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Dynamic transformation of prior knowledge into
Bayesian models for data streams

Tran Xuan Bach, Nguyen Duc Anh, Ngo Van Linh, and Khoat Than

Abstract—We consider how to effectively use prior knowledge when learning a Bayesian model from streaming
environments where the data come endlessly and sequentially. This problem is highly important in the era of data
explosion and rich sources of valuable external knowledge such as pre-trained models, ontologies, Wikipedia, etc.
We show that some existing approaches can forget any knowledge very fast. We then propose a novel framework
that enables to incorporate the prior knowledge of different forms into a base Bayesian model for data streams. Our
framework subsumes some existing popular models for time-series/dynamic data. Extensive experiments show that our
framework outperforms existing methods with a large margin. In particular, our framework can help Bayesian models
generalize well on extremely short text while other methods overfit. An implementation of our framework is available at

http://github.com/bachtranxuan/TPS.

Index Terms—Bayesian model, data stream, endless data, external knowledge, sparse data, noisy data.

1 INTRODUCTION

Bayesian approach can efficiently model the
uncertainty in data and make prediction on the
future. A Bayesian model [1] however might
not generalize well in the cases of misspecifi-
cation nor sparsity nor noise. Misspecification
[2] is a situation in which a particular model
cannot cover all key aspects of reality, whereas
sparsity is the case in which each data sample
provides little information. Note that misspeci-
tication could not be avoided, while sparse and
noisy data are prevalent in practice, such as
modeling ratings or feedbacks in recommender
systems [3], [4], and modeling short text from
social networks [5], [6]. Those situations cause
various challenges [3]], [7]-[9]. Theoretically, we
may not correctly recover a Bayesian model
from sparse data even in cases of having ar-
bitrarily large number of samples [10], while
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in practice training from sparse and noisy data
easily leads to overfitting [8], [9]. One efficient
way to overcome those challenges is to exploit
external or prior knowledge [L1]-[18] 1

We are interested in streaming environments
where the data come sequentially and end-
lessly. How to effectively use a prior knowledgd
in Bayesian models for streaming environments?
Interestingly, this question has been rarely con-
sidered, in spite of its great significance in the
era of data explosion and rich sources of valu-
able prior knowledge such as pre-trained ma-
chine learning models, ontologies, Wikipedia,
etc. In particular, pre-trained models have been
increasingly playing a critical role in various
applications [21]-[23], but are mostly used in
static conditions. One key reason is that stream-
ing conditions pose various challenges, e.g.,
How to use prior knowledge dynamically to
help a Bayesian model generalize well? Can

1. Two other ways are to use multimodal data or different
data sources. The latter way closely relates to Bayesian evidence
synthesis [19], [20]. This work focuses on exploitation of external
knowledge, instead of data.

2. This concept should be interpreted in a wide context,
and be different with “prior” in the Bayesian approach where
a prior is often a probability distribution. Prior knowledge
here refers to any kinds of existing knowledge that can aid
a learning process.
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we assure that the prior knowledge will not
be forgotten quickly? The forgetting issue is a
natural consequence of Bayes” Theorem when
conditioned on large (infinite) data sets.

Some recent studies [24]-[27] have provided
excellent solutions to learning Bayesian models
from data streams. However, none of those
methods considers exploiting external/prior
knowledge. Our first contribution is to show
that streaming variational Bayes (SVB) [24] can
forget any knowledge at a rate of O(T1), after
learning from more 7" minibatches of data. Such
a forgetting rate in SVB is much faster than the
rate Q(77°%7) in human [28]. This forgetting
problem potentially appears in other related
methods. As a result, those approaches cannot
solve the main question of interest.

The second contribution in this paper is a
novel framework called Dynamic Transformation
of Prior knowledge into Bayesian models for data
Streams (TPS) that fulfils the above question
and provides a unified solution to the three
mentioned challenges. TPS is able to exploit
knowledge which is represented by vectors,
matrices, or graphs. The exploitation of prior
knowledge in TPS is dynamic in nature, ow-
ing to the use of a discrete-time martingale
of transformation matrices. Hence TPS helps
a Bayesian model better fit with data streams
and generalize on unseen observations. Finally,
TPS enables us to develop a streaming learning
algorithm for a base model, with few changes
from an existing batch learning. This property
will be beneficial in practice, since Bayesian
models for static conditions are prevalent. We
further show that TPS subsumes some existing
dynamic models [29], [30] as special cases when
trained on a fixed data set.

Our third contribution is an extensive evalu-
ation of different frameworks, using two base
models (latent Dirichlet allocation (LDA) [31]
for unsupervised learning, and Naive Bayes
for classification) and three kinds of prior
knowledge. The experiments show that TPS
often outperforms the state-of-the-art methods,
in terms of generalization and model inter-
pretability [32]. In particular, TPS can help LDA
and Naive Bayes generalize well on short text
while some approaches encounter overfitting.

ROADMAP: We first summarize closely re-

lated work. Then we present TPS and two case
studies. After that we discuss some theoretical
properties of TPS, and the proof about catas-
trophic forgetting in SVB. Extensive evaluation
appears in last section and Supplement.

2 RELATED WORK

There are two main directions to deal with
data streams. The first direction is to design
a completely new model for the endlessly se-
quential data [29], [33]-[35]. The other direction
is to design online/streaming algorithms for
learning Bayesian models, i.e., to adapt a model
from static conditions to streaming ones. Effi-
cient methods in this direction include stream-
ing variational Bayes (SVB) [24], population
variational Bayes (PVB) [25], online learning
[36], [37], sequential Monte Carlo [38], sur-
prise minimization [27]. Interestingly, rigorous
study on exploiting external/prior knowledge
in streaming conditions is rare.

A wide range of studies have shown that an
appropriate use of prior knowledge can signif-
icantly improve the model interpretability and
generalization. Useful prior knowledge might
be in different forms, such as similarity graphs
[39], [40], WordNet [11], pre-trained models
[12], [13], or domain knowledge [14]-[18]. In
particular, pre-trained models, considered as
precious prior knowledge, have been playing
a crucial role in various applications [21]-[23]].
However, most existing works just focus on
non-streaming conditions.

Existing methods have difficulties to effec-
tively exploit human knowledge in streaming
environments. SVB learns a model by uni-
formly balancing the new with old knowledge
learned from data, and thus only uses the exter-
nal knowledge in the first step of the learning
process. This strategy can forget any knowl-
edge very fast and limits the effect of external
knowledge. (A rigorous proof can be found
in Appendix B). To avoid uniformity, power
priors [41] can be exploited to balance the old
with new knowledge at each time step. One
issue is that the balancing constant has to be
set manually, causing a drawback in streaming
conditions. [26] remove such a drawback by
considering the balancing constant as a random



variable which follows a Hierarchical power prior
(HPP). Therefore, SVB-HPP [26]]) is an elegant
combination of SVB and HPP to balance the
old with new knowledge in a Bayesian way.
Those observations suggest that SVB-HPP and
SVB face the same difficulty when exploiting
external knowledge. [42] suggest to maintain
the prior knowledge directly in each learning
step, however: the knowledge is encoded into
a prior distribution which is static or grad-
ually vanishing. Such a usage is not flexible
and cannot utilize the full strength of human
knowledge. Furthermore, the prior should be
encoded by vectors, which therefore limits the
utilization of various forms of human knowl-
edge. In contrast, TPS in this work enables us
to use richer types of knowledge, which can be
represented by vectors, matrices, graphs, and
pre-trained models. Further, the exploitation of
knowledge in TPS is dynamic in nature.

A related topic is dynamic models for
dynamic/time-series data of fixed size. Exam-
ples include [29], [30], [43]-[45]. One common
limitation of most of those works is that their
learning algorithms can only deal with training
datasets of finite size, as many passes over
the whole dataset are required in the training
phase. In contrast, the learning method for
TPS deals successfully with streams where the
data may come sequentially and endlessly. The
ability of TPS, to work with real data streams
and to efficiently exploit external knowledge,
goes beyond many existing dynamic models.

3 DyNAMIC TRANSFORMATION OF
PRIOR KNOWLEDGE INTO BAYESIAN
MODELS FOR DATA STREAMS (TPS)

In this section, we present the ideas of our
framework. We then explicitly describe appli-
cations to LDA and Naive Bayes.

A motivating example: We may want to an-
alyze a tweet stream from Twitter to under-
stand the hidden themes/topics (/3). Each tweet
contains some observed words (z), while each
word has a hidden role () to make a meaning-
ful tweet. The theme of the tweets can change
over time, e.g.,, COVID-19 rarely appeared in
2019 but was frequently tweeted in 2020. One
may not clearly understand about COVID-19

when first reading some tweets which are often
short and noisy. In those cases, some reference
knowledge () may facilitate his/her under-
standings.

3.1 The TPS framework

Following [25] and [46], we consider a general
model B(f, z, z) with two kinds of variables: a
global variable (3 of size K xV to model the latent
structure that is shared among data points z;.y,
and probably a local variable z; to model the
latent structure that governs the ith data point
;8 Such a model is general and successfully
applied in static conditions. However, there
are several challenges in a streaming environ-
ment. A data stream is an infinite sequence of
minibatches D = {D! D? ... D! ..}, and each
minibatch ¢ consists of M observed data points:
Dt = {at, ab, ..., 2%, }.

Assume we have an external knowledge 7
which is represented by a matrix of size L x V,
where L is the embedding size. Note that a
matrix can help us represent different kinds
of knowledge in practice, such as pre-trained
word embedding [47] which uses a vector to
represent the meaning of a word, the relation-
ships among entities, and social graphs for the
connections of people. For example, the prior
knowledge can come from graphs] such as
WordNet of size V' x V which means L =V, or
from word embeddings of size E x V where E
is the embedding dimensionality.

In practice, the prior knowledge representa-
tions and model’s variables probably have dif-
ferent shapes, i.e., the model parameter /5 has
size K xV and the prior has size L x V. For this
problem, we create a mapping f to transform
the knowledge 7 into 3 in each minibatch ¢f
This f will map the linear transformation 7’7
into the space of 3, where 7’ is a transformation

3. V is the dimensionality of variable =, while K represents
the number of hidden factors.

4. Clearly, those graphs can be represented by adjacent ma-
trices. [48] further showed that we can represent any general
graph knowledge into embedding spaces. The low rank matri-
ces in the embedding spaces help to exploit the knowledge in
the graph more effective.

5. The mapping can be chosen as a (pre-specified) nonlinear
function, a neural network,... As an example, we will use
the standard softmax function as the mapping f in the later
subsections.



matrix of size K x L. Then, the global variable
S at time t is computed by: ' = f(7'n).

There may be a dynamic of 3 over time in the
data stream (e.g. the theme of tweets can sig-
nificantly change from 2019 to 2020). We need
to model such a dynamic, and our reparam-
eterization before translates the dynamic into
7. Therefore, we make a relation between 7!
and 7' to capture such a dynamic. We assume
7t ~ N(mi! oI), where k is the row index of
nt, I is the identity matrix of size L, and o (> 0)
is the variance parameter to make = fluctu-
ate around 7, '. By this way, the sequence of
transformation matrices composes a discrete-
time martingale. 7} can also be interpreted as
a Gaussian random walk. Note that 7 plays as
weighting the knowledge before transformed
into the global variable of the Bayesian model.
The employment of a random walk help TPS
exploit the knowledge 1 dynamically.

Given the global variable " in each mini-
batch t, the generative model of data points is
the same as those in the original B. The graph-
ical representation of TPS appears in Figure

Learning in TPS: When facing with se-
quential data, many approaches [38] often for-
mulate the learning as the Bayesian filter-
ing problem for which one has to estimate
the posterior p(r', 72, ..., 7' |D', D? .., D") or
p(7t|D*, D?, ..., D'). Note that estimating one of
those posteriors will require all past data, and
thus is impractical for data streams, as t — oo.
Here we propose an entirely different approach
which avoids reusing past data. The learn-
ing process is performed in each minibatch ¢
by maximizing the posterior p(z, 7|x'~!, n, DY),
where 7'~! is made available from the previ-
ous minibatch. Hence, our approach will be
potentially more efficient and truly applica-
ble to data streams. We will decompose the
posterior into components in order to reuse
the inference steps of the original model B
as: p(z, 7|71 n, DY) o p(z, 7, Dirt~tn)
p(xt |7 1)p(z, Dy, ) o p(at|mt=)p(z, DI|B7).

In log form, we have:

=log p(7'|7"™!) + log p(2, D'|3") + const.
(1)

o D
oNe M

(b) TPS when LDA is the base model.

Fig. 1: Graphical representation for TPS. TPS
will exploit external knowledge n and move
a base model (B(f, z,z) in (a) or LDA in (b))
through time, owing to the transformation .

The learning process is separated into two
parts for local and global variables, respec-
tively. While the inference of local variables
(z,x) is inherited from the original model
B (e.g., by maximizing or sampling from
p(z, z|f")), we focus on maximizing LP w.r.t. 7.
We extract the component G(3') = G(f(x'n)),
that contains (!, from logp(D?, z|5"). Then,
we obtain the objective function LP(7")
log p(7f|7*~1) + G(f(n'n)), and maximize it by
using gradient ascent. Algorithm [] briefly de-
scribes the learning process.

3.2 Case study 1: TPS when LDA is the
base unsupervised model

Next we discuss how to apply TPS to LDA
[31]], one of the most popular Bayesian models.



Algorithm 1 Learning in TPS

Require: Prior knowledge 1, mapping f, variance o, data
sequence {D', D? ...}
Ensure: 7
Initialize 7° randomly
for minibatch ¢t = 0,1, ... do
Receive a minibatch D* of data
while not convergence do
Do inference w.r.t. the local variables (z,z), given §* =
f(m'n) and D*
(e.g., by maximizing or sampling from p(z, z|8"))
Maximize ({) w.r.t 7', given the statistics from (2, z)
end while
Set 'tt = rt
end for

Algorithm 2 TPS training for LDA

Require: Prior knowledge 7, hyper-parameter «, variance o,
data sequence {D", D?, ...}
Ensure: 7
Initialize 7° randomly
for minibatch ¢t =0, 1, ... do
Receive a minibatch D* of data
while not convergence do
Infer (ya,®q) for each document d € D' by itera-
tively computing @) until convergence, given 8, =
softmax(r},n) for each k
Maximize @) w.r.t =
end while
Set w'! .=t
end for

LDA consists of two global variables (5, «):
a contributes to the topic mixture 6 of each
document and is fixed in this case study, and
B = (b1, P2, ..., Bx) where each j; is the topic
distribution over V' words.

Suppose that there is an available prior
knowledge 7 of size L x V. We incorporate the
prior knowledge into 8 by a linear transfor-
mation with a transformation matrix = of size
K x L, and then followed by the softmax oper-
ator. The generative process of the documents
in minibatch ¢ is as follows (Figure [1D):

1) Draw the transformation matrix:

mt ~ N (7t 0?1
2) Calculate the topic distributions:
Br. = softmax(win), k € [K]
3) For each document d of length Ny:
a) Draw a mixture: 6, ~ Dirichlet(«)
b) For the i"* word of d: Draw topic
index z; ~ Multinomial(f;) and then
draw word w; ~ Multinomial(f,,)

Learning parameters: We apply Algorithm

for estimating the posterior. We emphasize that
our framework utilizes the available inference
methods (e.g., variational inference, Gibbs sam-
pling) for local variables (w, 6, z) in the original
LDA model.

Here, we use mean-field variational inference
as in the original paper [31]: ¢(04, z4|Va, Pa) =
q(0aNTTY, ¢(2an|¢an) with the variational
distributions: ¢(64]74) = Dirichlet(y4) and
q(Zan|dan) = Multinomial(¢g,) where v, and ¢q4
are variational parameters w.r.t. document d.
According to [31], the inference for document
d reduces to repeating the following updates
until convergence:

Vak = O + Z Ddnk

n€[Ng]

Pank < €xp Y (Yar) - exp( Z Twan = v]log By)

ve[V]
)

where [V] = {1,...,V}, I is the indicator func-
tion, ¢ is the digamma function, k € [K].
The component depending on the global

variable 7} in (1) for each %k given data D'
is: LP(m) = > ucpt Doneivy 108 P(WanlZan, B) +
logp(milmy ') = —5 | m — m ' I3

+ ZdeDt Zne[Nd],ve[V} Gankd [Wan = v]log By, af-
ter removing some constants. In more details,

1 _
LP(e}) = —o || 7t — it |3
Ng,V
+ Z Z ¢dnkl[wdn = U]Wiﬁv
deDt nyw
Ng,V
= > bamI[wan = v]log > exp(min;) (3)
deDt nwv €[V

Consider the concavity of function LP(x}). It is
obvious that —5- || nf — ;" ||3 and 7.y, are
concave functions with respect to 7). Further,
the log-sum-exp function is well-known con-
vex. Therefore, LP(7}) is concave with respect
to 7}, and we can use gradient ascent to find
its maximum. We can sum up the learning
algorithm of TPS for LDA as in Algorithm

3.3 Case study 2: TPS when Naive Bayes is
the base supervised model

In this subsection, we apply TPS to Multino-
mial Naive Bayes for classification on docu-



ment streams. Let C' be the number of classes,
B. be the class distribution over V words
of the vocabulary (where ., = P(j|c) and
> jepv) Bej = 1) for each ¢ € [C]. Each document
d belongmg to class (label) ¢, is represented
by a bag of N; words and each word wy; is
generated from Multinomial(f.,).

Suppose that we have a prior knowledge
n of size L x V. The generative process of
documents in the minibatch ¢ is as follows:
For each class ¢, draw 7t ~ WN(7x/7! o%I)
and calculate g, softmax(w'n). Generate
document d by drawing class label ¢,
Multinomial(«) and then drawing each word

Way, ~ Multinomial(3.,).
Learning: From (1)), we extract the term asso-
ciated with 7’ for each class ¢ as:

(wl|mt? Z Z log p(wan|cd, B)

deDt ne[Ny)

== B Y S Y T = llog B

deDt ne[Ng4] ve[V]

= I B Y Y S T = l(ntn)

deDt ne[Ng]velV]

—Z Z Z wdn—vlogZexp Cm

deDt ne[Ng] ve[V] ve(V]

~

LP(7!) = log p(

where D! denotes the documents with class
label ¢ in minibatch ¢. Learning for NB is really
simple. At each minibatch ¢, we use gradient
ascent to maximize LP(x!) with respect to =,

for each c. & = £ is used in our experiments.

4 SOME PROPERTIES OF TPS

TPS has several advantages. Firstly, TPS can
exploit different forms of prior knowledge such
as vectors, graphs, and matrices. Thanks to the
mapping f, TPS can transform the prior knowl-
edge into the desired size of the global variable.
Existing methods, e.g. SVB, PVB, SVB-HPP, are
limited in this aspect. Secondly, TPS enables a
base model, designed for static conditions, to
work well in a streaming environment.
Thirdly, when trained from a dataset of
bounded size, TPS subsumes many existing
dynamic models [29], [30], [43]. For example,
when the prior 7 is the identity matrix of size
V x V and LDA is the base model, TPS is
reduced to dynamic topic models [29]. It is

worth noting that the learning algorithms for
those dynamic models can work with only
datasets of fixed size, whereas the learning
method for TPS deals successfully with streams
with infinite size. The ability of TPS to work
with real data streams and to efficiently exploit
external knowledge is a significant advantage.
Next, we will analyze two key properties.

4.1 Balancing the old, new, and external
knowledge

The ability to balance the old and new knowl-
edge is the basic requirement for a learning sys-
tem. When learning from data streams, three
main sources of knowledge should be con-
sidered: the old knowledge learned in past
data, the new knowledge to be learned from
incoming data, and the external knowledge.
TPS has a simple mechanism to balance those
three sources, owing to the objective function

in (@):

1
LP(z, ﬂ,i)

_ t
T T 9 | 7,

-+ const.

M. |I3 +logp(z, D'[B")

The first term controls the flexibility of the new
model. An increase in variance ¢ implies that
the new model at time ¢ might be far from
the previous one, and thus the new model is
searched in a larger region. As o — oo, TPS will
not remember what have been learned before.
In contrast, a decrease in ¢ implies the new
model should not be far from the previous one.
As 0 = 0, we cannot learn any new knowledge
at all since the first term dominates LP(z, 7}).
The second term, log p(z, D'|5"), enables TPS
to learn new knowledge from new data. Dif-
ferent with the static use of external knowledge
in KPS [42], TPS exploits the prior dynamically
owing to the use of the transformation matrix
n'. Estimation of 7" at each minibatch implies
the dynamic balancing between the prior and
the new knowledge learned from the data at
time t. Note that the variance o also plays
the key role in this balance: lower ¢ means
less knowledge can be learned from new data.
From those observations, one can see that TPS
provides a simple mechanism (¢) to dynami-
cally balance three sources of knowledge, over-
coming the limitation of existing methods.



4.2 Catastrophic forgetting

A serious issue in many learning methods is
catastrophic forgetting [49], i.e., the learned
knowledge can be forgotten quickly as learning
from more data/tasks. This issue has been
found repeatedly for neural networks, but was
unclear for Bayesian models. More importantly,
existing works did not theoretically show how
fast a method can forget. Here, we show that
SVB [24] has a fast forgetting rate. The detailed
proof appears in Appendix B.

Theorem 1 (Forgetting in SVB for LDA). Let
€% be the model at time 0, and &' be the model
after learning by SVB from more t minibatches.
Then [|§" = &%y > ¢ and [|E°], = O(t™") - [I€"]]1,
suggesting that £° will be quickly forgotten, at a
rate of O(t™'), in the learned model &'

It can be shown that this property of SVB
holds for Naive Bayes and a large class of
LDA-based variants which are conjugate. Such
a forgetting rate in SVB is much faster than
the rate ©(¢~%57) in human [28]. We conjecture
that a fast rate might appear in many existing
methods. In contrast, TPS does not encounter
this problem. It has an explicit mechanism to
balance the three sources of knowledge as dis-
cussed in the last subsection. By manipulating
o, TPS can remember the knowledge better.

5 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experi-
ments to evaluate the performance of TPS. Fur-
ther quantitative and qualitative evaluations
can be found in the appendices.

5.1 Unsupervised learning for LDA

We first evaluate TPS when applied to LDA. We
take four state-of-the-art baselines: SVB [24],
PVB [25], SVB-PP [26], and KPS [42] 4

6. SVB-HPP is not included since its application to LDA

requires non-trivial efforts. Further, as observed by [26], SVB-
HPP is often comparable to the best SVB-PP.
Except KPS, all of SVB, PVB, and SVB-PP do not explicitly
exploit external /human knowledge and can only use the prior
(n) at the initialization. Therefore, for a fair comparison, we
encode the external knowledge in the initialization of those
baselines. Whenever the forms of prior knowledge are un-
suitable for the baselines, we use PCA to transform the edge
matrices to the same shape with 7.

7

TABLE 1: Some statistics about the datasets. For
Irishtimes, we use documents of the next mini-
batch to evaluate the model at any minibatch.

Dataset Vocabulary  Training Testing  words

size size size per doc
Grolier 15,269 23,044 1,000 79.9
TMN 11,599 31,604 1,000 24.3
NYT-title 46,854 1,664,127 10,000 5.0
Yahoo-title 21,439 517,770 10,000 4.6
TMN-title 2,823 26,251 1,000 4.6
Irishtimes 28,816 1,374,669 - 5.0

Datasets: We use 2 regular text (Grolier,
TMN) and 4 short text datasets with some
statistics in Table [IIl Those short text corpora
contain documents of extremely short length,
and are used in our evaluation to help us see
the role of prior knowledge in the cases of
extreme sparsity.

Prior knowledge: We use word embedding

and word graph as two kinds of prior knowl-
edge. The word embeddings were pre-trained
from 6 billion tokens of Wikipedia2014 and
Gigaword5 by [SOE. Each word is represented
by a 200-dimensional vector (L = 200).
Word graph represents the relationships among
words, and is represented by a matrix of size
V' x V. We build the 500-nearest neighbor graph
based on the cosine similarity of word embed-
ding vectors, and utilize it as prior knowledge.
Due to the high computational cost as working
with a matrix of size V x V, we only did
experiments on Grolier and TMN-title.

Evaluation metrics: Log predictive probabil-
ity (LPP) [46] and Normalized pointwise mutual
information (NPMI) [32] are used. While LPP
measures the generalization of a model on un-
seen data, NPMI examines the coherence and
interpretability of the learned topics. Details
about how to compute those quantities can be
found in Supplement.

Settings: We simulate streaming data
by dividing a dataset into a sequence of
minibatches with batchsize: 500 for {Grolier,

7. Grolier ~ from  |http://cs.nyu.edu/~roweis/data.html,
TMN from http://acube.di.unipi.it/tmn-dataset/, NYT-title
from http:/ /archive.ics.uci.edu/ml/datasets /Bag+of+Words/;
Yahoo-title, TagMyNews-title (TMN-title), Irishtimes from
http:/ /www.kaggle.com/therohk/ireland-historical-news/

8. http:/ /nlp.stanford.edu/projects/glove/
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TMN, TMN-title}, 5000 for {NYT-title, Yahoo-
title}. For LDA, we set a = 0.01, K = 50 topics
for {Grolier, TMN, TMN-title, Irishtimes}
and K = 100 for {NYT-title, Yahoo-title}.
We use a grid search to select suitable
hyperparameters for the baselines, and report
the best parameter sets for each method and
each dataset. The ranges of the parameters are:
multiple power prior p € {0.6,0.7,0.8,0.9,0.99}
for SVB-PP, population size in
{10?%,10%,10%,10°,10°} for PVB, dimming factor
k € {0,0.01,0.03,0.07,0.1,0.6,0.7,0.8,0.9} in
KPS, and ¢ € {0.01,0.1, 1,10, 100} for TPS.

Results:

Predictive capacity: Figure [2a] and Figure [3]
show the results when using word embed-
ding and word graph priors respectively. It
is obvious that TPS with both kinds of prior
performs significantly better than the baselines,
often by a large margin. In particular, thanks
to the dynamic use of prior knowledge in each
minibatch, TPS keeps increasing the predictive
ability when receiving more data. Moreover,
TPS can attain very high predictive capacity
from some beginning stages of the learning
process. For regular text data, the predictive
ability in the beginning minibatch is extremely
higher than the baselines. This suggests that
the knowledge from the prior contains a large
amount of information, and TPS can exploit the
knowledge better than KPS.

It is worth noticing that SVB and SVB-PP
seem not to work well with extremely short
text, since their predictive capability decreases
as learning from more data. Short text often
does not provide enough information and clear
context [51], [52]], and hence cause various dif-
ficulties for SVB, SVB-PP, PVB, and KPS. KPS is
able to use prior knowledge, however its ability
seems to be limited because its usage of the
knowledge is static along the learning process.
Figure 2al and Figure 3] clearly demonstrate that
existing methods are prone to overfitting on
short text, whereas TPS generalizes well.

Topic coherence: The results of evaluating topic
coherence using NPMI are reported in Fig-
ures bl and Bl With word embedding prior,
TPS obtains the best results often with a large
margin. Again, TPS is effective for short text.
The information from the prior injects the

knowledge of word’s relationship to the model.
For using word graph prior, Figure [3 shows
that TPS is stable in the best methods. Inter-
estingly, KPS performed better than TPS for
TMN-title. It seems that TPS did not exploit
the full advantage of this knowledge, although
its predictiveness is still the best.

5.2 Balancing and sensitivity analysis

The role of prior knowledge and transition model:
There are two important components which
can significantly affect the performance of TPS:
the prior knowledge 7, and the transition
model (7 ~ N(m}; ', 01)) which connects the
models in two consecutive time steps. We
would like to see which one is really important
to the performance of TPS. To this end, we take
LDA as the base model, fix batchsize = 500,
o =1,K = 100, and pre-trained word embed-
ding as prior. Figure dalshows the performance
of TPS in three versions. One can observe that
when there is no prior, TPS does not perform
well and even encounters overfitting in short
text. When a good prior knowledge is avail-
able, TPS performs significantly better and do
not encounter overfitting. The transition model
plays a good role as removing it may result in
worse performance. It is worth observing that
TPS tends to be better as learning from more
data. This suggests that the prior knowledge
does not overwhelm the data, but supports TPS
to learn better.

Sensitivity of o: Grolier (regular text) and
TMN-title (short text) are used in this evalua-
tion. We fix the batchsize to 1000 and K = 100
topics. The results are presented in Figure
This figure shows that one should use small o
for long text, and large o for short text. The
reason might be that short text contains little
information and few changes will likely lead
to a great variance in the meaning of that text.
Therefore, the new model 7! should be learned
in a large region around 7'~! to capture large
variance in incoming data. This coincides well
with our theoretical analysis.

5.3 Streaming classification with Naive
Bayes

We compare TPS with SVB and KPS when
applied to Naive Bayes for streaming classifi-
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Fig. 4: Sensitivity of TPS with respect to the key
components. LDA is used as the base model.  of 6 categories (business, culture, news, opin-
ion, sport, and letters). We continuously train a
cation. We use grid search to find the best x in model when a minibatch arrives, then do clas-
KPS. For TPS, we use o = 1. sification for documents in the next minibatch.
Dataset: We use Irishtimes which consists Here, each minibatch contains the documents



of a month.

Prior knowledge: We extract a feature V-
dimensional vector of each class ¢ whose el-
ement j is the ratio of the number of word j
appeared in the class ¢ to the number of docu-
ments containing word j. Then, we gain a ma-
trix C' x V in which each term v is represented
by a C-dimensional vector. This matrix is used
as prior for SVB and KPS. In TPS, we identify
each word v by concatenating a one-hot vector
(V-dimension) and the C'-dimensional vector in
order to get a sufficient representation. We use
this representation as prior knowledge.

Results: Figure [ reports the accuracies of
three methods. TPS is comparable to KPS in the
first 100 minibatches, better about 1—8.3% than
KPS in the remaining minibatches. We observe
that the prior knowledge is definitely suitable
for KPS as it helps KPS to obtain high accuracy.
The gap between TPS and KPS is significant
when the number of minibatches is large. In
contrast, SVB only utilizes the knowledge at
the first step, and hence often gets lower ac-
curacy than the other methods. Note that TPS
performs significantly better than both KPS and
SVB in the last 100 minibatches. It is worth
noting that at some sudden changes in the
data distribution, the performance of SVB and
KPS drops significantly. TPS can reduce such a
bad effect of those sudden changes. The main
reason may come from the effective exploita-
tion of prior knowledge. This seems to be an
advantage of TPS in changing environments.

5.4 Utilization of the full strength of the
original knowledge

The final evaluation is to see how well can the
baselines utilize the full strength of external
knowledge. The experiments with Naive Bayes
in the previous subsection provide some good
evidences as all methods can use the original
knowledge. However, in the experiments with
LDA in subsection5.1lwe have to transform the
knowledge (pre-trained word embedding) into
a form that can be used in SVB, SVB-PP, PVB,
and KPS, due to the mismatch in dimension-
ality and negativity in the embedding vectors.
The transformation may cause some loss in the
knowledge and hence may make some bias
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Fig. 6: Performance of five methods when pre-
trained word embeddings is in its original repre-
sentation.

for the baselines, since TPS uses the origi-
nal knowledge representation. Next we would
like to see the performance of those methods
when directly using the original knowledge
representation. In this case we have to match
the dimensionality of the knowledge and the
global variable in LDA.

We took LDA and three large datasets into
evaluation: NYT-title, Yahoo-title, Irishtimes.
All the settings are the same as in Subsection
except that the number of topics is K =
200 which is exactly the dimensionality of the
pre-trained word embedding. To ensure non-
negativity in the knowledge vectors, we nor-
malize each embedding vector to be in [0, 1]?%.

Figure [6l shows the results. We observe that
the behaviors of the baselines are almost the
same as in the experiments of Subsection 5.1
One interesting thing is that KPS in this evalu-
ation seems not to utilize the knowledge well,
as its performance keeps steady or deteriorates
over time. This is in contrast to the case where
the knowledge is transformed into a lower
dimensionality by PCA, and then input to the
baselines. Figure [6l suggests that TPS can utilize
the knowledge well to perform significantly
better than the baselines in both measures.

In summary, TPS can directly exploit an
external knowledge of different forms when
learning a model, while other baselines find
difficulties. TPS can use the knowledge in its
original representation, while other methods
often need a suitable transformation and hence



do not well exploit the full strength of the exter-
nal knowledge to improve a Bayesian model.

6 CONCLUSION

We presented a novel framework (TPS) that
overcomes many drawbacks of existing ap-
proaches for streaming conditions. In particu-
lar, TPS exploits prior knowledge well, while
other methods can forget it very fast. It has
hyperparameter o as a simple mechanism to
balance different sources of knowledge. One in-
teresting question is how to learn ¢ efficiently?

ACKNOWLEDGMENTS

This work was funded by Gia Lam Urban De-
velopment and Investment Company Limited,
Vingroup and supported by Vingroup Inno-
vation Foundation (VINIF) under project code
VINIE.2019.DA18.

REFERENCES
[1] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Varia-
tional inference: A review for statisticians,” Journal of the
American Statistical Association, vol. 112, no. 518, pp. 859-
877, 2017.

G. E. P. Box, “Science and statistics,” Journal of the Amer-
ican Statistical Association, vol. 71, no. 356, pp. 791-799,
1976.

Z. Huang, H. Chen, and D. Zeng, “Applying associative
retrieval techniques to alleviate the sparsity problem in
collaborative filtering,” ACM Transactions on Information
Systems (TOIS), vol. 22, no. 1, pp. 116-142, 2004.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk,
“Session-based recommendations with recurrent neural
networks,” in International Conference on Learning Repre-
sentations, 2016.

S. Banerjee, K. Ramanathan, and A. Gupta, “Clustering
short texts using wikipedia,” in ACM SIGIR, pp. 787-788,
2007.

X. Cheng, X. Yan, Y. Lan, and J. Guo, “Btm: Topic model-
ing over short texts,” IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 12, pp. 2928-2941, 2014.

J. Liang, L. Jiang, D. Meng, and A. Hauptmann, “Leverag-
ing multi-modal prior knowledge for large-scale concept
learning in noisy web data,” in Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval,
pp- 32-40, ACM, 2017.

C. Ha, V-D. Tran, L. Ngo, and K. Than, “Eliminating
overfitting of probabilistic topic models on short and
noisy text: The role of dropout,” International Journal of
Approximate Reasoning, vol. 112, pp. 85-104, 2019.

D. A. Nguyen, V. L. Ngo, K. A. Nguyen, C. H. Nguyen,
and K. Than, “Boosting prior knowledge in streaming
variational bayes,” Neurocomputing, vol. 424, pp. 143-159,
2021.

(2]

(3]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

11

J. Tang, Z. Meng, X. Nguyen, Q. Mei, and M. Zhang,
“Understanding the limiting factors of topic modeling
via posterior contraction analysis,” in Proceedings of The
31st International Conference on Machine Learning (ICML),
pp- 190-198, 2014.

L. Yao, Y. Zhang, B. Wei, Z. Jin, R. Zhang, Y. Zhang, and
Q. Chen, “Incorporating knowledge graph embeddings
into topic modeling.,” in AAAI pp. 3119-3126, 2017.

D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson,
“Improving topic models with latent feature word repre-
sentations,” Transactions of the Association for Computational
Linguistics, vol. 3, pp. 299-313, 2015.

H. Zhao, L. Du, and W. Buntine, “A word embeddings
informed focused topic model,” in Asian Conference on
Machine Learning, pp. 423-438, 2017.

T. Ideker, J. Dutkowski, and L. Hood, “Boosting signal-
to-noise in complex biology: prior knowledge is power,”
Cell, vol. 144, no. 6, pp. 860-863, 2011.

D. Andrzejewski, X. Zhu, and M. Craven, “Incorporating
domain knowledge into topic modeling via dirichlet for-
est priors,” in Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 25-32, ACM, 2009.
D. Andrzejewski, X. Zhu, M. Craven, and B. Recht, “A
framework for incorporating general domain knowledge
into latent dirichlet allocation using first-order logic,” in
IJCAL vol. 22, p. 1171, 2011.

J. Jagarlamudi, H. Daumé III, and R. Udupa, “Incorporat-
ing lexical priors into topic models,” in EACL, pp. 204-
213, 2012.

Z. Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos,
and R. Ghosh, “Leveraging multi-domain prior knowl-
edge in topic models.,” in IJCAI, vol. 13, pp. 2071-77, 2013.
M. Sweeting, D. De Angelis, M. Hickman, and A. Ades,
“Estimating hepatitis ¢ prevalence in england and wales
by synthesizing evidence from multiple data sources.
assessing data conflict and model fit,” Biostatistics, vol. 9,
no. 4, pp. 715-734, 2008.

S. Tan, S. Makela, D. Heller, K. Konty, S. Balter, T. Zheng,
and J. H. Stark, “A bayesian evidence synthesis approach
to estimate disease prevalence in hard-to-reach popula-
tions: hepatitis ¢ in new york city,” Epidemics, vol. 23,
pp- 96-109, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding,” in Proceedings of the NAACL-HLT,
pp- 384-394, 2019.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio, “Why does unsupervised pre-training
help deep learning?,” Journal of Machine Learning Research,
vol. 11, pp. 625-660, 2010.

J. Turian, L. Ratinov, and Y. Bengio, “Word representa-
tions: a simple and general method for semi-supervised
learning,” in Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, 2010.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and
M. L. Jordan, “Streaming variational bayes,” in Advances in
Neural Information Processing Systems, pp. 1727-1735, 2013.
J. McInerney, R. Ranganath, and D. M. Blei, “The pop-
ulation posterior and bayesian modeling on streams,”
in Advances in Neural Information Processing Systems 28,
pp- 1153-1161, 2015.

A. Masegosa, T. D. Nielsen, H. Langseth, D. Ramos-
Lépez, A. Salmerén, and A. L. Madsen, “Bayesian mod-
els of data streams with hierarchical power priors,” in



[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 2334-2343, PMLR, 2017.

M. Faraji, K. Preuschoff, and W. Gerstner, “Balancing new
against old information: The role of puzzlement surprise
in learning,” Neural computation, vol. 30, no. 1, pp. 34-83,
2018.

L. Averell and A. Heathcote, “The form of the forgetting
curve and the fate of memories,” Journal of Mathematical
Psychology, vol. 55, no. 1, pp. 25-35, 2011.

D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in
Proceedings of the 23rd international conference on Machine
learning, pp. 113-120, ACM, 2006.

L. Charlin, R. Ranganath, J. McInerney, and D. M. Blei,
“Dynamic poisson factorization,” in Proceedings of the 9th
ACM Conference on Recommender Systems, pp. 155-162,
ACM, 2015.

D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3,
pp- 993-1022, 2003.

J. H. Lau, D. Newman, and T. Baldwin, “Machine reading
tea leaves: Automatically evaluating topic coherence and
topic model quality,” in EACL, pp. 530-539, 2014.

X. Wang and A. McCallum, “Topics over time: a non-
markov continuous-time model of topical trends,” in Pro-
ceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 424-433,
ACM, 2006.

X. Wei, J. Sun, and X. Wang, “Dynamic mixture models
for multiple time-series,” in IJCAI, vol. 7, pp. 2909-2914,
2007.

C. Wang, D. Blei, and D. Heckerman, “Continuous time
dynamic topic models,” in Uncertainty in Artificial Intelli-
gence, pp. 579-586, 2008.

O. Cappé and E. Moulines, “On-line expectation—
maximization algorithm for latent data models,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
vol. 71, no. 3, pp. 593-613, 2009.

L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization
methods for large-scale machine learning,” SIAM Review,
vol. 60, no. 2, pp. 223-311, 2018.

A. Doucet, N. De Freitas, and N. Gordon, “An introduc-
tion to sequential monte carlo methods,” in Sequential
Monte Carlo methods in practice, Springer, 2001.

J. Petterson, W. Buntine, S. M. Narayanamurthy, T. S. Cae-
tano, and A. J. Smola, “Word features for latent dirichlet
allocation,” in Advances in Neural Information Processing
Systems, pp. 1921-1929, 2010.

P. Xie, D. Yang, and E. Xing, “Incorporating word corre-
lation knowledge into topic modeling,” in NAACL-HLT,
pp- 725-734, 2015.

J. G. Ibrahim, M.-H. Chen, Y. Gwon, and E Chen,
“The power prior: theory and applications,” Statistics in
medicine, vol. 34, no. 28, pp. 3724-3749, 2015.

N. D. Anh, N. V. Linh, N. K. Anh, and K. Than, “Keeping
priors in streaming bayesian learning,” in Advances in
Knowledge Discovery and Data Mining: 21st Pacific-Asia
Conference, Proceedings, Part 11, pp. 247-258, Springer, 2017.
Y. He, C. Lin, W. Gao, and K.-F. Wong, “Dynamic joint
sentiment-topic model,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 5, no. 1, p. 6, 2013.

P. Jahnichen, F. Wenzel, M. Kloft, and S. Mandt, “Scalable
generalized dynamic topic models,” in Proceedings of the
21st International Conference on Artificial Intelligence and
Statistics, vol. 84, pp. 1427-1435, PMLR, 2018.

A. B. Dieng, F. J. Ruiz, and D. M. Blei, “The dynamic

[46]

[47]

(48]

[49]

(50]

[51]

(52]

12

embedded topic model,” arXiv preprint arXiv:1907.05545,
2019.

M. D. Hoffman, D. M. Blei, C. Wang, and J. W. Pais-
ley, “Stochastic variational inference.,” Journal of Machine
Learning Research, vol. 14, no. 1, pp. 1303-1347, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in neural
information processing systems, pp. 3111-3119, 2013.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling
multi-relational data,” in Advances in neural information
processing systems, pp. 2787-2795, 2013.

G. I Parisi, R. Kemker, J. L. Part, C. Kanan, and
S. Wermter, “Continual lifelong learning with neural net-
works: A review,” Neural Networks, vol. 113, pp. 54-71,
2019.

J. Pennington, R. Socher, and C. Manning, “Glove: Global
vectors for word representation,” in EMNLP, pp. 1532—
1543, 2014.

L. Hong and B. D. Davison, “Empirical study of topic
modeling in twitter,” in Proceedings of the first workshop on
social media analytics, pp. 80-88, ACM, 2010.

X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic
model for short texts,” in Proceedings of the 22nd interna-
tional conference on World Wide Web, pp. 1445-1456, 2013.



APPENDIX A
STREAMING NAIVE BAYES

In this section, we explicitly describe the ap-
plication of TPS, SVB [24], and KPS [42] to
multinomial Naive Bayes (NB) for classification
in document streams. It is worth noting that
NB models the documents in each class c by a
multinomial distribution with parameter §.. A
batch learning algorithm for NB focuses mostly
on estimating 5 = (1, ..., f¢) for a classification
problem with C classesﬁ

For TPS, the derivation is presented in the
main paper. Algorithm [3] presents the stream-
ing learning for NB by TPS.

Using variational inference, SVB [24] ap-
proximates the posterior distribution of g,
in Naive Bayes by variational distribution
q(Bc|&.) = Dirichlet(.|¢.) where &, is the varia-
tional parameter associated with class c. There-
fore learning NB is translating to learning the
variational parameters &, ...,{c. Similar to the
case of LDA, we update the model at time
stamp ¢ by:

é-t — é-t—l 4 gt

where £~ comes from the previous minibatch
t —1 and &° is initialized with prior 7. The
learned information &' from the data D' at
minibatch ¢ is inferred by variational inference
as 5 =D uc pt v, where ng, is the frequency
of term v in document d. Algorithm @ summa-
rizes the streaming learning for NB by SVB.

KPS [42] is a variant of SVB to explicitly
exploit prior knowledge 7 in all minibatches.
In KPS, the model parameter £ in minibatch ¢
is computed as below:

=148+ (1+1)™ (5)

where k > 0 is the dimming factor to decrease
the impact of prior knowledge gradually after
a number of minibatches.

APPENDIX B
QUALITATIVE EVALUATION ON TPS FOR
LDA

Interpretability is an important criteria for eval-
uating a model. The results from a model

9. Estimating the prior for each class is important. But for
simplicity, in this study we use uniform prior over class labels.
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Algorithm 3 TPS learning for Naive Bayes

Require: Prior knowledge 7, variance o, data
sequence {D', D? ...}
Ensure: 7
Initialize 7° randomly
for the " minibatch do
Find 7!, for each class ¢ with dataset Dy,
by using gradient ascent to maximize

1
20

+ 350 Hu = ol

deDt n=1 v=1

LP(r!) = —

: e —me 113

_ Z ZZden = v logZeXp (men:)

deDt n=1 v=1

end for

Algorithm 4 SVB learning for Naive Bayes

Require: Prior knowledge 7, data sequence
{D',D? ..}
Ensure: &
Initialize Y =
for The t"* minibatch do
For each class ¢ with dataset D!, compute

D) nge (4)
deDt

end for

should be understandable and interpretable by
human. In this section, we consider the in-
terpretability /clarity of the learned topics in
LDA. In several circumstances, some methods
are not able to expose a clear topic with a
specific domain although that domain exists in
the corpus. In this case, we choose the closest
topic based on topic’s keywords.

For the evaluation on interpretability, we use
two corpora: Grolier (long text) and NYT-title
(short text). We fixed K = 50 for LDA, 0 = 1.0
for TPS, batchsize = 500 for Grolier due to its
small size, and batchsize = 5000 for NYT-title.
The other settings are the same as those in the
Experiment part of the main paper.

Some results are shown in Table 2] and [
While Table[2lshows top 10 words of two topics



Military and Music of Grolier dataset, Table [3]
gives top words of two topics Business and
Politics of NYT-title. The ambiguous words are
written in ifalic style.

It is clear that topics learned by TPS have
least ambiguous words than the other base-
lines. Moreover, the meaning of TPS seems to
be more clear than the others with a consistent
relationship of words in the topic. In addition,
it is more significant for short text data than
regular text. To this end, using prior knowledge
is effective in term of improving the clarity of
topics and making them easy to be interpreted
by human.

APPENDIX C
SENSITIVITY OF TPS WITH RESPECT TO
PARAMETERS

In this section, we investigate the effects of the
parameters: number K of topics, batchsize, and
variance o. Both regular text (Grolier) and short
text (TMN-title) are used in our evaluation.

C.1 Sensitivity of TPS for LDA with respect
to the number of topics

We fix batchsize = 500, ¢ = 1, and the num-
ber of topics is tested in [50, 100, 150, 200]. The
results are shown in Figure [7 for regular text
(Grolier) and short text (TMN-title) respec-
tively. While TPS is stable in regular text when
changing K, it seems to be more sensitive
with short text than regular text. Moreover, the
smaller number of topics can make TPS do well
in short text.

C.2 Sensitivity of TPS for LDA with respect
to batchsize

To examine the sensitivity of TPS over batch-
size, we fix ¢ = 1.0, K = 50. The results are
shown in Figure [8l We can see that batchsize
has some similar impact on regular and short
text. From the assumption in TPS, the stream-
ing data is processed in each data collection
decided by batchsize which means this pa-
rameter determines the information from new
arrived data to balance with prior knowledge
and the past minibatch. Therefore, TPS seems
to be more sensitive on batchsize than K.
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C.3 Sensitivity of TPS with respect to the
variance in Naive Bayes

Figure [0 shows the sensitivity of TPS w.r.t o.
It seems that large o(> 10) seem to perform
worse than smaller values of 0. 0 < 1 seems
to be good, meaning that the model at each
minibatch should not be far from that in the
previous minibatch. The accuracy gap among
the settings is noticeable in a number of the first
minibatches. However, the difference gradually
decreases as more data arrive.

APPENDIX D
MULTI-PASS TRAINING FOR TPS

We examine the effectiveness of prior and
transition of TPS in multi-pass training, which
passes (iterates) the whole training data more
than one time.

In detail, we pass through the data 50 times,
each time is an epoch. After each epoch, we
evaluate the log predictive probability of the
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TABLE 2: Top words of some learned topics of Grolier (regular text).

TPS [ SVB PVB KPS [ SVB-PP |
Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2
(Military) (Music)  (Military) (Music)  (Military) (Music)  (Military) (Music)  (Military) (Music)
war music space music war music war music war music
army musical air opera army musical king opera army opera
naval piano world musical ~ american composer army musical military musical
navy songs soviet dance york  instruments german piano forces composer
commander composer flight ballet united century france  instruments world piano
command orchestral satellite theater world games french songs naval orchestra
military instruments war  composer military songs germany composers british  instruments
forces orchestra force american battle piano son composer battle songs
air vocal ft Sfrench british player military operas ship vocal
ship sound nuclear stage forces composers battle orchestra aircraft jazz
TABLE 3: Top words of some learned topics of NYT-title (short text).
TPS | SVB PVB KPS SVB-PP |
Topic T Topic 2 Topic T Topic 2 Topic 1 Topic 2 Topic 1 Topic 2 Topic T Topic 2
(Business) (Politics)  (Business) (Politics)  (Business) (Politics)  (Business) (Politics) (Business)  (Politics)
sell court world  president sale obama dollar obama buy obama
world vote europe election profit  president year  president company join
plan obama profit reform run law fall pick stake debate
10.s. bush british phone net bush sale ad investor ban
stock case unite  champion bond  congress million student expand  challenge
cut senate business threaten series press market media challenge link
buy clinton chemical robert award mix news advertise asset gun
rise campaign  consumer smith rise benefit  american candidate mystery risk
trade debate chairman jr. seq missile stock story  technology island
profit law magazine yield human shut trade event oversea spend
Irishtimes Grolier TMN-title
0.78
-7.5] |
> a
0.72 o
@ ~-8.4
5 -7.8
S 1 T ISR b WA RIMI [ Y T T ] e
0.66
< -9.0| .7 .
020 40 -8
Epoch
0.60 —— Transition+Prior ~ —:= No Transition .- No PriorJ
0 50 100 150 200 250
Minibatch Fig. 10: The effect of each components (Tran-
Fig. 9: Sensitivity of TPS for Naive Bayes w.r.t sition, Prior) of TPS in multi-pass training,

the variance o.

model. The results for Grolier and TMN-title
are shown in Fig. [10l

We again see that having Prior (for Transi-
tion + Prior and No transition) is significantly
better than No Prior. This again confirms the
importance of using prior knowledge.

We also see that Transition + Prior and
No transition have comparable performances.
We can explain as that multi-pass training
pass through the data many times, hence the
model can still learn the transformation of prior
knowledge without using transition.

i.e., multiple passes over the whole data are
allowed when learning. LDA is the base model.

Moreover, multi-pass training allows TPS
achieving higher performance in LPP than sin-
gle pass training. However, in reality, the infi-
nite and large incoming data prevent us from
passing data multiple times. We need to bal-
ance the trade off between the performance and
the resources of storage and running time.
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Fig. 11: Performance of five methods as learn-
ing time increases. Pre-trained word embeddings
is the prior knowledge and LDA is the base
model.

TABLE 4: Running time (in seconds) of all
methods.

Datasets SVB SVP-PP PVB KPS TPS

Grolier 2260 2272 2358 2383 1741

TMN-title 244 250 309 252 240
APPENDIX E

RUNNING TIME

We measured the running time of all methods
with two datasets (Grolier and TMN-tile) simi-
lar to sensitivity analysis. We fix o = 1, k = 50,
and batchsize = 500 for Grolier and TMN-title.
The results are shown in Table 4 and Figure 11

We observe that TPS can obtain a high per-
formance at a faster rate than other baselines.
This is surprising. One reason may be that the
inference for each document in the baselines
takes significant times due to the computation
of the expectation of Dirichlet distribution for
global parameters. Meanwhile TPS does not
need to compute such an expectation. There-
fore, TPS runs faster than the baselines.

APPENDIX F
DETAILS OF THE EVALUATION METRICS

F.1

We follow the metric used in [46]. Generally,
given the model learned from training data D,
each document in the evaluation set is divided
into two disjoint parts: the held-out words wy,
and observed words w,,. The local variables
are inferred using wes, then the predictive

Log predictive probability
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probability of the model is evaluated by the
log probability:

log p(wno| D, Wobs)

In a LDA model with K topics, the global
word topic distributions 3, and the document-
specific distribution 6§, we have:

p(who|Da wobs)

- / / () 0kBrwn. )0 (Bl wabs, B)p(B|D)dbd

%
—

/ (3" 0By, )a(0)a(5)d0A5

Il
]~

Eq [ek]Eq [5/6,111}10]

B
Il

1

where ¢(3) and ¢(f) are approximate distribu-
tion of variables 3 and 6 respectively. Note that
when (3 is point estimation, E,[5] is replaced by
5, and @ is inferred from observed words w,

given 3.

F.2 Normalized pointwise mutual informa-
tion (NPMI)

This metric was introduced by [32]. NPMI score
give an evaluation for correlation with human-
judged coherence. In detail, given a topic ¢t with
top-T' topic words wy,ws, ...,wr, the NPMI
score for topic t is calculated by:

108 37
NPMI(t) = Ej L)
(t) c— —log P(w;, w;)
1<i<j<N

where P(w;) is the probability of word w; de-
rived from corpus and P(w;, w;) is the proba-
bility of co-occurrence of two words w; and w;
in the same document.
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