 such that Hi
t 6= Hj

t for i 6= j, that are all
satisfying C, and L(H0

t ) = · · · = L(Hα−1).

Now, we can see that when |Gi| ≥ α, for ∀i ∈ [1,m], i.e.,
strictly more than one element in each cluster of ΓL,C(Ht),
C is (L, α)-acceptable, as formalised in below Proposition 1.

Proposition 1. Let C be a constraint, and L a leakage function.
If for every history Ht satisfying C , the clustering ΓL,C(Ht) =
{G1, . . . , Gm} is such that |Gi| ≥ α for all i, C is (L, α) −
acceptable.

A.3 Security against Non-persistent Adversary
Prior knowledge of the database: Considering the adver-
sary’s knowledge of the database is DBt when she captures
L(Ht), we use the predicate CDBt to formalise this knowl-
edge, by adapting the notion of server’s knowledge in [29].
Formally, we have CDBt(Ht) = true if the database of the
input history is DBt. As used in Definition 3, CDBt ensures
that all challenge histories’ database is the same, i.e., DBt.
That also leave all queries in DBt are left free, as defined in
Definition 2. More generally, we can model the fact that the
adversary know the database by considering the constraint
set CDBt = {CDBt ,DBt ∈ DBt}.

Now, we recall that the non-persistent adversary only
captures an interval t, and search only triggers on encrypted
entries inserted in EDBt. Therefore, we consider the scheme
ΣNP = (Setup,Search) at time t for the non-persistent
adversary. We start adding a padding mechanism presented
in Algorithm 1 (i.e., Padding Strategies) to Σ such that, for
every keyword in DBt, there are at least different (α − 1)
keywords with the same number of matching documents.
Then, with the knowledge of DBt, the leakage function of
ΣNP is formally defined as LNP = (LStp,LSrch,Lα−pad),
where LStp and LSrch reveals the leakage in Setup at at
t and Search against EDBt, respectively (see Section A),
and the new leakage Lα−pad reveals the minimum size of
clusters induced by Lα−pad.

By using Proposition 1, we can show that CDBt is an
(LNP , α)-acceptable set of constraints, where α is the min-
imum cluster size (over all constructable databases). The
reason is that, since constraints in CDBt leave all queries free
for every history Ht = (DBt, q1, . . . , qn−1), we can generate
a different history H ′t with the same leakage by choosing
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another query q 6= q1 that are both matching the same
number of documents, and changing all queries qi = q1
in Ht to q. Also, if there is queries qj = q in Ht, we
can switch queries in qj to q1. This can give us a history
H ′t 6= Ht with the same leakage of Ht. We note that there
are at least α choices of q to create ΓLNP

(Ht) we can derive
CDBt(LNP , α)-acceptable.

Now, we are ready to define the notion of constrained
adaptive indistinguishability for ΣNP given CDBt and the
leakage (LNP ).

Definition 5. Let ΣNP = (Setup,Search) be the SSE scheme of
ShieldDB, λ be the security parameter, and A be a non-persistent
adversary. Let CDBt be a set of (LNP , α)-acceptable constraints.
Let IndSSE,A,LNP ,CDBt ,α be the following game:

IndSSE,A,LNP ,CDBt ,α(λ) Game:

b
$←− {0, . . . , α− 1}

(CDBt
0 ,DB0

t , . . . ,DBα−1t )← A(1λ)
(K,EDBbt)← Setup(DBbt)
(CDBt

1 , q01 , . . . , q
α−1
1 )← A(EDBbt)

τ b1 ← Search(qb1)
for i = 2 to n do

(CDBt
i , q0i , . . . , q

α−1
i )← A(qbi−1)

τ bi ← Search(qbi )
end for
b′ ← A(τ bn)
if b = b′ return 1, otherwise return 0

where τ bi ← Search(qbi ) presents the transcript of the
query qbi , and with the restriction that, for all the Hi

t =
(DBit, q

0
i , . . . , q

n−1
i ),

• CDBt ∈ CDBt , and ∀0 ≤ i ≤ (α − 1), CDBt(Hi
t) =

true

• L(H0
t ) = · · · = L(Hα−1

t )

We say that Σ is (LNP ,CDBt , α)-constrained-adaptively-
indistinguishable if for all probabilistic polynomial time adversary
A,

AdvInd
A,LNP ,CDBt ,α

(λ) =∣∣P[IndSSE,A,LNP ,CDBt ,α(λ) = 1]− 1

α

∣∣ ≤ negl(λ).
(2)

We can see that ΣNP offers at least log(α) bits of se-
curity. Given CDBt (LNP , α)-acceptable, we can analysing
the transcripts τ bi under the choice of α. First, we make an
observation on the keyword choice in (DB0

t , . . . ,DBα−1t ) as
follows. We denote by ∆i

t = {wi1, . . . , win−1} the keyword
space of DBit, where i ∈ {0, α− 1}. Then, CDBt(Hi

t) = true
and all L(H0

t ) = · · · = L(Hα−1
t ) imply ∆0

t = · · · = ∆α−1
t .

Let f(w) be a function returning the frequency of the key-
word w, we can see that, for all w0

j ∈ ∆0
t , where j ∈ |∆0

t |,
there are at least one another wij in ∆i

t (i.e., ∀i 6= 0) such that
fw0

i
= fwi

i
. This turns out that the Setup needs to groups

at least α keywords and pad them to be the same length
such that, for a given qbi in Search, under the chosen b, the
transcript τ bi can be hardened by at least (α− 1) choices.

Now, we adapt the Theorem 2 in [29] to prove the
extended constrained indistinguishability (i.e., Definition 5)
by using regular leakage indistinguishability and extended
acceptability of constraint set CDBt as follows.

Theorem 3. Let ΣNP = (Setup,Search) be our SSE scheme, and
CDBt a set of knowledge constraints. If ΣNP is LNP -constrained-
adaptively-indistinguishable secure, and CDBt is (LNP , α)-
acceptable, then ΣNP is (LNP ,CDBt , α)-constrained-adaptively-
indistinguishability secure.

Proof. Let A be an adversary in the IndSSE,A,LNP ,CDBt ,α

game. We construct an adversary B against the game. B
first randomly picks two integer α0, α1 ∈ {0, α − 1}. Then,
B starts A and receives α databases (DB0

t , . . . ,DBα−1t ).
Upon giving the pair (DBα0

t ,DBα1
t ) to the challenger, where

the challenger holds a random secret bit b, B receives the
challenge encrypted database EDB∗t which she forwards to
A. Then, A repeatedly outputs α queries (q0i , . . . , q

α−1
i ) and

gives to B. To respond, B outputs (qα0
i , qα1

i ) to the game,
and receives back the transcript τ∗i and forwards it to A.
Then, A outputs the integer α′. If α′ = α0, B outputs b′ = 0,
else if α′ = α1, B outputs b′ = 1, and otherwise outputs the
probability 1/2 for the output 0 and the probability 1/2 for
the output 1.

We first make an observation: for the pair (Hα0
t , Hα1

t ),
the views of the adversary B are indistinguishable due to
LNP (Hα0

t ) = LNP (Hα1
t ), presenting both satisfying CDBt .

Then we can formalise B as follows:

AdvInd
B,LNP ,CDBt

(λ) =
∣∣P[b = b′]− 1

2

∣∣ ≤ negl(λ) (3)

Now, we evaluate P[b = b′] as follows.

P[b = b′] =

P[b = b′|α′ ∈ {α0, α1}] · P[α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[b = b′ ∩ α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[A wins the IndSSE,A,LNP ,CDBt ,α game]

+
1

2
(1− P[α′ ∈ {α0, α1}])

(4)

Now, we evaluate P[α′ ∈ {α0, α1}] as follows.

P[α′ ∈ {α0, α1}] = P[α′ = α0] + P[α′ = α1]

Since we have

P[α′ = α0]+P[α′ = α1] =

P[α′ = αb|b = 0] + P[α′ = αb|b = 1]

then,

P[α′ ∈ {α0, α1}] =
1

2
(P[α′ = αb|b = 0] + P[α′ = α0])

+
1

2
(P[α′ = αb|b = 1] + P[α′ = α1])

We note that P[α′ = αb] is the probability A wins the 1-out-
of-α indistinguishability game, and α0 and α1 are uniformly
selected from {0, α− 1}, then we have

P[α′ ∈ {α0, α1}] =

P[A wins the IndSSE,A,LNP ,CDBt ,α game] +
1

α

(5)
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Applying Eq. 5 to Eq. 4, we have

P[b = b′] =

1

2
· P[A wins the IndSSE,A,LNP ,CDBt ,α game]

+
1

2
− 1

2α

Then, from Equation 3, we can derive

AdvInd
B,LNP ,CDBt

(λ) =

1

2

(
P[A wins the IndSSE,A,LNP ,CDBt ,α game]− 1

α

) (6)

Applying Equation 6 to Equation 2, finally, we can have

AdvInd
B,LNP ,CDBt

(λ) =
1

2
AdvInd

A,LNP ,CDBt ,α
(λ) (7)

A.4 Security against Persistent Adversary
Prior knowledge of the databases We start to gener-
alise the knowledge of the non-persistent adversary over
the time to be the persistent adversary’s knowledge of
databases. Namely, we denote by (DBt=0, . . . ,DBt=T ) such
knowledge, where T denotes the streaming period. We
also make use of the constraint set CDBt = {CDBt ,DBt ∈
DBt}, defined in Section A.3, to formulate C[1,...,T ] =
{CDB0 , . . . ,CDBT } the generalisation of constraint sets
over the period such that we know every CDBt(LNP , α)-
acceptable, ∀t ∈ [0, T ].

Let δ be a stateless function that outputs the key-
word set difference in a pairwise different inputs. Then,
δ(DBt,DBt′) = W t,t′ , where W t,t′ = {wi|wi ∈ DBt, wi /∈
DBt′}. We consider the leakage function only depends on
the query itself (i.e., q(.)) and on the state of database at
the querying time: LNP (q)t and LNP (q)t′ be presented
as stateless functions of fLNP

(q,DBt), and fLNP
(q,DBt′),

respectively.
Let Q = {q1, . . . , qn−1} be a query set, and CDBt and

CDBt′ be constraints applied on the Ht = (DBt, Q) and
Ht′ = (DBt′ , Q), respectively. From Proposition 1, we de-
note by ΓLNP ,CDBt (Ht) = {G1,t, . . . , Gm,t} the clustering
Γt = {G1,t, . . . , Gm,t} of queries induced by the leakage
LNP after history Ht is a partition of Q, for which, in
every cluster, queries share the same leakage after running
the history Ht. Similarly, we also derive the clustering
Γt′ = {G1,t′ , . . . , Gm′,t′} of queries Qt induced by the leak-
age LNP after history H ′t. We make an observation on EDBt
and EDBt′ that: let q(w) (resp. q(w′)) be the query ofw (resp.
w′), where w /∈ W t,t′ , w′ ∈ W t,t′ , and q(w), q(w′) ∈ Gv,t,
(∃v ∈ [1,m]), such that:

(H̃w
t = Ht||q(w), H̃w′

t = Ht||q(w′))

and
(H̃w

t′ = Ht′ ||q(w), H̃w′

t′ = Ht′ ||q(w′))

We can see that fLNP
(q(w),DBt) = fLNP

(q(w′),DBt), but
fLNP

(q(w),DBt′) 6= fLNP
(q(w′),DBt′) due to w ∈ DBt′

whilew′ /∈ DBt′ , causing EDBt′(w) 6= EDBt′(w′). We can see
that: if both q(w), q(w′) ∈ Gv,t′ , then fLNP

(q(w),DBt′) =
fLNP

(q(w′),DBt′). This observation can be iterated for all

other pairwise different queries in Gvt and Gvt′ . More gen-
erally, we need to have |Gv,t| = |Gv,t′ |, ∀t, t ∈ [0, T ] such
that ∀q(w), q(w′) ∈ Gv,t, they always have the same leakage
at different t′ ∈ [1, T ]. Formally, given m the number of
clusters, we define

∀Gv,t, Gv,t′ 6= ∅, Ft,t′,v(Gv,t, Gv,t′) = (|Gv,t|
?
= |Gv,t′ |)

Now, we also use constrained security to formalise that
leakage over EDBt and EDBt−1, ∀t ≥ 1 as in.

Definition 6. A constraint Ft = (Ft,t−1,1, . . . , Ft,t−1,m)
over two clusters Γt = {G1,t, . . . , Gm,t} and Γ′t =
{G1,t′ , . . . , Gm,t′} induced by the leakage LNP after histories
Ht (resp. Ht−1) over Qt (resp. Qt−1), is a sequence of algorithms
such that F (t, t− 1, i) = flagi, where flagi is true or false.
The constraint is consistent if (., false, .) = (false, .), then
Ft = false (the constraint remains false if it once evaluates to
false).

Let a constraint set F = (F1, . . . ,FT ) is a sequence of
algorithms evaluated at every t ∈ [1, T ]. The set is consistent
if (., false, .) = (false, .), then F = false (the constraint
remains false if it once evaluates to false). In a short form, we
write FT to present the condition F = true.

The security of a scheme ΣP = (Setup,Stream,Search)
against the persistent adversary over a streaming period
T . We start adding a padding mechanism against the per-
sistent adversary in Algorithm 1 (i.e., Padding Strategies)
to ΣP such that, ∀Gi,t in Γt = {G1,t, . . . , Gm,t} induced
by Searcht (i.e., searching at time t) against EDBt, Gi,t
always has the same size |Gi,t| = |Gi,t′ |, where Gi,t′
in Γt′ = {G1,t′ , . . . , Gm,t′}, ∀t′ 6= t. Let LStream[1,...,T ] =

{LStream1 , . . . , LStreamT }, and LSearch[1,...,T ] = {LSrchNP,i}, for i ∈
[1, . . . , T ], where LSrchNP,i = (LSrchi ,Lα−padi ) is the search
leakage at time i, where Lα−padi ) reveals the sizes of
clusters induced by Lα−padi . Then, the leakage function
of ΣP can be quantified via the leakage function LP =
(LStp,LStream[1,...,T ] ,LSearch[1,...,T ]).

By using Definition 6, we can show that C[1,...,T ] =
{CDB0 , . . . ,CDBT } is an (LP , α,F)-acceptable set of con-
straint sets, where α denotes the minimum cluster size (over
all constructable databases) and FT denotes the condition
F = true. The reason is that, for every time t ∈ [0, T ], CDBt

is (LNP , α)-acceptable, and ∀Gi,t in Γt = {G1,t, . . . , Gm,t}
induced by Searcht (i.e., searching at time t) against EDBt,
Gi,t always has the same size |Gi,t| = |Gi,t′ |, where Gi,t′ in
Γt′ = {G1,t′ , . . . , Gm,t′}, ∀t′ 6= t

Now, we are ready to define the notion of constraned
adaptive indistinguishability for ΣP given C[1,...,T ]. This
security game is formalised in Definition 7.

Definition 7. Let Σ = (Setup,Streaming,Search) be the DSSE
scheme of ShieldDB, λ be the security parameter, and A be
a persistent adversary. Let C[1,...,T ] be a set of (LP , α,F)-
acceptable constraint sets. Let ut (streaming) (resp.Qt (search))
be an update (resp. query set, i.e., Qt = {qt,1, . . . , qt,n}) at time
t, and LStream (resp. LSrch) be the leakage after the query u(resp.
q), respectively. Let IndDSSE,A,LP ,C[1,...,T ],α,F be the following
game:
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IndDSSE,A,LP ,C[1,...,T ],α,F (λ) Game:

b
$←− {0, . . . , α− 1}

(CDB0 ,DB0
t , . . . ,DBα−1t )← A(1λ)

(K,EDBb0)← Setup(DBb0)
for t = 1 to T do

EDBbt ← Streaming(ut)
(CDBt , Qt)← A(EDBbt)
{τ bt,1, . . . , τ bt,n} ← Search(Qt,EDBbt)

end for
b′ ← A(τ bT,1, . . . , τ

b
T,n)

if b = b′ return 1, otherwise return 0

where τ bt,i presents the transcript of the query qt,i, and
with the restriction that, given C[1,...,T ] = {CDB0 , . . . ,CDBT },
for CDBt = {CDBt ,DBt ∈ DBt}, for all the Hi

t =
(DBit, qt,1, . . . , qt,n),

• CDBt ∈ CDBt , and ∀0 ≤ i ≤ (α − 1), CDBt(Hi
t) =

true

• L(H0
t ) = · · · = L(Hα−1

t )

• F = (F1, . . . ,FT ) = true

We say that Σ is (LP ,C[1,...,T ], α,F)-constrained-adaptively-
indistinguishable if for all probabilistic polynomial time adversary
A,

AdvInd
A,LP ,C[1,...,T ],α,F (λ) =∣∣P[IndDSSE,A,LP ,C[1,...,T ],α,F (λ) = 1]− 1

α

∣∣ ≤ negl(λ).
(8)

We can see that ΣP offers at least log(α) bits of se-
curity. Given C[1,...,T ] is an (LP , α,F)-acceptable set of
constraint sets, we can analysing every transcript in the
set {τ bt,1, . . . , τ bt,n} under the choice of α. Let ut simply
contains a pair of (wi, id), we can make an observation
in ShieldDB as follows.

If ST [wi].c = 0, presenting that wi appears in the first
time, then Padding Controller checks the cache cluster that
expects to have wi against the first batch condition. We recall
that the condition ensures the existence of all keywords in
the cluster before padding. If the condition is fail, we see that
both EDB0

i and EDB1
i are indistinguishable under the choice

of b $←− {0, . . . , α − 1}. The reason is because the challenger
does not send any batch to the server. In contrast, if the
condition is passed, Padding Controller pads all the keywords
in the cluster to be the same length and encrypt them
before sending a batch to the server. Meanwhile, ST [wi].c
gets updated. Accordingly, EDBbt is indistinguishable under
the choice of because these databases receive the batch of
keywords that have the same length. The first batch con-
dition is crucial when ShieldDB is against the persistent
adversary. It ensures there is no new keyword in the cluster
appears in subsequent batches. Hence, the adversary cannot
distinguish when a new keyword is added in EDBbi .

If ST [wi].c > 0 and first batch condition has been
met, Padding Controller performs padding similarly with
the padding strategy against the non-persistent adversary,
presented in Algorithm 1. We can also see that EDBbt is
indistinguishable because Padding Controller guarantees all
the keywords in a cluster have the same length.

Now, we start analysing the query qt, i that queries the
keyword wi, with ST [wi].c = 0 or ST [wi].c > 0.

If ST [wi].c = 0, the adversary cannot guess the picked
database because τ bt,i return nothing.

If ST [wi].c > 0, τ bt,i is indistinguishable to all other
query keywords in the same cluster at time t.

Theorem 4. Let ΣP = (Setup,Streaming,Search) be our
DSSE scheme, and C[1,...,T ] = {CDB0 , . . . ,CDBT } is a
set of constraint sets. If Σ is LP -constrained-adaptively-
indistinguishable secure, and C[1,...,T ] is (LP , α,F)-acceptable,
then Σ is (LP ,C[1,...,T ], α,F)-constrained-adaptively-
indistinguishability secure.

Proof. Let A be an adversary in the
IndDSSE,A,LP ,C[1,...,T ],α,F game. We construct an adversary
B against the game. B first randomly picks two integer
α0, α1 ∈ {0, α − 1}. Then, B starts A and receives
α databases (DB0

0, . . . ,DBα−10 ). Upon giving the pair
(DBα0

0 ,DBα1
0 ) to the challenger, where the challenger holds

a random secret bit b, B receives the challenge encrypted
database EDB∗0 which she forwards to A. Then, for every
t ∈ [1, . . . , T ], we have:

• A sends ut (stream queries) to challenger and re-
ceives EDB∗t .

• A outputs ((q0t,1, . . . , q
α−1
t,1 ), . . . , (q0t,n, . . . , q

α−1
t,n ))

and gives to B.
• To respond, B outputs ((qα0

t,1, q
α1
t,1), . . . , (qα0

t,n, q
α1
t,n))

to the game and receives back the transcripts
(τ∗t,1, . . . , τ

∗
t,n), and forwards them to A.

After executing all t ∈ [1, . . . , T ], A outputs the integer
α′. If α′ = α0, B outputs b′ = 0, else if α′ = α1, B outputs
b′ = 1, and otherwise outputs the probability 1/2 for the
output 0 and the probability 1/2 for the output 1.

We first make an observation: for the pair (Hα0
t , Hα1

t )
at ∀t ∈ [1, T ], the views of the adversary B are indistin-
guishable due to LP (Hα0

t ) = LP (Hα1
t ), presenting both

satisfying C[1,...,T ]. Then we can formalise B as follows:

AdvInd
B,LP ,C[1,...,T ],F (λ) =

∣∣P[b = b′]− 1

2

∣∣ ≤ negl(λ) (9)

Now, we evaluate P[b = b′] as follows.

P[b = b′] =

P[b = b′|α′ ∈ {α0, α1}] · P[α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[b = b′ ∩ α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[A wins the IndDSSE,A,LP ,C[1,...,T ],α,F game]

+
1

2
(1− P[α′ ∈ {α0, α1}])

(10)

Now, we evaluate P[α′ ∈ {α0, α1}] as follows.

P[α′ ∈ {α0, α1}] = P[α′ = α0] + P[α′ = α1]

Since we have

P[α′ = α0]+P[α′ = α1] =

P[α′ = αb|b = 0] + P[α′ = αb|b = 1]
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then,

P[α′ ∈ {α0, α1}] =
1

2
(P[α′ = αb|b = 0] + P[α′ = α0])

+
1

2
(P[α′ = αb|b = 1] + P[α′ = α1])

We note that P[α′ = αb] is the probability A wins the 1-out-
of-α indistinguishability game, and α0 and α1 are uniformly
selected from {0, α− 1}, then we have

P[α′ ∈ {α0, α1}] =

P[A wins the IndDSSE,A,LP ,C[1,...,T ],α,F game] +
1

α
(11)

Applying Eq. 11 to Eq. 10, we have

P[b = b′] =

1

2
· P[A wins the IndSSE,A,LP ,C[1,...,T ],α,F game]

+
1

2
− 1

2α

Then, from Equation 9, we can derive

AdvInd
B,LP ,C[1,...,T ],F (λ) =

1

2

(
P[A wins the IndSSE,A,LP ,C[1,...,T ],α,F game]− 1

α

)
(12)

Applying Equation 12 to Equation 8, finally, we can con-
clude

AdvInd
B,LP ,C[1,...,T ],F (λ) =

1

2
AdvInd

A,LP ,C[1,...,T ],α,F (λ) (13)
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