
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XX XXXX 1

Heterogeneous Graph Representation Learning
with Relation Awareness
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Abstract—Representation learning on heterogeneous graphs aims to obtain meaningful node representations to facilitate various
downstream tasks, such as node classification and link prediction. Existing heterogeneous graph learning methods are primarily
developed by following the propagation mechanism of node representations. There are few efforts on studying the role of relations for
improving the learning of more fine-grained node representations. Indeed, it is important to collaboratively learn the semantic
representations of relations and discern node representations with respect to different relation types. To this end, in this paper, we
propose a Relation-aware Heterogeneous Graph Neural Network, namely R-HGNN, to learn node representations on heterogeneous
graphs at a fine-grained level by considering relation-aware characteristics. Specifically, a dedicated graph convolution component is
first designed to learn unique node representations from each relation-specific graph separately. Then, a cross-relation message
passing module is developed to improve the interactions of node representations across different relations. Also, the relation
representations are learned in a layer-wise manner to capture relation semantics, which are used to guide the node representation
learning process. Moreover, a semantic fusing module is presented to aggregate relation-aware node representations into a compact
representation with the learned relation representations. Finally, we conduct extensive experiments on a variety of graph learning
tasks, and experimental results demonstrate that our approach consistently outperforms existing methods among all the tasks.

Index Terms—Heterogeneous graph, relational graph, representation learning, information fusion
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1 INTRODUCTION

H ETEROGENEOUS graphs are pervasive in real-world
scenarios, such as academic networks, e-commerce

and social networks [1], [2]. Learning rich information in
heterogeneous graphs such as meaningful node representa-
tions could facilitate various tasks, including node classifi-
cation [3], [4], node clustering [5], link prediction [6], [7] and
item recommendation [8].

In heterogeneous graphs, nodes are usually connected
with different types of neighbors via different types of
relations. Take the heterogeneous academic graph in Figure
1 as an example, a target paper node is connected with
nodes of authors, papers, fields and venues via ”is writ-
ten by”, ”is cited by”, ”belongs to” and ”is published at”
relations, respectively. Different types of relations can reflect
disparate characteristics of the target nodes. For instance,
the ”belongs to” relation often reveals the paper’s research
topic, and the ”is published at” relation tends to indicate
the paper’s technical quality. Therefore, it is essential to
explicitly capture the underlying semantics of relations and
learn relation-aware node representations by maintaining a
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Fig. 1. Motivation illustration. For a target node (see the central paper
node), it is necessary to explicitly learn disparate representations of
the target node with respect to different relations. Moreover, it is also
important to learn the representations of relations and fuse the relation-
aware representations of target nodes semantically.

group of relation-specific node representations to encode
more fine-grained information. The learned relation-aware
node representations can reflect node characteristics with
regard to each specified relation and make adaptive contri-
butions of different relations for various downstream tasks.
When estimating the popularity of papers, the ”belongs to”
relation that conveys the trending research topics would be
more important. When we want to infer the paper category,
the ”is published at” relation may help more because it
reflects whether a paper is more relevant to theoretical
analysis or applied sciences.

However, this task is challenging in how to design a
framework to ponder on the roles of nodes and relations in
heterogeneous graphs in a collaborative manner. We sum-
marize the relevant existing methods in the following three
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major ways. The first way falls into applying Graph Neural
Networks (GNNs) for representation learning on graphs.
Recent GNNs, including GCN [9], GraphSAGE [10] and
GAT [11], have shown the superiority in modelling graph-
structured data. However, most GNNs were designed for
homogeneous graphs with only one type of nodes and one
type of edges, and they cannot directly handle different
types of nodes and relations in heterogeneous graphs.

The second way focuses on designing specialized GNNs
to learn node representations in heterogeneous graphs. [12]
designed HAN by leveraging pre-defined meta-paths and
the attention mechanism to learn on heterogeneous graphs.
[13] presented HetGNN to consider the heterogeneity of
node features and neighbors using Bi-LSTMs. [14] designed
type-aware attention layers in HetSANN to study on neigh-
boring nodes and associated edges with different types.
[15] introduced HGT to investigate heterogeneous graphs
using type-specific parameters based on the Transformer
[16]. Although these methods provide some insights on
heterogeneous graph learning, they primarily capture the
characteristics of nodes. The relation semantics, which are
also essential, have not been explicitly studied yet.

The third way is founded on modelling the properties of
relations, which also carry essential information in graphs.
RGCN [17] was proposed to deal with multiple relations
in knowledge graphs. [18] designed RSHN to learn on the
constructed edge-centric coarsened line graph to tackle the
relation diversity. [19] presented RHINE to handle the affil-
iation and interaction relations. [20] introduced GATNE to
model different types of relations between users and items.
[21] proposed MBGCN to capture multi-typed user behav-
iors by embedding propagation layers. While promising,
these relation-centered methods still fail to explicitly learn
relation semantics and the features of nodes with different
types are not well discriminated.

To this end, we propose a Relation-aware Heterogeneous
Graph Neural Network (R-HGNN), to learn not only fine-
grained node representations according to different types of
relations, but also the semantic representations of relations.
Specifically, we first design a graph convolution module
to propagate information on each relation-specific graph
separately and learn node representation specified to the
corresponding relation. Then, we present a cross-relation
message passing module to improve the interactions of
node representations across different relations. Next, the
semantic representations of relations are explicitly learned
layer by layer to guide the node representation learning
process. Finally, to facilitate downstream tasks, the relation-
aware node representations are semantically aggregated
into a compact representation based on the learned relation
representations. Extensive experiments are conducted on
various graph tasks and the results show that our approach
outperforms existing methods consistently among all the
tasks. Our key contributions include:

• We propose a relation-aware node representation
learning method. For each node, we derive a fine-
grained representation from a group of relation-
specific node representations, where each relation-
specific representation reflects the characteristics of
the node with regard to a specified relation.

• Accompanied with the relation-aware node represen-
tation learning process, we also provide a parallel
relation representation learning module to learn the
semantic representations of relations and guide the
node representation learning process collaboratively.

• A semantic fusing module is proposed to aggregate
relation-aware node representations into a compact
representation to facilitate downstream tasks, consid-
ering the semantic characteristics of relations.

The rest of this paper is organized as follows: Section 2
summarizes previous research related to the studied prob-
lem. Section 3 formalizes the studied problem. Section 4
presents the framework and introduces each component of
our model. Section 5 evaluates the proposed model through
experiments. Finally, Section 6 concludes the entire paper.

2 RELATED WORK

This section reviews existing literature related to our work,
and also points out the differences of previous studies with
our research.

Graph Mining. Over the past decades, a great number of
efforts have been made on graph mining. Classical methods
based on manifold learning mainly focus on reconstructing
graphs, such as Locally Linear Embedding (LLE) [22] and
Laplacian Eigenmaps (LE) [23]. Inspired by the Skip-gram
model [24], more advanced methods were proposed to
learn representations of nodes in the network, including
DeepWalk [25], node2vec [26] and metapath2vec [3]. These
methods first adopt random walk strategy to generate se-
quences of nodes and then use Skip-gram to maximize co-
occurrence probability of nodes in the same sequence. How-
ever, the above methods only studied on the graph topology
structure and could not consider node attributes, resulting
in inferior performance. These methods are outperformed
by the recently proposed GNNs, which could handle node
attributes and the graph structure simultaneously.

Graph Neural Networks. Recent years have witnessed
the success of applying GNNs in various applications, such
as node classification [9], [10], graph classification [27],
traffic prediction [28], and recommendation systems [29],
[30], [31]. GNNs first propagate information among nodes
and their neighbors, and then provide node representa-
tions by aggregating the received information. Generally,
GNNs could be divided into spectral-based and spatial-
based methods. As a spectral-based method, GCN [9] in-
troduces a localized first-order approximation and performs
convolution in the Fourier domain. As spatial-based meth-
ods, GraphSAGE [10] propagates information in the graph
domain directly and utilizes different functions to aggregate
neighbors’ information. GAT [11] leverages the attention
mechanism to adaptively select more important neighbors.
However, most existing GNNs were designed for homoge-
neous graphs, and could not handle different types of nodes
and relations in heterogeneous graphs.

Relational Graph Learning. There are some attempts to
investigate the relations in graphs in recent years. [17] pre-
sented RGCN to model the relations in knowledge graphs
by employing specialized transformation matrices for each
relation type. [18] designed RSHN to handle various rela-
tions by first building edge-centric coarsened line graph to
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describe relation semantic information and then using the
learned relation representations to aggregate neighboring
nodes. [19] first conducted empirical studies to divide re-
lations into two categories, i.e., the affiliation relations and
the interaction relations, and then introduced RHINE to
deal with these relations. [20] proposed GATNE to capture
the multi-type interactions between users and items, which
could support both transductive and inductive learning.
In the field of recommendation systems, several studies
focused on the multi-behavior recommendation problem
where multiple behaviors of users could be seen as different
relations between users and items. [32] introduced MGNN
to learn both behavior-shared and behavior-specific embed-
dings for users and items to model the collective effects
of multi-typed behaviors. [21] first constructed a graph to
represent multi-behavior data and then designed MBGCN
to learn the strength as well as semantics of behaviors
by embedding propagation layers. [33] proposed KHGT to
study on knowledge-aware multi-behavior graph, which
captured both type-specific user-item interactive patterns
and cross-type behavior dependencies. Although the above
methods focused on the modelling of relations, the semantic
representations of relations are still not explicitly learned.
Moreover, the features associated with different types of
nodes in heterogeneous graphs are not well discriminated.

Heterogeneous Graph Learning. Recently, a number of
efforts aimed to design GNNs for heterogeneous graphs
learning. [12] presented HAN to learn the importance of
neighbors and multiple hand-designed meta-paths based on
an attention mechanism. [34] considered the intermediate
nodes in meta-paths and proposed MAGNN to aggregate
the intra-meta-path and inter-meta-path information. Het-
GNN [13] first adopts a random walk strategy to sample
neighbors and then uses specialized Bi-LSTMs to integrate
heterogeneous node features and neighboring nodes. [14]
designed HetSANN to learn on different types of neighbor-
ing nodes as well as the associated edges through type-
aware attention layers, which could directly encode the
graph information via a dedicated attention mechanism.
Based on the architecture of Transformer [16], [15] intro-
duced HGT to learn the characteristics of different nodes
and relations with type-specific parameters. However, the
above methods are mostly developed by following the prop-
agation mechanism of node representations, and the role of
relations has not been comprehensively exploited yet.

Different with the above mentioned methods, we con-
sider the role of relations to improve the learning of more
fine-grained node representations in heterogeneous graph
learning. In particular, our approach could collaboratively
learn both relation-aware node representations and seman-
tic representations of relations.

3 PRELIMINARIES

This section provides the definitions of heterogeneous
graphs as well as the formalization of the studied problem.

3.1 Definitions

Definition 1. Heterogeneous Graph. A heterogeneous graph is
defined as G = (V, E ,A,R) with a node type mapping function

φ : V → A and an edge type mapping function ψ : E → R,
where V , E , A and R correspond to the set of nodes, edges, node
types and edge types, respectively. Each node v ∈ V and each edge
e ∈ E belong to one specific type in A and R, i.e., φ(v) ∈ A and
ψ(e) ∈ R. Each heterogeneous graph has multiple node or edge
types such that |A|+ |R| > 2.

Example. As shown in Figure 1, a heterogeneous aca-
demic graph contains multiple types of nodes (i.e., papers,
authors, fields and venues) and relations (e.g., ”is written
by” relation between papers and authors, ”belongs to”
relation between papers and fields).

Definition 2. Relation. A relation represents the connecting
pattern of the source node, the corresponding edge and the target
node. Specifically, for an edge e = (u, v) linked from source
node u to target node v, the corresponding relation is denoted by
〈φ(u), ψ(e), φ(v)〉. Naturally, the inverse relation is represented
by
〈
φ(v), ψ(e)−1, φ(u)

〉
in this paper.

Example. In Figure 1, the relations consist of ”is written
by”, ”is cited by”, ”belongs to” and ”is published at”. In this
paper, we study the role of relations and learn relation-aware node
representations.

3.2 Problem Formalization
Given a heterogeneous graph G = (V, E ,A,R), representa-
tion learning on heterogeneous graph aims to learn a func-
tion f : V → Rd to embed each node into a d-dimensional
representation with d � |V |. The learned representations
should capture both node features and relation information
to facilitate various tasks, such as node classification, node
clustering and link prediction.

4 METHODOLOGY

This section first presents the framework of the proposed
model and then introduces each component step by step.

4.1 Framework of the Proposed Model
The framework of the proposed model is shown in Figure
2, which takes a sampled graph G for the target node with
node feature matrices as the input and provides the low-
dimensional node representation hv for v ∈ V as the output,
which could be applied in various downstream tasks.

The proposed model consists of four components:
relation-specific node representation learning, cross-relation
message passing, relation representation learning and
relation-aware representations fusing. Originally, the sam-
pled heterogeneous graph for the target node is decom-
posed into multiple relation-specific graphs based on the
types of relations. The first component performs graph
convolution to learn unique node representations from each
relation-specific graph separately. The second component
establishes connections to improve the interactions of node
representations across different relations. The third compo-
nent explicitly learns relation representation in a layer-wise
manner, and uses them to guide the node representation
learning process. The fourth component aims to aggregate
relation-aware node presentations into a compact represen-
tation considering the semantic characteristics of relations
to facilitate downstream tasks, such as node classification,
node clustering, and link prediction.
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Fig. 2. Framework of the proposed model. R-HGNN could collaboratively learn relation-aware node representations for target node P1 (i.e., hL
P1,r1

,
hL
P1,r2

and hL
P1,r3

) as well as the relation representations for r1, r2 and r3 (i.e., hL
r1

, hL
r2

and hL
r3

). Finally, a compact representation hP1
for node

P1 is provided to facilitate downstream tasks.

4.2 Relation-specific Node Representation Learning
As shown in Figure 1, in heterogeneous graphs, a target
node is usually associated with multiple relations. Existing
heterogeneous graph learning methods are primarily de-
signed by following the propagation mechanism of node
representations, while the role of relations is not explicitly
exploited. Therefore, we aim to learn node representations
considering the relation-aware characteristics, which indi-
cates that each node is associated with a relation-specific
representation to reflect the characteristics of the node with
regard to the corresponding relation.

To learn the relation-specific node representation for a
target node, we first decompose the heterogeneous graph
G into multiple relation-specific graphs {Gr, r ∈ R} based
on the relation types. Note that the inverse relation r−1 is
also added in graph Gr to allow the two connected nodes
propagate information from each other. Then, we design a
dedicated graph convolution module to learn unique node
representations from each relation-specific graph. Finally,
we present a weighted residual connection to combine
the target node features and the aggregated neighboring
information adaptively. Details of the two modules are
introduced as follows.

Relation-specific Convolution. The process of the con-
volution on each relation-specific graph is shown in Figure
3. Mathematically, we first project source node u, target node
v and relation ψ(e)1 into their latent spaces via the node-
type and relation-type specific transformation matrices via
the following equations,

clu,ψ(e) = W l
φ(u)h

l−1
u,ψ(e), (1)

clv,ψ(e) = W l
φ(v)h

l−1
v,ψ(e), (2)

clψ(e) = W l
ψ(e)h

l−1
ψ(e), (3)

where W l
φ(u), W l

φ(v) and W l
ψ(e) are type-specific trainable

transformation matrices for source node u, target node v and
relation ψ(e) at the l-th layer, respectively. hl−1

u,ψ(e), hl−1
v,ψ(e)

1. Since each edge type is unique in heterogeneous graphs, we use
edge type ψ(e) to denote the relation 〈φ(u), ψ(e), φ(v)〉 for simplicity,
unless otherwise stated.

Fig. 3. Illustration of the convolution on relation-specific graph Gr3 .
Activation functions are omitted for simplicity.

and hl−1
ψ(e) are the representations of source node u, target

node v and relation ψ(e) in the corresponding relation-
specific graph at layer l − 1. We set h0

u,ψ(e), h0
v,ψ(e) and

h0
ψ(e) to their original features xu, xv and xψ(e) initially.

The original node features xu and xv are usually given by
the graph. The original relation feature xψ(e) is represented
in one-hot encoding, where the entry of 1 corresponds to the
relation type. Then we calculate the normalized importance
of source node u to target node v by

sψ(e),l
v,u = LeakyReLU

(
clψ(e)

> [
clv,ψ(e), c

l
u,ψ(e)

])
, (4)

αψ(e),l
v,u =

exp
(
s
ψ(e),l
v,u

)
∑
u′∈Nψ(e)(v) exp

(
s
ψ(e),l
v,u′

) , (5)

where [·, ·] is the concatenation operation, Nψ(e)(v) denotes
the set of v’s neighbors with relation ψ(e). Finally, the in-
formation of v’s neighbors with relation ψ(e) is aggregated
with the learned importance as follows,

z̃lv,ψ(e) = ReLU

 ∑
u∈Nψ(e)(v)

αψ(e),l
v,u · clu,ψ(e)

 . (6)

It is worth mentioning that previous research design train-
able parameters in each layer separately to aggregate neigh-
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bor information, which may decrease the correlations of
layers. To improve the layer relevance, we leverage the
relation representations, which are propagated in a layer-
wise manner (elaborate latter in Section 4.4), to calculate
the importance of target node’s neighbors. Since the relation
representations are propagated layer by layer, the interac-
tions between adjacent layers could be enhanced.

Weighted Residual Connection. In addition to aggre-
gating neighbor information by the relation-specific con-
volution, the features of the target node are also assumed
to be important, because they reflect the node properties
inherently. However, simply incorporating the target node
with and neighbor information via summation could not
distinguish their different importance.

Hence, we combine the target node features and the
aggregated neighbor information via a residual connection
[35] with trainable weight parameters by

zlv,ψ(e) = λlφ(v) · z̃lv,ψ(e) +
(

1− λlφ(v)

)
·W l

φ(v),alignh
l−1
v,ψ(e),

(7)
where λlφ(v) controls the combination importance and is
trainable during the training process. W l

φ(v),align is used
to align the dimensions of z̃lv,ψ(e) and hl−1

v,ψ(e). Due to the
design of trainable importance, our model could aggregate
the target features and neighbor information adaptively.

4.3 Cross-relation Message Passing

Through the above relation-specific node representation
learning component, we could obtain multiple representa-
tions of the target node which are specific to relation types.
In fact, different relations that the target node interacts with
tend to be correlated with each other. Treating the node rep-
resentations under each relation disparately would neglect
the relation interactions and lead to inferior performance,
which is empirically validated in Section 5.8. Therefore,
it is necessary to propagate the messages across different
relations to provide more informative node representations.
However, naive pooling operations across relations become
infeasible because they fail to discern the node represen-
tations with regard to different relation types. In this paper,
we establish connections of node representations to improve
message passing across different relations and automatically
distinguish the importance of relations.

Formally, let R(v) denote the set of relations that node
v associated with. Given the learned node representations
of v with respect to each relation, i.e.,

{
zlv,r, r ∈ R(v)

}
, the

message passing between relation ψ(e) and the relations in
R(v) is implemented by

hlv,ψ(e) =
∑

r∈R(v)

βlψ(e),r · zlv,r, (8)

where βlψ(e),r is the normalized relevance of relation r to
relation ψ(e) at the l-th layer, and it is calculated by

βlψ(e),r =
exp

(
LeakyReLU

(
qlψ(e)

>
zlv,r

))
∑
r′∈R(v) exp

(
LeakyReLU

(
qlψ(e)

>
zlv,r′

)) . (9)

qlψ(e) is the trainable attention vector specific to relation ψ(e)
at the l-th layer, which is used to control the information

flow between relation ψ(e) and the relations in R(v). By
establishing the connections of node representations across
relations, each unique representation specific to the corre-
sponding relation could contact with other relations and
become more informative.

4.4 Relation Representation Learning
As illustrated in Section 1, relations reflect the connecting
patterns of nodes and carry rich information. Therefore, in
addition to learning relation-aware node representations by
a specialized node representation propagation mechanism
through the above two components, our approach also
founds on the semantic characteristics of relations, which
are rarely studied in existing methods. It is worth noticing
that although existing methods like HAN, RGCN and HGT
design trainable parameters specific to meta-paths or rela-
tions to capture such characteristics, they fail to focus on the
role of relations explicitly, which indicates that the semantic
representations of different relations are ignored.

To explicitly learn the relation semantic representations,
we propose a general propagation mechanism for relation
representations, which could be formalized as

hlψ(e) = PROPAGATEl(hl−1
ψ(e), extra). (10)

PROPAGATEl(·) represents the propagation mechanism
to update relation representations at layer l, which could be
achieved by a succinct linear propagation or a sophisticated
gated updating propagation [36]. extra denotes the inputs
except for the relation representation hl−1

ψ(e), such as the
hidden states of relations in the gated updating propagation.
In this work, we implement the relation propagating mech-
anism without considering extra and rewrite Equation (10)
as follows,

hlψ(e) = W l
ψ(e),updh

l−1
ψ(e) + blψ(e),upd, (11)

where W l
ψ(e),upd and blψ(e),upd are the trainable parameters

to update the representations for relation ψ(e) at layer l. The
relation representations could not only capture the semantic
characteristics of relations, but also guide the learning pro-
cess of node representations, making nodes and relations to
be collaboratively learned (introduced in Section 4.2).

4.5 Relation-aware Representations Fusing
We define that a R-HGNN layer is composed of the afore-
mentioned three components and stack L layers to receive
information from multi-hop neighbors. Finally, the L layers
could provide relation-aware node representations for target
node v, i.e.,

{
hLv,r, r ∈ R(v)

}
, as well as the representations

of relations associated with v, that is,
{
hLr , r ∈ R(v)

}
. For

downstream tasks, a compact node representation is usually
required. One could apply simple pooling operations (e.g.,
average or max pooling) on the relation-aware representa-
tions to obtain the compact representation, but such opera-
tions fail to consider the importance of node representations
across different relations (empirically validated in Section
5.8). Therefore, we design a semantic fusing component
to aggregate the relation-aware node representations into
a compact node representation to facilitate various down-
stream tasks.
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In particular, this component takes
{
hLv,r, r ∈ R(v)

}
and{

hLr , r ∈ R(v)
}

as inputs, and provides a compact rep-
resentation hv for node v by a relation-aware attention
mechanism via the following equations,

γv,r =
exp

(
LeakyReLU

((
Vrh

L
v,r

)>
Erh

L
r

))
∑
r′∈R(v) exp

(
LeakyReLU

((
Vr′hLv,r′

)>
Er′hLr′

)) ,
(12)

hv =
∑

r∈R(v)

γv,r · VrhLv,r, (13)

where γv,r represents the learned importance of relation r
to node representation hv . Vr and Er represent the trans-
formation matrix for node representation hLv,r and relation
representation hLr , respectively. Finally, the compact node
representation hv are obtained through the weighted aggre-
gation using the learned relation importance, which could
be applied in downstream tasks. It is worth noticing that
the relation-aware node representations are semantically
aggregated by considering the relation representations, and
such a design is in line with the motivation of our approach,
that is, investigating on the role of relations to improve the
learning of node representations.

4.6 End-to-End Learning Process

We build the proposed R-HGNN by first stacking L R-
HGNN layers to learn relation-aware node representations
and then employing the relation-aware representations fus-
ing component to integrate multiple representations compo-
nent into a compact representation. We also adopt the multi-
head attention mechanism to enhance the model capacity
and make the training process more stable, where the out-
puts of different heads are combined via the concatenation
operation. The proposed R-HGNN could be trained in an
end-to-end manner with the following strategies.

Semi-supervised learning strategy. For tasks where
the labels are available (e.g., node classification), R-HGNN
could be optimized by minimizing the following cross en-
tropy loss,

L = −
∑

v∈Vlabel

C∑
c=1

yv,c · log ŷv,c, (14)

where Vlabel denotes the set of labeled nodes. yv,c and ŷv,c
represent the ground truth and predicted possibility of node
v at the c-th dimension. ŷv,c can be obtained from a classifier
(e.g., a single-layer neural network), which takes hv as the
input and provides ŷv as the output.

Unsupervised learning strategy. For tasks without us-
ing node labels (e.g., link prediction), R-HGNN could be
optimized by minimizing the binary cross entropy with
negative sampling strategy in Skip-gram [24], which takes
representations of paired nodes as the inputs,

L = −
∑

(v,u)∈ΩP

log σ
(
h>v hu

)
−

∑
(v′,u′)∈ΩN

log σ
(
−h>v′hu′

)
,

(15)
where σ(·) is the sigmoid activation function, ΩP and ΩN
denote the set of positive observed and negative sampled
node pairs, respectively.

4.7 Analysis of the Proposed Model
Here we give the complexity analysis and summarize the
advantages of R-HGNN as follows.

Model Complexity. Our R-HGNN is highly efficient and
could be easily parallelized. Let N l

in and N l
out denote the

input and output dimension of node representations at the
l-th layer. Let Rlin and Rlout represent the input and output
dimension of relation representations at the l-th layer. Let
L denote the number of stacked R-HGNN layers and d
denote the dimension of final compact node representation.
The time complexity of calculating the relation-specific node
representation with respect to relation r ∈ R is linear to the
number of nodes and edges in the relational graph Gr . It can
be denoted by O(α1|Vr| + β|Er| + γ), where |Vr| and |Er|
are the number of nodes and edges in the relational graph
Gr . α1 = N l

out(N
l
in + |R|), β = RlinN

l
out and γ = RlinR

l
out.

Hence, the relation-specific node representations can be cal-
culated individually across nodes and relations. When fus-
ing the relation-aware representations to provide the com-
pact node representation, the time complexity is linear to the
number of nodes in the heterogeneous graph G, which can
be represented as O(α2|Vr|) with α2 = d|R|(RLout +NL

out).
Model Superiority. 1) R-HGNN can directly learn on

the heterogeneous graph by first decomposing the original
graph into several relation-specific graphs naturally and
then learning node representations via the dedicated node
representation learning component. Due to the exploration
on the inherent structure of heterogeneous graph, our model
leverages the information of all the nodes and achieves more
comprehensive node representations. 2) R-HGNN discerns
node representations with respect to different relation types,
where each relation-specific representation reflects the node
disparate characteristics. R-HGNN also explicitly captures
the role of relations through learning relation semantics,
which are used to guide the learning process of relation-
aware node representations. The design of learning relation-
aware node representations improves the model learning
ability and captures more fine-grained information. 3) R-
HGNN has the advantage of discovering more important
relations, which is beneficial for heterogeneous graph anal-
ysis. According to the learned importance of each relation-
specific node representation, we could intuitively observe
which relation makes more contributions for the down-
stream task and analyze the results better.

5 EXPERIMENTS

This section evaluates the performance of the proposed
method by experiments on various graph learning tasks,
including node classification, node clustering, node visual-
ization and link prediction.

5.1 Description of Datasets
We conduct experiments on four real-world datesets, con-
taining a small-scale dataset (IMDB) and three large-scale
datasets (OGB-MAG, OAG-Venue and OAG-L1-Field).

• IMDB2: Following [12], we extract a subset of IMDB
and construct a heterogeneous graph containing

2. https://data.world/data-society/imdb-5000-movie-dataset
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TABLE 1
Statistics of the datasets.

Datasets Nodes Edges Features Feature Extraction Split Strategy Split Sets

IMDB
# Movie (M): 4,076

# Director (D): 1,999
# Actor (A): 5,069

# M-D: 4,076
# M-A: 12,228

M:1,537
D:1,537
A:1,537

M:bag-of-words of keywords
D:average of directed movies

A:average of acted movies

Random Split
(following [12])

Train: 817
Validation: 407

Test: 2,852

OGB-MAG

# Paper (P): 736,389
# Author (A): 1,134,649

# Field (F): 59,965
# Institution (I): 8,740

# P-A: 7,145,660
# P-P: 5,416,271
# P-F: 7,505,078
# A-I: 1,043,998

P:256
A:128
F:128
I:128

P:Word2Vec & metapath2vec
A:metapath2vec
F:metapath2vec
I:metapath2vec

Time-based Split
(following [37])

Train: 629,571
Validation: 64,879

Test: 41,939

OAG-Venue

# Paper (P): 166,065
# Author (A): 510,189

# Field (F): 45,717
# Institution (I): 9,079

# P-A: 477,676
# P-P: 851,644

# P-F: 1,700,497
# A-I: 612,872

P:768
A:768
F:400
I:400

P:XLNet
A:average of published papers

F:metapath2vec
I:metapath2vec

Time-based Split
(following [15])

Train: 106,058
Validation: 24,255

Test: 35,752

OAG-L1-Field

# Paper (P): 119,483
# Author (A): 510,189

# Venue (V): 6,934
# Institution (I): 9,079

# P-A: 340,959
# P-P: 329,703
# P-V: 119,483
# A-I: 612,872

P:768
A:768
V:400
I:400

P:XLNet
A:average of published papers

V:metapath2vec
I:metapath2vec

Time-based Split
(following [15])

Train: 81,071
Validation: 16,439

Test: 21,973

movies (M), directors (D) and actors (A). The movies
are divided into three categories: Action, Comedy
and Drama. The movie features are denoted by the
bag-of-words representation of the plot keywords.
Director/actor features are the average representa-
tion of movies that they directed/acted. We use the
random split strategy in [12] to spilt the dataset.

• OGB-MAG: OGB-MAG [37] is a heterogeneous aca-
demic network extracted from the Microsoft Aca-
demic Graph (MAG), consisting of paper (P), authors
(A), fields (F) and institutions (I). Papers are pub-
lished on 349 different venues. Each paper is associ-
ated with a Word2Vec feature. All the other types of
nodes are not associated with input features and we
adopt the metapath2vec [3] model to generate their
features. We use the time-based split strategy in [37]
to conduct experiments.

• OAG-Venue: OAG-Venue [15] is a heterogeneous
graph in the Computer Science (CS) domain, which
consists of paper (P), authors (A), fields (F) and
institutions (I). The papers are published on 241
different venues. Paper’s features are obtained from
a pre-trained XLNet [38] and the feature of each
author is the average of his/her published paper
representations. The features of other types of nodes
are generated by the metapath2vec [3] model. The
dataset is split by the time-based split strategy in [15].

• OAG-L1-Field: OAG-L1-Field [15] is another hetero-
geneous graph in the CS domain, containing papers
(P), authors (A), venues (V) and institutions (I). The
papers belong to 52 different L1-level fields. The
feature extraction and split strategy are the same
with those used in OAG-Venue.

Statistics of the datasets are summarized in Table 1. Please
refer to the Appendix for more details of the datasets.

5.2 Compared Methods
We compare with several state-of-the-art baselines, which
could be divided into four groups:

Graph Topology-Agnostic Methods:

• MLP uses the multilayer perceptron to solely take
node features as the input without considering the
graph topology.

Homogeneous Graph Learning Methods:

• GCN performs graph convolutions in the Fourier
domain via leveraging the localized first-order ap-
proximation [9].

• GraphSAGE propagates information in the graph
domain and designs different aggregate functions the
aggregate neighbor’s information. [10].

• GAT employs the attention mechanism to assign dif-
ferent importance to the neighbors adaptively [11].

Relational Graph Learning Methods:

• RGCN investigates on the relations in knowledge
graphs by employing specialized transformation ma-
trices for each type of relations [17].

• RSHN first constructs edge-centric coarsened line
graph to capture relation semantic information and
then uses relation representations to aggregate neigh-
boring nodes [18].

Heterogeneous Graph Learning Methods:

• HAN leverages an attention mechanism to aggregate
neighbor information in heterogeneous graphs via
multiple manually designed meta-paths [12].

• HetSANN designs type-aware attention layers to
obtain node representations with the consideration
of different types of neighboring nodes as well as
their associated edges [14].

• HGT utilizes type-specific parameters to capture the
characteristics of different nodes and relations in-
spired by the Transformer architecture [15].

5.3 Experimental Setup
For models that require meta-paths as inputs, we useMDM
and MAM as meta-paths on IMDB, use PAP , PFP and
PPP as meta-paths on OGB-MAG and OAG-Venue, and
use PAP , PV P and PPP as meta-paths on OAG-L1-Field.
Following [12], we test models designed for homogeneous
graphs (i.e., GCN, GraphSAGE and GAT) on the graph
generated by each meta-path and report the best perfor-
mance. We feed all the meta-paths into HAN as it could
handle multiple meta-paths. For RGCN, RSHN, HetSANN,
HGT and the proposed R-HGNN, which could leverage the
features of all types of nodes, we add a projection layer
for each type of node to align the feature dimension. All
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methods are optimized via the Adam [39] optimizer with
the cosine annealing learning rate scheduler [40]. We use
dropout [41] to prevent over-fitting, and apply grid search to
select the best dropout and learning rate for all the methods
(see more details in the Appendix). For all the methods,
we search the hidden dimension of node representation
in [32, 64, 128] and [128, 256, 512] on the small-scale and
large-scale datasets. For methods that utilize the attention
mechanism, including GAT, RSHN, HAN, HetSANN, HGT
and our R-HGNN, we search the number of attention heads
in [1, 2, 4, 8, 16]. Since R-HGNN additionally captures the
characteristics of relations, we set the hidden dimension
of relation representation to 64 on all the datasets. We
implement the two-layer R-HGNN with PyTorch [42] and
Deep Graph Library (DGL) [43].

We train all the methods in a full-batch manner on the
small-scale dataset. When training on large-scale datasets,
it is intractable to train the GNN methods on the whole
graph directly due to the memory usage. Hence, we adopt
a neighbor sampling strategy to train GNN methods in a
mini-batch manner. Specifically, for a target node, we sample
a fixed number of neighbors per edge type at each layer
uniformly and then make the node gather messages from
the sampled neighbors layer by layer. We set the number of
sampled neighbors per edge type to 10 in the first layer, and
the number of sampled neighbors is increased by one layer
by layer (e.g., 10, 11, · · · ). The sampling strategy is available
in the DGL package3. Note that HGT is equipped with
a customized sampling method (HGSampling) for large-
scale heterogeneous graphs, so we keep the specialized
HGSampling for HGT in the experiments. HAN is not
evaluated on large-scale datasets due to the difficulty in
how to use sampling strategy to train HAN with the con-
straints of multiple mata-paths. The inference of the GNN
methods is performed on the whole graph with limited
GPU memory via mini-batch and neighborhood sampling.
This process is also provided by DGL4. We train all the
methods with a fixed 200 epochs and use early stopping
strategy with a patience of 50, which means the training
process is terminated when the evaluation metrics on the
validation set are not improved for 50 consecutive epochs.
The model with the best performance on the validation set
is used for testing. The codes and datasets are available at
https://github.com/yule-BUAA/R-HGNN.

5.4 Node Classification

We evaluate the model performance on the node classifi-
cation task, which aims to predict the category of a movie
(IMDB), the published venue of a paper (OGB-MAG and
OAG-Venue) and the field that a paper belongs to (OAG-
L1-Field).

Setting. Following [12], we split the IMDB into training,
validation and testing sets with the ratio of 2:1:7 randomly.
Following [15], [37], the split strategy on OGB-MAG, OAG-
Venue and OAG-L1-Field is based on the paper published
years. Specifically, papers published before 2018, in 2018 and

3. https://docs.dgl.ai/api/python/dgl.dataloading.html
4. Please refer to https://docs.dgl.ai/en/latest/guide/minibatch-

inference.html#guide-minibatch-inference for more details of the im-
plementation of inference process.

after 2018 are divided into training, validation and testing
sets on OGB-MAG. Papers published before 2015, between
2015 and 2016, and after 2016 are divided into training,
validation and testing sets on OAG-Venue and OAG-L1-
Field. We feed the learned node representations into a linear
classifier to get the final predictions. The objective function
to be minimized is Equation (14). We use both Accuracy
and Macro-F1 as evaluation metrics, and higher metrics
correspond to better models. We run all the models for ten
times and report the averaged performance in Table 2.

Result. By analyzing the results in Table 2, several
conclusions could be summarized. Firstly, MLP performs
worse than other methods, which indicates that leveraging
the information of neighboring nodes could result in better
performance. Secondly, homogeneous graph learning meth-
ods usually obtain worse performance than relation learning
or heterogeneous graph learning methods, implying the
necessity of leveraging the graph heterogeneity. Finally, R-
HGNN outperforms all the baselines on all the datasets, and
the improvements are even significant on complicated large-
scale datasets. This observation demonstrates the superior-
ity of R-HGNN in considering the role of relations, as well
as learning relation-aware node representations.

5.5 Node Clustering
The node clustering task is conducted to validate the effec-
tiveness of the learned node representations.

Setting. We first obtain node representations via the
trained model and then feed the normalized representations
into the k-means algorithm. Please refer to the Appendix
for more details on the node clustering task. Normalized
Mutual Information (NMI) and Adjusted Rand Index (ARI)
are adopted as the evaluation metrics, and higher metrics
correspond to better models. We run k-means for 10 times
and report the average performance in Table 3.

Result. From Table 3, we observe that R-HGNN per-
forms better than all the baselines. Moreover, methods de-
signed for relation learning or heterogeneous graphs learn-
ing usually achieve better performance than homogeneous
graph learning methods, demonstrating the importance of
utilizing the graph heterogeneity.

5.6 Node Visualization
We conduct the node visualization task to provide a more
intuitive comparison with R-HGNN and the baselines.

Setting. We visualize the movie nodes in IMDB into a
low dimensional space. In detail, we project the learned
representations of all the movie nodes into a 2-dimensional
space using t-SNE [44]. The result is shown in Figure 4.

Result. From Figure 4, we find that R-HGNN performs
better than baselines on the node visualization task. Movies
with the same category are gathered closely and the bound-
aries between movies with different categories are more
obvious. The baselines either fail to gather movies with
the same category together, or could not provide clear
boundaries for movies with different categories.

5.7 Link Prediction
We also evaluate the effectiveness of different methods on
the link prediction task.
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TABLE 2
Comparisons with different methods on the node classification task.

Datasets Metrics MLP GCN GraphSAGE GAT RGCN RSHN HAN HetSANN HGT R-HGNN

IMDB Accuracy 0.5547 0.6013 0.6287 0.6192 0.6339 0.6367 0.6318 0.6073 0.6364 0.6424
Macro-F1 0.5514 0.5975 0.6276 0.6197 0.6359 0.6337 0.6298 0.6069 0.6365 0.6417

OGB-MAG Accuracy 0.3243 0.3487 0.3704 0.3767 0.4796 0.4728 — 0.4781 0.4921 0.5204
Macro-F1 0.1426 0.1741 0.1885 0.1925 0.2766 0.2819 — 0.2821 0.3092 0.3206

OAG-Venue Accuracy 0.1082 0.1651 0.1762 0.1764 0.2397 0.2159 — 0.2581 0.2447 0.2887
Macro-F1 0.0548 0.1187 0.1148 0.1213 0.2099 0.1878 — 0.2257 0.2145 0.2585

OAG-L1-Field Accuracy 0.3839 0.4915 0.5437 0.5531 0.5783 0.5738 — 0.5804 0.5713 0.5891
Macro-F1 0.1859 0.3408 0.3602 0.3770 0.3794 0.3656 — 0.3893 0.3657 0.4015

TABLE 3
Comparisons with different methods on the node clustering task.

Datasets Metrics MLP GCN GraphSAGE GAT RGCN RSHN HAN HetSANN HGT R-HGNN

IMDB NMI 0.1837 0.2074 0.2551 0.2435 0.2605 0.2614 0.2503 0.2365 0.2592 0.2688
ARI 0.2067 0.2418 0.2957 0.2771 0.2953 0.3038 0.2856 0.2724 0.3003 0.3098

OGB-MAG NMI 0.4951 0.4825 0.5226 0.5096 0.5814 0.5710 — 0.6600 0.6704 0.6744
ARI 0.4306 0.4372 0.4379 0.4244 0.4661 0.5022 — 0.5392 0.5459 0.5470

OAG-Venue NMI 0.2118 0.2802 0.2789 0.2870 0.4593 0.4039 — 0.5135 0.5273 0.5390
ARI 0.2019 0.2511 0.2418 0.2614 0.4183 0.3797 — 0.4690 0.4847 0.4950

OAG-L1-Field NMI 0.1761 0.2913 0.3347 0.3189 0.3872 0.3491 — 0.2990 0.3533 0.4037
ARI 0.1554 0.2565 0.2801 0.2667 0.3411 0.2975 — 0.2748 0.2925 0.3619

Fig. 4. Visualization of the node representations on IMDB. Each point indicates a movie and its color denotes movie category.

TABLE 4
Performances on the link prediction task.

Datasets Edges Metrics RGCN RSHN HetSANN HGT R-HGNN

OGB-
MAG

A-P RMSE 0.1506 0.1357 0.1218 0.1231 0.1178
MAE 0.0385 0.0364 0.0214 0.0292 0.0194

A-I RMSE 0.2387 0.1849 0.1422 0.1602 0.1129
MAE 0.0817 0.0607 0.0324 0.0437 0.0201

OAG-
Venue

A-P RMSE 0.2663 0.2416 0.2289 0.2349 0.2193
MAE 0.1021 0.1182 0.0767 0.0991 0.0683

A-I RMSE 0.3532 0.3437 0.3327 0.3304 0.3161
MAE 0.1817 0.2220 0.1975 0.2059 0.1793

OAG-
L1-

Field

A-P RMSE 0.2428 0.2419 0.2041 0.2186 0.1886
MAE 0.0836 0.0979 0.0645 0.0831 0.0498

A-I RMSE 0.3360 0.3260 0.3181 0.3143 0.3089
MAE 0.1769 0.1946 0.1842 0.1838 0.1684

Setting. We predict two types of links on large-scale
datasets: composition between authors and papers (A-P)
and affiliation between authors and institutions (A-I). We
split the edges into training, validation and testing sets with
the ratio of 3:1:1. Please see more details in the Appendix.
The possibility that two nodes are connected by an edge is

computed via the dot product of the node representations.
The objective function to be minimized is Equation (15).
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) are adopted as the evaluation metrics, and lower
metrics correspond to better models. The performance is
reported in Table 4.

Result. From Table 4, we could observe that our model
outperforms all the other methods with a significant margin.
It demonstrates that the proposed R-HGNN provides more
effective node representations than baselines on the link
prediction task.

5.8 Ablation Study
We conduct the ablation study to validate the effectiveness
of the components in R-HGNN on large-scale datasets for
the node classification task. We investigate on the weighted
residual connection, the cross-relation message passing and
the relation-aware representations fusing components and
design three variants, namely R-HGNN w/o WRC, R-
HGNN w/o CMP, and R-HGNN w/o RRF.
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Specifically, R-HGNN w/o WRC removes the weighted
residual connection module and does not take target node
features into consideration. R-HGNN w/o CMP eliminates
the connections of node representations across different
relations, which means that node representations under
different relations are independent and do not pass message
with each other. R-HGNN w/o RRF replaces the relation-
aware representations fusing module with the mean pooling
operation, indicating that the relation-aware node repre-
sentations are aggregated into a compact representation
without distinguishing the importance of different relations.
Experimental results are shown in Figure 5.

Fig. 5. Effects of the WRC, CMP and RRF components on large-scale
datasets for the node classification task.

From Figure 5, we could conclude that R-HGNN
achieves the best performance when it is equipped with all
the components and removing any component would lead
to worse results. Though the effects of the three components
vary on different datasets, all of them contribute to the
improvements in the final performance. In particular, the
weighted residual connection module combines the target
node features with aggregated neighbors’ information adap-
tively, the cross-relation message passing module improves
interactions of node representations across different rela-
tions, and the relation-aware representations fusing mod-
ule provides the compact node representation considering
semantic representations of relations.

5.9 Analysis of Parameter Sensitivity

We study the sensitivity analysis of parameters in R-HGNN,
including number of layers and attention heads, and di-
mension of node and relation representations. Experimental
results are reported on the node classification task on OAG-
L1-Field in Figure 6.

Number of layers. We vary the layers in R-HGNN from
1 to 4 and report the result in Figure 6 (a). We could
observe that R-HGNN achieves the best performance when
it is stacked with 2 layers. With the increment of layers,
the performance of R-HGNN raises at first since deeper
architecture allows the model to receive information from
multi-hop neighbors. However, the performance starts to
drop gradually when too many layers are stacked, which
may be caused by the over-smoothing problem [45].

Number of attention heads. We explore the effect of the
number of attention heads in R-HGNN and show the result
in Figure 6 (b). It could be concluded that more attention
heads would generally improve the model performance and

Fig. 6. Parameter Sensitivity of the proposed model on OAG-L1-Field.

make the training process more stable. When the number of
attention heads is set to 8, the performance reaches the top.

Dimension of node representation. We change the di-
mension of node representation and report the result in
Figure 6 (c). We could find that the performance of R-HGNN
grows with the increment of the node representation dimen-
sion and obtains the best performance when the dimension
is set to 256. However, the performance decreases when the
dimension is larger than 256. Such a phenomenon indicates
that an appropriate number of parameters could enhance
the model capacity, but too many parameters would lead
to the over-parameterization issue and decrease the model
generalization ability.

Dimension of relation representation. Since R-HGNN
explicitly captures the semantic representations of relations,
we investigate the dimension of relation representation to
validate the influence of relations. The result is shown in
Figure 6 (d). We could see that inadvisable dimensions of
relation representation decrease the model performance and
R-HGNN could achieve satisfactory performance when the
dimension of relation representation is properly set to 64.

5.10 Analysis of Different Relations

Since R-HGNN could learn relation-aware node represen-
tations in heterogeneous graphs, we aim to investigate on
the importance of each relation to the model performance.
Specifically, the performance of each relation and the perfor-
mance without each relation on the three large-scale datasets
for the node classification task are presented in Figure 7. As
the scales of evaluation metrics are different, we report the
normalized metrics to make the results more intuitive. It
is worth noticing that OGB-MAG and OAG-Venue are not
associated with the V-P relation, and OAG-L1-Field does not
contain the F-P relation, so their corresponding patterns are
not complete as others.

From Figure 7, we could observe that R-HGNN achieves
the best performance when considering all the relations,
since more relations provide more comprehensive informa-
tion. Moreover, the importance of different relations varies
among different datasets. On the one hand, some specific re-
lations (i.e., the F-P relation on OGB-MAG and OAG-Venue,
and the V-P relation on OAG-L1-Field) are essential to the
performance and leveraging a single relation could already



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XX XXXX 11

Fig. 7. Visualization of the performance of different relations.

achieve satisfactory results (see Figure 7 (a)). Excluding the
specific relation would lead to the drop in performance dras-
tically (see Figure 7 (b)). On the other hand, some relations
are not related to the performance so much. Solely utilizing
the specific relation would lead to inferior performance (see
Figure 7 (a)) and dropping the specified relation would not
significantly affect the model performance (see Figure 7 (b)).
These findings indicate that it is essential to distinguish
the importance of relations and focus on more important
relations when learning on heterogeneous graphs.

5.11 Comparisons of Model Complexity

We also compare the computational cost and parameter
capacity of R-HGNN with heterogeneous graph learning
baselines on the first two largest datasets, that is, OGB-MAG
and OAG-Venue. We conduct the experiments on an Ubuntu
machine equipped with one Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz with 20 physical cores. The GPU device
is NVIDIA Tesla T4 with 15 GB memory. We set the batch
size of all the methods to 2560 to make a fair comparison.
The average training time of each epoch and the number of
model parameters are reported in Figure 8.

Fig. 8. Comparisons of the average training time of each epoch and the
number of model parameters (shown in parentheses) on OGB-MAG and
OAG-Venue datasets. The vertical axis shows classification accuracy.

From Figure 8, we could find that R-HGNN achieves a
good trade-off between effectiveness and efficiency, which
obtains the best performance with a moderate increase in
computational cost and parameter capacity compared with
the SOTAs. In particular, considering the roles of both

nodes and relations helps R-HGNN learn more fine-grained
relation-aware node representations and outperform all the
SOTAs. Compared with most heterogeneous graph learning
methods (e.g., RGCN, RSGN and HetSANN), the incre-
ments in training time and parameter capacity are mainly
caused by: 1) cross-relation message passing process in
Section 4.3; and 2) relation representation learning process in
Section 4.4. The transformer-based attention mechanism in
HGT makes it more complicated than other methods, which
not only introduces more parameters but also slows down
the training speed.

6 CONCLUSION

This paper studied the problem of heterogeneous graph
learning and proposed to learn node representations consid-
ering relation-aware characteristics. Different from existing
research based on the propagation mechanism of node rep-
resentations, our method exploits the role of relations and
collaboratively learns relation-aware node representations
as well as semantic representations of relations. Our method
consists of four components: 1) a relation-specific node rep-
resentation learning module to learn node representations
from each relation-specific graph separately; 2) a cross-
relation message passing module to facilitate the interac-
tions of node representations across different relations; 3) a
relation representation learning module to capture relation
semantics; and 4) a semantic fusing module to aggregate
relation-aware node representations into a compact repre-
sentation considering the learned relation representations.
Experimental results on a variety of graph learning tasks
demonstrated the superiority of our method over competi-
tive benchmarks. This research sheds lights on the way to
improve heterogeneous graph learning by exploiting the
role of relations. In the future work, we will disentangle
the relation-aware representations of nodes to improve the
interpretability of our approach.
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APPENDIX

In the appendix, details of the experiments are introduced.
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TABLE 5
Settings of dropout and learning rate on all the methods.

Datasets Hyper-parameters MLP GCN GraphSAGE GAT RGCN RSHN HAN HetSANN HGT R-HGNN

IMDB dropout 0.8 0.5 0.0 0.5 0.5 0.4 0.5 0.1 0.3 0.6
learning rate 0.005 0.01 0.005 0.001 0.005 0.001 0.005 0.01 0.01 0.001

OGB-MAG dropout 0.0 0.3 0.1 0.1 0.1 0.2 — 0.3 0.1 0.5
learning rate 0.01 0.001 0.001 0.001 0.001 0.001 — 0.001 0.001 0.001

OAG-Venue dropout 0.1 0.3 0.2 0.2 0.3 0.2 — 0.3 0.3 0.3
learning rate 0.001 0.001 0.001 0.001 0.001 0.001 — 0.001 0.001 0.001

OAG-L1-Field dropout 0.2 0.2 0.2 0.2 0.3 0.2 — 0.2 0.1 0.3
learning rate 0.001 0.001 0.001 0.001 0.001 0.001 — 0.001 0.001 0.001

Details of the Datasets

• IMDB: Plot keywords of movies are provided by
the IMDB. Following [12], we use the bag-of-words
representation of plot keywords to denote movie
features, corresponding to a 1,537-dimensional fea-
ture for each movie. Director/actor features are
the average representation of movies that they di-
rected/acted, whose dimensions are both 1,537.

• OGB-MAG: Open Graph Benchmark (OGB) [37]
contains a diverse set of challenging benchmark
datasets for graph machine learning research.
Leaderboards are set up for each dataset and state-
of-the-art models are ranked based on their perfor-
mance. Moreover, all the models are listed with open-
sourced implementation to reproduce the results.
OGB-MAG is a heterogeneous academic network in
OGB, where each paper is associated with a 128-
dimensional Word2Vec feature. For nodes that do
not have features, we generate their features by
the metapath2vec [3] model. As a result, the fea-
ture of each author/ field/ institution node corre-
sponds to a 128-dimensional vector. The feature of
each paper is the concatenation of the given 128-
dimensional Word2Vec feature and the generated
128-dimensional structural feature, corresponding to
a 256-dimensional vector.

• OAG-Venue: We use the pre-processed graph in
the Computer Science (CS) domain extracted from
Open Academic Graph (OAG) by [15] to conduct
experiments5. Features of all types of nodes are given
in the OAG dataset. Specifically, the feature of each
paper is a 768-dimensional vector, corresponding to
the weighted combination of each word’s represen-
tation in the paper’s title. Each word’s representation
and the attention score are obtained from a pre-
trained XLNet [38]. The feature of each author is the
average of his/her published paper representations,
corresponding to a 768-dimensional vector as well.
The features of other types of nodes are generated by
the metapath2vec model to reflect the heterogeneous
graph structure, whose dimensions are all set to 400.
One potential issue with the OAG dataset in [15] is
the information leakage, since target nodes and the
nodes with ground truth are connected with edges.
To solve this issue, we remove all the edges between
paper nodes and nodes with ground truth that we
aim to predict. Specifically, the classification task on

5. HGT authors only shared the graph in the CS domain.

OAG-Venue is to predict the published venues of
papers, so we remove all edges between paper nodes
and venue nodes in the original OAG dataset. We
select venues that associated with no less than 200
papers to conduct experiments. In total, there are 241
venues in OAG-Venue, making the task as a 241-class
classification problem.

• OAG-L1-Field: The classification task on OAG-L1-
Field is to predict the L1-level field that each paper
belongs to, so we remove all the edges between paper
nodes and field nodes in the original OAG dataset.
We select fields that associated with no less than 100
papers to conduct experiments. In total, there are 52
fields in OAG-L1-Field, making the task as a 52-class
classification problem.

Selection of Dropout and Learning Rate

On IMDB, the dropout and learning rate are searched
in [0.0, 0.1, · · · , 0.9] and [0.001, 0.005, 0.01], respectively.
On OGB-MAG, we search the dropout and learning rate
in [0.0, 0.1, 0.2, 0, 3, 0.4, 0.5] and [0.001, 0.01]. On OAG-
Venue and OAG-L1-Field,the dropout and learning rate are
searched in [0.0, 0.1, 0.2, 0, 3] and [0.001, 0.01], respectively.
The settings of dropout and learning rate on all the methods
are shown in Table 5.

Node Clustering

On the small-scale dataset, we feed the learned represen-
tations of all the movie nodes into k-means algorithm to
achieve the clustering performance of different models. On
large-scale datasets, it is infeasible to feed all the paper
nodes into k-means algorithm. Therefore, we first select top-
five classes of papers in the testing set and then randomly
select 1000 papers from each class, and finally obtain 5,000
papers. Then we feed the selected 5,000 paper nodes into
k-means algorithm to get the clustering results. The number
of clusters is equal to the number of real classes in each
dataset (i.e., 3 for IMDB, and 5 for OGB-MAG, OAG-Venue
and OAG-L1-Field).

Link Prediction

Due to the huge number of edges on large-scale datasets, it
is infeasible to do link prediction on all the edges. Therefore,
we adjust the number of sampled edges on the datasets. In
particular, 3%, 1% and 1% of the edges are sampled as train-
ing, validation and testing sets on OGB-MAG, respectively.
Correspondingly, 15%, 5% and 5% on OAG-Venue, and 30%,
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10% and 10% on OAG-L1-Field. Each edge in the training set
is associated with five randomly sampled negative edges,
and each edge in the validation or testing sets is associated
with a randomly sampled negative edge.
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