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Abstract—Next-basket recommendation considers the problem of recommending a set of items into the next basket that userswill

purchase as awhole. In this paper, we develop a novel mixedmodel with preferences, popularities and transitions (M2 ) for the next-basket

recommendation. Thismethodmodels three important factors in next-basket generation process: 1) users’ general preferences, 2) items’

global popularities and 3) transition patterns among items. Unlike existing recurrent neural network-based approaches, M2 does not use the

complicated networks tomodel the transitions among items, or generate embeddings for users. Instead, it has a simple encoder-decoder

based approach (ed-Trans ) to better model the transition patterns among items.We compared M2 with different combinations of the

factorswith 5 state-of-the-art next-basket recommendationmethods on 4 public benchmark datasets in recommending the first, second

and third next basket. Our experimental results demonstrate that M2 significantly outperforms the state-of-the-art methods on all the

datasets in all the tasks, with an improvement of up to 22.1%. In addition, our ablation study demonstrates that the ed-Trans is more

effective than recurrent neural networks in terms of the recommendation performance.We also have a thorough discussion on various

experimental protocols and evaluationmetrics for next-basket recommendation evaluation.

Index Terms—Recommender systems, next-basket recommendation, encoder-decoder architecture, mixed models
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1 INTRODUCTION

NEXT-BASKET recommendation [1], [2], [3], [4], [5] consid-
ers the problem of recommending a set of items into the

next basket that users will purchase as a whole, based on the
baskets of items that users have purchased. It is different
from the conventional top-N recommendation problem in
recommender systems, in which users will purchase a single
item at each time. Next-basket recommendation has been
drawing increasing attention from research community due
to its wide applications in the grocery industry [1], [3], fash-
ion industry [6] and tourism industry [7], etc. With the pros-
perity of deep learning, many deep models, particularly
based on recurrent neural networks (RNNs) [1], [3], [4], [5]
have been developed for next-basket recommendation pur-
poses, and have demonstrated superior performance [1], [3].

These methods, especially these RNN-based methods, often
focus on modeling the transitions between different baskets,
but are not always effective to model various important fac-
tors that may determine next baskets. For example, the tran-
sition among individual items in different baskets is an
important factor, as given the individual items in the previ-
ous baskets, the probability of being interacted/purchased
in the next basket is not equal for all the items. Users’ general
preference is another important factor as different users gen-
erally will have different preferences on items. Recently
developed RNN-based methods [1], [3], [4] typically explic-
itly model the transitions among baskets, while implicitly
model the transitions among individual items. For example,
these methods use mean pooling or weighted sum to aggre-
gate the items in a same basket, and then use the recurrent
units to model the transitions among baskets. However, dur-
ing such aggregation, the information of individual items
could be smoothed out so that thesemethods could not accu-
ratelymodel the transitions among individual items. In addi-
tion, due to the recurrent nature of RNNs, it is challenging to
train these RNN-based methods efficiently in parallel.
Another limitation with existing methods is that, existing
methods [2] usually model users’ general (i.e., long-term)
preferences using the embeddings of users. However, due to
the notoriously sparse nature of data in recommendation
problems, these learned embeddings may not be able to
accurately capture users’ preferences. To mitigate the limita-
tions in the existing basket recommendationmethods, in this
paper, we develop a set of novel mixed models, denoted as
M2, for the next-basket recommendation problem.

M2 models three important factors in order to generate
next-basket recommendations for each user. The first factor
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is users’ general preferences, which will measure long-term
preferences of users that tend to remain consistent across
multiple baskets during a certain period of time. The second
factor is items’ global popularities, which will measure the
overall popularities of items among all the users. The third
factor is the transition patterns among items across baskets,
which will capture the transition patterns on items over dif-
ferent baskets. These three factors will be combined together
using weights that will be determined by these factors, and
thus recommend items into the next basket. With different
combinations of factors, M2 has three variants M2-p2, M2-gp2

and M2-gp2t. M2-p2 recommends items using users’ general
preferences and items’ global popularities. In M2-p2, these
two factors are combined using a global weight. M2-gp2 is
similar to M2-p2 except that instead of using a global weight,
M2-gp2 learns personalized weights to combine the two fac-
tors. M2-gp2t uses all the three factors for more accurate rec-
ommendations. The details of these three variants will be
presented in Section 4. In particular, different from existing
methods, M2 explicitly models the transitions among indi-
vidual items using a simple, efficient, and effective encoder-
decoder based framework, denoted as ed-Trans. M2 also
explicitly models users’ general preferences using the fre-
quencies of items that each user has interacted with instead
of the user embeddings.

We compare M2 with 5 most recent, state-of-the-art meth-
ods on 4 public benchmark datasets in recommending the
first, second and third next basket. Our experimental results
demonstrate that M2 significantly outperforms the state-of-
the-art methods on all the datasets in all the tasks, with an
improvement of up to 22.1%. We also conduct a comprehen-
sive ablation study to verify the effects of the different fac-
tors. The results of the ablation study show that learning all
the factors together could significantly improve the recom-
mendation performance compared to learning each of them
alone. The results also show that the encoder-decoder
based ed-Trans in learning item transitions among baskets
could outperform RNN-based methods on the benchmark
datasets.

The major contributions in this paper are as follows:

� We developed a novel mixedmodel M2 for next-basket
recommendation. M2 explicitlymodels three important
factors: 1) users’ general preferences, 2) items’ global
popularities, and 3) transition patterns among items.

� We developed a novel, simple yet effective encoder-
decoder based framework ed-Trans to model transi-
tion patterns among items in baskets.

� M2 significantly outperforms state-of-the-art methods.
Our experimental results over 4 benchmark datasets
demonstrate that M2 achieves significant improve-
ment in both recommending the next basket and rec-
ommending the next a few baskets, with an
improvement as much as 22.1%. Our ablation study
shows that the factors are complementary and enable
better performance if learned together (Section 6.5).

� Our ablation study also shows that ed-Trans in
learning item transitions among baskets could on its
own significantly outperform RNN-based methods
over the benchmark datasets, with an improvement
as much as 25.4% (Section 6.5.2).

� Our cluster analysis shows that ed-Trans is able to
learn similar embeddings for items which have simi-
lar transition patterns (Section 6.7).

� We discussed the potential issues of evaluation met-
rics, experimental protocols and settings that are
typically used in next-basket recommendation, and
discussed the use of a more appropriate protocol
and setting in our experiments (Section 7).

� For reproducibility purposes, we released our source
code and Supplementary Materials at https://github.
com/ninglab/M2.

2 RELATED WORK

2.1 Next-Basket Recommendation

Numerous next-basket recommendation methods have
been developed, particularly using Markov Chains (MCs)
and Recurrent Neural Networks (RNNs) etc. Specifically,
MCs-based methods, such as factorized personalized Mar-
kov chains (FPMC ) [2], use MCs to model the pairwise item-
item transition patterns to recommend the next item or the
next basket of items for each user. Wan et al. [8] developed
factorization-based methods triple2vec and adaLoyal, in
which the item-item complementarity, user-item compati-
bility and user-item loyalty patterns are modeled for the
next-basket recommendation. Recently, RNN-based meth-
ods have been developed for the next-basket recommenda-
tion. For instance, Yu et al. [3] used RNNs to model users’
dynamic short-term preference at different timestamps.
Wang et al. [9] developed a hierarchical attentive encoder-
decoder model, which iteratively predicts the next baskets
by learning the transitions among items and leveraging
both the positive and negative feedbacks from users. Hu
et al. [1] developed an encoder-decoder RNN method
Sets2Sets. Sets2Sets employs an RNN as encoder to learn
users’ dynamic preference at different timestamps and
another RNN as decoder to generate the recommendation
score from the learned preferences for each recommenda-
tion candidate. Sets2Sets has been demonstrated as the
state of the art, and outperforms an extensive set of existing
methods.

Aside from model-based methods, popularity-based
approaches such as popularity on people (POP) [1] and pop-
ularity on each person (POEP) [1], are also recently employed
for the next-basket recommendation. POP ranks items based
on their popularity among all the users and recommend the
top-k most popular items to each user. POEP is the personal-
ized version of POP. It ranks items based on their popularity
of each user and recommends the top-k most popular items
of each user. These two popularity-based methods have
been demonstrated as strong baselines on the next-basket
recommendation in the recent work [1].

Unlike existing RNN-based approaches, M2 does not use
the Markov chains or complicated RNNs to model the tran-
sitions among items, or generate embeddings for users.
Instead, M2 models the transitions among items using a sim-
ple yet effective fully-connected layer, and explicitly models
users’ general preferences as the frequencies of items that
users have interactions with. Our experimental results dem-
onstrate the superior performance of M2 over the state-of-
the-art baseline methods. Our ablation study also shows
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that the fully-connected layer is more effective than RNNs
in terms of the recommendation performance.

2.2 Sequential Recommendation

Sequential recommendation is to generate the recommenda-
tion of the next items based on users’ historical interactions
as in a sequence. This task is closely related to the next-bas-
ket recommendation. Please refer to Section S1 in the Sup-
plementary Materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2022.31427731 for a detailed discussion
about the relations between these two tasks. The sequential
recommendation methods focus on capturing the sequential
dependencies among individual items instead of baskets. In
the last few years, numerous sequential recommendation
methods have been developed, particularly using neural
networks such as Recurrent Neural Networks (RNNs), Con-
volutional Neural Networks (CNNs) and attention or gating
mechanisms, etc. RNN-based methods such as User-based
RNN [10] explicitly integrates user characteristics into gated
recurrent units (GRUs) for personalized recommendation.
Skip-gram-based methods such as item2vec [11] and prod2-
vec [12] leverage the skip-gram model [13] to learn transi-
tion patterns among individual items. Recently, CNN-based
and attention-based methods have been developed for
sequential recommendation. For example, Tang et al. [14]
developed a convolutional sequence embedding recom-
mendation model (Caser), which uses convolutional filters
on the most recent items to extract union-level features.
Kang et al. [15] developed a self-attention based sequential
model (SASRec), which uses attention mechanisms to cap-
ture the most informative items in users’ historical interac-
tions to generate recommendations. Sun et al. [16] further
developed a bidirectional self-attention based sequential
model (BERT4Rec), which employs a bidirectional attention
mechanism to better model users’ historical interactions.
Recently, Ma et al. [17] developed a hierarchical gating net-
work (HGN), which uses gating mechanisms to identify
important items and generate recommendations. Peng et al.
[18] developed hybrid associations models (HAM), which
adapt the pooling mechanisms to model the association pat-
terns and synergies among items.

2.3 Session-Based Recommendation

Session-based recommendation seeks to generate the rec-
ommendations of the next items in the current session or
future sessions based on users’ interactions in historical ses-
sions. This task is also closely related to the next-basket rec-
ommendation. The session-based recommendation methods
focus on capturing the intra- or inter-session dependencies
to generate the recommendations [19]. In the last few years,
neural networks such as RNNs, attention mechanisms and
graph neural networks (GNNs) are employed in developing
session-based recommendation methods. RNN-based meth-
ods such as GRU4Rec [20] and GRU4Rec+ [21] employ gated
recurrent units (GRUs) to capture the users’ dynamic short-
term preferences over sessions. Attention-based methods

such as NARM [22] and STAMP [23] employ attentionmech-
anisms to identify the important items in recent sessions to
capture users’ short-term preferences. Recently, GNN-based
methods have also been developed for the session-based rec-
ommendation. For example, Wu et al. [24] developed a
GNN-based recommendation model (SR-GNN) to better
model the long-term dependency among sessions. Qiu et al.
[25] re-examined the item ordering in session-based recom-
mendations and developed a GNN-based model (FGNN) to
identify the items representing users’ short-term preferences
in sessions.

3 DEFINITIONS AND NOTATIONS

In this paper, the historical interactions (e.g., purchases,
check-ins) of the i -th user in chronological order are repre-
sented as a sequence of baskets Bi ¼ fbið1Þ; bið2Þ; � � �g, where
biðtÞ is a basket of one or more items in the t-th interaction.
Note that there may be multiple, same items in each basket.
The number of baskets in Bi and the number of items in
biðtÞ is denoted as Ti and niðtÞ, respectively. In this paper,
we consider all the baskets in users’ history and all the items
in each basket. We do not have a predefined maximum
length for the basket sequences, and maximum size for each
basket. When no ambiguity arises, we will eliminate i in Bi

/biðtÞ, Ti and niðtÞ. In this paper, all the vectors are by
default row vectors and represented using lower-case bold
letters; all the matrices are represented using upper-case let-
ters. The key notations are in Table 1.

4 METHODS

4.1 Modeling Important Factors in M2

M2 has three variants M2-p2, M2-gp2 and M2-gp2t. Fig. 1
presents the M2-p2 and M2-gp2 models. Fig. 2 presents the
M2-gp2t model. In these figures, each input basket is repre-
sented as a vector of n (i.e., the number of items) dimensions,
in which the value in each dimension represents the number
of the corresponding item in this basket. M2 generates
recommendations

for the next baskets of items for each user using three fac-
tors: 1) users’ general preferences, 2) items’ global popular-
ities and 3) the transition patterns among items across
baskets. These three factors will be used to calculate a rec-
ommendation score for each candidate item in the next bas-
kets. In this section, we will first describe how these three
factors are modeled. In the next Section, we will describe
how the three variant methods use these factors for
recommendations.

TABLE 1
Notations

notations meanings

m=n number of users/items
d dimension of latent representation of next basket
Bi=biðtÞ the basket sequence/the t-th basket of user i
Ti/niðtÞ the number of baskets in Bi/of items in biðtÞ
ri the vector representation of the basket biðTiÞ
r̂i the recommendation scores over all items for user i

1. Section references starting with “S” refer to the sections in the
Supplementary Materials, available online.
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4.1.1 Modeling Users’ General Preferences (UGP )

Previous studies have shown that users’ interactions are
significantly affected by their general preferences [1], [6],
which are also known as the long-term preferences in the
literature [6], [18]. For example, some users prefer items of
low price, while others may like luxurious items that could
be expensive. Therefore, we explicitly model the general
preferences of users, denoted as UGP, in M2. Existing meth-
ods [2] usually model users’ general preferences using the
embeddings of users. However, there is limited, if any,
validation showing that the learned embeddings could
accurately capture users’ preferences and to what extent.
Thus, in M2, we propose to use the frequencies of items that
each user has interactions with to represent users’ general
preferences. The intuition is that if a user has many inter-
actions with an item, the user has a high preference on the
item and the item represents the user’s preference.

Specifically, given each user’s historical interactions,
her/his general preference is represented as follows,

p ¼ ½p1; p2; � � � ; pn� 2 R1�n; (1)

where

pj ¼ nj=
X

j

nj; (2)

n is the total number of unique items among all the bas-
kets, and nj is the total number of interactions with item j
of the user among all her/his interactions, and thus pj � 0,P

j pj ¼ 1. Here, we do not weight the interactions on items
differently based on when they occur. This is because in
real applications, we typically only use the data in the
past, relatively short period of time (e.g., a few months) to
train recommendation models [26]. In this short period, we
can assume that most of the users will not change their
general preferences dramatically, and thus all their inter-
acted items will contribute to their UGP estimation evenly.
A distinct advantage of the preference representation UGP

as in Equation (1) compared to embedding representations
for user preferences is that the UGP representation is very
intuitive and easy to validate, and loses minimum user
information.

The formulation of users’ general preferences in Equa-
tion (1) is designed for the application scenarios that users
are likely to have multiple interactions with the same item
(e.g., online shopping, grocery shopping). For the other few
application scenarios that do not have this property (e.g.,
movie recommendation), our formulation may not be appli-
cable. We leave the investigation of these applications in the
future work.

4.1.2 Modeling Items’ Global Popularities (IGP )

It has been shown in the literature [1], [2], [27], [28] that the
items’ global popularities also significantly influence users’
purchases. Specifically, users may prefer popular items
than those non-popular ones due to the herd behaviors [29],
that is, they prefer to purchase items that are also purchased
by many others. In M2, the items’ global popularities are rep-
resented as in the following vector v,

v ¼ ½v1; v2; � � � ; vn� 2 R1�n; (3)

where n is the total number of unique items among all the
baskets, and vj is a learnable scalar to represent the global
popularities of item j. Intuitively, if item j is popular, vj will
be large. Here, following the ideas in Koren et al. [27], we
learn the popularity representations (i.e., vj ) for items via
learning and optimizing from data for better performance
rather than directly calculating them from data.

4.1.3 Modeling Transitions Among Items (TPI ) via an

Encoder-Decoder Framework (ed-Trans )

The transitions among items is another important factor in
inducing the next baskets of items that the users will be
interested in [2], [14], [18]. For example, if a user purchased
cat toys in a basket, she/he is likely to purchase cat food
and treats in the next baskets compared to wine and beers,
as there could be stronger transitions among cat items com-
pared to from cat items to alcohols. In M2, we explicitly
model the item transitions, denoted as TPI, and their effects
on the next baskets. Specifically, we model the item transi-
tions via an encoder-decoder based framework, denoted as
ed-Trans, which takes the individual items in the historical
interactions as input to predict the items in the next baskets.

ed-Trans Encoder. We first represent the items aggre-
gated over all the baskets of each user using a vector g

g ¼ ½g1; g2; � � � ; gj; � � � ; gn� 2 R1�n; (4)

where gj is the total number of interactions with item j of
the user among all her/his baskets, weighted by a time-
decay parameter

gj ¼
XT

t¼1

gT�t1ðitem j 2 bðtÞÞ; (5)

where g 2 ð0; 1� is the time-decay parameter to emphasize
the items in the most recent baskets more than those in early
baskets, and 1ðxÞ is an indicator function (1ðxÞ ¼ 1 if x is

Fig. 1. M2-p2 and M2-gp2 model architectures.

Fig. 2. M2-gp2tmodel architecture.
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true, otherwise 0). Existing methods usually use RNNs to
learn weights for different baskets. However, recommenda-
tion datasets are always super sparse so that RNNs may not
learn meaningful weights in such sparse datasets. Instead,
in M2, we leverage the fact that the recent interacted items
affect the next basket of items more significantly compared
to the items interacted much earlier [14], [15], and use the
time-decay factor g to explicitly assign and incorporate the
different weights.

Given g, we use a simple fully-connected layer as the
encoder to encode the hidden representation of the next bas-
ket h 2 R1�d as follows:

h ¼ tanhðgW Þ; (6)

where W 2 Rn�d is a learnable weight matrix and tanhðÞ is
the non-linear hyperbolic tangent activation function. Thus,
the fully-connected layer represents the transition from all
previous items to the items in the next basket. Here, we do
not explicitly normalize g because the learnable parameter
W will accommodate the normalization. Different from
RNN-based methods which learn the transition patterns in
a recurrent fashion and update the hidden states sequen-
tially at each time stamp, the aggregation through the fully-
connected layer in Equation (6) can be done much more effi-
ciently as the item representation in Equation (4) can be
done within a map-reduce framework [30] and thus in par-
allel. Therefore, ed-Trans could be more efficient than
RNN-based methods especially on modeling long interac-
tion sequences.

ed-Trans Decoder. Given h, we use a fully-connected
layer as the decoder to decode the recommendation scores s
for all the item candidates in the next basket as follows:

s ¼ softmaxðhAþ bÞ; (7)

where s 2 R1�n is a vector in which the j -th dimension has
the recommendation score of item j, A 2 Rd�n is a learnable
matrix and b is a bias vector. The bias vector can also be
interpreted as the items’ global popularities because it is
shared among all the baskets. Thus, ed-Trans could capture
both the transition patterns and items’ global popularities.

4.2 Calculating Recommendation Scores in M2

4.2.1 Recommendation Scores Using UGP and IGP

We propose a variant of M2 to generate recommendations by
combining the representations of users’ general preferences
p and items’ global popularities v only. This method is
referred to as mixed models with preferences and popular-
ities and denoted as M2-p2. In M2-p2, the recommendation
scores of item candidates are calculated as follows:

r̂ ¼ ð1� aÞpþ a softmaxðvÞ; (8)

where r̂ 2 R1�n is the vector of recommendation scores, and
a is a learnable weight to model the importance of users’
general preferences and items’ global popularities in users’
interactions. The softmax function is employed to normalize
v to be in the same range with p. The intuition here is that,
as shown in the literature [1], [2], users’ general preferences
and items’ global popularities significantly affect users’

interactions. Thus, combing these two important factors
should lead to reasonable recommendations. Based on the
scores, the items with the top-k largest scores will be recom-
mended into the next basket.

In M2-p2, in principle, a could be modeled as a tunable
parameter or a learnable weight. To be consistent with the
other M2 variants that will be presented in Sections 4.2.2 and
4.2.3, and to optimize performance, we model a as a learn-
able weight, and learn it in an end-to-end fashion.

4.2.2 Recommendation Scores Using Gating Networks

One possible limitation of M2-p2 could be that in M2-p2, we
use a single weight a for all the users. In this way, M2-p2 can
not capture the pattern that the weight could be different on
different users. To resolve this limitation, we follow the idea
of gating networks [17] to calculate personalized weight a.
Specifically, we calculate the a using p (Equation (1)) and v
(Equation (3)) as follows:

a ¼ sðpc> þ vq>Þ; (9)

where sðÞ is the sigmoid function, c> and q> are learnable
weight vectors. The intuition here is that the importance of
UGP and IGP (i.e., a ) would be learned from themselves (i.e.,
p and v ). The method with personalized weights is referred
to as mixed models with gated preferences and popularities,
denoted as M2-gp2.

4.2.3 Recommendation Scores Using UGP, IGP and TPI

Considering all the three important factors, we propose a
unified method with preferences, popularities and transi-
tions, denoted as M2-gp2t. In M2-gp2t we calculate the rec-
ommendation scores vector r̂ 2 R1�n using the
representation p (Equation (1)) generated from UGP and the
recommendation scores s (Equation (7)) from ed-Trans as
follows:

r̂ ¼ ð1� aÞpþ as; (10)

where, similarly with that in M2-gp2, a is calculated from p
(Equation (1)) and h (Equation (6)) as following:

a ¼ sðpc> þ hq>Þ; (11)

where, as presented in Section 4.2.2, sðÞ is the sigmoid func-
tion, c> and q> are learnable weight vectors. Please note
that as discussed in Section 4.1.3.2, the scores in s are gener-
ated using both items’ popularities and the transition pat-
terns. Thus, M2-gp2t uses all the three factors to make
recommendations. Also note that, as shown in Equation (7),
the vector s is already normalized to be in the same range
with p. Therefore, we do not need the softmax function for
the normalization in Equation (10).

4.3 Network Training

We minimize the negative log likelihood that the ground-
truth items in the next baskets have high recommendation
scores. The optimization problem is formulated as follows,

min
QQ

Xm

i¼1

�rilog ð̂rTi Þ þ �kQQk2; (12)
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where m is the number of users to recommend baskets to, ri
and r̂i are for the i -th user, QQ is the set of the parameters,
and � is the regularization parameter. Following previous
work [1], [3], we calculate the training error on the last bas-
ket in training data. The vector ri is the vector representa-
tion of the items in the last basket biðT Þ, in which the
dimension j is 1 if item j is in biðT Þ or 0 otherwise. Here, we
do not consider the frequencies of individual items in the
baskets (i.e, ri is binary), as we do not predict the frequen-
cies of items in the next baskets. We optimize Problem 12
using the Adagrad optimization method [31]. The parame-
ter tuning protocol and all the parameters for modeling are
reported in Section S3.

5 EXPERIMENTAL SETTINGS

5.1 Baseline Methods

We compare M2 with 5 state-of-the-art baseline methods on
next-basket recommendations: 1) POP [1] ranks items based
on their popularity among all the users, and recommends
the top-k most popular items. 2) POEP [1] ranks items based
on their popularity on each user and recommends the per-
sonalized top-kmost popular items. 3) Dream [3] uses RNNs
to model users’ preferences over time. It uses the most recent
hidden state of RNNs to generate recommendation scores
and recommends the items with top-k scores. 4) FPMC [2]
models users’ long-term preferences and the transition pat-
terns of items using the first-order markov chain and matrix
factorization. 5) Sets2Sets [1] adapts the encoder-decoder
RNNs to model the short-term preferences and the recurrent
behaviors of users. Please note that Sets2Sets achieves the
state-of-the-art performance on the next-basket recommen-
dation and outperforms other methods [2], [3], [32]. There-
fore, we compare M2 with Sets2Sets but not the methods
that Sets2Sets outperforms.

5.2 Datasets

We generate 4 datasets from 3 benchmark datasets TaFeng2,
TMall3, and Gowalla4 to evaluate the different methods.
TaFeng has grocery transactions in 4 months (i.e., 11/1/
2020 to 02/28/2020) at a grocery store and each basket is a
transaction of grocery items. TMall has online transactions
in 5 months (i.e., 07/01/2015 to 11/31/2015) and each bas-
ket is a transaction of products. Gowalla [33] is a place-of-
interests dataset and contains user-venue check-in records
with timestamps. Similarly to Ying et al. [34], we view the
check-in records in one day as a basket and focus on the
records in 10 months (i.e., 01/01/2010 to 10/31/2010).

Following previous work [34], we do the following filter-
ing to generate the datasets we will use in the experiments:
1) filter out the infrequent users with fewer than 10, 20 and
15 items from the original TaFeng, TMall and Gowalla data-
set, respectively, 2) filter out infrequent items interacted by
fewer than 10, 20 and 25 users from the TaFeng, TMall and
Gowalla dataset, respectively, and 3) filter out users with
fewer than 2 baskets. Out of the above three filtering steps,
each of the 3 original datasets will have frequent users and

items, and we denote the processed datasets still as TaFeng,
TMall and Gowalla. In order to better evaluate the methods
in real applications that have a large amount of users and
items, from the original TMall dataset, we also apply a
smaller threshold 10 on user frequency and item frequency
to generate another dataset, denoted as sTMall, with more
users and items retained. The statistics of the preprocessed
datasets are presented in Table 2. We noticed that the Dunn-
humby dataset5 and the Instacart dataset6 are also used in
the literature [1], [8]. However, Dunnhumby is a simulated
dataset and the Instacart dataset is not publicly available
now. Therefore we do not use these datasets in our experi-
ments. We discussed the limitations of these datasets in
detail in Section S6.

5.3 Experimental Protocol

Similarly to Ying et al. [34], we split the 4 datasets based on
cut-off times as shown in Fig. 3. Specifically, on TaFeng, we
use the transactions in the first 3 months as the training set,
the transactions in the following 0.5 month as the validation
set, and the transactions in the last 0.5 month as the testing
set. Similarly, on Gowalla, we use the records in the first 8
months as the training set, the records in the following 1
month as the validation set, and the records in the last 1
month as the testing set. On TMall and sTMall, we use the
transactions in the first 3.5 months as the training set, the
transactions in the following 0.5 month as the validation set,
and the transactions in the last 1 month as the testing set.
We split the datasets in this way to guarantee that all the
interactions in the testing set occur after the interactions in
the training and validation sets. Thus, the setting is close to
real use scenarios. A detailed discussion about different
experimental protocols is presented later in Section 7.1.

We denote the baskets in the training, validation and test-
ing sets as training, validation and testing baskets, respec-
tively. The users which have interactions in the training,
validation and testing sets are denoted as training, validation
and testing users, respectively. Please note that a user can be
both training and testing user if she/he has baskets in both
training and testing sets. During training, we only use the
interactions in the training baskets to estimate users’ general
preferences and to learn item transition patterns. There could
be items in testing or validation baskets that never appeared
in training baskets (i.e., cold-start items). In this case, we will
retain the baskets with such items. Since M2 and all the

TABLE 2
Dataset Statistics

dataset #items #baskets #users #items/bskt #bskt/user

TaFeng 10,829 97,509 16,788 6.72 5.81
TMall 21,812 360,587 28,827 2.41 12.51
sTMall 104,266 2,052,959 214,105 2.01 9.59
Gowalla 26,529 902,505 26,822 1.77 33.65

The columns #items, #baskets, #users, #items/bskt and #bskt/user correspond
to the number of items, the number of baskets over all users, the number of
users, the average number of items per basket and the average number of bas-
kets per user, respectively.

2. https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
3. https://tianchi.aliyun.com/dataset/dataDetail?dataId¼42
4. https://snap.stanford.edu/data/loc-Gowalla.html

5. https://www.dunnhumby.com/source-files/
6. https://www.instacart.com/datasets/grocery-shopping-2017
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baseline methods are not developed for the cold-start prob-
lem [35], the cold-start items will not get recommended but
the baskets with such items can still be evaluated due to
other items.

We tune the parameters using grid search and use the
best parameters in terms of recall@5 on the validation set
during testing for the M2 and all the baseline methods. Fol-
lowing previous work [14], [15], [17], during testing, we use
the interactions in both training and validation sets to train
the model with the optimal parameters identified at the vali-
dation set. Similarly to Hu et al. [1], we evaluate M2 and base-
line methods on three tasks: recommending the first next
basket, the second next basket and the third next basket.
Please note that in recommending the second next or third
next basket, during evaluation, the first or second testing
basket, respectively, of testing users will be used to update
the user’s general preference representation p (Equation (1))
and item transitions in g (Equation (4)). Also note that the
number of validation and testing users in these three tasks
could be different. In recommending the second next bas-
ket, only users with at least two validation or testing baskets
are used as validation or testing users, but users with only
one validation or testing basket will not be used in
evaluation.

5.4 Evaluation Metrics

We use recall@k, precision@k, and NDCG@k to evaluate the
different methods. For each user, recall measures the pro-
portion of all the ground-truth interacted items in a testing
basket that are correctly recommended. We denote the set
of k recommended items and the set of the items in the
ground-truth basket as Rk and S, respectively. Given Rk and
S, recall@k is calculated as follows:

recall@k ¼ jRk \ Sj
jSj ; (13)

where Rk \ S is the intersection between the two sets and
jSj denotes the size of the set S. Precision measures the pro-
portion of all the recommended items that are correctly rec-
ommended, and precision@k is calculated as follows:

precision@k ¼ jRk \ Sj
k

: (14)

We report in the experimental results the recall@k and pre-
cision@k values that are calculated as the average over all the
testing users. Higher recall@k and precision@k indicate bet-
ter performance. It is worth noting that although we use pre-
cision@k in our experiments, we argue that precision@kmay
not be a proper metric for evaluating next-basket recommen-
dationmethods as wewill discuss later in Section 7.2.

NDCG@k is the normalized discounted cumulative gain
for the top-k ranking. In our experiments, the gain indicates
whether a ground-truth item is recommended (i.e., gain is
1) or not (i.e., gain is 0). NDCG@k incorporates the positions
of the correctly recommended items among the top-k rec-
ommendations. Higher NDCG@k indicates the ground-
truth items are recommended at very top, and thus better
recommendation performance.

Besides these evaluation metrics, we also statistically
test the significance of the performance difference among
different methods via a standard t-test. Specifically, we
conducted t-test over the paired recall, NDCG and preci-
sion values from different methods. If the p-values are
smaller than a predefined threshold a (a = 0.05 in our
experiments), the performance difference of two methods
is considered statistically significant at 100(1-a)% confi-
dence level.

6 EXPERIMENTAL RESULTS

6.1 Overall Performance on the First Next Basket

Table 3 presents the overall performance at recall@k and
NDCG@k in recommending the first next basket of all the
methods on the 4 datasets. Due to the space limit, we report
the performance at precision@k in Section S4.1. In Table 3,
for each dataset, the best performance among M2 variants
(i.e., M2-p2, M2-gp2 and M2-gp2t ) is in bold, the best perfor-
mance among baseline methods (e.g., POP, POEP, Sets2Sets )
is underlined. and the overall best performance is indicated
by a dagger (i.e., y ). We report the parameters that achieve
the reported performance also in Section S3. For Sets2Sets,
we use the implementation provided by the authors. How-
ever, this implementation raises memory issues and cannot
fit in 16GB GPU memory on the largest dataset sTMall.
Therefore, we report out of memory (OOM) for Sets2Sets
on sTMall.

Table 3 shows that overall, M2-gp2t is the best performing
method on the task of recommending the first next basket.
In terms of recall@5, recall@10 and recall@20, M2-gp2t

achieves the best performance with significant improve-
ment compared to the second best method on TaFeng and
sTMall. On the TMall and Gowalla datasets, M2-gp2t also
achieves the best or second best performance at recall@5,
recall@10 and recall@20. Compared to the second best
method, M2-gp2t achieves on average 6.8%, 2.9% and 2.5%
improvement at recall@5, recall@10 and recall@20, respec-
tively, over all the datasets. In terms of NDCG@5,
NDCG@10 and NDCG@20, M2-gp2t achieves the best per-
formance on TaFeng, sTMall and Gowalla, and the second
best performance on the TMall dataset. In particular, on the
largest dataset sTMall, M2-gp2t achieves substantial
improvement of 10.8% on average over all the metrics com-
pared to the second best method. On the most widely used
benchmark dataset TaFeng, M2-gp2t also achieves signifi-
cant improvement of at least 2.3% over the second best
method at all the metrics. On Gowalla where many baseline
methods do not perform well, M2-gp2t is still slightly better
than the second best method M2-gp2. It is also worth noting
that, compared to the performance of the best baseline
methods (underlined in Table 3), M2-gp2t achieves statisti-
cally significant improvement over most of the metrics on 3

Fig. 3. M2-gp2t datasets splitting protocol.
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out of 4 datasets. On the TMall dataset, M2-gp2t still achieves
statistically significant improvement over the best baseline
methods at both recall@5 and recall@10. These results demon-
strate the strong performance of M2-gp2t. M2-gp2 is the second
best performing method in our experiments. It achieves the
second best or (near) the second best performance on all the
four datasets.Wenotice that POP, Dream and FPMCwork poorly
on theGowalla dataset. Thismight be due to the fact that these
methods do not really capture the personalized general pref-
erences of users. Recall that the Gowalla dataset is a place-of-
interests dataset, which contains user-venue check-in records
of users. Different users live in different places and could
interact with very different items. Thus, methods without
explicitly model users’ personalized general preferences
could notworkwell on this dataset.

6.1.1 Comparing M2-gp2tWith Model-Based Methods

Table 3 also shows that among the 4 model-based methods
Dream, FPMC, Sets2Sets and M2-gp2t, M2-gp2t consistently
and significantly outperforms Dream and FPMC on all the data-
sets. The primary difference among M2-gp2t, Dream and FPMC

is that M2-gp2t explicitly models users’ general preferences
using the frequencies of the items that each user has interac-
tions with, while Dream and FPMC implicitlymodel themusing
the hidden state of RNNs or user embeddings. Given the
sparse nature of recommendation datasets (Table 2), it is pos-
sible that the learned hidden states or user embeddings can-
not represent the user preferences well, as the signals of user
preferences are smoothed out due to data sparsity during the
recurrent updates, or by the pooling or weighting schemes
used to learn user embeddings as some other work also
noticed [18], [36], [37]. The superior performance of M2-gp2t
over Dream and FPMC on all the datasets demonstrates the
effect of explicitlymodeling users’ general preferences.

Table 3 shows that M2-gp2t significantly outperforms
Sets2Sets on all the datasets except TMall in terms of both
recall@k and NDCG@k. The primary differences between
M2-gp2t and Sets2Sets are 1) M2-gp2t explicitly models the
transition patterns among items using encoder-decoder-
based ed-Trans, while Sets2Sets implicitly models the
transition patterns using RNNs, and 2) when calculating the
recommendation scores, M2-gp2t learns a single weight on
each user (i.e., a in Equation (10)), but Sets2Sets learns dif-
ferent weights for different items on each user. Given the
sparse nature of the recommendation datasets, weights for
different items on each user may not be well learned [18],
[36]. Thus, such weights may not necessarily help better dif-
ferentiate user general preferences over items. In addition,
the learned weights over items may guide the model to learn
inaccurate general preferences of users, and thus degrade
the performance. We also notice that on TMall, M2-gp2t

underperforms Sets2Sets in terms of NDCG but outper-
forms Sets2Sets in terms of recall. This indicates that on
certain datasets, M2-gp2t could be more effective than
Sets2Sets on ranking the items of users’ interest on top
of the recommendation list, while less effective than
Sets2Sets on raking these items on the very top. How-
ever, Sets2Sets is very memory consuming, demon-
strated by out of memory (OOM) issues on the largest
dataset sTMall, which substantially limits its use in real,
large-scale recommendation problems.

6.1.2 Comparing M2-gp2tWith Popularity-Based

Methods

In Table 3, we also notice that M2-gp2t statistically signi-
ficantly outperforms the best popularity-based method
M2-gp2 on all the datasets. On average, it achieves 6.8%,
3.0%, 9.3% and 7.8% improvement over M2-gp2 in terms of
recall@5, recall@10, NDCG@5 and NDCG@10, respectively,
over all the datasets. Recall that the key difference between
M2-gp2t and M2-gp2 is that M2-gp2t models users’ general
preferences, items’ global popularities and the transition
patterns, whereas M2-gp2 only models users’ general prefer-
ences and items’ global popularities. These results demon-
strate the importance of transition patterns in sequence-
based next-basket recommendation.

TABLE 3
Performance Comparison on the Next Basket

For each dataset, the best performance among our proposed methods (i.e.,
M2-p2, M2-gp2 and M2-gp2t) is in bold, the best performance among the base-
line methods is underlined, and the overall best performance is indicated by a
dagger (i.e., y ). The row ”improv” presents the percentage improvement of the
best performing methods among M2-p2 , M2-gp2 and M2-gp2t (bold) over the
best performing baseline methods (underlined) in each column. The numbers
in the parentheses after the datasets represent the number of testing users in
the datasets. The ”OOM” represents the out of memory issue. The � indicates
that the improvement is statistically significant at 95 percent confidence level.
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6.1.3 Comparison Among Popularity-Based Methods

Among the four popularity-based methods POP, POEP, M2-p2

and M2-gp2, M2-gp2 achieves the best performance at most of
the metrics on all the 4 datasets. Between M2-gp2 and M2-p2,
M2-gp2 outperforms M2-p2 on the TaFeng and Gowalla data-
sets, and achieves similar performance with M2-p2 on the
TMall and sTMall datasets. In terms of recall@5, M2-gp2 out-
performs M2-p2 on all the datasets. In terms of recall@10 and
recall@20, M2-gp2 outperforms M2-p2 on the TaFeng and
sTMall datasets, and achieves similar performancewith M2-p2

on the TMall and Gowalla datasets. We also found a similar
trend on NDCG@k: for example, in terms of NDCG@5,
M2-gp2 outperforms M2-p2 on all the datasets except sTMall.
On sTMall, M2-gp2 achieves the same performance with
M2-p2. The difference between M2-gp2 and M2-p2 is that M2-gp2

learns personalized weights to combine users’ general prefer-
ences and items’ global popularities, while M2-p2 only learns
one suchweight for all the users. The substantial performance
improvement of M2-gp2 over M2-p2 demonstrates the impor-
tance of learning personalized weights. We also notice that
overall, M2-p2 consistently outperforms POP and POEP on all
the datasets over all the metrics. In terms of recall@5,

recall@10 and recall@20, M2-p2 consistently outperforms POP
and POEP at all the 4 datasets. For example, on the widely
usedTaFeng dataset, in terms of recall@10, M2-p2 achieves sig-
nificant improvement of 38.9% and 16.6% compared to POP

and POEP, respectively. Recall that the difference between
M2-p2, POP and POEP is that M2-p2 models both users’ general
preferences and items’ global popularities, while POP and
POEP only model one of them. The substantial improvement
of M2-p2 over POP and POEP demonstrates that items’ global
popularities and users’ general preferences are complemen-
tary. When learned together, they will enable better perfor-
mance than each alone. It is also worth noting that M2-gp2

outperforms the state-of-the-art model-based method
Sets2Sets at all the metrics on TaFeng and Gowalla. The
superior performance of M2-gp2 is a strong evidence that the
simple popularity-based methods could still be very effective
in next-basket recommendations.

6.2 Performance on the Second Next Basket

Table 4 presents the overall performance of different meth-
ods at recall@k and NDCG@k in recommending the second
next basket (i.e., the second basket in the testing set) on the 4
datasets. We also report the performance at precision@k in
Section S4.2. The parameter tuning protocol in this task is the
same as that in recommending the first next basket (Sec-
tion 6.1). As discussed in Section 5.3, when recommending
the second next basket, the first testing basket of users will be
used to update themodels. In addition, in this task, only users
with at least two testing baskets will be used as testing users.
Thus, the number of testing users in this task could be differ-
ent from that in recommending the first next basket. Specifi-
cally, as shown in Table 4, when recommending the second
next basket, we have 2,801, 5,109, 29,741 and 10,032 testing
users on TaFeng, TMall, sTMall andGowalla, respectively.

6.2.1 Overall Performance

As shown in Table 4, overall, in recommending the second
next basket, the performance of M2 and baseline methods
has a similar trend as that in recommending the first next
basket. In particular, M2-gp2t is still the best performing
method in this task. In terms of recall@5, M2-gp2t achieves
the best performance on all the 4 datasets. In terms of
recall@10, M2-gp2t achieves the best performance on the
sTMall and Gowalla datasets, and the second best perfor-
mance on the TaFeng and TMall datasets. We also found a
similar trend on NDCG@k: in terms of NDCG@5, M2-gp2t
achieves the best performance on the sTMall and Gowalla
datasets, and the second best or (near) the second best per-
formance on the TaFeng and TMall datasets. M2-gp2 is still
the second best performing method. In terms of recall@5
and recall@10, M2-gp2 achieves the best performance on the
TaFeng dataset, and the second best performance or (near)
the second best performance on the other 3 datasets (i.e.,
TMall, sTMall, Gowalla). In terms of NDCG@5 and
NDCG@10, M2-gp2 also achieves the second best or (near)
the second best performance on 3 out of 4 datasets (i.e.,
TaFeng, sTMall, Gowalla). It is also worth noting that on the
widely used TaFeng dataset, M2-gp2 significantly outper-
forms M2-p2 at 24.6%, 13.3%, 16.0% and 13.4% on recall@5,
recall@10, NDCG@5 and NDCG@10, respectively. As

TABLE 4
Performance on the Second Next Basket

The columns in this table have the same meanings as those in Table 3.
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discussed in Section 6.1.3, the difference between M2-gp2

and M2-p2 is that M2-gp2 learns personalized combine
weights, while M2-p2 learns one combine weight for all the
users. The significant improvement of M2-gp2 over M2-p2 fur-
ther demonstrates the importance of learning personalized
combine weights.

6.2.2 Comparing With the Performance on the Next

Basket

We also notice that the performance of those methods that
model users’ general preferences (e.g., POEP, M2-gp2 and
M2-gp2t ) increases as we recommend the baskets in the later
future (i.e., the second next basket). For example, on the larg-
est sTMall dataset, POEP has recall@5 value 0.0936 (Table 3)
in recommending the first next basket, while this value
increases to 0.1132 (Table 4) in recommending the second
next basket. This might be due to the fact that the testing
users with more than one basket in the testing set are in gen-
eral more active (i.e., have more baskets). Specifically, on
sTMall, the testing users in the experiments of recommend-
ing the first next basket have 9.6 baskets on average used for
training. However, the testing users in the experiments of
recommending the second next basket have 10.6 baskets on
average (i.e., 10.4% increasing). Thus, more baskets used for
model training enable methods which model users’ general
preferences tomore accurately estimate the general preferen-
ces of testing users, and thus achieve better performance for
the second next basket recommendation.

It is worth noting that although M2-gp2 significantly
underperforms M2-gp2t when recommending the first next
basket, M2-gp2 could achieve similar or even better perfor-
mance over M2-gp2t at some metrics when recommending
the second next basket. For example, on TaFeng, when rec-
ommending the first next basket, M2-gp2t achieves signifi-
cant improvement of 10.6%, 8.6% at recall@5 and recall@20
(Table 3) over M2-gp2. However, when recommending the
second next basket, M2-gp2 is able to achieve the same per-
formance with M2-gp2t at recall@5 (i.e., 0.1113 as in Table 4).
As just discussed, the testing users in recommending the
second next basket are in general more active than those in
recommending the first next basket. The similar perfor-
mance of M2-gp2 and M2-gp2t indicates that the interactions
of active users are more dominated by their general prefer-
ences and the global popularities of items. Thus, for active
users, the simple popularity-based methods could be very
effective. However, since in real applications, most of the
users are not active, it is still important to model the transi-
tion patterns in general recommendation applications.

6.3 Performance on the Third Next Basket

Table 5 presents the overall performance of methods at
recall@k andNDCG@k on the task of recommending the third
next basket. The performance at precision@k is reported in
Section S4.3. Please note that as discussed in Sections 5.3 and
6.2, the number of testing users in this task could be different
from that in recommending the first, and second next basket.
Specifically, as shown in Table 5, when recommending the
third next basket, we have 1,099, 1,461, 7,561 and 7,985 testing
users on TaFeng, TMall, sTMall and Gowalla, respectively.
Table 5 shows that overall, the performance of M2 and baseline

methods still has similar trend as that in recommending the
first and second next basket. M2-gp2t is still the best perform-
ing method. In terms of recall@5, M2-gp2t achieves the best
performance at 3 out of 4 datasets (i.e., TaFeng, sTMall and
Gowalla). On the TMall dataset, M2-gp2t also achieves the sec-
ond best performance. We also found a similar trend on
NDCG@k: in terms of NDCG@5, M2-gp2t also achieves the
best performance on 3 out of 4 datasets, and the second best
performance on the TMall dataset. M2-gp2 is still the second
best performingmethod. In terms of recall@5, M2-gp2 achieves
the best performance on the TMall dataset, and the second
best performance on the TaFeng and sTMall dataset. The
same trends as discussed in Section 6.2.1 could also be found
here. It is also worth noting that as shown in Table 5, in terms
of recall@k, the best M2 variant (i.e., M2-p2, M2-gp2 or M2-gp2t ),
statistically significantly outperforms the best baseline meth-
ods on 3 out of 4 datasets. On TMall, M2-gp2t still statistically
significantly outperforms the best baseline method POEP at
recall@5.

6.4 Performance Summary Among All the Tasks

Table 3, Table 4 and Table 5 together show that M2-gp2t is
the best performing method over all the 3 tasks. It

TABLE 5
Performance on the Third Next Basket

The columns in this table have the same meanings as those in Table 3.
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significantly outperforms the state-of-the-art baseline
method Sets2Sets at all the metrics over all the 3 tasks. For
example, in terms of recall@5, M2-gp2t achieves 15.5%, 25.4%
and 26.6% improvement on average over all the datasets
except sTMall in recommending the first, second and third
next basket, respectively. These results demonstrate the
strong ability of M2-gp2t in next-basket recommendation.
Table 3, Table 4 and Table 5 together also show that M2-gp2

achieves the second best performance over the 3 tasks. It is
worth noting that although M2-gp2 does not perform as well
as M2-gp2t, it still consistently outperforms the state-of-the-
art baseline method Sets2Sets over all the 3 tasks. These
results demonstrate the strong effectiveness of simple popu-
larity-basedmethods in next-basket recommendation.

6.5 Ablation Study

6.5.1 Comparing Different Factors in M2-gp2t

We conduct an ablation study to verify the effects of the dif-
ferent components (i.e., UGP, TPI ) in M2-gp2t. We present
the next basket recommendation results generated by UGP

and TPI alone, and their combination M2-gp2t in Table 6.
Note that UGP recommends the personalized most popular
items to each user, and thus it is identical to POEP. When
testing UGP, the final recommendation scores r̂ (Equa-
tion (10)) are identical to those based on users’ general pref-
erences in p (Equation (1)) (i.e., a =0 in Equation (10)).
When testing TPI, essentially it is to test ed-Trans and the
final recommendation scores are in s (Equation (7)) (i.e., a
=1 in Equation (10)).

Table 6 shows that UGP is a strong baseline for all the
methods on all the datasets. This indicates the importance
of users’ general preferences in the next-basket recommen-
dation. TPI does not outperform UGP in terms of recall@k on
all the datasets. We also found a similar trend on NDCG@k.
In terms of NDCG@k, UGP significantly outperforms TPI on
TaFeng and Gowalla and achieves similar performance
with TPI on the TMall and sTMall datasets. When TPI is
combined with UGP (i.e., M2-gp2t in Table 6), there is a nota-
ble increase compared to each individual TPI and UGP. This
may be because that in M2-gp2t, as UGP captures the general
preferences, TPI can learn the remaining, transition patterns

and items’ global popularities that cannot be captured by
UGP. In Table 6, M2-gp2t (i.e., UGP +TPI ) achieves the best
performance on all the 4 datasets. It also shows improve-
ment from UGP and TPI. This indicates that when learned
together, UGP and TPI are complementary and enable better
performance than each alone.

6.5.2 Comparing ed-Trans and RNN-Based Methods

We also notice that as shown in Table 3 and Table 6, ed-Trans
(i.e., the model to learn TPI ), an encoder-decoder based
approach (Section 4.1.3), on its own outperforms Dream (i.e.,
RNN-based method) on 3 out of 4 datasets i.e., TMall, sTMall
and Gowalla) at both recall@k and NDCG@k, and achieves
comparable results with Dream on the TaFeng dataset at
NDCG@k. For example, on TMall, ed-Trans achieves 0.0947
in terms of recall@5 (Table 6) compared to Dream with 0.0833
(Table 3), that is, ed-Trans is 13.7% better than Dream. Simi-
larly, in terms of recall@10 and recall@20, ed-Trans achieves
0.1045 and 0.1162 (Table 6), respectively, compared to Dream

with 0.0868 and 0.0927 (Table 3), respectively, that is,
ed-Trans achieves 20.4% improvement at recall@10 and
25.4% improvement at recall@20 compared to Dream. We also
found a similar trend on sTMall. In terms of recall@5,
ed-Trans achieves 8.9% improvement over Dream (0.0928 ver-
sus 0.0852) on sTMall. These results are strong evidence to
show that ed-Trans could outperform RNN-based methods
on benchmark datasets. It is worth noting that as shown in
Table 3 and Table 6, on Gowalla, ed-Trans achieves reason-
able performance, while Dream fails. As discussed in Sec-
tion 6.1, for doing good recommendations on Gowalla,
models should be able to learn users’ general preferences
from the interactions. The reasonable and poor performance
of ed-Trans and Dream, respectively, indicates that ed-Trans
could implicitly learn users’ general preferences, while RNN-
basedmethods might not. We also notice that ed-Trans on its
own does not work as well as Sets2Sets as shown in Table 3
and Table 6. However, this might be due to the reason that
Sets2Setsmodels both the transition patterns and users’ gen-
eral preferences, while ed-Trans does not explicitly model
users’ general preferences. When ed-Trans learned with UGP

together (i.e, M2-gp2t ), M2-gp2t outperforms Sets2Sets on all
the datasets as shown in Table 3. These results indicate that
ed-Trans could be more effective than the RNNs used in
Sets2Sets onmodeling transition patterns.

6.6 Analysis on Transition Patterns

We further analyze if M2-gp2t learns good weights a (Equa-
tion (10)) to differentiate the importance of UGP and TPI.
Fig. 4 presents the distribution of the weights a from the best
performing M2-gp2t models on the 4 datasets. Please note
that as presented in Section 4.1.1, only the items interacted
by the user will get non-zero recommendation scores in UGP,
while all the items could get non-zero recommendation
scores in TPI. As a result, for items with non-zero scores, the
scale of their scores might be different in UGP and TPI. and
thus, the absolute value of the weights on different compo-
nents may not necessarily represent the true importance of
the corresponding factors in users’ behavior. For example,
on TMall, users have higher weights on TPI than that on UGP.
It does not necessarily indicate that the transition patterns

TABLE 6
Ablation Study on the Next Basket

M2-gp2tis identical to UGP+TPI. The best and second best performance in each
dataset is in bold and underlined, respectivley.
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are more important than users’ general preference for the
recommendation on this dataset.

As shown in Fig. 4, on Gowalla, users’ weights on UGP are
much higher than that on the other datasets. This is consis-
tent with the observation that on Gowalla, users’ general
preferences play a more important role for recommendation
than that on the other datasets (shown in Table 3). This con-
sistency demonstrates that M2-gp2t is able to learn good
weights to differentiate the importance of UGP and TPI on
different datasets and application scenarios.

6.7 Cluster Analysis

We further evaluate if M2-gp2t really learns the transition
patterns among items. Specifically, we learn the weight
matrix W (Equation (6)) in M2-gp2t using the training and
validation baskets in the widely used TaFeng dataset on rec-
ommending the first next basket, and export the matrix for
the analysis. Note that the weight matrix W could be
viewed as an item embedding matrix, in which each row is
the embedding of a single item. Given W, we evaluate if
items with similar transition patterns will have similar
embeddings. To get the ground-truth transition patterns
among items, we construct a matrix T also from the training
and validation baskets in TaFeng. In T, Tij is the number of
times that item i in the previous baskets transits to item j in
the next basket. That is, the i -th row of T contains the items
that item i has transited to. Thus, T contains the ground-
truth transition patterns among items. After constructing
matrix T, we could get the items which have similar transi-
tion patterns by calculating the pairwise similarities.

Fig. 5, generated using t-SNE [38] method, presents the
item embeddings generated from M2-gp2t on the TaFeng
dataset. Specifically, we project the item embeddings inW to
the two-dimensional (2d) space using t-SNE, and then plot
the projected embeddings of items in this figure. In Fig. 5,
there are many well-formed clusters (e.g., C1, C2 ). We find
that generally, the items within the same cluster have similar
transition patterns. For example, the average pairwise similar-
ity of items in C1 and C2 is 25.7% and 11.4% higher than that

over all the itempairs, respectively. These results demonstrate
that the encoder-decoder framework (ed-Trans ) in M2-gp2t

could effectively capture the transition patterns among items.

6.8 Analysis on Diversity of Recommendations

We also evaluate the diversity of the recommendations from
different methods. Due to the space limit, we report the
results in Section S5. Generally, we find that M2-gp2t could
generate more diverse recommendations over all the base-
line methods except POEP. Considering both the quality and
diversity of the recommendations, M2-gp2t significantly out-
performs all the baseline methods, and could achieve supe-
rior performance in real applications.

7 DISCUSSIONS

7.1 Experimental Protocols

A commonly used experimental protocol in the literature [1]
is as follows. Users are randomly split into 5 or 10 folds to
conduct 5 or 10-fold cross validation. For each user in the
testing fold, her/his last basket in sequential order is used as
the testing basket, the other baskets are used as the training
baskets. For each user in the training folds, her/his last bas-
ket is used to measure training errors, the other baskets are
used to train themodel and generate recommendation scores
for the last basket. When absolute time information is absent
in the datasets, this experimental protocol enables full sepa-
ration among the training and testing sets, and approximates
real application scenario for each testing user. However,
when the absolute time information is present, which is the
case in most of the popular benchmark datasets including
TaFeng, TMall and Gowalla, this protocol will create artifi-
cial use scenario that deviates from that in real applications.
The issue is that following this protocol, a basket in the train-
ing set from one user may have a later timestamp than a bas-
ket in the testing set from another user, and therefore a later
basket is used to train a model to recommend an earlier bas-
ket, which is not realistic. Our protocol splits the training,
validation and testing sets based on an absolute cut-off time
for all the users, and thus avoids the above issue and is closer
to real application scenarios. Another widely used experi-
mental protocol [2], [3], [14], [18], [39] is that for each user,
her/his last and second last basket were used as the testing
basket and validation basket, respectively; the other baskets
are used as the training baskets. This protocol has the same

Fig. 4. Distributions of gating weights from M2-gp2t.

Fig. 5. Item embeddings from M2-gp2t (TaFeng).
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issue as discussed above. Here, we refer this protocol as the
order-based split protocol. We evaluate M2 and baseline
methods using this widely used but questionable order-
based split protocol, and report the results in Table S1. We
found that, under the order-based split protocol, M2 still
achieves superior performance over the best baseline meth-
ods on all the datasets overmost of the evaluationmetrics.

Another commonly used experimental setting [2], [3] is
to evaluate different methods in recommending the first
next basket. However, in real applications, the model is usu-
ally updated weekly or monthly, and thus would need to
recommend multiple baskets for active users before model
updates. In this case, the performance in recommending the
first next basket may not accurately represent the models’
effectiveness in real applications. In our experiments, we
also evaluate methods in the task of recommending a few
next baskets to more accurately and comprehensively evalu-
ate the model performance in real applications.

7.2 Evaluation Metrics

In the experiments, we use recall@k and NDCG@k to evalu-
ate different methods. These two metrics are important and
widely used for top-N recommendation [40], and also pop-
ular in sequential recommendations [15], [18], [39] and
next-basket recommendations [1], [2], [3]. Recall@k meas-
ures the proportion of all the ground-truth interacted items
in a testing basket that are also among top-k recommended
items. We believe this is a proper metric to use because in
the end, the recommendation methods aim to identify all
the items that the users will be interested in eventually, that
is, to maximize recall. In addition, recall values at different
top-k positions also indicate the ranking structures of rec-
ommended items, where we prefer the items that users are
interested in are ranked on top. NDCG also measures the
ranking positions of the items that users are interested in.
Higher NDCG@k values indicate that more users’ interested
items are ranked on top. Since in real applications, the users
will look at a subset of the recommendations from the top of
the recommendation list, we believe that evaluation metrics
that consider ranking positions are more useful and applica-
ble in real applications, and as discussed in Aggarwal [40]
(Chapter 7.5.5), NDCG is more suitable than ROC measures
or rank-correlation coefficients in distinguishing between
higher-ranked and lower-ranked items.

The metric precision@k is also a popular metric in evalu-
ating recommendations. This metric, however, may not be
proper for next-basket recommendation evaluation. First of
all, precision@k does not consider the ranking positions of
the correctly recommended items. Second, the value of pre-
cision@k is “not necessarily monotonic in k because both
the numerator and denominator may change with k differ-
ently”, as discussed in Aggarwal [40] (Chapter 7.5.4). In
addition, precision@k could be strongly biased by basket
sizes: for small baskets, precision@k could be small even if
all the items are correctly recommended. For example, if all
the items in a size-2 basket are correctly recommended, pre-
cision@10 is only 0.2. However, for large baskets, pre-
cision@k can be large even only a small portion of the items
are correctly recommended. For example, if 5 items of a
size-20 basket are correctly recommended, that is, only 25%
of the items are correctly recommended, precision@10 is 0.5.

When only considering precision@k, we may prefer the sec-
ond recommendation, even thought it is half way to its best
possible results (i.e., correctly recommend 10 among top-10
recommended items, with precision@10=1.0), but the first
recommendation has already achieved its best possible
results. Recall@k alleviates such issues with a normalization
using basket size. Therefore, precision and other precision-
based metrics (e.g., AUC, F1) may not be proper for evaluat-
ing next-basket recommendation methods. However, to be
comprehensive, we still use this metric in our experiments
and report the results in Section S4.

8 CONCLUSION

In this paper, we presented novel M2 models that conduct
next-basket recommendation using three important factors:
1) users’ general preferences, 2) items’ global popularities
and 3) the transition patterns among items. Our experimen-
tal results in comparison with 5 state-of-the-art next-basket
recommendation methods on 4 public benchmark datasets
demonstrate substantial performance improvement from M2

in both the next basket recommendation (improvement of
up to 19.0% at recall@5) and the next a few baskets recom-
mendation (improvement of up to 14.4% at recall@5). Our
ablation study demonstrates the importance of users’ general
preferences in next-basket recommendations, and the com-
plementarity among all the factors in M2. Our ablation study
also demonstrates that the simple encoder-decoder based
framework ed-Trans (Section 4.1.3) is more effective than
RNNs on modeling the transition patterns in benchmark
datasets (improvement as much as 20.4% at recall@5). Our
analysis on the learned item embedding matrix further dem-
onstrates that ed-Trans could effectively capture the
ground-truth transition patterns among items.

One potential limitation of M2 and the other data-driven
basket recommendation methods is that the recommended
items may not form realistic baskets. For example, the
method may recommend ten brands of milk as a basket to
users. However, in practice, users rarely purchase together
ten brands in one basket. Tomitigate this potential limitation
without sacrificing the recommendation performance, we
may need to carefully balance the modeling of item comple-
mentarities (additional discussions in Section S7) and the
other important factors. We leave the investigation of this
problem in our future work. In addition to this limitation,
another future direction could be to extend M2 for the cold-
start problem.We also leave the investigation of this problem
as in our future work.
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