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Node Attributed Networks
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Abstract—As a fundamental structure in real-world networks, in addition to graph topology, communities can also be reflected by
abundant node attributes. In attributed community detection, probabilistic generative models (PGMs) have become the mainstream
method due to their principled characterization and competitive performances. Here, we propose a novel PGM without imposing any
distributional assumptions on attributes, which is superior to the existing PGMs that require attributes to be categorical or Gaussian
distributed. Based on the block model of graph structure, our model incorporates the attribute by describing its effect on node
popularity. To characterize the effect quantitatively, we analyze the community detectability for our model and then establish the
requirements of the node popularity term. This leads to a new scheme for the crucial model selection problem in choosing and solving
attributed community detection models. With the model determined, an efficient algorithm is developed to estimate the parameters and
to infer the communities. The proposed method is validated from two aspects. First, the effectiveness of our algorithm is theoretically
guaranteed by the detectability condition. Second, extensive experiments indicate that our method not only outperforms the competing
approaches on the employed datasets, but also shows better applicability to networks with various node attributes.

Index Terms—Community detection, Attributed networks, Stochastic block model, Model selection, Detectability

✦

1 INTRODUCTION

Many real-world complex systems naturally form multiple
groups of individuals with close relationships or strong
similarity, instances of which include social circles of online
users, functional modules constructed by interacting pro-
teins, etc [1, 2]. Abstracting the system as a network with
nodes and edges, the concept “community” was proposed
to depict the assortative structural groups/modules where
the nodes have more links to others in the same group than
the rest of the network [3], whose detection has become a
fundamental tool in network analysis. However, the links in
real-world networks are often sparse and noisy [4], which
may depress the performance of community detection [5] or
even make the communities essentially undetectable [6, 7].

Fortunately, in addition to the structural information,
most real-world networks contain abundant node attributes,
e.g., the co-purchasing network annotated by product cat-
egories [1, 5], which can not only reflect the similarity
between nodes, but may also even directly indicate the
community memberships. Nevertheless it is notable that
using the attribute only is rarely adequate to reveal the
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network modules. In fact, the labeled categories are often
too coarse to classify the products in Amazon [2, 5].

In order to take full advantages of the useful information
in real-world networks, great effort has been devoted to the
fusion of graph structure and node attribute data in network
analysis, raising the research topic of attributed community
detection [8]. Among a variety of data fusion approaches,
the probabilistic generative model (PGM)-based methods
have shown very competitive and robust performances [19]
and have become the mainstream [11, 16]. In the language
of probability, PGMs clearly describe the dependence of
networks on different factors such as latent groups and
node degrees in a principled way [19], and thus can be
used to quantify the correlation between attributes and
communities [10], to prove the performance of algorithms
[12, 13], to reveal the functions of modules [14, 21], and to
make direct comparisons between models [19].

One of the significant advantages of the PGM is that it
allows principled analysis on the condition of communities’
being detected, i.e., the so-called detectability of communi-
ties, which plays a central role in the statistical descriptions
of the significance of community structure [6, 7, 19]. For
node attributed networks, the pioneering work [13] showed
in general that a fraction of nodes with known memberships
can improve the detectability, using the topology-based
algorithm in [6]. And the detectability analysis for a spe-
cific attribute-aware model was empirically performed in
[10], which also validated the effectiveness of the proposed
method thereof.

Based on the Stochastic Block Model (SBM), which gen-
erates network edges according to the latent block structure
and the group membership of nodes [15], two schemes are
usually adopted in the existing PGMs to integrate node
attributes. One scheme models the generative process of
both edges and attribute vectors [14, 16–18, 22], which
usually requires the distribution of attributes to be specified.
For example, it is assumed in some models that categor-
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ical attributes follow a multinomial or binary distribution
[14, 16–18] and continuous ones obey a multivariate Gaus-
sian distribution [22]. The other scheme only focuses on the
generation of edges and the data fusion is manifested by the
dependence of link possibilities on attributes [10, 11, 21],
where the attributes are seen as given parameters. By this
means, these works incorporate categorical or univariate
continuous attributes into analysis, while multidimensional
real-valued ones have not been tackled.

In fact, node attributes in real-life networks often contain
multidimensional and continuous values [8], whose typical
instances include word embeddings in citation graphs [9]
and locations in transport networks [36]. In this case, PGMs
that can only handle categorical attributes may not be ade-
quately cooperated with existing data mining technologies
such as topic modeling [20]. Despite that real-world data
appeal to PGMs for various node attributes, the develop-
ment of such models is still an open problem addressed by
few papers, as pointed in [11]. Furthermore, for the design
and inference of PGMs, an inherent issue is the principled
choice of different models [10]. Currently, such choice is
usually conducted according to prior knowledge about the
generating procedure of attributes [14, 16, 17, 25] or model
selection criteria [10, 11, 25]. But for diverse real-valued
or mixed attributes, the challenge lies in that, it is hardly
possible to specify a universal and reasonable prior distri-
bution or generating process. Consequently, the widely used
nonparametric Bayesian technologies and model selection
criteria [23–25] are also hard to be applied.

In this paper, we propose a novel PGM to model com-
munities with the fusion of edges and node attributes, and
then it can be routinely applied to community detection
via model inference. For the generality of our model, no
distributional assumption is imposed on attributes and the
challenging model selection problem is instead addressed
through a principled algorithmic analysis. In detail, we fo-
cus on the generation of edges depending on the blocks and
the distances between node attributes, so that communities
are highly correlated to both attributes and graph structure.
Based on SBM, the primary issue is to choose a model that
effectively characterizes the dependence of edges on node
attributes, or from another viewpoint, the effect of attributes
on linking possibilities. To this end, we investigate the de-
tectability condition of communities in attributed networks
for the proposed model. The detectability analysis provides
a quantitative description on the effect of node attributes,
thus leading to a novel model selection scheme.

The main contributions in this paper can be summarized
as: 1) We propose a new Bayesian generative model for
community detection that can incorporate either categorical
or real-valued node attributes, so that more information in
real-life networks such as words can be fused. 2) We analyze
the community detectability for the proposed model and
compare it with that of the topology-based counterpart, thus
clarifying the effect of attributes on community detection. 3)
We present a novel model selection scheme and develop ef-
ficient algorithms to estimate the parameters and to infer the
communities. Finally, we perform numerical experiments
on artificial networks to verify the detectability analysis,
and conduct experiments on extensive real-world datasets
to demonstrate the superior performance of our algorithm.

2 RELATED WORK

Community detection has been a hot topic in network
analysis and the methods proposed for this task are really
numerous [2]. We here only introduce the most related liter-
ature with our work and focus on models and algorithms.
Readers can refer to [2, 8] for a comprehensive survey.

With the development of this field, SBM has played a
central role in algorithm design and analysis [28]. It has also
been shown that SBM-based approaches are equivalent to
modularity optimization [27] and spectral methods [43] in
some cases. SBM assumes that the modular network can
be divided into blocks according to the hidden communi-
ties and the linking possibility of nodes is determined by
the block structure. To describe the heterogeneous vertex
degrees, the Degree Corrected SBM (DCSBM) [26] further
adds the node degree term into the model. Moreover, SBM
has been extended to various cases including networks
with hierarchical communities and multiplex edges, etc [28].
To solve and compare different models, model selection
criteria such as Minimum Description Length (MDL) [23]
and Factorized Information Criteria [25] are widely applied.

When it comes to attributed community extraction, PGM
based methods depict the generation of edges based on
SBM, while the modeling of attributes can be roughly classi-
fied into two kinds. One line of approaches, such as BAGC
[17], BTLSC [14] and CohsMix [22], generate the attributes
conditioned on the blocks and indeed specify the distribu-
tion of attributes, which can be binary [17], multinomial
[14], or Gaussian [22]. Such scheme results in complicated
hierarchical Bayesian models [14, 18], which are often solved
by nonparametric Bayesian technologies [25].

The other line of studies including SI [10] and LSBM [11]
are more relevant to our paper. In these works, attributes are
not fused according to their generation process but instead
are treated as known data or parameters that determine
edges jointly with degrees and blocks [10, 11, 21]. Take SI
as an example. SI integrates a set of alignment parameters
for each pair of community and attribute and the resulting
SI model is the product of DCSBM and alignment parame-
ters. However, these models mainly focus on discrete node
features, and as discussed in [10], the incorporation of real-
valued attributes still faces serious model selection problem.

Besides probabilistic models, the relation between latent
groups and edges/attributes can also be explicitly described
by non-negative matrix factorization (NMF) models [29, 30].
For example, SCI [29] approximates both the graph ad-
jacency and node feature matrix by linear combinations
(or particularly, inner product) of community memberships
respectively to obtain a unified optimization objective for
node clustering. Further, the linear combinations can be
extended to predefined or neural-network-based nonlinear
transforms so that the graph structure is embedded into a
new space, leading to network embedding approaches [31–
33]. However, for both NMF and embedding methods, the
balance weights of different terms with respect to edges and
attributes in the objective function are hard to decide for a
unsupervised clustering task [8].

Additionally, node-augmented graph-based methods
should be included for the completeness of literature review.
These algorithms directly model the influence of attributes
by adding new nodes and edges to the original graph ac-
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TABLE 1
List of Notations

Symbol Description

G = (V, E,X) G: graph, V : node set, E: edge set, X : attributes
pij , aij pij : link possibility, aij : adjacency matrix entry
z = (z1, . . . , zn) vector of community membership

Cr attributes of nodes in community r
ζr cluster center of Cr
αir normalized distance of i and ζr
ω, g ω: parameter for blocks, g: node popularity
fir abbreviation of f(αir) where f is a function
β, ϑ parameter set of f(·) and CRSBM, respectively
Ξrs sum of gij for node pairs in block (r, s)
nr
s sum of f(αir) for every node i in group s

ψ, h ψ: message or belief, h: auxiliary external field
W ℓi

sr coupling weight between groups s and r in BP

cording to elaborate metrics and rules [34], which contrasts
to PGMs that fit the given network data.

3 THE PROPOSED MODEL

Notations: An undirected binary network with n annotated
nodes and m edges can be denoted by G = (V,E,X),
where V is the node set, E ⊆ V × V is the edge set,
and X = {xi|xi ∈ R

d, i ∈ V } is the set of d dimensional
node attributes. Let zi ∈ [q] be the membership of node i,
where [q] is the shorthand of the set {1, 2, . . . , q} and q is
the number of communities in G. Besides, we further define
Cr , {xℓ | ℓ ∈ V, zℓ = r} to be the cluster composed of the
attributes of the nodes in the community r. We note that for
clarity, l, i and j are used to index nodes, and r, s, u, v to
index communities throughout this paper. Other notations
will be explained in the context. A list of notations involved
in this work is also summarized in Table 1 for convenience.

3.1 Model Description

In general, the graph topology of G can be generated by
a family of model where each edge (i, j) ∈ E is indepen-
dently generated via a Bernoulli distribution parameterized
by a possibility pij [15]. Then it follows the likelihood

P (G|ϑ) =
∏

i<j

p
aij

ij (1− pij)
1−aij , (1)

where ϑ is the parameter set of the model, and aij = 1 if
there is an edge between i and j, otherwise 0.

Based on the model family (1), the SBM assumes that the
network with q planted communities can be divided into
q × q blocks and the linking possibilities in the same block
are equal, i.e., pij = ωzi,zj with ωzi,zj being the edge density
of the block (zi, zj) ∈ [q] × [q], which generates an Erdös-
Rényi (ER) graph with Poissonian degree distribution.

To describe networks with arbitrary degree distributions,
DCSBM assumes pij = gijωzi,zj = kikjωzi,zj , with ki being
the degree of node i [26, 28]. Besides the term ω that
describes the block structure, DCSBM further characterizes
the linking possibility pij by another term kikj with respect
to the individual property of each node of the endpoint
pair. Indeed, the degree k naturally reflects the so-called
popularity of the node, that is, the tendency or likelihood
of a node establishing connections with other nodes [35].
From this viewpoint, the degree correction is in line with the

intuition that a pair of agents are more likely to be linked if
they both have high popularity. This motivates us to model
pij using available features of the node pair (i, j) in addition
to the block term.

A second inspiration comes from the existing studies
showing that the connections between nodes are largely
determined by their distances or differences in some real-
world networks. For instance, the flow volume between two
places decreases as their geographical distance increases
[36]. Considering this, a straightforward extension of SBM
for node attributed networks is

pij = gijωzi,zj with gij = f(‖xi − xj‖). (2)

By setting f as a real-valued function of the distance be-
tween attributes, this model can tackle categorical, real and
mixed-valued attributes.

However, the distances of every node pair are usually
sensitive to noise and expensive to compute [37]. To over-
come these drawbacks, sparked by DCSBM, we propose
a novel model where gij is the product of the node-wise
popularity of i and j. Let ζr denote the cluster representa-
tive prototype (CRP) [37] or weighted cluster center of the
cluster Cr of node attributes, and let

αir = ‖xi − ζr‖
/

∑q

r=1
‖xi − ζr‖ (3)

denote the normalized distance between node i and cluster
Cr. Our model can be then written as pij = gijωzi,zj with

gij = f(αi,zj ) · f(αj,zi), (4)

where the real-valued function f describes node popularity.
By this means, we fuse both node attributes and graph
topology into the generation of network communities, and
f partly determines the relative weight of attributes in
the model. In Eq. (4), the distances between O(qn) pairs
of attributes and CRPs are used to replace those between
O(n2) attribute pairs in (2), which describes that the link-
ing possibility of a node pair is partly determined by the
distance between one’s attribute and the other’s cluster.
Such strategy is in the spirit of the classical data clustering
algorithm k-means [37], which optimizes cost functions in
terms of data points and cluster centers. Considering the
CRP ζ used in (3) and (4), we name our model the Cluster
Representative SBM (CRSBM).

3.2 Model Parameters

Let β be the parameter of the node popularity function
f and ϑ = {ω,β, ζ} be the parameter set of CRSBM.
Combining (4) and pij = gijωzi,zj with (1), we obtain the
likelihood

P (G|z, ϑ) =
∏

i<j

(gijωzi,zj )
aij (1 − gijωzi,zj)

1−aij

=
∏

i<j

g
aij

ij

∏

r≤s

ωmrs
rs e−Ξrsωrs , (5)

where the Poissonian approximation has been applied in the
second equality. In (5), mrs =

∑

ij δzi,raijδzj,s/(1 + δrs) is
the number of edges in block (r, s) ∈ [q] × [q], and Ξrs =
∑

ij δzi,rgijδzj ,s/(1 + δrs), where δ is the Kronecker delta.
It is common to assume that the membership z of

each node is independent due to the i.i.d. edges in SBM,
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so the prior of z can be chosen as a multinomial dis-
tribution π(z) =

∏

i νzi , where νr is the possibility of
any node i in community r, satisfying the normalization
∑q

r=1 νr = 1. From the conditional probability formula
P (G, z|ϑ) = P (G|z, ϑ)π(z), it follows that

P (G, z|ϑ) =
∏

i

νzi
∏

i<j

g
aij

ij

∏

r≤s

ωmrs
rs e−Ξrsωrs . (6)

Using the Lagrange multiplier method to maximize the log-
arithm logP (G, z|ϑ) with respect to νr under the constraint
∑q

r=1 νr = 1, we obtain that

νr =
1

n

∑

i
δzi,r, r ∈ [q]. (7)

Given the likelihood (6), for the parameter ω that describes
the block structure inG, the maximum likelihood estimation
(MLE) ∂ logP (G, z|ϑ)/∂ωrs = 0 yields that

ωrs =
mrs

Ξrs
=
mrs(1 + δrs)

ns
rn

r
s

, (8)

where ns
r =

∑

i δzi,rfis with fis being the abbreviation of
f(αis) and nr

s =
∑

j δzj,sfjr . The estimation of ζ and β
is relevant to the choice of the function f , which will be
discussed in Section 5 in detail.

Remark 1. In the Bayesian view, one may choose a max-
imum entropy prior π(ω) = ω−1eω/ω for ωrs, where ω
denotes the average of ω, and then the maximum a pos-
teriori (MAP) estimation gives ωrs = mrs/(Ξrs +ω−1) [28].
Note that the average linking possibility is 〈p〉 = 2m/n2,
in DCSBM, ω = 2m/(c2n2) = O(n−1). Similarly, when the
range of f(α) is O(1), ω is also O(n−1) and Ξ is O(n2/q2)
in CRSBM. Therefore, the MAP estimate of ω is equivalent
to the MLE in (8) when n≫ q2.

4 BP ALGORITHM AND DETECTABILITY

In this section we first develop an efficient algorithm to infer
the community memberships based on Belief Propagation
(BP), a classical framework for the estimation of marginals
in probabilistic models [38]. And then we investigate the
detectability of communities for the proposed algorithm
to clarify the contribution of attributes in the data fusion,
which is also an analysis on algorithmic effectiveness.

Before proceeding, we note that it is a common assump-
tion in BP-based methods that the network G is sparse, that
is, m = O(n) and pij = O(2m/n2) = O(n−1). In words,
it means that the number of edges m is in the same order
of the number of nodes n. In fact, it is also shown that BP
algorithms also have good performances on networks with
relatively large average degrees [39].

4.1 BP Inference for CRSBM

According to Bayes’ rule, the posterior distribution of
z follows P (z|G, ϑ) = P (G, z|ϑ)/∑z P (G, z|ϑ), where
P (G, z|ϑ) is shown in (5), and the possibility of each node
i belonging to any community r is P (zi = r|G, ϑ) =
∑

z:zi=r P (z|G, ϑ). To infer this marginal distribution, for
each ordered pair (i, j) ∈ V ×V, i 6= j, BP defines messages
from i to j, denoted by ψi→j

r , which means the marginal of
zi = r conditioned on zj . Assuming that the distribution of
the neighbors ∂i = {j|aij = 1} of node i only correlates one

another through i, which implies that i and its neighbors
approximately form a locally tree-like structure [6, 7], the
joint distribution of z∂i = {zℓ|ℓ ∈ ∂i} conditioned on zi is
then the product of the marginals of z∂i. In this case, ψi→j

r

from i to j can be recursively expressed by the messages
from other nodes except j using the sum-product rule [38].
Based on the posterior distribution P (z|G, ϑ), we derive the
BP equation for the message ψi→j

r as

ψi→j
r =

νr
Zi→j

∏

l/∈∂i

(

1−
∑

s
ψl→i
s W ℓi

sr

)

∏

l∈∂i\j

(

∑

s
ψl→i
s W ℓi

sr

)

,

(9)

where W ℓi
sr = gliωsr is the coupling weight between

groups s and r, and Zi→j is the normalization factor with
∑q

r=1 ψ
i→j
r = 1. The marginal of i can then be estimated

according to the messages that i receives, that is,

ψi
r=

νr
Zi

∏

l/∈∂i

(

1−
∑

s
ψl→i
s W ℓi

sr

)

∏

l∈∂i

(

∑

s
ψl→i
s W ℓi

sr

)

, (10)

where ψi
r is the estimate of P (zi = r|G, ϑ), which is also

referred to as belief in the BP algorithm. The main difference
between ψi

r and ψi→l
r is that whether the message from node

l is included. Note that in the case l /∈ ∂i, the additional
term in the product of ψl

r is 1 − ∑

s ψ
l→i
s gliωsr , where

∑

s ψ
l→i
s gliωsr = O(pli) = O(n−1) is sufficiently small with

increasing n. Then it follows that ψl→i
r = ψl

r + O(n−1) and
1−∑

s ψ
l→i
s gliωsr ≈ 1−∑

s ψ
l
sgliωsr ≈ exp(−∑

s ψ
l
sgliωsr).

Therefore, the message ψi→j
r can be written as

ψi→j
r =

νr
Zi→j

e−hi
r

∏

l∈∂i\j

∑

s
ψl→i
s (flrωsrfis), (11)

where

hir ,
∑

l

∑

s

gliψ
l
sωsr =

∑

l

∑

s

ψl
sfisωsrflr, (12)

is the so-called auxiliary external field. Accordingly, the
belief in (10) can be approximated as

ψi
r =

νr
Zi
e−hi

r

∏

l∈∂i

∑

s

ψl→i
s fisωsrflr. (13)

As long as the function f and the parameter set ϑ are
given, the marginal P (zi = r|G, ϑ) can be inferred via
iterating BP equations (11), (12) and (13) for each ordered
node pair (i, j) ∈ E , {(i, j) | aij=1} until the convergence
of {ψi

r}. For clarity, we present the detailed steps in advance
in Algorithm 1 although the model learning procedure in
Line 2 has not been discussed.

In Algorithm 1, to achieve the convergence of BP equa-
tions, an asynchronous update scheme is used, which means
that the messages and beliefs are computed using the latest
updated values available instead of the values at the last
iteration, as shown by the inner loop in Lines 8–12. It is
also notable that according to (12), the update of ψℓ

r of
any node ℓ will affect the values of {hir} of every node i.
To reduce the time complexity, instead of updating all the
hir , i ∈ V after each computation of ψℓ

r , we adopt a lazy
update strategy [40], where hir and hjr are only updated
before the computation of message ψi→j

r . In detail, we first
compute and store all the {hir} before the inner loop (Line
6), and accumulate the changes caused by each update of
ψℓ
r (Line 12) during the iteration. Therefore, hir and hjr can
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Algorithm 1: BP inference for CRSBM

1 Input: G = (V,E,X), number of communities q
2 Learning model: f , ϑ = {ω,β, ζ}
3 ψi→j

r := rand(0, 1), ψi→j
r :=ψi→j

r /Zi→j , ∀(i, j) ∈ E ;
4 get fir , ψi

r, h
i
r for i ∈ V , r ∈ [q] by (4)(13)(12);

5 while beliefs {ψi
r} are not converged do

6 compute {hir} and store it into a n× q matrix H;
7 set ∆ as a zero matrix of size q × q;
8 foreach (i, j) ∈ E in random order do

9 hℓr := Hℓr +
∑q

s=1 fℓs∆sr for ℓ∈{i, j};
10 update ψi→j

r , r∈ [q] by (11);

11 φ :=(ψj
1, . . . , ψ

j
q), update ψj

r by (13);
12 ∆rs+= (ψj

r − φr)fjsωrs for (r, s) ∈ [q]× [q];

Return: {ψi
r}, zi := argmaxr{ψi

r}, i ∈ V, r ∈ [q]

be computed using the changes and the stored initial values
(Line 9).

Remark 2. Setting f as the constant function 1, we recover
the BP equations for the standard SBM, one of which about
the message reads

ψi→j
r =

νr
Zi→j

e−hr

∏

l∈∂i\j

(

∑

s
ψl→i
s ωsr

)

, (14)

where hr =
∑

l

∑

s ψ
l
sωsr is the external field. Moreover,

replacing fis with ki/c in (11)–(13), where c is the average
node degree, the BP equations for DCSBM are recovered.

Remark 3. Based on the BP framework, there are a number
of variants to improve the efficiency of BP. However, most of
them require that the coupling weight W ℓi

sr can be reduced
to a matrix irrelevant to node pairs, i.e., W ℓi

sr = Wsr

[41, 42]. This cannot be satisfied by our model that reads
W ℓi

sr = gℓiωsr . Therefore, we use the classical sum-product
algorithm for model inference.

4.2 Detectability of Community Structure

Without loss of essence, community detection algorithms
are usually theoretically analyzed based on a symmetric
variant of SBM (SSBM) for simplicity [6, 39, 43], in which
all the planted communities have the same size n/q, and
mrs only has two distinct values for all the (r, s) ∈ [q]× [q],
mrs = min if r = s and mrs = mout otherwise. We
further denote the intra- and inter-community degrees by
cin = 2min/n and cout = mout/n, respectively, and then the
average degree of the network is c=q−1(cin+(q−1)cout).

For the SSBM, (14) has a factorized fixed point (FFP)
∀(i, j) ∈ E , ψj→i

r = 1/q, which is a trivial solution that im-
plies the failure of community detection. The convergence at
the FFP can be investigated via the linear stability analysis,
which is described by the first-order derivatives of messages
in (14) and the corresponding q× q message transfer matrix
T ≡ T i, ∀i ∈ V with the entry

T i
rs ,

∂ψi→j
r

∂ψl→i
s

∣

∣

∣

∣

FFP

. (15)

For a sparse graphG, it was conjectured in [6] and proved in
[44] that, when the parameters in (15) are in line with those

of the SBM generating G, the FFP is not stable with random
perturbation ψi→j

r = 1/q + ξr if

c̃λ21(T ) > 1, (16)

and thus community memberships can be inferred effi-
ciently via (14). In (16), c̃ = 〈k2〉/〈k〉 − 1 is the average
number of neighbors which each node passes messages to,
i.e., the average excess degree with 〈k〉 being the mean
degree and 〈k2〉 the mean-square degree. In particular, for
ER networks, it follows that c̃ = c. λ1(T ) is the largest eigen-
value of T , which is often employed to describe the strength
of community structure [45]. Both empirical experiments [6]
and theoretical studies [7] have shown that a larger λ1(T )
leads to a better recovery of the planted communities under
the condition (16).

The critical value at c̃λ21(T ) = 1 is referred to as the
detectability limit of community structure, or the Kesten-
Stigum (KS) bound [46]. Further researches show that the
same bound is also shared by other methods including
modularity optimization [39] and spectral clustering [43].

4.3 Detectability Analysis for BP on CRSBM

Besides the algorithmic effectiveness, it is notable that the
detectability condition (16) indeed quantitatively describes
the contribution of node degrees and community strength
on the detection task. Considering this, we preform the
detectability analysis for our method to characterize the
effect of node attributes on communities in CRSBM.

Based on the SSBM, we start from the case that each
node has a categorical attribute xi = ςi ∈ [q] that indicates
its community, which satisfies ‖xi − xj‖ ∈ {0, 1} and αir ∈
{0, 1}. Setting f(1) > f(0), we find that the trivial solution
ψi→j
r = 1/q, ∀(i, j) ∈ E is not the fixed point of (11) in this

situation. Reducing (11) according to the SSBM, we observe
instead that

ψi→j
r =

{

γ/(γ + q − 1) r = ςi,
1/(γ + q − 1) r 6= ςi,

(17)

is a fixed point, where γ = f(1)/f(0) > 1 describes the level
of the dependence on node attributes. In contrast, without
dependence on attributes, i.e., setting γ = 1, the trivial
FFP ψi→j

r = 1/q is then recovered. Eq. (17) tells that given
γ > 1, the detectability limit of communities vanishes so
long as the attributes are indicative, that is, the memberships
indicated by the attributes are better than random guess,
which is in line with the result in [13].

However, the available useful nodal information is rarely
adequate to identify communities in real-world networks.
One collection of nodes with the same categorical attribute
can contain multiple communities due to the inhomoge-
neous interactions within the category (e.g., the Amazon
co-purchasing network) [2]. A natural question that closely
relates to data fusion in this situation is:

Are the multiple communities within the same category de-
tectable by the BP algorithm, or merged into one community as
indicated by the node attributes?

With this problem in mind, we consider the follow-
ing nested case: There are q∗ planted communities in
the network generated by SSBM, each node of which is
annotated by one attribute from q̃ ≥ 2 categories, and
each category contains qb = q∗/q̃ ≥ 2 modular groups,
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which are hereafter referred to as brother communities for
brevity. The distance of each node to its own category is
0, and those to other categories are 1. We use z ∈ zς ,

{qbς−qb+1, qbς−qb+2, . . . , qbς}, ς ∈ [q̃] to label the brother
communities in category ς . Without loss of generality, we set
f(0) = 1, and denote the value of f(1) by γ. For this case,
we find a fixed point of (11) as

ψi→j
r =

{

γ/(qbγ + q∗−qb) r ∈ zςi ,
1/(qbγ + q∗−qb) otherwise,

(18)

at which ψi
r = ψi→j

r according to (13). It is notable that
the modular structure within each category is unidentifiable
at this fixed point. Thus, following the pioneering studies
[6, 7, 39] on detectability, we analyze the linear stability of
(11) at the fixed point (18) with the actual model parameters.
Using (15), we obtain the message transfer matrix T i with

T i
rs =

ωrsfisψ
i
r

∑

u ωrufiuψi
u

− ψi
r

∑

u

(

ωusfisψ
i
u

∑

v ωuvfivψi
v

)

, (19)

where ψi
r = ψi→j

r is applied. Writing (19) into the matrix-
vector form, we arrive that

T i = (I −ψi
1
T)(D̃−1ΨiΩF i), (20)

where I is a q∗ × q∗ identity matrix, 1 is an all 1′s
column vector, ψi = (ψi

1, ψ
i
2, . . . , ψ

i
q∗)

T, Ψi = diag(ψi),

Ω = [ωrs]q∗×q∗ , F i = diag(fi1, fi2, . . . , fiq∗) and D̃ is a
diagonal matrix with its rth diagonal entry being the rth
row sum of ΨiΩF i. To solve the eigenvalues of T i, we next
discuss the value of ωrs in (19).

With f(0) = 1, we obtain according to the MLE in (8)
that ωrr = cin/n. Note that in the message passing process,
for each community, its brothers are indistinguishable from
other groups owing to the identical group sizes and random
initial messages. Therefore, the values of ωrs, r 6= s in (19)
is equivalent to the average value of the MLE,

ωrs = 〈ω〉r 6=s =
cout

[

qb − 1 + γ−2(q∗ − qb)
]

n(q∗ − 1)
, ∀r 6= s. (21)

With the matrix Ω in (20) obtained, for the leading eigen-
value λ1(T

i) we have the following theorem:

Theorem 1. For each node i ∈ V , the eigenvalues of T i are all
real values and the largest eigenvalue of each T i shares the same
value

λ1(T
i)=λ1(T )=

ωin − ωout

ωin+(q∗−1−qb)ωout+qbγ−1ωout
, (22)

where ωin = cin/n and ωout = 〈ω〉r 6=s is shown in (21).

Proof: Please see the Appendix.
Combining Theorem 1 and (16), we obtain the condition

under which the brother communities within the same
category are detectable. To show this result succinctly, let
ǫ = cout/cin denote the ratio of inter- and intra-community
degrees, and then the detectability condition is

ǫ < ǫ∗γ =

√
c̃− 1

η(q∗ − qb + qbγ−1 +
√
c̃− 1)

, (23)

with η = (q∗−1)−1[qb−1+γ−2(q∗−qb)] < 1. Setting γ = 1
in (23), we obtain the detectability of the BP equation (14)
back for SSBM, i.e., ǫ<ǫ∗1 = (q∗+

√
c̃−1)−1(

√
c̃−1). Given γ >

1, we have ǫ∗γ > ǫ∗1, which shows that leveraging the node
attributes, the condition in (23) is less strict than that for
SSBM. Moreover, it is notable that (23) in fact suggests that
the proposed model and algorithm can take advantage of
both network topology, described by ǫ, and node attributes,
described by γ, to detect communities.

5 MODEL SELECTION AND ALGORITHM DETAILS

We have shown the major impact of the node popularity
function f in (4), highlighting the importance of the choice
of f in the model. In the existing community detection
literature, multiple available models are often compared
and selected according to some criteria including minimum
description length (MDL) and Bayesian model selection
[23, 24]. However, because of the diversity of node at-
tributes, it is hard to determine their description length
or specify a prior distribution without strong assumptions,
especially for continuous attributes.

To solve this problem, we present a novel model selec-
tion scheme for our CRSBM based on the effect of attributes
on community detection, which can be quantitatively de-
scribed by the detectability. After determining the form of f ,
we develop a parameter estimation method that cooperates
with the BP inference, and then present the whole node
attribute-aware community detection algorithm.

5.1 Bounds of the Node Popularity Function

In the model (4), the relative distance is αir ∈ [0, 1]. Note
that for either categorical or continuous attributes, αir = 1
means that xi is completely different from those in Cr.
Therefore, a reasonable upper bound γ∗ = f(1) of the pop-
ularity function f can be studied based on the analysis of
categorical attributed networks. To this end, we inspect the
detectability condition (23) in terms of categorical attributes.

Note that the critical value ǫ∗γ in (23) in fact limits the
“strength”, or formally, the statistical significance [39] of
the detected communities, which is described by the ratio
ǫ = cout/cin. In this sense, (23) shows that the indicative
attributes relax the condition and make weaker commu-
nities with larger ǫ detectable. On the other hand, it also
means that the over-dependence on attributes can cause
the emergence of communities of no statistical significance
and the over-split of modular networks. Therefore, the ratio
γ = f(1)/f(0), which describes the level of dependence on
attributes, should be limited.

In general, for assortative modular networks, it is re-
quired that ǫ < 1 in SBM to guarantee the significance of
the planted communities. By contrast, ǫ∗γ > 1 in (23) may
lead to the emergence of some disassortative structure. To
avoid this side effect, we have ∀qb ≥ 2, ǫ∗γ ≤ 1, which
is reduced to ǫ∗γ |qb=2 ≤ 1 since that ǫ∗γ decreases as qb
increases. Further, note that in the interval [1,+∞), ǫ∗γ is
a monotonically increasing function of γ, and the critical
value of γ is the maximum real-valued solution of

ǫ∗γ |qb=2 =
(q∗ − 1)(

√
c̃− 1)

(q∗ − 3 + 2γ−1 +
√
c̃)[1 + γ−2(q∗ − 2)]

= 1

(24)
with q∗ ≥ 4, which can be simplified to a cubic equation.
Analyzing the solution of (24), we find that it is required
that c̃ > 4 to ensure γ∗ > 1.
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For the cases where (24) fails, we here present an alter-
native method for the choice of γ. In community detection,
λ1(T ) is a central measure relevant to algorithmic perfor-
mance [7, 45]. It is clear from the condition (16) that a large
λ1(T ) benefits the recovery of communities, and this is also
verified by the empirical studies in [6]. For simplicity, we
investigate the contribution of γ to λ1(T ) in an extreme case
based on SSBM, where the categorical attribute ςi of each
node i indicates its community zi correctly, i.e., ∀i, ςi = zi.
In this situation, the transfer matrix T is in the same form of
(19) and has q real-valued eigenvalues with the largest one

λ1(T ) =
ωin − ωout

ωin+(q−2+γ)ωout
=

γ2 − ǫ

γ2+(q−2+γ)ǫ
, (25)

which can be derived analogously by the method in The-
orem 1. The derivative of λ1(T ) with respect to γ is given
by

dλ1(T )

dγ
=
ǫ[ǫ+ γ(2q − 2 + γ)]

[ǫ(q − 2 + γ) + γ2]
2
> 0, (26)

which approaches 0 with increasing γ. To ensure the contri-
bution of attributes to λ1(T ) and reduce the impact of noise
on detected communities, we select γ∗ at which point the
growth rate of λ1(T ) is small enough, that is,

dλ1(T )

dγ

∣

∣

∣

∣

γ∗

= µ
dλ1(T )

dγ

∣

∣

∣

∣

γ=1

, (27)

where µ ∈ (0, 1) is a hyper-parameter. Eq. (27) has an
approximate solution γ∗ ≈ µ−1/3[1+(q−1)ǫ]2/3. In practice,
considering that in real-world networks, intra-community
edges are usually more than inter- ones [47], we have
cin ≥ (q−1)cout. Taking the corner case of cin = (q−1)cout,
we obtain

γ∗ ≈ (4/µ)1/3. (28)

Based on the bounds above, we set γ∗ as the minimum value
of the solutions given by (24) and (28).

5.2 Model Learning and Parameter Estimation

The above analysis on the two-sided effects of node at-
tributes has indeed suggested several rules for the selection
of f in CRSBM. (I). Without loss of generality, f(0) = 1. (II).
f(1) > f(0) and f(1) should be a limited value that can be
decided by (24) and (28). Generalizing Rule II to the distance
x ∈ (0, 1), we further have: (III). For any two points x1, x2
satisfying x1 > x2, f(x1) ≥ f(x2), and f(x1)−f(x2) should
be small if x2 is close to x1, that is, formally, the derivative is
limited, f ′(x) ∈ [0, C]. (IV). Under the condition of Rule III,
f should be in a form that makes ωin/ωout as large as
possible, which enlarges λ1(T ) according to (22) and (25)
and thereby improve the algorithmic performance.

Taking these rules together, it is shown that an S-shape
curve is a good choice of f , e.g., a Sigmoid-like function

f(x) = (γ∗ − 1)/ [1 + exp(−β1x+ β2)] + 1, β1 > 0, (29)

with the range (1, γ∗), whose parameter set is denoted by
β = {β1, β2}. Note that the log-likelihood logP (G|z, ϑ)
contains the summation of O(n) terms in the form of
− log

∑

i fir, and maximizing such a non-convex objective
with respect to β is expensive and sensitive to initialization.

We next propose a heuristic method for the estimation of β
and f to avoid the ill optimization issue.

Before proceeding, we first give some preliminaries. For
each node j and community r, f(αjr) is reasonable to be
close to the lower bound 1 if zj = r, otherwise f(αjr)
should be close to the upper bound γ∗. Based on this
intuition, for each point x, we can update f(x) heuristically
according to the marginals Px , {ψj

r | (j, r) s.t. αjr ∈ Nx}
with the corresponding αjr falling into the neighborhood
Nx = (x−dx, x+dx) of x. To this end, we define the measure

∆x ,
2〈ψj

r〉
〈ψj

r〉+ (q−1)−1(1−〈ψj
r〉)

−1, (30)

where 〈ψj
r〉 is the average of the marginals in Px. Noting

that ∆x satisfies that ∆x > 0 iff 〈ψj
r〉 > 1/q and ∆x < 0 iff

〈ψj
r〉 < 1/q, we update f(x) by

f(x) = f0(x) + |∆x| · (b− f0(x)), (31)

where f0(x) , (αmax − αmin)
−1(γ∗−1)x+1 is the initial

setting of f(x), b = 1 if ∆x > 0 and b = γ∗ otherwise. In
(31), the term b − f0(x) guarantees that f(x) is within the
interval [1, γ∗] given that ∆x ∈ [−1, 1].

In practice, we update f(x) on a finite set of samples S =
{(x, f0(x))} according to (31), and β is then estimated by
the Least Squares Method (LSM) to guarantee that Rule III
and Rule IV are satisfied. In detail, for the function f(·) in
(29), the estimation of β given updated samples {(x, y)}
with y = f(x) can be solved by the linear least squares
estimation of β on the transformed samples T = {(x̃, ỹ)},
where x̃ = −x and

ỹ = log(γ∗ − y)− log(y − 1) = β1x̃+ β2. (32)

Following [6, 39], we adopt an iterative learning scheme
for the proposed model, that is, the parameters are updated
based on the results of last iteration. The δzi,r ∈ {0, 1}
terms in (7) and (8) are relaxed to the marginal ψi

r , which
improves the robustness of parameter estimation. This re-
laxation gives

νr =
1

n

∑

i
ψi
r and ns

r =
∑

i
ψi
rfis. (33)

Different from νr and ns
r that relate to one-node marginals

only, mrs in (8) involves two-nodes marginals P (zi, zj), that
is, mrs =

∑

i<j [P (aij = 1, zi = r, zj = s) + P (aij = 1, zi =
s, zj = r)], where P (aij =1, zi= r, zj = s) = P (aij =1|zi=
r, zj=s)P (zi=r, zj=s). In BP, P (zi=r, zj=s) is estimated
as ψi→j

r ψj→i
s if i and j are adjacent [39]. The estimate of mrs

can then be written as

mrs=
∑

i<j

aijωrs

Zij
(fisfjrψ

i→j
r ψj→i

s +firfjsψ
i→j
s ψj→i

r ). (34)

Denoting the numerator in (34) by ℵij
rs, the normalization

factor is Zij = 1

2

∑

r

∑

s ℵij
rs.

To estimate ζ in (3), we simplify the log-likelihood L =
logP (G, z|ϑ) to

L =
∑

i

∑

s

κis log fis − κis logn
−1
zi

∑

ℓ:zℓ=zi

fℓs + C, (35)

where κis =
∑

j aijδzj ,s is the number of edges between the
node i and group s, nzi =

∑

ℓ δzi,zℓ is the number of nodes
in the group zi and C is a constant irrelevant to f and ζ.
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Applying the second-order Taylor’s approximation to L at
the average value f̄zi,s , n−1

zi

∑

ℓ:zℓ=zi
fℓs, we have

L ≈ L = −1

2

∑

i

∑

s
κis

(

fis/f̄zi,s − 1
)2

+ C. (36)

Solving ∂L/∂ζs = 0, we obtain

ζs =
∑

i
κisρiswisxi

/

∑

i
κisρiswis,

where wis = ‖xi − ζr‖−2αis(1 − αis) and ρis = (fis −
f̄zi,s)(f

′
isf̄zi,s − fisf̄

′
zi,s) with f ′ being the derivative of f .

Notice that ρ can be either positive or negative, which may
result in an anomalous cluster center ζ that has large dis-
tances with all the xi. Considering this, we further simplify
ρis ∝ (fis − f̄zi,s)

2 by approximating the derivative f ′
is as a

constant, which yields

ζs=
∑

i
κiswis(fis−f̄zi,s)2xi

/

∑

i
κiswis(fis−f̄zi,s)2,

(37)
where κis can be relaxed as κis =

∑

j aijψ
j
s and f̄zi,s can be

relaxed as f̄zi,s = (nνs)
−1

∑

i ψ
i
sfis based on the one-node

marginals in BP.

Remark 4. In Remark 2, we have shown that the derived
BP equations can be transformed into those for SBM and
DCSBM by changing fis into 1 and c−1ki respectively.
These conversions are also applicable to (33) and (34) for
parameter estimation. Furthermore, the node degrees can
also be integrated into our CRSBM together with attributes
by replacing fis with c−1kifis in Eqs. (11)–(13) for inference,
and in Eqs. (33)–(34) for parameter estimation.

5.3 Algorithm Details and Time Complexity

Using the proposed model learning scheme, we present in
Algorithm 2 the whole community detection procedure for
attributed networks based on CRSBM. In Algorithm 2, we
initialize ζr, r ∈ [q] using the famous initialization method
for cluster centers in k-means++ [48]. After the initialization,
we conduct BP inference and parameter learning process
iteratively using an Expectation Maximization (EM)-like
framework (Lines 5–15), where the E-step for the latent
group membership z is performed by the BP inference, and
in M-step the parameters ϑ are estimated by MLE.

It is difficult to specify a universal convergence thresh-
old of EM for various network data due to the different
correlation between graph structure and node attributes.
As pointed by Newman et al. in [10], the EM algorithm
with superfluous iterations may converge to poor solutions.
Considering this, we run the iterations for τmax = 10 times,
and use the GN modularity Q [3] of the partition at each
iteration as a measure to select the results (Line 16), where

Q =
1

2m

∑

i,j

(

aij −
kikj
2m

)

δzi,zj .

Despite that the ground truth community divisions of real-
world networks may not show the optimal modularity, it
works well on selecting good results among the divisions
produced at multiple iterations.

On the choice of the sample set S for LSM, the interval
[αmin, αmax] is divided into Ns = 10 grids of equal length
2dx and S is composed of (xk, f(xk)) with xk, k ∈ [Ns] be-
ing the midpoint of the grids. To ensure that the popularity

Algorithm 2: Node Attributed Community Detection

Input : G = (V,E,X), number of communities q
1 initialize ζ by center initialization in k-means++;
2 get γ∗ by (24) and (28) with µ=0.05, q̃ =q;
3 f0(x) := (αmax − αmin)

−1(γ∗−1)x+1, ω := qc/n;
4 ωrr :=ω(1+γ

∗)−1γ∗, ωrs :=ω(1+γ
∗)−1 by γ∗ in (28);

5 for τ := 0 to τmax − 1 do

6 get {ψi
r} and zi by BP inference in Algorithm 1;

7 divide [αmin, αmax] into Ns=10 grids uniformly,
use the midpoints {xk} of the grids to form S;

8 compute {∆xk
}Ns

k=1
by (30), x1<x2< · · ·<xNs

;
9 if ∆x1

< 0 and ∆x2
< 0 then

10 update {ζr} and {αir} by (37), (3);
11 goto Line 15;

12 update f(xk) for {(xk, f(xk))}Ns

k=1
in S by (31);

13 get T by (32) and conduct LSM on T to get β;
14 update ζ by (37), update {fis} with new β, ζ;
15 update νr, n

r
s, n

s
r,mrs, ωrs by (33), (34) and (8);

16 compute the GN modularity Q for the resulting
communities at each iteration;

Output: {zi} corresponding to the largest Q

function f in the form (29) is non-decreasing, i.e., β1 > 0,
we skip the update of β if ∆x < 0 for the first two grids
of [αmin, αmax] (Lines 9–11), which mostly occurs in the
early iterations of Algorithm 2. In the early stage, the update
of f may cause a drastic change to the membership z, so
stopping re-estimating β and keeping updating ζ aim to
obtain good CRPs of the inferred communities. In practice,
we empirically find that ζ can reach good points quickly,
and the update of β seldom suspends for three successive
iterations.

Finally, we discuss the time complexity of the proposed
method. In Algorithm 2, the initialization steps cost O(qnd)
time. For the parameter learning procedure, updating {mrs}
takes O(q2m) time operations, updating {νr}, {ns

r}, {ζs}
and f takes O(qnd) time, and conducting LSM to estimate
β takes O(N2

s ) = O(1) time. The BP inference is conducted
by Algorithm 1. In Algorithm 1, at each iteration, there are
O(m) messages {ψi→j} to update, each of which is a q × 1
vector (Line 10), and the update of ∆rs and hℓr, ℓ ∈ {i, j}
takesO(q2) time operations for eachψi→j , and thus the time
complexity of BP inference is O(q2m). Finally, calculating
the modularity Q costs O(n) time. In conclusion, Algo-
rithm 2 has a time complexity of O(q2m+qnd) composed of
two parts. The factor of O(q2m) mainly resulting from the
model inference procedure keeps in the same order of the
computational complexity of BP leveraging graph topology
only [6, 24] and the other factor of O(qnd) scales linearly
with the number and the dimension of attributes.

6 EXPERIMENTS

In this section, extensive experiments on both artificial and
real-world networks are conducted to demonstrate the per-
formance of our model and algorithm. Since the community
assignment is still in serious dispute when the clusters of
attributes mismatch structural communities [12], there are
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TABLE 2
Confusion matrices of BP on the SBM graphs with ǫ = 4/7 > ǫ∗,
ǫ = 1/2 = ǫ∗, and ǫ = 11/24 < ǫ∗. C1 (C3) and C2 (C4), are in the

same category. Each element in the matrices are normalized into [0, 1]
by the division of n0. DC: detected communities. GT: ground truth.

ǫ
GT

DC
C1 C2 C3 C4

4

7

C1 0 0.6780 0.0196 0.3024
C2 0 0.6792 0.0182 0.3026
C3 0.0028 0.2156 0 0.7816
C4 0.0066 0.2144 0 0.7790

ǫ
GT

DC
C1 C2 C3 C4

1

2

C1 0 0.7804 0.0356 0.1840
C2 0 0.7970 0.0306 0.1724
C3 0.2378 0.0646 0 0.6976
C4 0.2318 0.0648 0 0.7034

ǫ
GT

DC
C1 C2 C3 C4

11

24

C1 0.0472 0.7635 0.1107 0.0786
C2 0.0416 0.7557 0.1133 0.0893
C3 0.1168 0.1235 0.1000 0.6597
C4 0.1067 0.1205 0.1016 0.6712

currently no widely accepted artificial benchmarks for at-
tributed networks. Following [10, 11], synthetic SBM graphs
with categorical node attributes are only used to validate
the detectability analysis for our algorithm, while real-life
networks with ground truth communities are employed in
the comparison between our method and baselines.

6.1 Verification on the Detectability Condition

To verify the detectability condition in (23), we generate a
collection of SBM graphs with q∗ = 4 communities of the
same node size 5000 and set the number of categories q̃ = 2.
The synthetic graphs are all with the same average degree
c = 4, while cin and cout vary in different networks. For
convenience, we fix γ = f(1)/f(0) = 2. By (23), the critical
value of detectability is ǫ∗ = 1/2. More intuitively, the cor-
responding ratio of internal degree is kin/c = cin/(cq

∗) =
2/5. We show in Table 2 the confusion matrices M ∈ R

q∗×q∗

of BP inference on three SBM graphs. The SBM-generated
networks are with kin/c ∈ {7/19, 8/20, 8/19} respectively
and ǫ ∈ {4/7, 1/2, 11/24} accordingly, and we set C1 (C3)
and C2 (C4) to be in the same category. From the gray
colored diagonal blocks in Table 2 we can see that when
ǫ ≥ ǫ∗, the two brother communities with the same categor-
ical attributes are mixed into one in the detected community
structure, which results in M11 = M33 = 0. In contrast,
with ǫ = 11/24 < ǫ∗, BP inference finds two communities
in each category, as shown by Mrr > 0, ∀r ∈ [q∗], that
is, the brother communities are detectable with ǫ below
the detectability limit. From the results on the above three
SBM graphs, the correctness of the detectability condition
(23) for CRSBM is verified. Additionally, we note that the
detection accuracy is quite low because ǫ is too close to
ǫ∗ in the third setting. This phenomenon has also been
observed in the experiments of artificial attributed graphs
in [10]. In contrast, real-world networks usually have much
lower ǫ [47], and our CRSBM is very effective in practice, as
indicated by the experiments in Section 6.3.

(a) The Pubmed network (b) Projected attributes and CRPs

(c) The evolving f along with iterations

(d) Detected communities in Pubmed

Fig. 1. Details of the detection process on Pubmed. (a). The ground truth
communities in Pubmed are indicated by node colors. (b). The projected
data points of the estimated CRPs and attributes in the ground truth
communities C1, C2 and C3. (c). At the second iteration, the conditions
in Line 9 of Algorithm 2 are satisfied, and thus f is not updated. (d). The
detected communities are shown with node position the same as (a).

6.2 A Real-world Case Study

To illustrate our method in more detail, we here show the
working process of Algorithm 2 via a case study on the
citation network Pubmed, which contains 19729 nodes (pa-
pers), 44338 edges (citation relationships), 500 dimensional
node attributes and 3 ground truth communities, as shown
in Fig. 1a. The node attributes in Pubmed are sparse real
vectors describing TF/IDF weights of words in the titles
from a 500 word dictionary [8], whose first two principal
components are visualized in Fig. 1b via principal compo-
nent analysis (PCA) [49]. We can see from Fig. 1b that a
substantial portion of the attributes of each community mix
with those belonging to other communities, which implies
that mere attributes cannot indicate the communities well.

Applying Algorithm 2 to Pubmed, the result at the
third iteration shows the largest modularity Q = 0.607
among τmax = 10 iterations, where the corresponding CRPs
{ζr|r = 1, 2, 3} and the popularity function f are shown
in Fig. 1b and Fig. 1c, respectively. From the visualization,
we observe that each ζ locates at the position where the
attributes in the same community are densely distributed
and the distances between different CRPs are relatively
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large. Therefore, the estimated ζ’s are capable to be used
as cluster centers of attributes. Starting from the initial
state of a linear function (Line 3, Algorithm 2), the node
popularity f changes into an S-shape curve as the iterations
proceed, which is in line with the model selection based on
detectability analysis.

For the comparison with ground truth, we present the
detected communities in Fig. 1d. It shows that our method
estimates the group memberships of most nodes correctly,
while the deviation is mainly caused by the nodes that
have nearly the same amount of links to three communities,
as shown by the bottom-left of Fig. 1a and Fig. 1d. The
quantitative evaluation show that our method achieves the
best performance compared with the baselines on Pubmed,
as will be presented in Section 6.3.

6.3 Comparison with the Baselines

We further qualify the performance of the proposed method
by comparing it with the baseline algorithms on various
real-life networks with ground truth available. The experi-
mental settings are shown below.

Datasets: Eight real-world network datasets are used in
the experiments, including Citeseer, Cora, Pubmed1, Face-
book, Twitter2, Parliament3, Arxiv and MAG [9], whose pro-
files are summarized in Table 3. For the datasets, two things
need to be noted. First, Facebook and Twitter are two col-
lections of multiple social networks. Following [14, 21, 32],
we use the one with largest node size in their collections
respectively in the experiments. Second, the node attributes
in Pubmed, Arxiv and MAG are real-valued while others are
binary-valued. The attributes of Pubmed are converted into
binary ones due to the sparsity of the nonzero elements in
the literature of SBM-based methods. In contrast, almost all
of the node features of Arxiv and MAG are nonzero values.

Baseline algorithms: Four classes of community detection
methods are employed for comparison. First, algorithms
using graph structure only. To show the importance of
fusing attributes in model-based approaches, we adopt the
extension of BP inference to DCSBM [24] as a baseline,
which can be derived from our algorithm according to
Remarks 2 and 4. Besides, the classical Louvain method
[50] and CommGAN [51], a recently proposed approach
based on deep learning, are compared in the experiments.
Second, PGM-based algorithms incorporating both network
topology and node attributes. Methods in this class include
BAGC [17], CESNA [16], SI [10], BTLSC [14], and CohsMix3
[22]. Third, network embedding approaches that describe
the relations among communities, graph structure and node
attributes by linear and nonlinear mappings. In this line,
NMF-based method ASCD [30] and NEC [31] based on
graph neutral networks, are respectively included into com-
parison. Additionally, in contrast to static optimization al-
gorithms, the methods based on the dynamic process of
networked systems are also of interest. To this end, we em-
ploy CAMAS [52] as a baseline, which is based on dynamics
and the cluster properties in multi-agent systems. Among
all the baselines, only NEC can address arbitrary features,

1. https://linqs-data.soe.ucsc.edu/public/
2. http://snap.stanford.edu/
3. https://github.com/abojchevski/paican

TABLE 3
Real-world Dataset Profiles

Class Dataset |V | |E| d K
∗ Attribute

Social Twitter* 171 796 578 6 binary
Facebook* 1045 26749 576 9 binary

Politics Parliament 451 5823 108 7 binary
Citation Citeseer 3312 4732 3703 6 binary

Cora 2708 5429 1433 7 binary
Pubmed 19729 44338 500 3 real value
Arxiv 0.11M 1.3M 128 20 real value
MAG 0.19M 3.4M 128 9 real value

K
∗: Number of ground-truth communities d: Dimension of attributes

M : millions Facebook*: network id: 107, Twitter*: network id: 629863

while CohsMix3 tackles Gaussian distributed attributes, and
others require categorical ones.

The tuning parameters of all the baselines are set ac-
cording to the authors’ recommendations. For the statistical
inference algorithms, we specify the ground-truth value K∗

for the number of communities to be detected. Specially,
there is a ground-truth cluster with only four disconnected
nodes in Facebook. On this dataset, we set K∗ ∈ {8, 9}
respectively and report the best score. It is worth to note that
SI [10] requires all the possible combinations of each dimen-
sion of node attributes, which is not scalable to networks in
Table 3 that contain attributes of thousands of dimensions.
To solve this problem, we first apply K-Means clustering [48]
to the attributes, which converts the high-dimensional fea-
ture to univariate one, and then use the clustering result as
the input of SI. For CoshMix3 [22] designed for continuous
attributes, we conduct PCA on the binary feature vectors
of and then take the real-valued attributes in the projection
space as the input.

Evaluation metrics: We adopt two widely used metrics
in community detection to qualify the accordance between
experimental results and ground truth and evaluate the
competing methods, i.e., AverageF1 Score (AvgF1) and NMI
[53], whose definitions are as follows:

AvgF1=
1

2K∗

∑

C∗∈C∗

max
C∈C

F1(C
∗, C)+

1

2K

∑

C∈C

max
C∗∈C∗

F1(C,C
∗),

NMI =
−2

∑K
p=1

∑K∗

q=1 npq log
npqn
np·n·q

∑K
p=1 np· log

np·

n +
∑K∗

q=1 n·q log
n·q

n

,

where C ∈ C is a community detected by an algorithm,
C∗ ∈ C ∗ is a ground-truth community, K is the number
of detected communities, K∗ is that of ground truth, and
F1(Cp, Cq) is the F1 score between two sets Cp and Cq .
npq = |Cp ∩ Cq|, np· =

∑

q npq and n·q =
∑

p npq. By
definition, higher NMI and AvgF1 scores indicate better
community divisions.

Note that CAMAS [52] and CESNA [16] may discard
anomalous nodes in the detection procedure. Consequently,
the NMI index that requires the compared partitions to
cover the same node set is unable to evaluate the perfor-
mances of these two baselines. Instead, we use the extension
of NMI named ONMI in [53] for overlapping community
detection as the evaluation metric.

The experiments were conducted on the datasets in
Table 3. We show the results on binary attributed networks
(Pubmed included) in Table 4, and those on networks with
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TABLE 4
Comparison of the AvgF1 and NMI/ONMI Scores between Our CRSBM and Baselines on Binary Attributed Networks

Network Twitter* Facebook* Cora Citeseer Pubmed Parliament

Metric % AvgF1 NMI AvgF1 NMI AvgF1 NMI AvgF1 NMI AvgF1 NMI AvgF1 NMI

DCSBM 49.33 55.47 38.73 43.23 53.50 36.96 39.17 16.34 55.33 18.14 51.23 41.96

commGAN 47.63 33.99 32.06 26.79 31.78 6.72 25.03 5.90 41.47 0.11 51.00 20.91

Louvain 37.04 54.64 35.30 55.82 56.42 43.31 41.53 27.74 35.11 17.66 55.78 70.53

BAGC N/A N/A 27.67 9.14 36.46 16.97 N/A N/A 36.33 8.31 29.76 5.27

SI 50.89 54.52 51.61 57.80 49.50 36.08 42.33 28.13 43.17 9.67 43.90 63.53

BTLSC 56.91 66.52 43.54 56.42 46.61 32.04 34.12 15.70 56.91 17.69 62.38 69.74

CohsMix3 27.07 5.56 14.85 10.52 17.74 4.92 19.83 3.38 33.63 0.01 32.49 3.12

NEC 48.80 42.31 44.11 40.21 36.50 55.84* 30.67 27.83* 46.17 4.96 58.14 58.05

ASCD 57.75 66.89 45.13 58.41 51.35 35.56 40.42 24.96 50.83 14.85 66.53 74.77

CRSBM 58.96 59.31 56.77 53.96 57.93 44.42 48.03 29.12 62.98 25.73 72.21 78.65

Metric % AvgF1 ONMI AvgF1 ONMI AvgF1 ONMI AvgF1 ONMI AvgF1 ONMI AvgF1 ONMI

CAMAS 34.02 17.93 31.94 38.42 8.94 0.01 5.80 0.01 8.48 0.01 40.94 34.46

CESNA 43.72 15.53 49.05 27.02 46.14 19.80 3.38 2.26 22.08 1.01 65.64 49.58

CRSBM 58.96 31.15 56.77 32.90 57.93 27.61 48.03 12.25 62.98 19.72 72.21 57.02
* These two results are directly drawn from original paper of NEC [31], while other scores are reported according to our reproduction.
Based on our implementation, the NMI on Cora is 20.23%, and that on Citeseer is 13.57%.

TABLE 5
Comparison of Clustering Accuracy on Twitter* and Facebook*

Method SI BTLSC ASCD CRSBM

Twitter* 0.4528 0.6288 0.5682 0.5814

Facebook* 0.3292 0.6548 0.4745 0.7042

real-valued attributes in Table 6, respectively, where the
best scores for each network are highlighted in bold and
N/A means that the algorithm only detected one trivial
community on the network. The experiments of NEC and
commGAN were conducted on a NVIDIA RTX3090 GPU
with 24GB GPU memory and others on a PC with Intel i9-
10900X@3.7 GHz CPU and 128GB memory.

From Table 4, we observe that: First, our CRSBM is the
only attributed community detection method that is supe-
rior to DCSBM on all the eight datasets, which shows that
CRSBM can effectively fuse attributes to improve the per-
formance of detection. Second, CRSBM, BTLSC, SI, ASCD
and NEC are effective on both dense and sparse networks,
while CohsMix3, CAMAS and CESNA show inferior perfor-
mances on the networks that have a small average node de-
gree around 4. Third, our method significantly outperforms
the baselines on Citeseer, Pubmed, and Parliament. And our
results on Cora show the best score in terms of AvgF1 and
the second best in terms of NMI.

It is noticed that the ranks of competitors given by
NMI and AvgF1 have remarkable difference on Twitter*
and Facebook*. In order to make the comparison more con-
vincing, we additionally compare the clustering accuracy
(AC) scores of SI, BTLSC, ASCD and our CRSBM on these
two datasets, which are displayed in Table 5. The clustering
accuracy is defined as

AC(C,C∗) =
1

n

∑n

i=1
δ(C∗

i ,map(Ci)),

where map(·) is the permutation that maps each label Ci to
the equivalent label from the dataset. It is shown in Table 5
that CRSBM gives the highest accuracy on Facebook* and
the second highest score on Twitter* only after BTLSC, while
the accuracies of SI are the lowest on both datasets. Taking
the three metrics together, CRSBM achieves the best scores

TABLE 6
Comparison between Baselines and CRSBM on Networks with

Real-valued Node Attributes

Network Arxiv MAG

Metric % AvgF1 NMI AvgF1 NMI

DCSBM 17.85 19.16 25.07 24.62

Louvain 22.24 24.90 27.38 28.01

commGAN 21.73 11.38 30.33 20.93

CohsMix3 Out of Memory Out of Memory

NEC Out of Memory Out of Memory

CRSBM 26.08 24.95 38.83 32.13

in terms of two on Facebook* and shows a competitive
performance on Twitter*.

Finally, we report the experimental results on large net-
works. As indicated in Table 6, CRSBM beats the baselines
on two large networks. For these datasets, CoshMix3 and
NEC ran out of the memory of our device because of
their O(n2) space complexity. In contrast, our method only
consumes O(qm) space and thus can be applied to large-
scale sparse networks. Overall, our method achieves the best
performance among the competing approaches. Moreover,
compared to other algorithms, CRSBM also shows better
applicability to various node attributed networks, whose
edges may be sparse or dense, and node attributes may be
categorical or real-valued.

6.4 Comparison of Time Efficiency

For a clear comparison on time efficiency, we first present
the time complexity of the employed competing methods
in Table 7. It shows that our algorithm has a competitive
theoretical time efficiency compared to other baselines. To
validate this, we report the CPU times of the attributed
community detection algorithms in Fig. 2. It is noted that
the GPU times of NEC are not included, because the main
limit of the scalability of NEC is the memory usage. We also
compare the increase of CPU times (histograms) with that
of the number of edges (blue stairs) on different datasets to
show the time scalability. As displayed in Fig. 2, CRSBM
not only demonstrates the best time efficiency compared to
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TABLE 7
Comparison of the Time Complexity between Our CRSBM and Attributed Community Detection Baselines

Methods CRSBM BAGC SI BTLSC CohsMix3 CESNA NEC CAMAS

Time complexity O(q2m+ qnd) O(q2n2) O(q2m + 2d) O(q2n2 + nd) O(qn2d) O(m + qn) O(n2 + qn) O(n2)

the baselines, but also has a good time scalability on large
networks with millions of edges.

Fig. 2. CPU times in seconds of the model-based algorithms. The CPU
times are shown by histograms, and the comparison between the in-
crease of edge sizes and that of CPU time is shown by blue stairs, where
|E| is the edge size of the dataset, |Etwi| is that of Twitter, and ttwi is the
CPU time of our CRSBM on Twitter*. Twi: Twitter, Par: Parliament, Cite:
Citeseer, Fbk: Facebook*, Pub: Pubmed. Implementation: CRSBM, SI,
CESNA in C/C++; BAGC, BTLSC in Matlab; CohsMix3 in R.

7 CONCLUSION

In this paper, we have proposed a novel PGM named
CRSBM for attributed community detection without any
requirements on the distribution of attributes, which can
be either categorical or real-valued. This mainly contributes
to the incorporation of the distances between attributes in
the model. In detail, we have first described the impact of
attributes on node popularity by attaching a function of the
distances to the classical SBM. Then to choose an appro-
priate node popularity function, which inherently relates to
the model selection problem, we analyzed the detectability
of communities for CRSBM. And it came out that a function
showing an S-shape curve is a good choice to describe the
popularity, as well as the weight of different attributes in
data fusion. After that, an efficient algorithm was developed
to estimate the parameters and detect the communities.
Extensive experiments on real-world networks has shown
that our method is superior to the competing approaches.

For quantitative analysis, we have derived the detectabil-
ity condition for CRSBM, which has been verified by numer-
ical experiments on artificial networks. As a quantification
of the effect of node attributes on community detection,
the detectability shows that if there are multiple (but not
all) communities with all their nodes containing the same
categorical attribute, the detectability can still be improved
compared to that with attributes being ignored, where the
improvement is mainly determined by the average node
degree as well as the level of the dependence on attributes.

In the future, we plan to apply our detectability-based
model selection scheme to other methods for the compari-
son and choice of various a priori models and parameters.

APPENDIX

Proof of Theorem 1: For any two matrices T i and T j defined
in (20), it follows that T i = T j if ςi = ςj , that is, i and j have

the same categorical attribute. Otherwise, let zi = r and
zj = s, T i can be transformed into T j by first swapping
its rth and sth rows and then swapping the rth and sth
columns, which are elementary transformations. Therefore,
the matrices {T i|i ∈ V } are similar to each other, and share
the same eigenvalues.

Note that
∑q∗

r=1 ψ
i
r = 1, which yields 1

T(I − ψi
1
T) =

0
T. Then it follows that 1

TT i = 0
T = 01T. Thus, 0

is an eigenvalue of T i. Before solving for other eigen-
values of T i, we first present some notations. Let vrs ,

(0, . . . , 1, 0 . . . ,−1, . . . , 0)T, where 1 is the rth and −1 is the
sth entry, r 6= s, while other entries are all 0. We also define
an auxiliary matrix T̃ i , D̃−1Ψi ΩF i, which satisfies that
T i

vrs = T̃ i
vrs.

Without loss of generality, let zi = r = 1, then F i =
diag(1, . . . , 1, γ, . . . , γ) with 1’s being the first qb entries,
and ψi ∝ (γ, 1, . . . , 1) with γ the first entry. After some
lines of linear algebra, we obtain that v1s, s = 2, . . . , qb are
qb−1 eigenvectors of T̃ i with the corresponding eigenvalues
sharing the same value

λ1s(T̃
i) =

ωin − ωout

ωin+(q∗+1−qb)γωout+(qb − 1)ωout
. (38)

Similarly, setting r = qb + 1, we obtain that vrs, s =
r+1, . . . , q∗ are q∗ − qb + 1 eigenvectors of with the cor-
responding eigenvalues sharing the same value

λqb+1,s(T̃
i)=

ωin − ωout

ωin+(q∗−1−qb)ωout+qbγ−1ωout
. (39)

Given that T i
vrs = T̃ i

vrs, the values in (38) and (39) are
also eigenvalues of T i. Now we have found q∗ − 1 real
eigenvalues of T i. All the q∗ eigenvalues of T i are real since
the complex eigenvalues must be conjugate. The remaining
one, denoted by λlast(T

i), can be computed according to the
fact that

∑

k λk(T
i) = trace(T i), where trace(T i) =

∑

r T
i
rr

is the trace of T i. Given that γ > 1 and ωin > ωout, we
have λqb+1,s(T

i) > λ1s(T
i) > 0, and by direct computa-

tion we also find that λlast(T
i) < λqb+1,s(T

i). Therefore,
λqb+1,s(T

i) in (39) is the largest eigenvalue among all the q∗

real eigenvalues of T i, ∀i ∈ V . This completes the proof.
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