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Parallel Split-Join Networks for Shared Account Cross-domain
Sequential Recommendations

Wenchao Sun, Muyang Ma, Pengjie Ren∗, Yujie Lin, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke ID

Sequential recommendation is a task in which one models and uses sequential information about user behavior for recommendation
purposes. We study sequential recommendation in a particularly challenging context, in which multiple individual users share a
single account (i.e., they have a shared account) and in which user behavior is available in multiple domains (i.e., recommendations
are cross-domain). These two characteristics bring new challenges on top of those of the traditional sequential recommendation task.
First, we need to identify the behavior associated with different users and different user roles under the same account in order to
recommend the right item to the right user role at the right time. Second, we need to identify behavior in one domain that might
be helpful to improve recommendations in other domains.

In this work, we study shared account cross-domain sequential recommendation and propose Parallel Split-Join Network (PSJNet),
a parallel modeling network to address the two challenges above. We use “split” to address the challenge raised by shared accounts;
PSJNet learns role-specific representations and uses a gating mechanism to filter out, from mixed user behavior, information of
user roles that might be useful for another domain. In addition, “join” is used to address the challenge raised by the cross-domain
setting; PSJNet learns cross-domain representations by combining the information from “split” and then transforms it to another
domain. We present two variants of PSJNet, PSJNet-I and PSJNet-II. PSJNet-I is a “split-by-join” framework that splits the
mixed representations to get role-specific representations and joins them to obtain cross-domain representations at each timestamp
simultaneously. PSJNet-II is a “split-and-join” framework that first splits role-specific representations at each timestamp, and then
the representations from all timestamps and all roles are joined to obtain cross-domain representations. We concatenate the in-
domain and cross-domain representations to compute a recommendation score for each item. Both PSJNet-I and PSJNet-II can
simultaneously generate recommendations for two domains where user behavior in two domains is synchronously shared at each
timestamp.

We use two datasets to assess the effectiveness of PSJNet. The first dataset is a simulated shared account cross-domain sequential
recommendation dataset obtained by randomly merging the Amazon logs from different users in the movie and book domains. The
second dataset is a real-world shared account cross-domain sequential recommendation dataset built from smart TV watching logs of a
commercial organization. Our experimental results demonstrate that PSJNet outperforms state-of-the-art sequential recommendation
baselines in terms of MRR and Recall.

Index Terms—Parallel modeling, Shared account recommendation, Cross-domain recommendation, Sequential recommendation

I. INTRODUCTION

It is hard to apply traditional recommendation methods such
as, e.g., collaborative filtering (CF)-based methods [64] or
matrix factorization (MF)-based models [40, 79], in recom-
mendation scenarios in which user profiles may be absent. This
happens when users are not logged in or the recommender
system does not track user-ids. For this reason, sequential
recommendation (SR) has been proposed for session-based
recommendations [30]. Compared with traditional recommen-
dations, SR has natural advantages when it comes to sequential
dynamics [27], i.e., SR methods may generate different lists
of recommended items at different timestamps. The goal of
SR is to generate recommendations based on a sequence of
user behavior (e.g., a sequence of songs listened to, videos
watched, or products clicked), where interactions are usually
grouped by same time frame [46, 44, 12]. SRs have a wide

∗Corresponding author.
This paper is a substantially extended version of [52]. The additions are

three-fold. First, we unify the parallel modeling framework introduced in [52]
into the PSJNet architecture introduced in this paper and propose a new model
PSJNet-II that improves the performance over previous proposals (π-Net
in [52] corresponds to PSJNet-I in this paper). Second, we build a new dataset
for shared account cross-domain sequential recommendation by simulating
shared account characteristics on a public dataset. Third, we carry out more
experiments to test PSJNet-I and PSJNet-II. More than half of the experiments
reported in this paper were not in [52] and all relevant result tables and figures
are either new additions to the article or report new results.

range of applications in many domains such as e-commerce,
job websites, music and video recommendations [65]. And
users usually have specific goals during the process, such as
finding a good restaurant in a city, or listening to a song of a
certain style or mood [59].

Early studies into SR are mostly based on Markov chains
(MCs) [89] or Markov decision processes (MDPs) [65]. Se-
quences of items are considered as states and a state-transition
matrix or function is learned to generate recommendations.
In this way, the dynamic characteristics of SR are taken into
account. However, because the states in a MC- or MDP-based
method correspond to sequences of items, the state-transition
matrix or function quickly becomes unmanageable in realistic
scenarios [60]. Recurrent neural networks have demonstrated
their effectiveness in sequence modeling in the field of natural
language processing. Motivated by this, recent studies have
introduced recurrent neural networks (RNNs) into SR [30]
and today RNN-based models have been widely adopted in
the context of SR. Various RNN architectures have been
proposed to enhance SR, e.g., to make SRs context-aware [47],
personalized [59], or deal with repeat behavior [61]. However,
so far RNN-based methods focus on a single domain and none
simultaneously considers the shared account and cross-domain
scenarios.

In this paper, we study SR in a particularly challenging
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context, shared account cross-domain sequential recommen-
dation (SAC-SR). In this context multiple individual users
share a single account (i.e., they have a shared account) and
user behavior is recorded in multiple domains (i.e., recom-
mendations should be cross-domain). The shared account task
is considered because in some recommendation applications
people tend to share a single account, resulting in multiple
“user roles” under each account. For example, in the smart
TV recommendation scenario depicted in Figure 1, members
of a family correspond to different user roles, e.g., “parents”,
“children”, and they share a single account to watch videos.
The existence of shared accounts makes it harder to generate
relevant recommendations, because the behavior of multiple
user roles is mixed together. Note that user roles do not
explicitly represent specific users. We consider user roles
instead of users because the number of user roles is smaller
than that of users, and it is generally easier to distinguish
different user roles than users. We consider the cross-domain
task because it is a common phenomenon in practice: users
use different platforms to access domain-specific services
in daily life. We can get user behavior data from different
domains during the same time period. For example, many
smart TV platforms use different channels to provide different
services, e.g., a video channel (domain) that offers movies or
TV series and an educational channel that offers educational
material, as depicted in Figure 1. User behavior in one
domain may be helpful for improving recommendations in
another domain [76, 66, 33] because user behavior in different
domains may reflect similar user interests. For example, as
illustrated in Figure 1, videos like “Mickey Mouse” in the
video domain might help to predict the next item “School
House Fun” in the educational domain because they reflect the
same interest in the Disney cartoon character “Mickey Mouse”
presumably by a child in this family. Although leveraging user
behavior information from another domain may provide useful
information to help improve the recommendation performance,
this type of transfer is non-trivial because the behavior of
multiple user roles is mixed and this may introduce noise.
This raises an interesting challenge, namely how to identify
behavior from one domain that might be helpful to improve
recommendations in other domains while minimizing the
impact of noisy information?

In prior work that focuses on shared accounts, a common
approach is to capture user interests by extracting latent
features from high-dimensional spaces that describe the rela-
tionships among user roles under the same account [73, 2, 86].
And in prior work on the cross-domain task, one common
solution is to aggregate information from two domains [19,
28, 32], while another is to transfer knowledge from the
source domain to the target domain [14, 88]. None of these
methods can be directly applied to SAC-SR: either important
sequential characteristics of SR are largely ignored or they rely
on explicit user ratings, which are usually unavailable in SR.
In our previous work [52], we have introduced an architecture
(π-Net) that addresses the above issues by simultaneously
generating recommendations for two domains where user
behavior from two domains is synchronously shared at each
timestamp.

In this work, we generalize over the π-Net architecture
with a more general framework, namely the Parallel Split-
Join Network (Parallel Split-Join Network (PSJNet)), that
introduces the “split” and “join” concepts to address the
shared account and cross-domain characteristics in SAC-SR.
To address shared accounts, “split” is used to identify behavior
of different user roles, where we employ a gating mechanism
to extract role-specific representations containing information
of some user roles that might be useful for another domain
from mixed user behavior. To address the cross-domain as-
pect, “join” is used to discriminate and combine useful user
behavior; we learn cross-domain representations by combining
the information from “split” and then adopting it to another
domain.

Specifically, PSJNet is organized in four main modules,
namely a sequence encoder, a split unit, a join unit, and a
hybrid recommendation decoder. The sequence encoder mod-
ule encodes the current sequence of mixed user behavior from
each domain into a sequence of in-domain representations.
Then, depending on how “split” and “join” are implemented,
we present two PSJNet variants, i.e., PSJNet-I and PSJNet-
II. PSJNet-I (which corresponds to π-Net) employs a “Split-
by-Join” scheme where it splits the mixed representations
to get role-specific representations and joins them to get
cross-domain representations at each timestamp simultane-
ously. PSJNet-II employs a “Split-and-Join” scheme where
it first splits role-specific representations at each timestamp,
and then the representations from all timestamps and all
roles are joined to obtain cross-domain representations. For
both variants, “split” and “join” are operated in a parallel
recurrent way, which means that they can synchronously share
information across both domains at each timestamp. Finally,
the hybrid recommendation decoder module estimates the
recommendation scores for each item based on the information
from both domains, i.e., the in-domain representations from
the target domain and the cross-domain representations from
the complementary domain. During learning, PSJNet is jointly
trained on two domains in an end-to-end fashion.

To assess the effectiveness of PSJNet, we need datasets that
exhibit both shared account and cross-domain characteristics.
To the best of our knowledge, there is no such real-world
dataset that is publicly available. We construct two datasets for
SAC-SR. The first dataset is a simulated SAC-SR dataset ob-
tained by randomly merging the logs from different users in the
movie and book domains from a well-known Amazon dataset.1

Although the dataset can satisfy experimental requirements,
the merged user behavior is not realistic and is unlikely to
reflect realistic scenarios. Therefore, we build a second dataset
from smart TV watching logs of a commercial company, which
is a real-world SAC-SR scenario. We release both datasets to
facilitate future research. We carry out extensive experiments
on both datasets. The experimental results show that PSJNet
outperforms state-of-the-art baselines in terms of MRR and
Recall. We also conduct ablation studies to show that the
proposed parallel “split” and “join” schemes are effective and
useful for SAC-SR.

1http://jmcauley.ucsd.edu/data/amazon/

http://jmcauley.ucsd.edu/data/amazon/
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Fig. 1: The smart TV scenario provides a natural example of shared account cross-domain sequential recommendation
(SAC-SR). Here, members of a family (the “user roles”) share the same account. Moreover, the video domain contains various
movies, TV series, cartoons, etc. The education domain contains educational programs and technical tutorials, etc. Boxed
items reflect similar user interests. Red lines show the interactions and connections between user behavior in the two domains.

The additional contributions of this paper compared to our
previous work in [52] are as follows:
• We present the PSJNet framework, which introduces the

“split” and “join” concepts to address the shared account
and cross-domain characteristics of SAC-SR.

• We reformulate the previous proposal π-Net as PSJNet-I
within the PSJNet framework, and propose a new variant
PSJNet-II that further improves the performance.

• We carry out experiments on two datasets for SAC-SR. One
is constructed by simulating shared account characteristics
on a public dataset, the other is a real-world dataset. And
we conduct additional experiments on these two datasets to
show the effectiveness of the two PSJNet variants.

II. RELATED WORK

We consider three types of related work: sequential rec-
ommendations, shared account recommendations, and cross-
domain recommendations.

A. Sequential recommendations

It is hard to capture sequential dynamics in recommendation
scenarios with classical recommendation methods such as
matrix factorization (MF)- or collaborative filtering (CF)-based
methods. Instead, dedicated methods have been developed for
SR or next basket recommendation.

1) Traditional methods
The traditional approaches for SR are mostly based on

Markov chains (MCs) [89] or Markov decision processes
(MDPs) [65] to predict a user’s next action given their last
action [75]. Zimdars et al. [89] are the first to propose MCs
for web page recommendation. They investigate how to extract
sequential patterns to learn the next state using probabilistic
decision-tree models. To further improve the performance,
Shani et al. [65] propose an MDP-based recommendation
method, where the next recommendation can be computed
through the transition probabilities among items. To combine
the advantages of MF and MC-based methods, Rendle et al.
[63] propose a method based on personalized transition graphs
over an underlying MC. They show that the proposed method

subsumes both a common MC and the normal MF model.
Yap et al. [82] introduce a competence score measure in
personalized sequential pattern mining for next-item recom-
mendations. Chen et al. [10] take playlists as an MC, and
propose logistic Markov embeddings to learn representations
of songs for playlists prediction. Wu et al. [78] propose
Personalized Markov Embedding (PME) to consider sequential
singing behavior for the next song recommendation. They
embed users and songs into a Euclidean space, where the
distance between songs and users represent their relationships.
Given a user’s last song, they can generate personalized
recommendations by ranking the candidate songs according
to the relationships.

Lu et al. [50] argue that source domain data is not al-
ways consistent with the observations in the target domain,
which may misguide the target domain recommendation. They
propose a criterion based on empirical prediction error and
its variance to better capture the consistency across domains
in CF settings. To address the sparsity and long-tailed dis-
tribution issues of most recommendation datasets and take
sequential dynamics into consideration at the same time, He
and McAuley [27] propose to combine the advantages of MC-
based methods and CF-based methods. They fuse a similarity-
based method with MC to learn a personalized weighting
scheme over the sequence of items to characterize users in
terms of both interests and the strength of sequential behavior.

All of the MC or MDP-based sequential recommendation
methods mentioned above show improvements by modeling
sequential dynamics. However, a major issue they share is
that they can only consider a very short sequence (e.g.,
the most recent five items in [65]), because the state space
quickly becomes unmanageable when taking long sequences
into account [60].

2) Deep learning-based methods
Recently, recurrent neural networks (RNNs) have been

devised to model variable-length sequential data [83, 20].
Hidasi et al. [30] are the first to apply RNNs to sequen-
tial recommendation and achieve significant improvements
over traditional methods. They utilize session-parallel mini-
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batch training and employ ranking-based loss functions to
train the recommendation model. In later work, they propose
data augmentation techniques to improve the performance of
RNNs [69].

Contextual information has proved to be very important for
behavior modeling in traditional recommendations. Liu et al.
[47] incorporate contextual information into SR and propose a
context-aware RNN model. Instead of using the constant input
matrix and transition matrix from conventional RNN models,
their CA-RNN employs adaptive matrices. The authors use
context-specific input matrices to capture external conditions
under which user behavior happens, such as time, location,
weather and so on. They also use context-specific transition
matrices to capture how the length of time intervals between
adjacent behavior in historical sequences affects the transition
of global sequential features. Hidasi et al. [31] investigate how
to add item property information such as text and images
to an RNN framework and introduce a number of parallel
RNN architectures (p-RNNs); they propose alternative training
strategies for p-RNNs that suit them better than standard
training. Bogina and Kuflik [6] explore user’s dwell time
based on an existing RNN-based framework by boosting items
above a predefined dwell time threshold. Cui et al. [15]
incorporate visual and textual information and propose MV-
RNN to alleviate the cold start problem.

Donkers et al. [18] introduce a new gated architecture
with additional input layers for gated recurrent units (GRUs)
to explicitly represent individual users, for the purpose of
generating personalized next item recommendations. Chen
et al. [8] propose a dictionary learning-based approach to
model a user’s static and dynamic preferences. They use a
GRU to translate a user’s sequential behavior into dynamic
user preferences. Tan et al. [68] propose a dynamic memory-
based recurrent attention network for modeling long behavior
sequences. Quadrana et al. [59] propose a hierarchical RNN
model that can be used to generate personalized sequential
recommendations. Li et al. [44] explore a hybrid encoder
with an attention mechanism to model the user’s sequential
behavior and intent to capture the user’s main purpose in
the current sequence. Zhuang et al. [88] propose a novelty
seeking model based on sequences in multi-domains to model
an individual’s propensity by transferring novelty seeking traits
learned from a source domain for improving the accuracy of
recommendations in the target domain. Tang and Wang [70]
propose a convolutional sequence embedding recommendation
model for personalized top-n sequential recommendation to
address the more recent items where they argue that more
recent items in a sequence have a larger impact on the next
item. Ren et al. [61] propose a repeat-aware RNN model to
address the repeat consumption in SR, which is a common
phenomenon in many recommendation scenarios where the
same item is repeatedly re-consumed. They incorporate a new
repeat recommendation mechanism into RNNs that can choose
items from a user’s history and recommends them at the right
time.

Memory enhanced RNNs have been well studied for SR
recently. Chen et al. [11] argue that existing SR methods
usually embed a user’s historical records into a single latent

representation, which may have lost the per item- or feature-
level correlations between a user’s historical records and future
interests. They introduce a memory mechanism to SR and
design a memory-augmented neural network integrated with
insights from collaborative filtering.

Huang et al. [34] propose a knowledge enhanced SR model
to capture fine-grained user interests from interaction se-
quences. They integrate RNN-based networks with a key-value
memory network. They further incorporate knowledge base
information to enhance the learned semantic representations.
Ma et al. [53] propose a cross-attention memory network to
perform the mention recommendation task for multi-modal
tweets where they make full use of both textual and visual
information. Huang et al. [35] introduce a taxonomy-aware
multi-hop reasoning network, which integrates a basic GRU-
based sequential recommender with an elaborately designed
memory-based multi-hop reasoning architecture. They incor-
porate taxonomy data as structural knowledge to enhance the
reasoning capacity.

Wang et al. [74] hypothesize that the collaborative in-
formation contained in neighborhood sequences (that have
been generated previously by other users and reflect similar
user intents as the current sequence) might help to improve
recommendation performance for the current sequence. They
propose a RNN model with two parallel memory modules:
one to model a user’s own information in the current sequence
and the other to exploit collaborative information in neighbor-
hood sequences [37]. Most recently, Li et al. [43] propose
a transformer-based structured intent-aware model that first
extracts intents from sequential contexts, and then adopts an
intent graph to capture the correlations among user intents.

B. Shared account recommendations

Most recommender systems assume that every account in
the data represents a single user. However, multiple users
often share a single account. A typical example is a smart
TV account for the whole family.

Previous approaches to shared account recommendations
typically first identify users and then make personalized rec-
ommendations [73, 86, 14, 2]. Zhang et al. [84] are the first
to study user identification, in which they use linear subspace
clustering algorithms; they recommend the union of items
that are most likely to be rated highly by each user. Bajaj
and Shekhar [3] propose a similarity-based channel clustering
method to group similar channels for IPTV accounts, and they
use the Apriori algorithm to separate users that are merged
under a single account. After that, they use personal profiles
to recommend additional channels to the account. Wang et al.
[77] assume that different users consume services in different
periods. They decompose users based on mining different
interests over different time periods from consumption logs.
Finally, they use a standard User-KNN method to generate
recommendations for each identified user. Yang et al. [81] also
analyze the similarity of the proportion of each type of items
within a time period to judge whether a sequence is generated
by the same user. Then, they generate recommendations by
recommending personalized genres to the identified users.
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Lesaege et al. [41] develop a time-aware user identification
model based on Latent Dirichlet Allocation using a hidden
variable to represent the user, and assume consumption times
to be generated by latent time topics. Yang et al. [80] iden-
tify users by using a projection based unsupervised method,
and then use Factorization Machine techniques to predict a
user’s interest based on historical information to generate
personalized recommendations. Jiang et al. [38] propose an
unsupervised learning-based framework to identify users and
differentiate the interests of users and group sessions by
users. They construct a heterogeneous graph to represent
items and use a normalized random walk to create item-based
session embeddings. A hybrid recommender is then proposed
that linearly combines the account-level and user-level item
recommendation by employing Bayesian personalized ranking
matrix factorization [62].

C. Cross-domain recommendations

Cross-domain recommendation concerns data from multiple
domains, which has proven to be helpful for alleviating the
cold start problem [1, 5] and data sparsity issues [42, 57].
There is an assumption that there exists overlap in information
between users and/or items across different domains [19, 21].

1) Traditional methods
There are two main ways for dealing with cross-domain rec-

ommendations [22]. One is to aggregate knowledge between
two domains. Berkovsky et al. [4] propose four mediation
techniques to solve the data sparsity problem by merging
user interests and extracting common attributes of users and
items. Tang et al. [71] propose a cross-domain topic learning
model to address three challenges in cross-domain collabora-
tion recommendation: sparse connections (cross-domain col-
laborations are rare); complementary expertise (cross-domain
collaborators often have different expertise and interest) and
topic skewness (cross-domain collaboration topics are focused
on a subset of topics) Shapira et al. [66] compare several
collaborative methods to demonstrate the effectiveness of
utilizing available preference data from Facebook. Loni et al.
[49] model user interests by using MF separately on different
domains, and then incorporate user interaction patterns that are
specific to particular types of items to generate recommenda-
tions on the target domain. Do et al. [16] propose to discover
both explicit and implicit similarities from latent factors across
domains based on matrix tri-factorization. Zhuang et al. [87]
propose a consensus regularization classifier framework by
considering both local data available in source domain and
the prediction consensus with the classifiers learned from
other source domains. Cao et al. [7] construct a nonparametric
Bayesian framework by jointly considering multiple heteroge-
neous link prediction tasks between users and different types
of items. Chen et al. [9] exploit the users and items shared
between domains as a bridge to link different domains by
embedding all users and items into a low-dimensional latent
space between different domains. Liu et al. [48] utilize both
MF and an attention mechanism for fine-grained modeling of
user preferences; the overlapping cross-domain user features
are combined through feature fusion.

The other approach to cross-domain recommendation is
to transfer knowledge from the source domain to the target
domain. Hu et al. [33] propose tensor-based factorization to
share latent features between different domains. Cremonesi
and Quadrana [14] propose a code-book-transfer to transfer
rating patterns between domains. Kanagawa et al. [39] pro-
pose a content-based approach to learn semantic information
between domains. Doan and Sahebi [17] propose a transition-
based cross-domain collaborative filtering method to capture
both within- and between-domain transitions of user feedback
sequences. Zhang et al. [85] propose a method that not only
transfers item’s learned latent factors, but also selectively
transfers user’s latent factors.

2) Deep learning-based methods
Deep learning is well suited to transfer learning as it can

learn high-level abstractions among different domains [56].
Lian et al. [45] introduce a factorization framework to tie
collaborative filtering and content-based filtering together; they
use neural networks to build user and item embeddings.
Elkahky et al. [19] propose a multi-view deep learning rec-
ommendation system by using rich auxiliary features to rep-
resent users from different domains based on deep structured
semantic model (DSSM) [36]. Fernández-Tobı́as et al. [23]
address the cold-start issue in a target domain by exploiting
user interests from a related auxiliary domain. They show that
cross-domain information is useful to provide more accurate
and diverse recommendations when user feedback in the target
domain is scarce or not available at all. Hu et al. [32] propose a
model using a cross-stitch network [55] to learn complex user-
item interaction relationships based on neural collaborative
filtering [28]. Zhuang et al. [88] propose a novelty-seeking
model to fully characterize users’ novelty-seeking trait so as
to obtain a better performance across domains. Wang et al.
[76] are the first to introduce the problem of cross-domain
social recommendations; they combine user-item interactions
in information domains (such as online travel planning) and
user-user connections in social network services (such as Face-
book or Twitter) to recommend relevant items of information
domains to target users of social domains; user and item
attributes are leveraged to strengthen the embedding learning.

Although the methods proposed in the studies listed above
have been proven to be effective in many applications, they
either cannot be applied to sequential recommendations or do
not consider the shared account or cross-domain characteris-
tics. In our previous work, we have proposed π-Net in order
to address shared account and cross-domain characteristics
in sequential recommendations by extracting information of
different user roles under the same account and transferring
it to a complementary domain at each timestamp [52]. In this
work, we present a more general framework called PSJNet:
π-Net can be viewed as a particular instantiation of PSJNet
and we propose another instantiation that further improves the
recommendation performance over π-Net.

III. METHOD

In this section, we first provide a formulation of the shared
account cross-domain sequential recommendation (SAC-SR)
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problem. Then, we introduce PSJNet and describe two instan-
tiations of the framework. For each variant, we give a high-
level introduction and describe each component in detail.

A. Shared account cross-domain sequential recommendation

We represent a cross-domain behavior sequence (e.g.,
watching videos, reading books) from a shared account as
S = 〈A1, B1, B2, . . . , Ai, . . . , Bj , . . .〉, where Ai ∈ A (1 ≤
i ≤ N) is the index of a single consumed item in domain A;
A is the set of all items in domain A; Bj ∈ B (1 ≤ j ≤ M)
is the index of a single consumed item in domain B; B is the
set of all items in domain B; N and M are the number of
items in the sequences from domain A and B, respectively.
Given S, SAC-SR tries to predict the next item by computing
the recommendation probabilities for all candidates in two
domains respectively, as shown in Eq. 1:

P (Ai+1 | S) ∼ fA(S)
P (Bj+1 | S) ∼ fB(S),

(1)

where P (Ai+1 | S) denotes the probability of recommending
the item Ai+1 that will be consumed next in domain A. Also,
fA(S) is the model or function used to estimate P (Ai+1 | S).
Similar definitions apply to P (Bj+1 | S) and fB(S).

The main differences between SAC-SR and traditional SR
are two-fold. First, in SAC-SR, S is generated by multiple
users (e.g., family members) while it is usually generated by
a single user in SR. Second, SAC-SR considers information
from both domains for the particular recommendations in one
domain, i.e., S is a mixture of behavior from multiple domains.
In this paper, we only consider two domains but the ideas
easily generalize to multiple domains.

Next, we will describe two PSJNet variants in detail. The
key idea of PSJNet is to learn a recommendation model that
can first extract the information of some specific user roles
from domain A, and then transfer the information to domain
B, and combine it with the original information from domain
B to improve recommendation performance for domain B,
and vice versa. This process is achieved in a parallel way,
which means that the information from both domains is shared
recurrently.

B. Sequence encoder

Both variants of PSJNet that we consider use the same
sequence encoder. Like previous studies [30, 69, 59], we use a
RNN to encode a sequence S. Here, we employ two separate
GRUs as the recurrent units to encode the items from domain
A and domain B respectively. And the GRU is given as
follows:

zt = σ(Wz[emb(xt), ht−1])

rt = σ(Wr[emb(xt), ht−1])

h̃t = tanh(Wh̃[emb(xt), rt � ht−1])
ht = (1− zt)� ht−1 + zt � h̃t,

(2)

where Wz , Wr, and Wh̃ are weight matrices; emb(xt) is the
item embedding of item x at timestamp t; and σ denotes
the sigmoid function. The initial state of the GRUs is set to

zero vectors, i.e., h0 = 0. Through the sequence encoder we
obtain HA = 〈hA1 , hA2 , . . . , hAi , . . . , hAN

〉 for domain A,
and HB = 〈hB1

, hB2
, . . . , hBj

, . . . , hBM
〉 for domain B. We

consider the last state as the in-domain representation, i.e.,
hA = hAN

for domain A and hB = hBM
for domain B.

The in-domain representations are combined with the cross-
domain representations (i.e., h(A→B) or h(B→A)) to compute
the final recommendation score. In the next two subsections,
we will describe two PSJNet instantiations that adopt different
frameworks to learn the cross-domain representations.

C. PSJNet-I

In this subsection, we describe PSJNet-I in detail. PSJNet-I
is a reformulation of π-Net [52] within the PSJNet framework,
where we reformulate the shared account filter unit (SFU)
and the cross-domain transfer unit (CTU) as a split-by-join
unit. Figure 2 provides an overview of PSJNet-I. PSJNet-I
is a “Split-by-Join” framework where it gets the role-specific
representations from the mixed user behavior and simultane-
ously joins them at each timestamp. Then the representations
are transformed to another domain as cross-domain represen-
tations. PSJNet-I consists of three main components: (1) a
sequence encoder (see Section III-B), (2) a split-by-join unit,
and (3) a hybrid recommendation decoder (see Section III-E).
The sequence encoder encodes the behavior sequences of each
domain into high-dimensional hidden representations. The
split-by-join unit takes each domain’s representations as input
and tries to first split the representations of specific user roles,
and then joins and transforms them to another domain at each
timestamp t. The matching decoder combines the information
from both domains and generates a list of recommended items.
Please refer to Sections III-B and III-E for details of the
sequence encoder and the hybrid recommendation decoder,
respectively. In this subsection, we focus on the core module
(i.e., the split-by-join unit) of PSJNet-I.

1) Split-by-join unit
Under the shared account scenario, the behavior recorded

under the same account is generated by different user roles. In
practice, not all user roles that share the account are active in
all domains. Besides, even though some user roles are active
in the same domain, they may have different interests. For
example, in the smart TV scenario, children may occupy the
majority of the educational channel, while adults dominate the
video TV channel.

The outputs HA or HB of the sequence encoder are the
mixed representations of all user roles sharing the same ac-
count. To learn role-specific representations from these mixed
representations, we propose a split-by-join unit, as shown in
Figure 3. The split-by-join unit can be applied bidirectionally
from “domain A to domain B” and “domain B to domain A,”
meaning that the information is extracted from one domain and
transferred to the other domain. Here, we take the “domain A
to domain B” direction and achieving recommendations in
domain B as an example. To learn role-specific representa-
tions, we need to know the number of user roles under each
account, which is, unfortunately, unavailable in most cases.
In this work, we assume that there are K latent roles (r1,
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r2, . . . , rk, . . . , rK) under each account. For example, in a
family account, the user roles may correspond to child, male
parent, female parent, etc. We first embed each latent role
into emb(rk) (1 ≤ k ≤ K), which represents and encodes
the latent interests of each role. Then, we split the specific
representation for role rk at timestamp i in domain A with
Eq. 3:

hrkAi
= frkAi

� ĥrkAi
+ (1− frkAi

)� hAi−1→B , (3)

where � denotes element-wise multiplication. Mathematically,
the representation hrkAi

is a combination of two representations
ĥrkAi

and hAi−1→B balanced by frkAi
. A higher value of frkAi

means that item Ai is more likely generated by rk and we
should pay more attention to rk’s related representation ĥrkAi

.
A lower value of lower frkAi

means that item Ai might not
be related to rk and we should inherit more information from
previous time steps.

Next, we introduce the definitions of the three parts of Eq. 3
one by one.
(a) We propose a gating mechanism to implement frkAi

in
Eq. 4:

frkAi
= σ(WfA · hAi

+WfB · hBj
+ Uf · hAi−1→B

+ Vf · emb(rk) + bf ),
(4)

where · means matrix multiplication; WfA , WfB , Uf and
Vf are the parameters; bf is the bias term; hAi

and hBj

are the mixed representations of domain A and B at
timestamp i and j, respectively. Note that Bj is the last
item from domain B before Ai in the mixed sequence.
hAi−1→B is the previous output, which will be explained
later (under item (c)). After the sigmoid function σ, each
value of frkAi

falls into (0, 1). Thus, the gating score frkAi

controls the amount of information of rk to transfer from
domain A to domain B. It should be noted that each latent
representation emb(rk) indicates the distribution of user
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roles with similar interests under each account, and it does
not explicitly represents a specific user.

(b) ĥrkAi
is the candidate representation for rk at timestamp

i in domain A, which is computed based on the mixed
representation hAi

, the filtered previous output hAi−1→B ,
and the user role rk’s latent interest emb(rk), as shown
in Eq. 5:

ĥrkAi
= tanh(Wh · hAi + Uh · hAi−1→B +

Vh · emb(rk) + bh),
(5)

where Wh, Uh and Vh are the parameters; bh is the bias
term.

(c) hAi→B is the final output of the cross-domain represen-
tation at timestamp i from domain A to domain B, which
is calculated by joining each role-specific representation
hrkAi

:

hAi→B =
1

K

K∑
k=1

(
hrkAi

)
. (6)

Note that hAi→B is recurrently updated with Eq. 3 and
6.

Using Eq. 3 and 6, we obtain a sequence of representations
〈hA1→B , . . . , hAN→B〉. We need to combine and transfer
〈hA1→B , . . . , hAN→B〉 to domain B. We achieve this by
employing another GRU to recurrently encode hAi→B at each
timestep to obtain h(A→B)i , as shown in Eq. 7:

h(A→B)i = GRU(hAi→B , h(A→B)i−1
), (7)

where hAi→B is the representation filtered from domain
A; h(A→B)i−1

is the previous transformed representation at
timestamp i−1. The initial state is also set to zero vectors, i.e.,
h(A→B)0 = 0. We set the cross-domain representation from
domain A to domain B (i.e., h(A→B)) as the last timestamp
representation h(A→B)N , where N is sequence length of
domain A.

D. PSJNet-II

In this subsection, we describe PSJNet-II, our second so-
lution for SAC-SR, in detail. Unlike PSJNet-I, PSJNet-II is a
“Split-and-Join” framework, which means that it first splits
role-specific representations from the mixed user behavior
at each timestamp. Then the role-specific representations are
transformed to another domain. Finally, it joins the role-
specific representations as cross-domain representations. Fig-
ure 4 provides an overview of PSJNet-II. PSJNet-II con-
sists of four main components: (1) a sequence encoder (see
Section III-B), (2) a split unit, (3) a join unit, and (4) a
hybrid recommendation decoder (see Section III-E). PSJNet-
II uses the same sequence encoder and matching decoder
architectures as PSJNet-I. Please refer to Section III-B and
III-E for details of the sequence encoder and the hybrid
recommendation decoder. In this subsection, we focus on the
core modules (i.e., the split unit and join unit) of PSJNet-II.

1) Split unit
The split unit is shown in Figure 5. The differences with

the split-by-join unit of PSJNet-I are marked in yellow. As
with PSJNet-I, PSJNet-II also assumes that there are K latent
roles under each account. We split the specific representation
for role rk at timestamp i in domain A with Eq. 8:

hrkAi→B = frkAi
� ĥrkAi

+ fnoneAi
� hrkAi−1→B , (8)

where fnoneAi
is a special gate that handles the case when none

of the information from rk at i (i.e., ĥrkAi
) is useful and we

should inherit more information from previous time steps, see
Eq. 9:

fnoneAi
= σ

(
WfA · hAi

+WfB · hBj
+ Uf · hAi−1→B + bf

)
.

(9)
We add a normalization constraint to force the sum of frkAi

and
fnoneAi

to 1:

fnoneAi
+

K∑
k=1

frkAi
= 1. (10)

We use similar definitions of frkAi
(Eq. 4) and ĥrkAi

(Eq. 5) as in
PSJNet-I, except that hAi−1→B is replaced with hrkAi−1→B . The
differences from split-by-join unit are two-fold. First, hrkAi→B

is not joined with respect to all roles. Second, instead of
learning independent gates for different roles, we require that
all gate values from all roles (and fnoneAi

) are summed to 1.
After Eq. 8, we get a sequence of representations
〈hrkA1→B , . . . , h

rk
An→B〉 for each user role rk. We combine and

transfer 〈hrkA1→B , . . . , h
rk
An→B〉 to domain B by employing

another GRU, as shown in Eq. 11:

hrk(A→B)i
= GRU(hrkAi→B , h

rk
(A→B)i−1

), (11)

where hrkAi→B is the representation filtered from domain A for
role rk.

2) Join unit
The join unit is shown in Figure 6. After the split

unit, we obtain K sequences of transformed representations
〈hrk(A→B)1

, . . . , hrk(A→B)N
〉 from domain A to domain B. To

join them, we first compute a similarity matrix SI ∈ RM×N

between the transformed representations and the in-domain
representations 〈hB1

, . . . , hBM
〉 from domain B. Each simi-

larity SI
(i,j) is computed with Eq. 12:

SI
(i,j) = vS

T · (Wi · hrk(A→B)i
+Wj · hBj

), (12)

where vST , Wi and Wj are parameters.
Then we pick the maximum similarity SI

i between each
hrk(A→B)i

and all hBj
. SI

i signifies that hrk(A→B)i
is more

representative for role rk in domain B because it has the
closest similarity to a representation hBj

in domain B:

SI
i = max

j
SI
(i,j). (13)

We normalize SI
i with softmax afterwards. Then we obtain

representations for each role rk in Eq. 14:

hrk(A→B) =

N∑
i=1

(SI
i h

rk
(A→B)i

). (14)
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Finally, we get the cross-domain representation h(A→B)

by joining 〈hr1(A→B), . . . , h
rK
(A→B)〉 again with similar op-

erations as in 12 and 14, but with a different similarity
matrix SII ∈ RM×K . Note that SII is computed between
〈hr1(A→B), . . . , h

rK
(A→B)〉 and 〈hB1

, . . . , hBM
〉 this time.

There are two strengths of PSJNet-II compared to PSJNet-I.
First, the normalization (see Eq. 10) reduces the influence of
some large gate values, thereby making the prediction more
accurate. Second, the split-by-join unit of PSJNet-I uses the
output of the last time step of GRU as the cross-domain
representation from domain A to domain B. Information in
the intermediate step is lost to some degree. However, in the
join unit of PSJNet-II, the cross-domain representation from
A to B undergoes more fine-grained calculations.

E. Hybrid recommendation decoder

The hybrid recommendation decoder integrates hybrid in-
formation from both domains A and B to evaluate the recom-
mendation probabilities of the candidate items. Specifically,
it first gets the hybrid representation by concatenating the
representation hB from domain B and the transformed rep-
resentation h(A→B) from domain A to domain B. Then, it
evaluates the recommendation probability for each candidate
item by calculating the matching of between the hybrid
representation and the item-embedding matrix followed by a
softmax function, as shown in Eq. 15:

P (Bj+1|S) = softmax
(
WI ·

[
hB , h(A→B)

]T
+ bI

)
, (15)
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where WI is the embedding matrix of all items of domain B;
bI is the bias term.

F. Objective function

We employ the negative log-likelihood loss function to train
PSJNet in each domain as follows:

LA(θ) = −
1

|S|
∑
S∈S

∑
Ai∈S

logP (Ai+1 | S)

LB(θ) = −
1

|S|
∑
S∈S

∑
Bj∈S

logP (Bj+1 | S),
(16)

where θ are all the parameters of our model PSJNet and S are
the sequence instances in the training set. In the case of joint
learning, the final loss is a linear combination of both losses:

L(θ) = LA(θ) + LB(θ). (17)

All parameters as well as the item embeddings are learned in
an end-to-end back-propagation training way.

IV. EXPERIMENTAL SETUP

A. Research questions

We seek to answer the following research questions in our
experiments:
(RQ1) What is the performance of PSJNet-I and PSJNet-II

on the SAC-SR task? Do they outperform the state-of-
the-art methods in terms of Recall and MRR?

(RQ2) Which PSJNet variant is more effective in the SAC-SR
task? PSJNet-I or PSJNet-II? What are the perfor-
mances of different groups of methods, e.g., sequential
and non-sequential recommendation methods?

(RQ3) What is the performance of PSJNet-I and PSJNet-
II on different domains and different datasets? Do
they improve the performance of both domains and
datasets? Are the improvements equivalent?

B. Datasets

We need datasets that exhibit both share-account and cross-
domain characteristics to conduct experiments. To demon-
strate the effectiveness of the proposed PSJNet model, we
build and release two new datasets, HAmazon and HVIDEO,
respectively. We build the HAmazon dataset by simulating
shared account characteristics using previously released Ama-
zon datasets. HVIDEO has previously been used in [52] but
we release it with this paper. Details of the two datasets are
as follows.

• HAmazon: He and McAuley [26] have released an Amazon
product dataset that contains product reviews (ratings, text,
helpfulness votes) and metadata (descriptions, category in-
formation, price, brand, and image features) from Amazon;
it includes 142.8 million reviews spanning the period May
1996–July 2014. The data contains user behavior from
multiple domains. In this paper, we use data from two
Amazon domains. The M-domain contains movie watching
and rating behavior of Amazon users. The B-domain covers
book reading and rating behavior of Amazon users. We
collect user-id, item-id, rating, and timestamp from the data
and conduct some preprocessing. We first order the items
by time under each account. Then, we merge records of the
same item watched/read by the same user with an adjacent
timestamp. We only keep items whose frequency is larger
than 5 in the M-domain and 10 in the B-domain.
To satisfy cross-domain characteristics, we first find users
whose behavior can be found in both the Amazon movie
and book domains and then only keep users who have more
than 10 records.
To simulate shared account characteristics, we first split the
data into 6 consecutive intervals, 1996–2000, 2001–2003,
2004–2006, 2007–2009, 2010–2012, and 2013–2015. Then,
we combine data from both domains by randomly merging
2, 3, or 4 users and their behavior in each interval as one
shared account. Because each sequence has a lot of user
behavior recorded over a long period of time, we split the
sequences from each account into several small sequences
with each containing watching/reading records within a year.
We also require that each sequence contains at least 5 items
from the M-domain and 2 items from the B-domain. The
length of each sequence is between 4 and 60 with an average
length of 31.29.
For evaluation, we use the last watched/read item in each
sequence for each domain as the ground truth respectively.
We randomly select 75% of all data as the training set, 15%
as the validation set, and the remaining 10% as the test set.
The statistics of the final dataset are shown in Table I.
Note that although HAmazon can be used for experiments,
it is not a SAC-SR dataset by nature. There are two
shortcomings. First, the merged users do not naturally have
the shared account characteristic. Second, the two domains
are quite different and are not well correlated in content,
which means that the items in different domains have little
chance to reflect similar interests.

• HVIDEO: To facilitate future research for SAC-SR, we
also release another dataset, HVIDEO, which exhibits



11

TABLE I: Statistics of the datasets.
HAmazon HVIDEO

M-domain V-domain
#Items 67,161 #Items 16,407
#Logs 4,406,924 #Logs 227,390

B-domain E-domain
#Items 126,547 #Items 3,380
#Logs 4,287,240 #Logs 177,758

#Overlapped-users 13,724 #Overlapped-users 13,714
#Sequences 289,160 #Sequences 134,349
#Training-sequences 204,477 #Training-sequences 102,182
#Validation-sequences 49,814 #Validation-sequences 18,966
#Test-sequences 34,869 #Test-sequences 13,201

shared-account and cross-domain characteristics by nature.
HVIDEO is a smart TV dataset that contains watching logs
of 260k users from October 1st 2016 to June 30th 2017. The
logs are collected on two platforms (the V-domain and the
E-domain) from a well-known smart TV service provider.
The V-domain contains family video watching behavior
including TV series, movies, cartoons, talent shows and
other programs. The E-domain covers online educational
videos based on textbooks from elementary to high school,
as well as instructional videos on sports, food, medical, etc.
On the two platforms, we gather user behavior, including
which video is played, when a smart TV starts to play
a video, and when it stops playing the video, and how
long the video has been watched. Compared with previous
datasets, HVIDEO contains rich and natural family behavior
data generated in a natural shared account and cross-domain
context. Therefore, it is very suitable for SAC-SR research.
We conduct some preprocessing on the dataset. We first
filter out users who have less than 10 watching records
and whose watching time is less than 300 seconds. Then,
we merge records of the same item watched by the same
user with an adjacent time less than 10 minutes. After
that, we combine data from different domains together in
chronological order which is grouped by the same account.
Because each account has a lot of logs recorded in a long
time, we split the logs from each account into several small
sequences with each containing 30 watching records. And
we require that the number of items in both domains must
be greater than 5 in each sequence, which can ensure the
sequences mix is high enough.
For evaluation, we use the last watched item in each
sequence for each domain as the ground truth, respectively.
We randomly select 75% of all data as the training set, 15%
as the validation set, and the remaining 10% as the test set.
The statistics of the final dataset are shown in Table I.

C. Baseline methods

For our contrastive experiments, we consider baselines from
four categories: traditional, sequential, shared account, and
cross-domain recommendations.

1) Traditional recommendations.
As traditional recommendation methods, we consider the

following:

• POP: This method ranks items in the training set based on
their popularity, and always recommends the most popular
items. It is a very simple baseline, but it can perform well in
certain domains and is frequently used as a baseline because
of its simplicity [28].

• Item-KNN: The method computes a degree of item-to-item
similarity that is defined as the number of co-occurrences
of two items within sequences divided by the square root
of the product of the number of sequences in which either
item occurs. Items that are similar to the actual item will
be recommended by this baseline. Regularization is included
to avoid coincidental high similarities between rarely visited
items [46].

• BPR-MF: This model is a commonly used matrix factoriza-
tion method. This model cannot be applied directly to SRs,
because new sequences do not have pre-computed feature
vectors. Like [30], we apply it for sequential recommen-
dations by representing a new sequence with the average
latent factors of items that appeared in this sequence, i.e.,
we average the similarities of the feature vectors between a
recommendable item and the items of the session so far.

2) Shared account recommendations.
There are some studies that explore shared account recom-

mendations by first achieving user identification [38, 81, 3].
However, they need extra information for user identification,
e.g., some explicit ratings for movies or descriptions for some
songs, even some textual descriptions for flight tickets, which
is not available in our datasets. Therefore, we select a method
that works on the IP-TV recommendation task that is similar
to ours.
• VUI-KNN: This model encompasses an algorithm to decom-

pose members in a composite account by mining different
user interests over different time periods from logs [77].
The method first divides a day into time periods, so the
logs of each account fall into the corresponding time period;
logs in each time period are assumed to be generated
by a virtual user that is represented by a 3-dimensional
{account×item×time} vector. After that, cosine similarity
is used to calculate similarity among virtual users, some of
which are merged into a latent user. VUI deploys the User-
KNN method to produce recommendations for these latent
users.
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3) Cross-domain recommendations.
For cross-domain recommendations, we choose two base-

line methods.
• NCF-MLP++: This model uses a deep learning-based pro-

cess to learn the inner product of the traditional collaborative
filtering by using a multilayer perceptron (MLP) [28]. We
improve NCF-MLP by sharing the collaborative filtering in
different domains. It is too time-consuming to rank all items
with this method, because it needs to compute a score for
each item one by one. We randomly sample four negative
instances for each positive instance in the training process,
and sample 3,000 negatives for each predicted target item in
the test process, thus simplifying the task for this method.

• Conet: This is a neural transfer model across domains on
the basis of a cross-stitch network [32, 55], where a neural
collaborative filtering model [28] is employed to share
information between domains.
4) Sequential recommendations.

Recently, a number of sequential recommendations methods
have been proposed; RNN-based neural methods have out-
performed traditional MC- or MDP-based methods. There are
many RNN-based methods. In this paper, we consider two
methods with somewhat similar architectures as PSJNet.
• GRU4REC: This model uses a GRU to encode sequential

information. It uses a session-parallel mini-batch training
process and employs ranking-based loss functions for learn-
ing the model [30].

• HGRU4REC: Quadrana et al. [59] propose this model
based on RNNs which can deal with two cases: (1) user
identifiers are present and propagate information from the
previous sequence (user session) to the next, thus improving
the recommendation accuracy, and (2) there are no past
sessions (i.e., no user identifiers). The model is based on
a hierarchical RNN, where the hidden state of a lower-
level RNN at the end of one sequence is passed as input
to a higher-level RNN, which is meant to predict a good
initialization for the hidden state of the lower RNN for the
next sequence.

D. Evaluation metrics

Recommender systems can only recommend a limited num-
ber of items at a time. The item a user might pick should be
amongst the first few in the ranked list [59, 13, 29]. Commonly
used metrics are MRR@20 and Recall@20 [44, 61, 54]. In
this paper, we also report MRR@5, Recall@5 and MRR@10,
Recall@10.
• Recall: The primary evaluation metric is Recall, which

measures the proportion of cases when the relevant item
is amongst the top ranked items in all test cases. Recall
does not consider the actual rank of the item as long as it is
amongst the recommendation list. This accords with certain
real-world scenarios well where there is no highlighting of
recommendations and the absolute order does not matter
[30].

• MRR: Another used metric is MRR (Mean Reciprocal
Rank), which is the average of reciprocal ranks of the
relevant items. And the reciprocal rank is set to zero if the

ground truth item is not in the list of recommendations.
MRR takes the rank of the items into consideration, which
is vital in settings where the order of recommendations
matters. We choose MRR instead of other ranking metrics,
because there is only one ground truth item for each
recommendation; no ratings or grade levels are available.

For significance testing we use a paired t-test with p < 0.05.

E. Implementation details

We set the item embedding size and GRU hidden state size
to 90. We use dropout [67] with drop ratio p = 0.8. These
settings are chosen with grid search on the validation set. For
the latent user size K, we try different settings, an analysis of
which can be found in Section VI-B. We initialize the model
parameters randomly using the Xavier method [25]. We take
Adam as our optimizing algorithm. For the hyper-parameters
of the Adam optimizer, we set the learning rate α = 0.001.
We also apply gradient clipping [58] with range [−5, 5] during
training. To speed up the training and converge quickly, we
use mini-batch size 64. We test the model performance on the
validation set for every epoch. Both PSJNet-I and PSJNet-II
are implemented in Tensorflow and trained on a GeForce GTX
TitanX GPU.

V. EXPERIMENTAL RESULTS

To answer RQ1, RQ2 and RQ3, we report the results of
PSJNet compared with the baseline methods on the HAma-
zon and HVIDEO datasets, as shown in Table II and III,
respectively. From the tables, we can see that both PSJNet-
I and PSJNet-II outperform all baselines in terms of MRR
and Recall for all reported values. Below, we discuss several
insights we obtain from Table II and III so as to answer our
research questions.

A. Overall performance on the SAC-SR task (RQ1)

Both two PSJNet variants significantly outperform all base-
lines and achieve the best results on all metrics, including
strong baselines, i.e., GRU4REC and HGRU4REC. It is worth
noting that although recent studies on SR propose many neural
network models, we choose GRU4REC and HGRU4REC
because GRU4REC and HGRU4REC have very similar ar-
chitectures as PSJNet. And to obtain a fair comparison, we
re-implement them within the same TensorFlow framework as
we use for PSJNet.

Specifically, on the HVIDEO dataset, the largest increase
of PSJNet-II over GRU4REC is 4.04% in terms of MRR@20,
and 4.48% in terms of Recall@10 on the V-domain. On the
E-domain, the increase is even larger with a 4.70% increase of
PSJNet-II over GRU4REC in terms of MRR@20 and 13.03%
increase of PSJNet-I over GRU4REC in terms of Recall@20.
And the increase over HGRU4REC on the V-domain is 1.69%
and 3.45% (at most) in terms of MRR and Recall respectively.
On the E-domain, the increase is 2.29% and 7.67% respec-
tively. We believe that those performance improvements are
due to the fact that PSJNet considers two important factors
(shared-account and cross-domain) with its parallel modeling



13

TABLE II: Experimental results (%) on the HAmazon dataset.

Methods
M-domain recommendation B-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

POP 0.36 0.44 0.49 0.73 1.32 2.02 0.14 0.19 0.22 0.42 0.78 1.22
Item-KNN 1.28 1.57 1.86 2.58 4.83 9.00 3.23 3.94 4.55 6.65 12.11 20.94
BPR-MF 2.90 3.00 3.06 3.90 4.65 5.50 0.88 0.92 0.96 1.23 1.50 2.15

VUI-KNN – – – – – – – – – – – –

NCF-MLP++ 13.68 13.96 14.21 18.44 20.58 24.31 13.67 13.90 14.05 18.14 19.92 22.08
Conet 14.64 14.90 15.12 19.25 21.25 24.46 15.85 16.09 16.28 20.98 22.83 25.56

GRU4REC 82.01 82.08 82.11 83.10 83.61 84.06 81.34 81.41 81.44 82.77 83.32 83.76
HGRU4REC 83.07 83.12 83.14 84.24 84.65 84.91 82.15 82.26 82.31 83.46 84.30 84.91

PSJNet-I 83.91 83.94 83.95 84.91 85.13 85.33 84.93 84.93 84.93 85.33 85.36 85.38
PSJNet-II 84.01† 84.04† 84.05† 84.88 85.10 85.28 85.10† 85.10† 85.11† 85.32 85.37 85.38

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the best
baseline results are marked with † (t-test, p < .05). To ensure a fair comparison, we re-implemented GRUE4REC
and HGRU4REC in Tensorflow, just like PSJNet; the final results may be slightly different from the Theano
version released by the authors. To obtain the results of NCF-MLP++ and Conet, we run the code released by
Hu et al. [32]. VUI-KNN does not work on this dataset because it needs specific time in a day which is not
available on the HAmazon dataset.

TABLE III: Experimental results (%) on the HVIDEO dataset.

Methods
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

POP 2.66 3.07 3.27 5.01 7.77 10.49 1.71 1.96 2.24 2.21 3.61 6.58
Item-KNN 4.43 4.16 2.93 10.48 16.49 23.93 2.11 2.39 2.90 3.01 5.77 12.11
BPR-MF 1.21 1.31 1.36 1.88 2.56 3.38 1.34 1.52 1.64 2.74 4.05 5.83

VUI-KNN 3.44 3.53 2.87 16.46 24.85 34.76 2.03 2.51 3.48 6.36 11.55 24.27

NCF-MLP++ 16.25 17.25 17.90 26.10 33.61 43.04 3.92 4.57 5.14 7.36 12.27 20.84
Conet 21.25 22.61 23.28 32.94 43.07 52.72 5.01 5.63 6.21 9.26 14.07 22.71

GRU4REC 78.27 78.46 78.27 80.15 81.63 83.04 12.27 13.00 13.70 16.24 21.89 32.16
HGRU4REC 80.37 80.53 80.62 81.92 83.21 84.43 14.47 15.37 16.11 19.79 26.72 37.52

PSJNet-I 80.51 80.80 80.95 83.22 85.34 87.48 14.63 15.83 16.88 20.41 29.61 45.19
PSJNet-II 81.97† 82.20† 82.32† 84.32† 86.11† 87.75† 16.63† 17.62† 18.46† 22.12† 29.64 42.20

The same conventions are used as in Table II.

architecture and two main components for as part of its
end-to-end recommendation model, namely the “split” and
“join”. With these three modules, PSJNet is able to model
user interests more accurately by leveraging complementary
information from both domains and improve recommendation
performance in both domains. We will analyze the effects of
the three modules in more depth in Section VI-A.

B. Comparing two versions of PSJNet with different groups
of methods (RQ2)

Generally, PSJNet-II outperforms PSJNet-I on both datasets.
Specifically, PSJNet-II outperforms PSJNet-I in terms of most
metrics on both domains on the HVIDEO dataset, especially
for MRR@5 and Recall@5. The performance is comparable
on the HAmazon dataset. But as we mentioned in §IV-B,
HAmazon is not a good dataset for SAC-SR because the
shared-account characteristic is simulated, and the two do-
mains are quite different and not well correlated in content.
Since both PSJNet-I and PSJNet-II adopt the parallel modeling
architecture, we can conclude that the superiority of PSJNet-
II over PSJNet-I mainly comes from the separate modeling

of “split” and “join”. We will show this in more depth in
Section VI-A.

We can also see that RNN-based methods (e.g., GRU4REC,
HGRU4REC, and our PSJNet) perform much better than tradi-
tional methods, which demonstrates that RNN-based methods
are good at dealing with sequential information. They are able
to learn better dense representations of the data through non-
linear modeling, which we assume is able to provide a higher
level of abstraction. The shared account and cross-domain
baselines (e.g., VUI-KNN, NCF-MLP++ and Conet) perform
much worse than PSJNet. They also perform substantially
worse than HGRU4REC. This is because these shared account
and cross-domain baselines ignore sequential information;
VUI-KNN only considers the length of watching time, and
NCF-MLP++ and Conet do not use any time information.
Another reason is that NCF-MLP++ and Conet just map each
overlapped account in both domains to the same latent space
to calculate the user-item similarity. However, the existence of
shared accounts makes it difficult to find the same latent space
for different latent user roles under one account. Besides, VUI-
KNN is not a deep learning method and it simply distinguishes
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user roles based on the fixed divided time periods in a day,
which means it assumes there is only one family member in
each time period. However, in the smart TV scenario, many
people usually watch programs together [77]. This situation
cannot be captured very well by VUI-KNN. And it requires
the specific time of the user behaviors in a day in order to
distinguish different user roles. That is why we cannot use it
to obtain results on the HAmazon dataset because there is no
such information. In contrast, PSJNet can extract components
of each hidden user role according to their viewing records
in another domain with the “split” module. The results of
BPR-MF are lower than of POP, which indicates that most
items users watched are very popular, which is in line with
the phenomenon that people like to pursue popular items in
the video and book recommendation scenarios.

C. Contrasting the performance on different domains and
different datasets (RQ3)

The Recall values of PSJNet on the HAmazon dataset are
comparable on the two domains while the Recall values on
the V-domain are higher than those on the E-domain on the
HVIDEO dataset. This is also true for the other methods.
We believe that this is because of data balance issues. On
the HAmazon dataset, the data is generally balanced on two
domains. Most accounts have an equal amount of data on both
domains. This means that the models can learn pretty well
with data from just one domain. Cross-domain information is
not that important: the increase of PSJNet on the HAmazon
dataset is relatively small. However, the situation is different
on the HVIDEO dataset. Most accounts have much more data
on the V-domain due to its content diversity; because of this,
models can better learn user’s viewing characteristics on the
V-domain. Therefore, on the HAmazon dataset, the space for
improvement on both domains is smaller than on the HVIDEO
dataset.

Additionally, comparing PSJNet with the best baseline,
HGRU4REC, we find that the largest increase on the E-domain
is larger than on the V-domain. The largest increase in MRR
is 1.69% on the V-domain and 2.29% on the E-domain. And
for the Recall values, the largest increase is 3.45% on the
V-domain, and 7.67% on the E-domain. This shows that the
space for potential improvements on the V-domain is smaller
than on the E-domain after considering shared account and
cross-domain information.

Also, the increases in MRR and Recall are different on
two datasets. On the HAmazon dataset, there is no significant
difference for both MRR and Recall from @5 to @20. This
means that PSJNet can already predict the ground truth item
within the top-5 for most cases. This is not true on the
HVIDEO dataset, especially on the E-domain. Specifically, the
largest increase is 2.25% for MRR from the top-5 to the top-
20, and 24.78% for Recall.

VI. ANALYSIS

A. Ablation study

In this subsection, we report on an ablation study to verify
how well the parallel modeling schema, with the “split” and

“join” units, improves the recommendation performance. The
results are shown in Table IV and V. PSJNet (-PSJ) is the
PSJNet-I or PSJNet-II without all the three parts, which de-
generates into GRU4REC except that PSJNet (-PSJ) is jointly
trained on two domains. PSJNet-I (-SJ) is PSJNet-I without
“split-by-join” unit. PSJNet-II (-S) is PSJNet-II without the
“split” unit and PSJNet-II (-J) is PSJNet-II without the “join”
unit (i.e., replacing the “join” unit by summing up the outputs
from the “split” unit). We can draw the following conclusions
from the results.

First, almost all the best results are almost all from PSJNet-
I and PSJNet-II, which demonstrates the effectiveness of
combining all three parts. The three parts bring around 7%
(MRR) and 1%–3% (Recall) improvements on the M-domain
of HAmazon, and around 4% (MRR) and 4%–10% (Recall) on
both domains of HVIDEO. Additionally, we see that PSJNet
(-PSJ) gets the lowest performance amongst these methods,
while it still outperforms most of the baselines listed in
Table II and III. In summary, then, combining information
from an auxiliary domain is useful. The MRR improvements
are larger on HAmazon while the Recall improvements are
larger on HVIDEO. This is due to the different characteristics
of different domains. Take the two domains in HVIDEO
for example. Almost all members have viewing records in
the V-domain. However, items on the E-domain are mostly
educational programs, so children take up a large proportion,
and their educational interests are relatively fixed. As a result,
the information extracted from the V-domain mostly belongs
to children, which is less helpful because we already have
enough data on the E-domain to learn such features in most
cases.

Second, generally parallel modeling brings the most im-
provements followed by the “split” and “join” units. Specifi-
cally, PSJNet-I achieves around 5% (MRR) and 2% (Recall)
improvements on the M-domain of HAmazon with the parallel
modeling while further improvements with the “split-by-join”
unit are just around 0.6% (MRR) and 1% (Recall). Similar
results can be found on the B-domain of HAmazon and E-
domain of HVIDEO. We believe this is because the model
is already able to leverage information from both domains to
achieve recommendations with the parallel modeling schema.
It is further improved by taking other factors, e.g., shared-
account characteristics, into account in order to better leverage
the cross-domain information. This is why the “split” and
“Joint” units are able to further improve the results over the
parallel modeling schema. An exception is that the “split”
and “join” units achieve more improvements than the parallel
modeling on the V-domain of HVIDEO for PSJNet-I. We
think the reason is that PSJNet-I (-SJ) cannot effectively use
the cross-domain information without the “split-by-join” unit,
while PSJNet-II (-S) is better because the function of “split”
unit is replaced by the “join” unit to some extent. The same is
true for PSJNet-II (-J). This could be verified by the fact that
both PSJNet-I and PSJNet-II get big improvements with both
units than with neither, but the improvements are smaller than
with one unit for PSJNet-II.

Third, the “split” unit is generally more effective than the
“join” unit for PSJNet-II as we find that the gap between
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TABLE IV: Analysis of the contribution of the parallel modeling, split unit and join unit on the HAmazon dataset.

Methods
M-domain recommendation B-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

PSJNet (-PSJ) 77.26 77.44 77.51 82.22 83.52 84.39 81.69 81.72 81.73 85.03 85.27 85.34
PSJNet-I (-SJ) 83.30 83.32 83.33 84.03 84.20 84.31 84.04 84.04 84.04 85.31 85.35 85.38
PSJNet-II (-S) 83.55 83.59 83.60 84.61 84.90 85.14 84.87 84.88 84.88 85.26 85.31 85.35
PSJNet-II (-J) 82.28 82.35 82.38 84.02 84.52 84.92 83.42 83.45 83.46 84.79 84.96 85.08
PSJNet-I 83.91 83.94 83.95 84.91 85.13 85.33 84.93 84.93 84.93 85.33 85.36 85.38
PSJNet-II 84.01 84.04 84.05 84.88 85.10 85.28 85.10 85.10 85.11 85.32 85.37 85.38

PSJNet (-PSJ) is PSJNet without parallel modeling, i.e., no cross-domain representations are used for recom-
mendations. Without parallel modeling, both PSJNet-I and PSJNet-II become the same PSJNet (-PSJ). PSJNet-I
(-SJ) is PSJNet-I without “split-by-join” unit. Because “split-by-join” is an indivisible unit, there is no PSJNet-I
(-S) or PSJNet-I (-J). PSJNet-II (-S) is PSJNet-II without the “split” unit and PSJNet-II (-J) is PSJNet-II without
the “join” unit.

TABLE V: Analysis of the contribution of the parallel modeling, split unit and join unit on the HVIDEO dataset.

Methods
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

PSJNet (-PSJ) 78.02 78.17 78.28 80.13 81.34 82.93 12.69 13.43 14.05 16.54 22.29 31.45
PSJNet-I (-SJ) 78.59 78.85 78.97 81.71 83.58 85.33 16.35 17.04 17.59 20.97 26.29 34.44
PSJNet-II (-S) 81.61 81.85 81.99 83.93 85.73 87.71 15.94 17.01 17.84 20.96 29.18 41.38
PSJNet-II (-J) 81.76 81.98 82.12 84.20 85.80 87.77 16.43 17.48 18.46 21.92 29.96 44.30
PSJNet-I 80.51 80.80 80.95 83.22 85.34 87.48 14.63 15.83 16.88 20.41 29.61 45.19
PSJNet-II 81.97 82.20 82.32 84.32 86.11 87.75 16.63 17.62 18.46 22.12 29.64 42.20

The same settings are applied as in Table IV.

PSJNet-II and PSJNet-II (-J) is smaller than between PSJNet-II
and PSJNet-II (-S). On the one hand, this shows that the “split”
unit plays a more important role which addresses the challenge
raised by shared accounts, i.e., filtering out information of
some user roles that might be useful for another domain from
the mixed user behaviors. On the other hand, the results also
show that the current “join” unit is not effective enough as
directly summing up the outputs from the “split” unit also
achieves competitive performance, and/or the improvement
space of the “join” unit is limited.

B. Influence of the hyperparameter K

Both PSJNet-I and PSJNet-II introduce a hyperparameter
K in the “split” unit which corresponds to the number of
latent user roles. We carry out experiments to study how
setting K affects the recommendation performance of PSJNet
on both datasets, and whether the best K is the same under
all situations and accords with reality. Taking into account
common sizes of families, we consider K = 1, . . . , 5, and
compare different values of K while keeping other settings
unchanged. The results are shown in Table VI and VII.

First, we see that the best values in terms of MRR and
Recall are achieved when K = 3, 4, K = 4 for PSJNet-I
and K = 3 for PSJNet-II especially. This is consistent with
the size of modern families on HVIDEO and the simulation
settings on HAmazon. For PSJNet-I, the lowest MRR and
Recall values are achieved when K = 1. But for PSJNet-
II, the gap between the best and worst performances is much
smaller, which indicates that PSJNet-II is less sensitive to K
than PSJNet-I.

Seond, both PSJNet-I and PSJNet-II show mostly consistent
trends and conclusions on both datasets, i.e., the best K values
are basically the same. On the one hand, this demonstrates the
performance stability of both PSJNet-I and PSJNet-II. On the
other hand, this is also a clue that both models identify K as
the potential user roles under each account, which verifies our
assumption.

Third, although K can affect the recommendation perfor-
mance, the influence is limited. As we can see that the largest
gaps between the best and worst performances are 1.94%
(MRR) and 0.56% (Recall) on HAmazon, 0.78% (MRR) and
1.21% (Recall) on HVIDEO. This is because even if K = 1, 2,
our models still consider the information of all members
except that some members are modeled as a single latent user
role.

VII. CONCLUSION AND FUTURE WORK

We have studied the task of shared account cross-domain
sequential recommendation (SAC-SR) and proposed an exten-
sion to our previous work [52]. We have generalized over the
previous proposal (π-Net) with a more general framework that
allows us to come up with a better performing model. Under
this framework, we have reformulated π-Net as PSJNet-I and
proposed a new instantiation, PSJNet-II, with different split-
join schemes. Experimental results demonstrate that PSJNet
outperforms state-of-the-art methods in terms of MRR and
Recall. We have also conducted extensive analysis experiments
to show the effectiveness of the two PSJNet variants.

A limitation of PSJNet is that it works better only when
we have shared information in two domains that are comple-
mentary to each other. Otherwise, PSJNet only achieves com-
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TABLE VI: Analysis of the hyperparameter K on the HAmazon dataset.

K values
M-domain recommendation B-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

PSJNet-I
1 82.45 82.52 82.54 84.23 84.69 85.07 84.72 84.73 84.73 85.29 85.35 85.38
2 83.35 83.40 83.41 84.66 85.02 85.18 84.74 84.75 84.75 85.30 85.25 85.37
3 83.65 83.68 83.70 84.81 85.08 85.30 84.89 84.89 84.89 85.32 85.35 85.38
4 83.91 83.94 83.95 84.91 85.13 85.33 84.93 84.93 84.93 85.33 85.40 85.38
5 83.73 83.76 83.78 84.82 85.08 85.32 84.94 84.94 84.94 85.33 85.38 85.39

PSJNet-II
1 84.33 84.36 84.37 85.01 85.19 85.32 85.09 85.10 85.10 85.32 85.36 85.39
2 84.08 84.12 84.13 84.92 85.15 85.30 85.13 85.13 85.13 85.33 85.36 85.40
3 84.03 84.06 84.07 84.92 85.12 85.29 85.16 85.16 85.16 85.33 85.35 85.37
4 84.01 84.04 84.05 84.88 85.10 85.28 85.10 85.10 85.11 85.32 85.37 85.38
5 82.34 82.42 82.44 84.06 84.63 84.99 84.67 84.68 84.69 85.23 85.30 85.37

TABLE VII: Analysis of the hyperparameter K on the HVIDEO dataset.

K values
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

PSJNet-I
1 80.19 80.50 80.66 82.85 85.15 87.40 13.92 15.06 16.10 19.76 28.74 43.98
2 80.48 80.75 80.91 83.08 85.06 87.31 14.29 15.47 16.54 19.83 28.96 44.77
3 80.53 80.79 80.93 83.34 85.31 87.31 14.45 15.54 16.64 20.23 28.61 44.64
4 80.51 80.80 80.95 83.22 85.34 87.48 14.63 15.83 16.88 20.41 29.61 45.19
5 80.60 80.86 81.02 83.25 85.19 87.47 14.59 15.71 16.75 20.42 28.97 44.38

PSJNet-II
1 81.93 82.18 82.32 84.33 86.17 88.21 16.17 17.18 18.13 21.42 29.23 43.29
2 81.80 82.04 82.17 84.26 86.05 87.90 16.62 17.67 18.55 21.60 29.60 42.63
3 81.86 82.08 82.20 84.14 85.80 87.53 16.90 17.94 18.77 22.42 30.36 42.51
4 81.97 82.20 82.32 84.32 86.11 87.75 16.63 17.62 18.46 22.12 29.64 42.20
5 81.78 82.02 82.14 83.99 85.67 87.68 16.78 17.84 18.66 22.01 30.07 42.13

parable performance with state-of-the-art methods for shared
account and/or cross-domain recommendations.

As to future work, PSJNet can be advanced in several
directions. First, we assume the same number of latent user
roles under each account in this study. This can be further
improved by automatically detecting the number of user roles,
e.g., adaptively setting the number of family members in smart
TV scenarios. Second, we have focused on the architecture of
PSJNet and have not explored alternative choices for some
of its main ingredients (e.g., encoders, decoders and loss
functions). It would be interesting to see whether alternative
choices will further improve the performance of PSJNet. Third,
side information (e.g., movie categories, attributes or labels,
etc.) has been proven effective in improving recommendation
performance in traditional recommendation [24, 72] and SR
[11]. We hope to explore how to better incorporate side
information into PSJNet for SAC-SR. Fourth, explainability
is seen as important challenge for deep learning at present.
Explainability is not the focus of this work, it is interesting to
see how effective explanations can be produced for different
stakeholders in the complex domain of shared account cross-
domain sequential recommendation (SAC-SR) [51].
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