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AIM: Automatic Interaction Machine for
Click-Through Rate Prediction

Chenxu Zhu, Bo Chen, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li and Yong Yu

Abstract—Feature embedding learning and feature interaction modeling are two crucial components of deep models for Click-Through
Rate (CTR) prediction in recommender systems. Most existing deep CTR models suffer from the following three problems. First, feature
interactions are either manually designed or simply enumerated. However, not all the feature interactions are useful for the prediction
task and useless feature interactions may introduce noisy signals thus causing overfitting. Second, all the feature interactions are
modeled with an identical interaction function, whereas different interaction functions introduce different inductive biases to better
capture various feature interaction patterns. Third, in most existing models, different features share the same embedding size.
However, model size can be further optimized without sacrificing performance by differentiating embedding sizes for individual features,
as the amount of information contained in each feature varies much. To address the three issues mentioned above, we propose
Automatic Interaction Machine (AIM) with three core components, namely, Feature Interaction Search (FIS), Interaction Function
Search (IFS) and Embedding Dimension Search (EDS), respectively. To tackle the first problem, FIS component automatically identifies
different orders of essential feature interactions with useless ones pruned. Taking care of the second problem, IFS component selects
appropriate interaction functions for each individual feature interaction in a learnable way. Moreover, to avoid learning conflict among
different interaction functions, IFS proposes function-wise embeddings via performing multiple embeddings for each feature, where
each feature embedding corresponds to one possible interaction function. However, utilizing multiple embeddings for each feature may
make the model size affordably large if we keep the same embedding size as utilizing shared embedding (i.e., each feature shares the
same embedding for different interaction functions). To solve this third problem, EDS automatically selects proper embedding size for
each feature. Such a flexible embedding size adaptation is able to reduce the large amount of embedding parameters introduced by
function-wise embeddings. Offline experiments on three large-scale datasets (two public benchmarks, one private dataset) validate that
AIM can significantly improve various FM-based models. AIM has been deployed in the recommendation service of a mainstream app
market, where a three-week online A/B test demonstrated the superiority of AIM, improving DeepFM model by 4.4% in terms of CTR.

Index Terms—CTR Prediction, Feature Interaction, Neural Architecture Search, Factorization Machine, Recommender Systems
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1 INTRODUCTION

Click-Through Rate (CTR) prediction, which aims to predict
the probability of the user clicking on the recommended
items (e.g., music, advertisement), plays a core role in rec-
ommender systems. The estimated CTR may influence the
subsequent recommendation decision-makings such as item
ranking and ad placement. Accurate CTR prediction not
only improves the user experience but also boosts the profit
for the service providers. Since 2016, deep learning has
been introduced to CTR prediction due to its high capacity
of modeling high-order patterns and end-to-end learning
manner [2]. So far, various deep CTR models have been
deployed in the recommendation services of industrial com-
panies, such as Wide & Deep [3] in Google Play, DeepFM [4]
in Huawei AppGallery and DIN [5] in Taobao.

Most of the existing deep CTR prediction models con-
sist of two key components: feature embedding learn-
ing and feature interaction modeling. Feature embeddings
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are learned via mapping categorical features into low-
dimensional embedding vectors (short for embeddings).
Feature interactions are learned by utilizing some functions
to model the relationship among a set of feature embed-
dings. Many research works focus on designing interaction
functions (or more generally, network architectures) to bet-
ter capture feature interactions.

At the early stage, Deep Neural Network models [3, 6, 7]
are proposed to model feature interactions implicitly with
the multi-layer perceptron (MLP) built on the feature em-
beddings. In theory, a DNN could explore arbitrary feature
interactions according to its universal approximation prop-
erty [8]. However, there is no guarantee that a DNN nat-
urally converges to any expected function using gradient-
based optimization. Recent works prove the insensitive
gradient issue of DNN when the target is a large collection
of uncorrelated functions [9, 10]. Simple DNN models may
not find the proper feature interactions, including the simple
inner product [11]. Therefore, various complicated architec-
tures have been proposed, such as DIN [5], DeepFM [4]
and PNN [12]. Factorization Models (specified in Definition
1), such as FM [13], DeepFM, PNN, AFM [14], NFM [15],
have been proposed to adopt an embedding layer and an
inner-product feature extractor to respectively learn feature
embedding and feature interactions.

However, there are three significant downsides in most
of these existing models. First, all these models simply enu-
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Fig. 1. Architectures of Automatic Interaction Machine (AIM).

merate all feature interactions or require human efforts to
identify important feature interactions. The former always
brings large memory and computation cost to the model and
is difficult to extend into high-order interactions. Besides,
useless interactions may bring unnecessary noise to cause
overfitting and complicate the training process [10]. The
latter, such as identifying important interactions manually
in Wide & Deep [3], is of high labor cost and risks missing
some counter-intuitive (but important) interactions.

Second, all the feature interactions with different com-
plexity are modeled with the same specific interaction func-
tion (IF), such as inner product [4, 12, 14] or a predefined
sub-network [9]. Nevertheless, using different interaction
functions is conducive to better modeling various feature
interactions under different mapping sub-spaces, especially
for higher-order feature interactions as pointed out in Aut-
oFeature [16].

Third, different features share the same embedding size
to represent their embeddings. As pointed out in some re-
markable works [17, 18, 19, 20], such a strategy may lead to
memory inefficiency. More specifically, allocating the same
embedding size to all features may lose the information
of high predictive features while waste memory on non-
predictive features. Therefore, model size can be further op-
timized without sacrificing performance by differentiating
embedding sizes for individual features, i.e., assigning large
embedding size to high predictive features, while assigning
small embedding size to low predictive ones.

Some recent works improve the existing models by
solving part of the above three problems. AutoFIS [1]
and AutoGroup [21] identify important feature interactions
while performing identical IF for all the selected feature
interactions with uniform embedding size (namely, solving
the first problem only). AutoFeature [16] solves the first
and second problems by automatically searching proper
network architectures to model different feature interactions
via an evolutionary algorithm with the Naive Bayes tree.
However, high complexity hinders the application of this
method to large-scale industrial scenarios. To solve the third
problem, a bunch of previous works [17, 18, 19, 20] utilize
various techniques to find proper embedding sizes for each
feature automatically, but the first two issues about feature
interactions are totally ignored in these works. In other
words, none of these advanced work solves all these three
important problems in a unified framework.

To fill this gap, in this paper, we propose a unified frame-

work called Automatic Interaction Machine (AIM) with
three core components, i.e., Feature Interaction Search (FIS),
Interaction Function Search (IFS) and Embedding Dimension
Search (EDS), which are elaborated in Figure 1.

First, FIS component automatically learns which feature
interactions are essential. Specifically, we introduce a gate
(in open or closed status) for each feature interaction to
control whether its output should be passed to the next
layer. In previous works, the status of the gates are either
specified beforehand by expert knowledge [3] or set as all
open [4, 22]. From a data-driven point of view, whether
to open or close a gate should depend on the contribution
to the final prediction. Apparently, those contributing little
should be closed to prevent the learning procedure from
introducing extra noise. However, it is an NP-Hard problem
to find the optimal set of open gates for model performance,
as we face an incredibly huge space to search (2C

2
n with n

fields, even if we only consider 2nd-order feature interac-
tions). To make the search efficient in such a huge space,
FIS component relaxes the choices of gates to be continuous
such that gradient-based optimizations can be performed.
Furthermore, FIS component is also able to select high-order
feature interactions. To make the search process efficient,
we exploit the selected low-order interaction to first restrict
high-order interactions into a small candidate pool heuris-
tically and then search from this pool rigorously, achieving
O(n2) complexity.

As the second component of AIM, IFS can select appro-
priate IF for each essential feature interaction. To achieve
this goal, a gate to each interaction-IF pair is needed. It
can be observed that the search space of IFS is larger than
that of FIS, which reaches to 2mC

2
n (with n fields and m

IFs), if we only consider 2nd-order feature interactions. To
avoid learning conflict among different IFs, IFS proposes to
utilize function-wise embeddings, i.e., multiple embeddings
learned for each feature, where each of such embeddings
corresponds to one possible IF1.

As function-wise embeddings are used in IFS, the model
size grows significantly (about m times than shared embed-
ding). The third component, EDS, is proposed to optimize
the model size without sacrificing performance by assigning
small embedding sizes to low predictive features, which is
achieved by pruning redundant embedding dimensions for
each feature. Similar to FIS and IFS components, gates are

1. As the opposite, we refer shared embedding as the case that each feature shares
the same embedding for different IFs.
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also introduced, where a gate is annotated to each dimension
of a feature embedding. In the end, the dimensions with
open gates are recognized as important dimensions while
the ones with closed gates are pruned.

Inspired by the recent work DARTS [23, 24, 25] for neural
architecture search, instead of searching over a discrete set of
candidate gates (i.e., feature interactions in FIS, interaction-
IF pairs in IFS and embedding dimensions in EDS), we
relax the choices to be continuous by introducing a set
of architecture parameters (one for each gate) so that the
relative importance can be learned by gradient descent. The
architecture parameters are jointly optimized with neural
network weights by GRDA optimizer [26], an optimizer that
is easy to produce a sparse solution, so that the training
process can automatically abandon unimportant feature
interactions, useless interaction-IF pairs and unnecessary
embedding dimensions with zero values as the architecture
parameters and keep those important ones. Finally, we
re-train the model with the selected feature interactions,
interaction-IF pairs as well as embedding dimensions.

Extensive experiments are conducted on three large-
scale datasets and the experimental results demonstrate that
AIM can significantly improve the CTR prediction perfor-
mance in terms of AUC and log loss. Besides, as AIM can
remove about 80% of 2nd-order interactions, our model can
consistently achieve improvement on inference efficiency.
AIM is able to model high-order feature interactions in a
novel way with quadratic complexity. Experimental results
show that with about 1%–5% of 3rd-order feature interac-
tions and about 0.03%–0.6% of 4th-order feature interactions
selected, the AUC of factorization models can be improved
by 0.1%–0.4% without introducing much inference cost. Fur-
thermore, AIM has been deployed in the recommendation
service of a mainstream app market. From a three-week
online A/B test, AIM achieves 4.4% CTR improvement over
the production model DeepFM, which contributes a sig-
nificant business revenue growth. To summarize, the main
contributions of this paper can be highlighted as follows:
• We propose AIM with three core components (namely,

FIS, IFS and EDS components) to select significant feature
interactions, appropriate IFs and necessary embedding
dimensions automatically in a unified framework.

• Gates are introduced in FIS, IFS and EDS components,
with open (closed) status representing important (unim-
portant) candidates. We relax discrete selection of open
gates to be continuous by introducing a set of architecture
parameters that can be jointly optimized with neural
network weights by GRDA optimizer.

• Offline experiments on three large-scale datasets demon-
strate the superior performance of AIM. A three-week
online A/B test in the recommendation service of a main-
stream app market shows that AIM improves DeepFM
model by 4.4% on average in terms of CTR.

2 RELATED WORK

2.1 CTR Models

One core of CTR models is to extract effective low-order
and high-order feature interactions, which is also one of the
optimization targets of our work. Therefore, in this section,

we discuss the CTR models that focus on learning feature
interactions effectively.

FM [13] projects each feature into a low-dimensional
vector and models pair-wise feature interactions by inner
product, which works well for sparse data. FFM [27] extends
FM, by further assigning each feature with multiple vectors
to interact with features from other fields. Despite the sig-
nificant improvement over FM, FFM introduces much more
parameters and suffers from overfitting issues. HOFM [28]
introduces the ANOVA kernel to approximate high-order
feature interactions. However, it is shown in [14] that HOFM
achieves only marginal improvement over FM whereas us-
ing much more parameters.

Recently, deep learning models have achieved state-of-
the-art performance on some public CTR prediction bench-
marks [29, 30]. As a powerful approach to learning feature
representation, deep learning models have the potential to
learn sophisticated feature interactions. Wide & Deep [3]
jointly trains a wide model for artificial features and a deep
model for raw features. Several models use MLP to improve
FM, such as AFM [14], NFM [15] and DeepFM [4]. DeepFM
uses an FM layer to replace the wide component in Wide
& Deep. PNN [12] uses MLP to model high-order implicit
information over the feature embeddings and interaction of
FM layer while PIN [9] introduces a network-in-network
architecture to model pairwise feature interactions with sub-
networks rather than simple inner product operations in
PNN and DeepFM. Due to the curse of dimensionality,
DeepFM, PNN and PIN cannot explicitly model high-order
feature interactions, which limits the further improvement
of the model performance. xDeepFM [22] uses a CIN struc-
ture to enumerate and compress all feature interactions for
modeling explicit interactions. However, it uses so many
parameters that great challenges are posed to identify im-
portant feature interactions in the huge combination space.

As stated earlier, all the above mentioned CTR models
suffer from three limitations: (1) enumerating all the feature
interactions or requiring human efforts; (2) utilizing the
same IF to model all the feature interactions; (3) assigning
the same embedding size to all the features. Our proposed
AIM improves these models by solving such three down-
sides with AutoML techniques.

2.2 AutoML for CTR Models
AutoML for CTR models has been an active research area
and there exist some works using AutoML techniques to
devise automated methods for architecture design including
embedding dimension search and feature interaction search.

Existing works leverage the AutoML to optimize the
embeddings by searching embedding sizes for differ-
ent features adaptively and automatically. NIS [20] and
ESAPN [19] perform a hard selection strategy and use
reinforcement learning (RL) to search for mixed feature
embedding sizes automatically. On the contrary, soft se-
lection strategies based on differentiable search algorithms
(e.g., DARTS [23]) are proposed in AutoEmb [18] and
AutoDim [17] by summing over the embeddings of the
candidate sizes with learnable weights. The former lever-
ages a controller network with Softmax layer to search the
weights of different embedding sizes while the latter uses
the Gumbel-softmax operation [31].
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As stated earlier, for CTR models, feature interaction
modeling is an important component, where the main tasks
are to find which feature interactions are useful and decide
how the interaction should be modeled. Some research
works are proposed to explore these two questions. Aut-
oFIS [1] automatically identifies and then selects important
feature interactions for factorization models with a set of
learnable architecture parameters. Besides, AutoGroup [21]
proposes to generate some groups of features, such that
their interactions of a given order are effective, which en-
ables high-order feature interaction modeling. To determine
suitable IFs, SIF [32] exploits the DARTS method to search
proper interaction functions for matrix factorization. Aut-
oFeature [16] applies an evolutionary algorithm with the
Naive Bayes tree that recursively reduces the search space
of IFs for feature interactions. However, AutoFeature trains
excessive models for different structures to select the most
appropriate structure, which requires a long period to search
and a much high computational resource.

However, the above mentioned works solve one or two
limitations (the three limitations are mentioned in Section 1
and also in Section 2.1) of the existing CTR models. None
of them is able to solve all the three important issues in a
unified framework. Our proposed AIM designs a gate-based
unified framework and formulates the problem of searching
proper embedding size, effective feature interactions as well
as appropriate IFs as a continuous searching problem by
incorporating architecture parameters that can be jointly
optimized with neural network weights.

3 METHODOLOGY
In this section, we first formally define a family of pop-
ular CTR models (Factorization Model), with which our
proposed AIM is able to work collaboratively to improve
their performance. Then Automatic Interaction Machine
(AIM) with three core components, namely, Feature Inter-
action Search (FIS), Interaction Function Search (IFS) and
Embedding Dimension Search (EDS) is proposed to select
significant feature interactions, appropriate IFs and nec-
essary embedding dimensions automatically in a unified
framework, as shown in Figure 1. Finally we discuss some
concrete training details.

3.1 Factorization Model (Base Model)
First, we define factorization models:
Definition 1. Factorization models are the models where the

interaction of several embeddings from different features
is modeled into a real number by some functions such as
inner product or neural network.

FM [13], DeepFM [4] and IPNN [12] (IPNN is one kind of
PNN when the IF is inner product) are popular CTR models,
which are in the family of factorization model. Therefore, we
take FM, DeepFM, and IPNN as instances to formulate our
algorithm and explore the performance on various datasets.
Figure 2 presents the architectures of FM, DeepFM and
IPNN models. FM consists of a feature embedding layer and
a feature interaction layer. Besides these two layers, DeepFM
and IPNN include an extra layer: MLP layer. The difference
between DeepFM and IPNN is that feature interaction layer

and MLP layer work in parallel in DeepFM while ordered
in sequence in IPNN.

In the subsequent subsections, we will first elaborate
on these layers. Then the details of how our proposed
AIM working on the feature embedding layer and feature
interaction layer are elaborated, i.e., selecting crucial fea-
ture interaction with proper interaction functions (IFs) and
appropriate embedding sizes based on architecture param-
eters.

Feature Embedding Layer. In most CTR prediction
tasks, data is collected in a multi-field categorical form2. A
typical data pre-process is to transform each data instance
into a high-dimensional sparse vector via one-hot or multi-
hot encoding. A field is represented as a multi-hot encoding
vector only when it is multivariate. The data instance can be
represented as

x = [x1, x2, · · · , xn],

where n is the number of fields and xi is the one-hot or
multi-hot encoding vector of the ith field. Then, a feature
embedding layer is used to transform the encoding vector
into a low-dimensional vector via

ei = Vixi, (1)

where Vi ∈ Rd×hi is the embedding matrix for the ith field,
hi is vocabulary size of the ith field and d is embedding size.

Then, the output of the feature embedding layer is repre-
sented as the concatenation of multiple embedding vectors:

E = [e1, e2, ..., en].

In the traditional paradigm, all feature embeddings in
various fields have identical embedding sizes. However,
not all features in distinct fields are equally predictive,
i.e., some fields are informative while the other fields are
not. Therefore, allocating the same embedding size to all
features may lose the information of high predictive features
while wasting memory on non-predictive features. To tackle
this issue, we will later present EDS component to search
different embedding sizes (by pruning useless embedding
dimensions) for various features in the different fields.

Feature Interaction Layer. After transforming the fea-
tures to a low-dimensional space, the feature interactions
can be modeled in such a space with the feature interaction
layer. Various interaction functions (IFs) can be used to
model distinctive interactive signals, such as inner product,
outer product and kernel product:

fINNER (ei, ej) = 〈ei, ej〉
fOUTER (ei, ej) = ei ⊗ ej
fKERNEL (ei, ej) = 〈ei, ej〉φ

, (2)

where 〈·, ·〉 is the inner product, ⊗ is the outer product and
〈·, ·〉φ is the kernel product (with the kernel φ). Specially, we
further divide the kernel product into matrix kernel product,
vector kernel product, scalar kernel product according to the
shape of kernel φ.

2. Features in the numerical form are usually transformed into cate-
gorical form by bucketing.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

10 … 0 … 0 10 … 0

…

…1 0

…

Output

Interaction

Embedding

Field 1 Field 2 Field n

Input 10 … 0 … 0 10 … 0

…

…1 0

…

Output

Interaction

Embedding

Field 1 Field 2 Field n

Input

MLP

10 … 0 … 0 10 … 0

…

…1 0

…

Output

Interaction

Embedding

Field 1 Field 2 Field n

Input

MLP

(a) FM (b) DeepFM (c) IPNN

Fig. 2. Architectures of FM, DeepFM and IPNN.

Take the inner product as an example, we introduce how
the feature interaction layer works. The inner product of all
the pair-wise feature interactions is calculated:

[〈e1, e2〉, 〈e1, e3〉, ..., 〈en−1, en〉], (3)

In FM, the output of the feature interaction layer is:

lFM = 〈w,x〉+
n∑
i=1

n∑
j>i

〈ei, ej〉. (4)

However, the inner product operation may not be able to
learn the interaction information of all the pairwise features.
That is to say, various interaction functions (IFs) are needed
when modeling different feature interactions, as also stated
in [32]. Taking this concern into consideration, we extend
FM model with multiple IFs as

lFM_EXTEND = 〈w,x〉+
n∑
i=1

n∑
j>i

m∑
k=1

fk (ei, ej) , (5)

where fk is a predefined IF (such as inner product, outer
product, kernel product) and m is the number of IFs.

In Equation 5, all the feature interactions are assumed
to be equally important and therefore are designed to con-
tribute equally to the prediction. Whereas not all the feature
interactions are equally predictive and useless interactions
may even degrade the performance. Therefore, we propose
the FIS component to select important feature interactions
automatically and efficiently.

In addition, Equation 5 assumes k different IFs are all
needed and contribute equally to model each feature in-
teraction. As stated earlier, different IFs are needed when
modeling individual feature interactions. To select suitable
IFs for each feature interaction, we propose the IFS compo-
nent, which will also be elaborated later.

Besides pairwise feature interactions, we also target at
identifying effective high-order feature interactions. For-
mally, we define pth-order feature interaction (i.e., the com-
bination of p fields) as:∑

q∈ψp

fk
(
eq1 , eq2 , · · · , eqp

)
, (6)

where ψp contains all pth-order interactions (|ψp| = Cpn) and
q is one such pth-order interaction. fk (·) is the kth high-
order IF (high-order IFs are expanded by 2nd-order IFs and
the specific expansions are described in Section 4.2.3).

The complexity of feature interaction layer with pth-
order interaction is O(np), exponential to the number of
fields n, which makes searching high-order feature inter-
actions in a brute-force manner unaffordable in practice. To
tackle the efficiency issue, we propose a method to select

high-order feature interactions with quadratic complexity,
which will be illustrated in Section 3.2.

MLP Layer. MLP layer consists of several fully con-
nected layers with activation functions, which learn the
implicit non-linear relationship among features. The output
of one such layer is

a(l+1) = relu(W (l)a(l) + b(l)), (7)

where a(l),W (l), b(l) are the input, weight and bias of the
lth layer, respectively. The activation function is relu(z) =
max(0, z). a(0) is the input to MLP layers and a(L) =
MLP(a(0)), where L is the depth of MLP layer.

Output Layer. FM model has no MLP layer and connects
the feature interaction layer with prediction layer directly:

ŷFM = sigmoid(lFM) =
1

1 + exp(−lFM)
, (8)

where ŷFM is the predicted CTR. DeepFM combines feature
interaction layer and MLP layers in parallel as

ŷDeepFM = sigmoid(lFM + MLP(E)). (9)

While in IPNN, MLP layer is subsequent to feature
interaction layer as

ŷIPNN = sigmoid(MLP([E, lFM])). (10)

Note that the MLP layer of IPNN can also serve as a
re-weighting of the different feature interactions to capture
their relative importance. This is also the reason that IPNN
has a higher capacity than FM and DeepFM. However, with
the IPNN formulation, one cannot retrieve the exact value
corresponding to the relative contribution of each feature
interaction. Therefore, the useless feature interactions in
IPNN can be neither identified nor dropped, which brings
extra noise and computation cost to the model.

Objective Function. FM, DeepFM, and IPNN share the
same objective function, i.e., to minimize the cross-entropy
of predicted values ŷ and the labels y as

L(y, ŷ) = −ylogŷ − (1− y)log(1− ŷ), (11)

where y ∈ {0, 1} is the label and ŷ ∈ [0, 1] is the predicted
probability of y = 1.

3.2 Feature Interaction Search (FIS)
In this section, we present one of the three core components,
namely FIS component, which is performed on the feature
interaction layer of any factorization model to automatically
identify different orders of essential feature interactions.

The overview of the FIS component is illustrated in
Figure 3. To ease the presentation of FIS component, we
introduce the gate operation to control whether to select
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a feature interaction, i.e., an open gate corresponds to se-
lecting this feature interaction, while a closed gate results
in dropping this interaction. The total number of gates
corresponding to all the 2nd-order feature interactions is C2n.
It is very challenging to find the optimal set of open gates
in a brute-force way, as we face an incredibly huge (2C

2
n )

space to search. In this work, we approach the problem from
a different viewpoint. Instead of searching over a discrete
set of open gates, we relax the choices to be continuous by
introducing architecture parameters α, so that the relative
importance of each feature interaction can be learned by
gradient descent.

This architecture selection scheme based on gradient
learning is inspired by DARTS [23], where the objective is
to select one operation from a set of candidate operations
in convolutional neural network (CNN) architecture. To be
specific, we reformulate the interaction layer in factorization
models (shown in Equation 4) as

lFIS = 〈w,x〉+
n∑
i=1

n∑
j>i

α(i,j)〈ei, ej〉, (12)

where α = {α(1,2), · · · , α(n−1,n)} are the architecture pa-
rameters and their value α(i,j) can represent the relative
contribution of each feature interaction to the final predic-
tion. Then, we can decide the gate status of each feature
interaction by setting those unimportant ones (i.e., with zero
α(i,j) values) closed.

After the search, some unimportant interactions are
thrown away automatically according to the architecture
parameters α and the new model with remained feature
interactions can be re-trained.

High-order Feature Interaction Search. Note that, Equa-
tion 12 only formulates the case of selecting important 2nd-
order feature interactions. Besides the 2nd-order, FIS com-
ponent also aims to search high-order feature interactions.
The number of all pth-order feature interaction is Cpn, which
is exponential to the number of fields n. Therefore, it is not
practical to identify effective high-order feature interactions
in a similar way as for 2nd-order feature interactions (by
enumerating all the feature interactions first).

To search effective high-order feature interactions effi-
cient, we propose a two-step process to select pth-order
feature interactions from the selected (p − 1)th-order inter-
actions, as follows.
• Step 1: Exploit (p − 1)th-order and first-order feature

interaction set to generate a preliminary candidate pool
Mtmp

p for potential effective pth-order interactions.
• Step 2: Perform FIS component with architecture param-

eters to select effective pth-order feature interactionsMp,
fromMtmp

p generated by Step 1.This two-step search process is summarized in Algorithm 1.
We elucidate the core part of this algorithm, i.e., line 4

Algorithm 1 High-order Feature Interaction Search
Require: field number n, the highest order P , top number

k for pool selection
Ensure: the selected interactionsM1,M2,M3, · · · ,MP

1: M1 ← {(e1), (e2), · · · , (en)}
2: Mtop

1 ←M1

3: for p← 2 to P do
4: Mtmp

p ← Combine(Mtop
p−1,M1)

5: Mp,αp ← FIS(Mtmp
p )

6: SortMp by αp

7: Mtop
p ← Topk(Mp)

8: end for
9: return M1,M2,M3, · · · ,MP

to line 7. For line 4, we combine top important (p− 1)
th-

order feature interaction set Mtop
p−1 and first-order feature

interaction set M1 (that is each feature) in a Cartesian
product manner to get the candidate pool Mtmp

p for pth-
order. For line 5, we leverage the FIS component to learn
the relative importance of each pth-order interaction by the
architecture parameters. More specifically, we abandon the
feature interactions with zero α value in Mtmp

p and retain
the rest to get the final selected pth-order interaction setMp

with their corresponding αp. For line 6-7, preparing for the
next round, we employ αp to sort Mp and get the top-k
(k ≤ n) important pth-order feature interaction to generate
(p+ 1)

th-order feature interaction set.
Complexity Analysis. To select effective pth-order fea-

ture interactions, there exists at most n feature interactions
in Mtop

p−1, therefore Mtmp
p (which combining Mtop

p−1 and
M1) has at most O(n2) pth-order feature interactions. Both
time and space complexity of feature interaction selection
for each order by our method is O(n2), instead of O(np)
complexity by simple enumeration.

3.3 Interaction Function Search (IFS)
FIS component selects important feature interactions which
are modeled with the same specific interaction function (IF).
However, as stated earlier, not all the feature interactions
can be modeled with the same IF. That is to say, individual
feature interactions may need different IFs. Due to this
reason, the second core component, IFS, is proposed to select
appropriate IFs for each important feature interaction.

Next Layer

Interaction & Function Gate

Architecture Parameters

Batch Normalization

Interaction Function

Embedding

𝛼(𝑖,𝑗,𝑘)

…

𝑰𝑭𝟏 … 𝑰𝑭𝒎𝑰𝑭𝟐 𝑰𝑭𝟏 𝑰𝑭𝟐 … 𝑰𝑭𝒎 𝑰𝑭𝟏 𝑰𝑭𝟐 … 𝑰𝑭𝒎…

… … ……

Fig. 4. The architecture of IFS component.

Similar to FIS, IFS component also leverages the gate
operation to control the IF selection. For each feature in-
teraction, one or more IFs from m candidate IFs are selected
to learn the relationship of the features. As a special case, a
feature interaction is abandoned if none of m IFs is selected.
The architecture parameters α′ are introduced to get the
relative importance of each interaction-IF pair, which can be
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learned by gradient descent (in a similar way as in FIS). The
overview of IFS component is presented in Figure 4.

We reformulate the interaction layer in the extend factor-
ization models (shown in Equation 5) as

lIFS = 〈w,x〉+
n∑
i=1

n∑
j>i

m∑
k=1

α′(i,j,k)fk(ei, ej), (13)

where α′ = {α′(i,j,k)} are the architecture parameters.
α′(i,j,k) corresponding to the kth IF for feature interaction
(i, j). Those unimportant interaction-IF pairs (i.e., with zero
α′(i,j,k) values) will be thrown away automatically.

Function-wise Embeddings. In Equation 13, feature in-
teraction modeling leverages shared embedding (i.e., each
feature shares the same embedding for different IFs) to learn
the latent effect over different IFs. However, the learning of
shared feature embedding becomes difficult as one such em-
bedding receives different gradient signals from individual
learning spaces, where each learning space corresponds to
an IF. Such different gradient signals cause learning conflict
and lead to sub-optimal performance, as also observed
in [33, 34].

To avoid such learning conflict among different IFs, IFS
proposes to utilize the function-wise embeddings (FWEs),
i.e., multiple embeddings are learned for each feature, where
each of such embedding corresponds to one IF. With a
specific IF, the corresponding embedding vectors are used
to model the interactive correlations. Equipped with FWE,
Equation 13 is updated as:

lFWEIFS = 〈w,x〉+
n∑
i=1

n∑
j>i

m∑
k=1

α′(i,j,k)fk(eik, ejk), (14)

where eik represents the embedding of the ith feature for the
kth IF. In this way, each embedding only needs to learn the
latent effect in one mapping space of a specific IF, such that
learning conflict is avoided. In Section 4.4, we will show
the superiority of function-wise embeddings over shared
embedding. However, function-wise embeddings introduce
more parameters, which leads to much more space cost. To
reduce the space complexity, the third core component, EDS
is proposed, which will be presented in Section 3.4.

After the architecture parameters α′ are learned, appro-
priate IFs are chosen for each feature interaction automat-
ically. More specifically, zero value of α′(i,j,k) indicates the
interaction (i, j) with kth IF is not effective and thus can
be dropped. The other interaction-IF pairs with non-zero
α′(i,j,k) values are retained.

3.4 Embedding Dimension Search (EDS)

Although function-wise embeddings (FWEs) improve the
performance, the model size is significantly larger than
the case of allocating the same embedding size (as shared
embedding) to all features. To deal with the excessive pa-
rameters, the third component, EDS, is proposed to optimize
the model size without sacrificing performance by assigning
low embedding size to non-predictive features, which is
achieved by pruning redundant embedding dimensions for
each feature.

𝛽𝑖𝑗

Pruned Embedding

Embedding Gate
Architecture Parameters

Batch Normalization

Embedding

…

…

zero zero zero zero zero zero

Fig. 5. The architecture of EDS component.

Similarly, a gate operation is introduced to determine
whether the corresponding embedding dimension is se-
lected for a field. The total number of the gates is n × d,
where n is the number of the fields and d is the largest
embedding size. Here we make use of architecture param-
eters β ∈ Rn×d to turn the embedding dimension search
problem into a continuous process which can be solved by
gradient descent. The overview of EDS component is shown
in Figure 5. Note that FWEs in the same field share the same
set of architecture parameters.

During the embedding dimension search, each embed-
ding dimension multiplies to the embedding architecture
parameter β of the corresponding field, as

e′i = βi · ei, (15)

where βi is the embedding architecture parameter of the
ith field and it represents the relative importance among
different dimensions in the ith field.

The feature embedding layer concatenates the embed-
ding vector e′i of each feature, as

E′ = [e′1, e
′
2, ..., e

′
n].

Then E′ feeds to the feature interaction layer for captur-
ing interactive signals.

After the search, the embedding size of each feature field
has been determined automatically according to β∗. More
specifically, EDS component prunes redundant dimensions
(i.e., with zero βij value) and reserves necessary dimensions
with their positions (since the positions also reflect the effect
on various feature interactions). The embedding size for
each field is

di =
d∑
j=1

1 [βij 6= 0] . (16)

Besides, the position set of the retained embedding di-
mensions for the ith field is

φi = {j |βij 6= 0 , j ∈ [1, · · · , d]}. (17)

To derive new embeddings of adaptive sizes, we design
a function Mapi (·) for the ith field that maps from the
position set of retained dimension φi to the new embedding
position set {1, 2, · · · , di} in order as

Mapi : φi −→ {1, 2, · · · , di}, (18)

where di is the new embedding size of the ith fields. Then
we can re-train the model with length-adaptive embedding
sizes. For each feature ei in the ith field, instead of initializ-
ing it with embedding size d, we initialize it with a shorter
embedding size di.

As some IFs require embedding sizes of features to be
the same (such as inner product), in such cases, we can
trivially utilize Mapi to transform embeddings with size
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di to ones with size d, by setting the dimensions that are
not in the domain of Mapi with zero values. Note that such
transformation with Mapi introduces no extra parameters
therefore does not increase the space complexity.

3.5 Automatic Interaction Machine (AIM)
To summarize, FIS component searches for feature interac-
tions; IFS component searches for appropriate IF for each
feature interaction; and EDS component searches for proper
embedding size for each feature. To fully exploit the ad-
vantages of these three components, we build the AIM
framework by combining them, to select significant feature
interactions, appropriate IFs and necessary embedding di-
mensions automatically in a unified framework.

IFS Component
search interaction 

function

Search 
interaction-IF stage

EDS Component
search embedding 

dimension

Search embed stageselected 
interaction-IF 

pairs

selected 
embedding size

FIS Component
search feature 

interaction

Re-train 
stage

Fig. 6. The flow chart of AIM.

Specifically, AIM has the following three stages as shown
in Figure 6:
• Search interaction-IF stage. Train the model and then

use FIS component and IFS component to select useful
interactions and appropriate IFs.

• Search embed stage. Train the model with selected
interaction-IF pairs in the first stage, and then use EDS
component to select a suitable embedding size for each
field, by discarding useless embedding dimensions.

• Re-train stage. Re-train the model with selected
interaction-IF pairs and learned embedding sizes in the
first two stages.
Note that FIS component and IFS component can be

trained together, however, it is inappropriate to combine
the training process of them with EDS component due
to the coupling problem between architecture parameters.
Therefore, we have to divide the search process into Search
interaction-IF stage and Search embed stage.

Transferability. The chosen Interaction-IF pairs by gate
architecture learned from a simple model could be trans-
ferred to the state-of-the-art models to boost their perfor-
mance. We will verify this transferability in Section 4.6.

3.6 Training Details
In this subsection, we present some training details in AIM,
i.e., batch normalization and GRDA Optimizer. We take FIS
component as an illustration example and similar training
procedures are performed in IFS and EDS.

Batch Normalization. From the viewpoint of the overall
neural network, the contribution of a feature interaction is
measured by α(i,j) · 〈ei, ej〉 (in Equation 12). Exactly the
same contribution can be achieved by re-scaling this term
as (α(i,j)

η ) · (η · 〈ei, ej〉), where η is a real number.
Since the value of 〈ei, ej〉 is jointly learned with α(i,j),

the coupling of their scale would lead to unstable estimation
of α(i,j), such that α(i,j) can no longer represent the relative
importance of 〈ei, ej〉. To solve this problem, we apply Batch

Normalization (BN) [35] on 〈ei, ej〉 to eliminate its scale
issue. BN has been adopted by training deep neural net-
works as a standard approach to achieve fast convergence
and better performance. The way that BN normalizes values
gives an efficient yet effective way to solve the coupling
problem of α(i,j) and 〈ei, ej〉.

The original BN normalizes the activated output with
statistics information of a mini-batch. Specifically,

ẑ =
zIN − µB√
σ2
B + ε

and zOUT = θ · ẑ + δ, (19)

where zIN, ẑ and zOUT are input, normalized and output
values of BN; µB and σB are the mean and standard
deviation values of zIN over a mini-batch B; θ and δ are
trainable scale and shift parameters of BN; ε is a constant for
numerical stability.

To get stable estimation of α(i,j), we set the scale and shift
parameters to be 1 and 0 respectively. The BN operation on
each feature interaction 〈ei, ej〉 is calculated as

〈ei, ej〉BN =
〈ei, ej〉 − µB(〈ei, ej〉)√

σ2
B(〈ei, ej〉) + ε

, (20)

where µB and σB are the mean and standard deviation of
〈ei, ej〉 in mini-batch B.

GRDA Optimizer. Generalized regularized dual aver-
aging (GRDA) optimizer [26] is aimed to get a sparse deep
neural network. To update α at each gradient step t with
data Zt we use the following equation:

αt+1 = argmin
α
{αT (−α0+γ

t∑
i=0

∇L(αt;Zi+1))+g(t, γ)‖α‖1+
1

2
‖α‖22}

(21)
where g(t, γ) = cγ1/2(tγ)u, and γ is the learning rate, c
and µ are adjustable hyper-parameters to trade-off between
accuracy and sparsity.

With the GRDA optimizer, the important feature interac-
tions (or functions, embedding dimensions) will be retained,
and the unnecessary ones will be abandoned according to
the architecture parameters (the unimportant ones will be
learned to zero). In this way, GRDA optimizer adaptively
determines the remained ones, avoiding artificially setting
hyper-parameters for deciding how many feature interac-
tions (or functions, embedding dimensions) to be remained.

4 EXPERIMENTS

In this section, we conduct extensive offline experiments3

on two public benchmark datasets and a private dataset, as
well as an online A/B test in the recommendation service
of a mainstream app market, to evaluate the effectiveness
of Automatic Interaction Machine (AIM). In particular, we
answer the following research questions:
• RQ1: Can AIM outperform the state-of-the-art models

with the selected interaction-IF pairs?
• RQ2: How do different components of AIM (e.g., FIS,

IFS, EDS) contribute to the performance? Are the inter-
actions, IFs and embedding dimensions selected by these
components really important and valuable?

3. Repeatable code of all the experimental study and all hyper-parameters are
available at https://github.com/zhuchenxv/AIM
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• RQ3: How about the space and time complexity of AIM
compared with other models?

• RQ4: Can the interaction-IF pairs selected from AIM be
transferred to other models for boosting their perfor-
mance?

• RQ5: Can AIM improve the performance of an existing
model in a live recommender system?

4.1 Datasets

Experiments are conducted on the following two pub-
lic datasets (Avazu and Criteo) and one private dataset
(Huawei), whose statistics are summarized in Table 1. We
follow the existing works [1, 9, 12, 16, 21] to process Avazu
and Criteo datasets.

Avazu4: Avazu was released in the CTR prediction con-
test on Kaggle. 80% of randomly shuffled data is allotted to
training and validation with 20% for testing.

Criteo5: Criteo contains one month of click logs with
billions of data samples. We select “data 6-12” as training
and validation set while select “day-13” for evaluation.

Huawei: The industrial dataset is sampled and collected
from an app recommendation scenario of Huawei App-
Gallery for a week. The dataset contains 10 feature fields,
including user behavior (user click list, etc.), app information
(id, category, etc.), and context information (time, etc.).

TABLE 1
Dataset Statistics

Dataset #instances #features #fields pos ratio

Avazu 4× 107 6× 105 24 0.17
Criteo 1× 108 1× 106 39 0.50

Huawei 3× 108 1× 105 10 0.07

4.2 Experimental Settings

4.2.1 Baselines and Evaluation Metrics

We compare our propoed AIM with representative fac-
torization models (i.e., FM [13], FwFM [36], AFM [14],
FFM [27], DeepFM [4], IPNN [9]), AutoML-based model
(AutoFeature [16], AutoGroup [21] and AutoFIS [1]) and
some other interaction model (xDeepFM [22], FiGNN [37],
AutoInt [38]). Note that AutoFIS use DeepFM as base model
in our experiment.

We use the common evaluation metrics for CTR predic-
tion: AUC and Log loss. All the experiments are repeated
five times by changing the random seeds. The two-tailed
unpaired t-test is performed to detect significant differences
between our model and the best baseline.

4.2.2 Parameter Settings

In AIM model, we set the embedding size d = 40 for Avazu
dataset and d = 20 for Criteo dataset. The MLP structure
in two datasets are both [700 × 5, 1]. With regard to GRDA
parameters c and mu, we set c = 0.05,mu = 0.6 for Avazu
dataset and c = 0.005,mu = 0.9 for Criteo dataset. The
more detailed parameters for AIM model and the hyper-
parameters for other models can be shown in our code link3.

4. http://www.kaggle.com/c/avazu-ctr-prediction
5. http://labs.criteo.com/downloads/download-terabyte-click-logs/

4.2.3 Implementation Details
In the search interaction-IF stage, we first train the model
with α′ to seek important interaction-IF pairs. Then in the
search embed stage, we train the model with β to search
embedding dimensions. Finally, we re-train the model with
the selected components. We consider 4 different common-
used IFs, containing inner product, outer product, vector
kernel product and scalar kernel product. The output of
outer product is a d × d vector (d is the embedding size),
and we use a linear layer to transform it into a single
output. To reduce the complexity of outer product, we
utilize (wT

1 ei)(wT
2 ej) = wT

1 eieTj w2 to approximate outer
product. Here ei, ej are the embeddings and w1, w2 are
learnable parameters.

For high-order interaction implementation such as
pth-order interaction, inner product, vector kernel prod-
uct and scalar kernel product are easily to be ex-
tended by element-wise multiplication with p vectors.
To expand the outer product into pth-order, we employ
(wT

1 eq1)(w
T
2 eq2) · · · (wT

p eqp) to calculate it (q ∈ ψp where
ψp contains all pth-order interactions).

To implement high-order interaction selection, we ma-
nipulate top k (set k = bn/2c) low-order interactions to
construct a candidate pool (with at most n2/2 interactions)
first and the high-order interactions are chosen from this
pool. This method is applied in both AutoFIS and AIM.

In the first two stages, the selected architecture pa-
rameters are optimized by GRDA optimizer and the other
parameters are optimized by Adam optimizer. In the re-train
stage, all the parameters are optimized by Adam optimizer.

Inspired by the transferability mentioned before, we
sequentially introduce an MLP layer to learn more infor-
mation and promote the performance in the re-train stage of
AIM while this MLP layer does not exist in the search stage.

4.3 Overall Performance (RQ1)
Table 2 shows the overall performance of AIM and baselines
on three datasets. Table 3 summarizes the performance and
FI ratio (i.e., percentage of selected feature interaction) with
different maximum interaction order in AutoFIS and AIM.
From these two tables, we have the following observations.
1) Compared with the Factorization Models and Other

Interaction Models, AIM has achieved significant im-
provement. Among these base models, IPNN leverages
an MLP to model high-order implicit information over
the feature embeddings and interaction, mostly achieving
better performance than the others. However, AIM fur-
ther improves IPNN in terms of AUC by 0.66% in Avazu
and 0.21% in Criteo via performing automatic search of
IFs and embedding dimensions.

2) In comparison with the existing representative AutoML-
based models, AIM achieves the best performance. Aut-
oFIS and AutoGroup only consider selecting useful fea-
ture interactions, ignoring the effectiveness of different
IFs. Besides, none of these AutoML-based models take
the embedding dimension search into consideration. In
contrast, AIM proposes three components (i.e., FIS, IFS
and EDS) to select significant feature interactions, ap-
propriate IFs and necessary embedding dimensions au-
tomatically in a unified framework.
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TABLE 2

Benchmark performance.“Rel. Impr” is the relative AUC improvement over FM model.

Category Model Avazu Criteo Huawei
AUC log loss Rel. Impr. AUC log loss Rel. Impr. AUC log loss Rel. Impr.

Factorization Model

FM 0.7793 0.3805 0 0.7909 0.5500 0 0.8168 0.1939 0
FwFM 0.7822 0.3784 0.37% 0.7948 0.5475 0.49% 0.8268 0.1907 1.22%
AFM 0.7806 0.3794 0.17% 0.7913 0.5517 0.05% 0.8195 0.1934 0.33%
FFM 0.7831 0.3781 0.49% 0.7980 0.5438 0.90% 0.8279 0.1900 1.36%

DeepFM 0.7836 0.3776 0.55% 0.7991 0.5423 1.04% 0.8338 0.1878 2.08%
IPNN 0.7868 0.3756 0.96% 0.8013 0.5401 1.31% 0.8363 0.1867 2.39%

Other Interaction Model
Fi-GNN 0.7853 0.3767 0.77% 0.8003 0.5410 1.19% 0.8376 0.1863 2.55%
AutoInt 0.7847 0.3770 0.69% 0.8001 0.5413 1.16% 0.8371 0.1865 2.49%

xDeepFM 0.7855 0.3766 0.80% 0.8006 0.5408 1.23% 0.8368 0.1865 2.45%

AutoML-based Model
AutoFeature 0.7904 0.3737 1.42% 0.8023 0.5390 1.44% 0.8365 0.1861 2.41%
AutoGroup 0.7909 0.3732 1.49% 0.8026 0.5386 1.48% 0.8360 0.1860 2.35%

AutoFIS 0.7883 0.3748 1.15% 0.8012 0.5402 1.30% 0.8373 0.1864 2.51%

AIM 0.7920* 0.3727* 1.63% 0.8030* 0.5379* 1.53% 0.8385* 0.1858* 2.66%

∗ denotes statistically significant improvement (measured by t-test with p-value<0.005) over baselines with same order.

TABLE 3
Performance with different maximum interaction orders.
“FI ratio” is the remained ratio of feature interaction (FI).

Model Avazu Criteo
AUC log loss FI ratio AUC log loss FI ratio

AutoFIS(2nd) 0.7852 0.3765 18% 0.8007 0.5406 9%
AIM(2nd) 0.7891 0.3742 16% 0.8022 0.5388 22%

AutoFIS(3rd) 0.7870 0.3755 5% 0.8010 0.5404 2%
AIM(3rd) 0.7912 0.3730 2% 0.8029 0.5381 1%

AutoFIS(4th) 0.7883 0.3748 0.6% 0.8012 0.5402 0.03%
AIM(4th) 0.7920 0.3727 0.3% 0.8030 0.5379 0.09%

3) From Table 3, we can observe that about 80% of the
2nd-order interactions can be removed. As for high-order
feature interaction selection, only about 2% of all the
3rd-order feature interactions and about 0.3% of all the
4th-order feature interactions are selected with significant
performance improvement. With a small amount of high-
order interactions integrated, the relative performance
improvement of AIM (3rd-order) over AIM (2nd-order) is
0.27% and that of AIM (4th-order) over AIM (2nd-order)
is 0.37% in terms of AUC.

4.4 Ablation Study (RQ2)
In this subsection, we will first present the effectiveness of
different components (namely, FIS, IFS and EDS) in AIM.
Then we conduct experiments on real data to analyze why
these three components are valid.

4.4.1 Effectiveness of different components in AIM
To validate the effectiveness of individual components in
AIM, we propose several variants. Recall that AIM has three
core components: FIS, IFS, EDS, and we apply experiments
on these variants to verify the effectiveness of these compo-
nents. The relationship among different variants and their
performance is presented in Table 4, from which we can get
the following conclusions.

TABLE 4
Performance comparison of different variants.

Model Component Avazu Criteo
FIS IFS EDS AUC log loss AUC log loss

DeepFM - - - 0.7836 0.3776 0.7991 0.5423
AIM-IFS-EDS

√
× × 0.7869 0.3755 0.8015 0.5399

AIM-EDS
√ √

× 0.7894 0.3740 0.8024 0.5387
AIM

√ √ √
0.7891 0.3742 0.8022 0.5388

1) Comparing AIM-IFS-EDS with DeepFM, we can observe
that removing those useless interactions can not only
simplified the model but also significantly boost the pre-
diction accuracy. The relative performance improvement

of AIM-IFS-EDS over DeepFM is 0.42% and 0.30% for
Avazu and Criteo dataset respectively in terms of AUC,
which demonstrates the effectiveness of FIS component.

2) Besides, the performance gap between AIM-EDS and
AIM-IFS-EDS indicates that selecting proper IFs for
each feature interaction conduces to better performance,
which is the functionality of IFS component.

3) Comparing AIM-EDS and AIM, we can find that intro-
ducing EDS component in AIM for pruning redundant
dimensions will not sacrifice the performance distinctly.
However, EDS reduces model parameters significantly,
by ×2.79 and ×3.16 in Avazu and Criteo dataset respec-
tively, which will be shown in Section 4.4.4.

4.4.2 The Effectiveness of Selected Feature Interactions by
FIS component

To see how well α values are learned in FIS compo-
nent, we analyze the relationship between α values and
statistics AUC.

We define statistics AUC to represent the importance
of a feature interaction to the final prediction. For a given
interaction, we construct a predictor only considering this
interaction where the prediction of a test instance is the sta-
tistical CTR (#downloads/#impressions) of specified
feature interaction in the training set. Then the AUC of this
predictor is defined as statistics AUC with respect to this
given feature interaction. Higher statistics AUC indicates a
more important role of this feature interaction in prediction.
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Fig. 7. Relationship between statistics AUC and α value for each 2nd-
order interaction

As shown in Figure 7, we can find that most of the
feature interactions selected by FIS component (with high
absolute α value) have high statistics AUC, but not all
feature interactions with high statistics AUC are selected.
That is because the information in these interactions may
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Fig. 8. The Effectiveness of Selected Interaction Functions by IFS. The
left sub-graph is the selection frequency of each IF while the right
sub-graph is the relationship between statistics AUC and number of
selected IFs for each 2nd-order interaction.

already exist in other interactions which are selected by our
model.

To evaluate the effectiveness of the selected interactions
by FIS component, we select the top N 2nd-order feature
interactions by FIS component and by statistics AUC sep-
arately. We re-train two models with these two sets of
interactions and compare their performance. The experi-
mental result shows that, compared with the model by
statistics AUC with the same computational cost, the model
with selected interactions by FIS component has improved
AUC from 0.7804 to 0.7831 (log loss from 0.3794 to 0.3778),
which demonstrates the superiority of FIS component.

4.4.3 The Effectiveness of Selected Interaction Functions
by IFS component
To demonstrate that IFS component is able to find suitable
IFs for individual interactions, we depict the number of se-
lected IFs with respect to different orders of interactions on
Avazu dataset, presented in the left sub-graph of Figure 8.
The following observations can be concluded. (1) Each IF
occupies a certain proportion, which verifies the need of
different IFs for individual interactions. The performance
superiority of IFS component validates that suitable IFs
are identified for different interactions. (2) Inner product
takes the majority for high-order interactions and ranks at
the second place for 2nd-order interaction. (3) Vector kernel
product is the most popular IF for 2nd-order interaction but
is unpopular for high-order interaction. (4) Scalar kernel
product and outer product take only a small part of the
overall selection, but still hold an indispensable part.

Furthermore, we explore the relationship between the
number of selected IFs and statistics AUC for each feature
interaction, which is presented in the right sub-graph of
Figure 8. The figure indicates that more important feature
interactions are likely to retain more IFs. Moreover, as
the number of selected IFs increases, the improvement of
statistics AUC is gradually disappeared. This is reasonable,
because it is more likely to be overfitting when more IFs are
performed for a feature interaction. In other words, it is not
the best to keep all the IFs. Instead, selecting suitable IFs for
individual interactions is more appropriate.

4.4.4 The Effectiveness of Selected Embedding Dimen-
sions by EDS component
In this section, we analyze why the reserved embedding
size of a given feature determined by EDS component is
reasonable. Before that, we first show the effectiveness of
EDS.

As mentioned in Section 3.4, function-wise embeddings
(FWE) improve the performance compared with shared
embedding (SE), therefore we compare the performance of
AIM-EDS (SE) and AIM-EDS (FWE). As the model size is
significantly larger if the embedding size of FWE keeps the
same as that of SE, which is the motivation of proposing
EDS component. We further compare AIM (FWE) and AIM-
EDS (FWE) to validate the effectiveness of EDS.

TABLE 5
Performance and parameters comparison. “params” does not include

the pruned parameters and it is count as 107.

Model Avazu Criteo
AUC log loss params AUC log loss params

AIM-EDS (SE) 0.7870 0.3754 2.7 0.8015 0.5399 2.8
AIM-EDS (FWE) 0.7894 0.3740 10.6 0.8024 0.5387 9.8

AIM (FWE) 0.7891 0.3742 3.8 0.8022 0.5388 3.1

The above mentioned experimental comparisons are pre-
sented in Table 5, from which We can get the following
conclusions.
1) The comparison between AIM-EDS (SE) and AIM-EDS

(FWE) verifies that multiple embeddings for different
IFs can boost the performance but lead to much more
parameters.

2) Comparing AIM (FWE) with AIM-EDS (FWE), equipping
EDS component achieves almost the same high perfor-
mance as AIM-EDS (FWE) but needs only one third of the
parameters required by AIM-EDS (FWE). The parameters
of AIM-EDS (FWE) are slightly more than that of AIM-
EDS (SE) in a comparable amount.
To see the reserved embedding size of each field, we

summarize these numbers in Table 6, together with the
vocabulary size of each field (i.e., the number of features in a
field) on Avazu dataset. The correlation between vocabulary
size and reserved embedding size presented in Table 6
indicates that the fields with larger vocabulary size tend
to achieve larger embedding size. That is because these
fields may be more informative and predictive to the task.
However, as can also be observed, vocabulary size is not
the only factor to determine the embedding size. Other
unknown factors need to be learned by machine learning
models, such as EDS component in AIM.

TABLE 6
Correlation between vocabulary size and reserved embedding size

vocabulary embedding vocabulary embedding vocabulary embedding

4 1 10 25 426 54
4 11 24 6 2417 33
5 1 24 35 3135 55
7 1 28 5 3487 56
7 8 60 23 4002 55
7 16 67 6 5925 81
8 1 166 32 101449 22
9 1 252 15 523672 98

4.5 Space and Time Complexity (RQ3)
In this section, we discuss the space and time complexity
of AIM with 2nd-order interactions and high-order inter-
actions, respectively. In order to facilitate calculation, we
choose Avazu (with 645,195 features) to analyze the memory
usage, training and inference efficiency of AIM in com-
parison with other models. To compare the training and
inference efficiency, we train these models for the whole
training set in one epoch and test these models with 200,000
instances (batch size=2,000) on an NVIDIA 1080Ti GPU.
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4.5.1 Complexity Analysis for 2nd-order interaction
First, we analyze the complexity of all the models with
2nd-order interaction modeling and present the results in
Table 7. Note that we only consider the parameters and
training time in the re-train stage of AutoFIS and AIM
model. Because the useful feature interactions, effective
interaction-IF pairs and reserved embedding dimensions
can be searched once for all, while the model training over
new data only needs to perform the re-train stage based
on the searched results in the first two search stages. To
complete the complexity analysis of AIM, the complexity
analysis of the search stages is presented in Section 4.5.2.

TABLE 7
Space and time complexity comparison of models with 2nd-order

interaction. “train” is the training time for the whole training set in one
epoch and “inference” is the inference time for 200,000 samples.

Model params (107) train (min) inference (s)

FM 2.6 3.3 0.53
FFM 6.0 3.7 0.25

DeepFM 2.9 5.0 0.88
IPNN 2.9 5.5 0.96

AutoFIS 2.9 4.1 0.59
AIM-EDS 10.6 8.7 0.81

AIM 3.8 9.0 0.83

As for the space complexity, the number of parameters
of AutoFIS and its base model (DeepFM) are very similar.
AIM-EDS consumes the largest amount of memory as it uti-
lizes multiple embeddings for each feature. By integrating
EDS component, AIM reduces the amount of parameters
to a comparable level as other models without sacrificing
model performance (as already discussed in Section 4.4.4).

In terms of training and inference efficiency, we find that
AutoFIS is apparently faster than the base model (DeepFM)
both in training and inference time, because removing those
useless interactions contributes to accelerating the model
training and inference, with higher performance. Although
the training time of AIM is acceptably larger than the other
models, the inference of AIM is very efficient (i.e., even
more efficient than DeepFM). Such time complexity makes
it possible to deploy AIM in an industrial system.

4.5.2 Complexity Analysis for high-order interaction
In this section, we analyze the complexity of AIM with high-
order interactions. We consider the training and inference
time as time complexity. The training time contains three
parts: search interaction-IF stage, search embed stage and re-train
stage. Also, we take the parameters into account to compare
space complexity.

TABLE 8
Space and time complexity for AIM with high-order interactions. “train”

is the training time for the whole training set in one epoch and
“inference” is the inference time for 200,000 samples.

Model params (107) train (min) inference(s)

AIM(2nd) 3.8 9.0 0.83
AIM(3rd) 7.1 14.8 1.35
AIM(4th) 9.9 19.5 1.72

From Table 8 and Table 9 we can find that, thanks to
the selection algorithm for high-order feature interaction
proposed in Section 3.2 which reduces the time complexity
of exploring pth-order interactions from O(np) to O(n2), the
overhead of introducing high-order interactions in terms of

TABLE 9
Training time of AIM for different stages. It is the training time for the

whole training set in one epoch and counted by min.

Model search interaction-IF search embed re-train

AIM(2nd) 13.0 9.2 9.0
AIM(3rd) 20.5 17.1 14.8
AIM(4th) 29.4 22.2 19.5

training time and space complexity is acceptable. It takes
about 155 minutes in total for AIM to search important 2nd-,
3rd- and 4th-order feature interactions with appropriate IFs
and proper embedding sizes for each field with a single GPU.
The same decisions will take the human engineers dozens
of days or weeks to make by analysis and experiments.

4.6 Transferability of the Selected Interaction-IF pairs
by AIM (RQ4)

TABLE 10
Performance of transferring interaction-IF pairs selected by AIM to

other models.

Model Avazu Criteo
AUC log loss AUC log loss

DeepFM 0.7836 0.3776 0.7991 0.5423
DeepFM+IF(2nd) 0.7858 0.3762 0.7999 0.5415
DeepFM+IF(3rd) 0.7868 0.3758 0.8004 0.5411
DeepFM+IF(4th) 0.7872 0.3755 0.8005 0.5410

PNN 0.7868 0.3756 0.8013 0.5401
PNN+IF(2nd) 0.7893 0.3741 0.8024 0.5387
PNN+IF(3rd) 0.7915 0.3728 0.8028 0.5382
PNN+IF(4th) 0.7921 0.3725 0.8029 0.5381

In this subsection, we investigate whether the important
feature interactions with appropriate IFs learned by AIM
could be transferred to other models for boosting their
performance. We apply the searched interaction-IF pairs to
two benchmark methods, i.e., DeepFM [4] and PNN [12], to
explore its transferability.

As shown in Table 10, using 2nd-order feature interac-
tions and IFs selected by our model achieves much better
performance in both DeepFM and IPNN, with around 16%
of all the 2nd-order interactions in Avazu dataset and around
20% in Criteo dataset. Moreover, the promotion is more
significant by using high-order interactions with IFs. More
specifically, with 4th-order interactions and corresponding
IFs, the performance is improved by 0.46% for DeepFM
and 0.67% for PNN, respectively. Both evidences verify
the transferability of the selected feature interactions with
chosen IFs in AIM.

4.7 Deployment & Online Experiments (RQ5)

Online experiments are conducted in the recommender
system of a mainstream app market to verify the superior
performance of our model AIM, where hundreds of millions
of daily active users generate hundreds of billions of user
log events every day in the form of implicit feedback such
as browsing, clicking and downloading apps. In the online
serving system, hundreds of candidate apps that are most
likely to be downloaded by the users are retrieved from the
universal app pool. Then these candidate apps are ranked
by a fine-tuned ranking model (such as DeepFM, AIM)
before presenting to users. To guarantee user experience, the
overall latency of the above-mentioned candidate selection
and ranking is required to be within a few milliseconds.
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Because of the longer training time and more complicated
functions of AIM, we simplify it and put a simplified version
to deploy on our recommender system for the trade-off
between efficiency and performance. The commercial model
is deployed in a cluster, where each node is with 48 core Intel
Xeon CPU E5-2670 (2.30GHZ), 400GB RAM and as well as 2
NVIDIA TESLA V100 GPU cards.

Specifically, a three-week A/B test is conducted in a
major list of an app recommendation scenario. Our baseline
in online experiments is DeepFM, which is a strong baseline
due to its extraordinary accuracy and high efficiency. For the
control group, users are randomly selected and presented
with recommendation results generated by DeepFM. For
the experimental group (7% users), users are presented with
recommendation apps generated by our AIM model.
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Fig. 9. Online experimental results of CTR.

Figure 9 shows the improvement of the experimen-
tal group over the control group in terms of CTR
(#downloads/#impressions). We can observe that the
average improvement of CTR is 4.4% (statistically signif-
icant), which brings enormous commercial profits. These
results demonstrate the magnificent effectiveness of our
proposed model in industrial applications.

5 CONCLUSION

In this work, we propose Automatic Interaction Machine
(AIM) with three core components, namely, Feature In-
teraction Search (FIS), Interaction Function Search (IFS)
and Embedding Dimension Search (EDS) to automatically
select significant feature interactions, appropriate IFs and
necessary embedding dimensions in a unified framework.
The proposed AIM is easy to implement with marginal
search costs, and the performance improvement is signif-
icant in two benchmark datasets and one private dataset.
Our model has been deployed onto the training platform
of a mainstream app market recommendation service, with
significant economic profit demonstrated.
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