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Modeling Multiple Views via Implicitly Preserving
Global Consistency and Local Complementarity
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Abstract—While self-supervised learning techniques are often used to mine hidden knowledge from unlabeled data via modeling
multiple views, it is unclear how to perform effective representation learning in a complex and inconsistent context. To this end, we
propose a new multi-view self-supervised learning method, namely consistency and complementarity network (CoCoNet), to
comprehensively learn global inter-view consistent and local cross-view complementarity-preserving representations from multiple views.
To capture crucial common knowledge which is implicitly shared among views, CoCoNet employs a global consistency module that aligns
the probabilistic distribution of views by utilizing an efficient discrepancy metric based on the generalized sliced Wasserstein distance. To
incorporate cross-view complementary information, CoCoNet proposes a heuristic complementarity-aware contrastive learning approach,
which extracts a complementarity-factor jointing cross-view discriminative knowledge and uses it as the contrast to guide the learning of
view-specific encoders. Theoretically, the superiority of CoCoNet is verified by our information-theoretical-based analyses. Empirically, our
thorough experimental results show that CoCoNet outperforms the state-of-the-art self-supervised methods by a significant margin, for
instance, CoCoNet beats the best benchmark method by an average margin of 1.1% on ImageNet.

Index Terms—unsupervised learning, self-supervised learning, representation learning, multi-view, regularization, Wasserstein distance.

✦

1 INTRODUCTION

S ELF-SUPERVISED learning (SSL) aims to learn representa-
tions from unlabeled data that nonetheless can have

wide-reaching benefits. The key to the problem lies in
designing appropriate SSL objectives. Recent works explore
how to maximize the mutual information (MI) between the
inputs and outputs of the encoder. For example, the MI
between high dimensional continuous random variables
is effectively estimated by neural networks over gradient
descent [2], and the MI between the high-level features
and the local regions of the low-level features are jointly
maximized [3]. The capacity of the encoder is crucial for
estimating the MI between input-output pairs, and the
ultimate goal of this approach is to encode the discriminative
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information for downstream tasks (e.g., classification) into
representations. However, maximizing the MI between the
input and the output of an encoder over a single view may
encode the view-specific task-irrelevant information into
the learned representations. These methods differ from the
normal human learning process in how observations are
represented. Humans have a tendency to perceive items
from a variety of perspectives, including aural, gustatory,
and visual. Concretely, the single-view-based methods are
unable to extract task-relevant information from other views.

Recently proposed self-supervised learning methods, for
example, SimCLR [4], SwAV [5], MoCo [6], AMDIM [7],
gLMSC [8], and CMC [9], have extended maximizing the
MI between the encoder input and output on single-view
data to maximizing the MI between the same samples under
different views on multi-view data. As an example, given two
views X and X̂ of image data, these methods concentrate on
maximizing the MI I(X; X̂). The assumption behind these
methods is that the task-relevant information lies mostly
in the shared information between the different views [10].
Since the background of the data in different views may
be different, maximizing the MI between the same data
in different views will cause the encoder to focus on the
shared information of the foreground in different views.
It should be noted that for each view, the task-relevant
discriminative information that is unique to that view also
exists, which is referred to the view-specific and task-relevant
information. In Figure 1 (a), we show an example of such
view-specific and task-relevant information in image data
for classification. However, there are no additional terms in
the objective of the benchmark methods to extract the view-
specific and task-relevant information. In Figure 1 (c), we
further show an application to demonstrate that only mining
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Figure 1: Illustration of the theoretical analysis based on information theory, where the yellow boxes show the shared
view-consistency information, the green boxes represent the view-specific and task-relevant information which is also the
desired view-complementarity information, and the grey boxes denote the view-specific but task-irrelevant noise information.
(a) An example of the three mentioned information in practical application; (b) the definitions of the mentioned information
in the information-theoretical perspective; (c) The application of using multiple views to learn discriminative information
on a specific image classification task, which proves that only mining view-shared information is not enough to learn
discriminative representations on benchmark datasets, e.g., ImageNet [1] has many similar fine-grained categories.

view-shared information is not enough so that mining the
view-specific and task-relevant information can improve the
general discriminability of the learned representations.

According to information theory, the information con-
tained in the input is divided into three parts. Figure 1 (b)
shows an example with a two-view dataset, where X and X̂
denote two views of a same sample, respectively, T denotes
task-relevant information or label-relevant information, and
Y ∗ denotes the optimal learned representation. The three
parts of X and X̂ are as follows: the view-consistency
information I(X; X̂) to denote the view-shared informa-
tion, which refers to the part surrounded by the yellow
line; the view-complementarity information I (X;T

»»»»»X̂ )
and I (X̂;T ∣X ) to denote the view-specific task-relevant
information, which refer to the part surrounded by the
green lines; and the view-specific noise H (X »»»»»X̂ , T ) and
H (X̂ ∣X ,T ) to denote the view-specific task-irrelevant
information, which refers to the part enclosed by the grey
lines. Meanwhile, we give their formal definitions in Sec-
tion 5. Therefore, we suppose the discriminative learned
representation should contain both view-consistency and
view-complementaity information and discard view-specific
noise, i.e., H (Y ∗) = I (X; X̂) + I (X;T

»»»»»X̂ ) + I (X̂;T ∣X ).
However, benchmark methods are difficult to achieve

such a objective. We rethink the learning paradigms of con-
ventional self-supervised multi-view learning methods from
the perspective of information theory, which is demonstrated
in Figure 2. As shown in Figure 2 (a), methods that maximize

the MI between the inputs and the outputs of the encoder
over a single view aim to extract the task-relevant informa-
tion contained in a single view, e.g., I(X;T ), which refer to
the red shaded part. However, such a built self-supervision
problem is not enough to make the model to capture task-
relevant information so that, after training, the optimal
learned representation Y ∗ may contain the view-specific
noise, i.e., H (X,Y ∗ ∣ T ), which is denoted by the grey
shaded part. Also, the task-relevant information contained
in the other view, e.g., I (X̂;T ∣X ), can not be extracted.
As demonstrated in Figure 2 (b), the benchmark methods
that maximize the MI between the different views of a same
sample can only extract the view-consistency information
contained in the I(X; X̂) part and discard the view-specific
noise H (X ∣ X̂, T ) and H (X̂ ∣ X,T ). However, the view-
complementaity information contained in H (X,T ∣ X̂) and
H (X,T ∣ X̂) may also be discarded. Therefore, we motivate
our method to sufficiently capture view-consistency and
-complementarity information while discarding the view-
specific noise, and the conceptual learning paradigm of our
method is demonstrated in Figure 2 (c).

To this end, we propose an integrated SSL method for
modeling multi-view data called consistency and complemen-
tarity network (CoCoNet). It projects all views into a latent
space to obtain the feature representations and minimizes the
generalized sliced Wasserstein distance discrepancy metric
between the distribution of different views to enhance the
consistency of multiple views in a global manner. For local
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Figure 2: The conceptual learning paradigm plots of SSL
methods. (a) the single-view SSL approach maximizing the
MI between the inputs and the outputs of the encoder; (b)
the conventional multi-view SSL approach maximizing the
MI between the different views of a same sample; (c) our
method. For the optimal learned representation Y ∗, the red
shaded part denotes the task-relevant information, and the
grey shaded part denotes the task-irrelevant noise.

single views, CoCoNet proposes a novel complementarity-
aware contrastive learning approach, which leverages the
complementarity factor to guide the encoders to capture the
view-complementariry discriminative information and elimi-
nate view-specific noise. In this way, CoCoNet aggregates the
advances of multiple views and reduces the empirical risk
of learning from each single view. Concretely, our proposed
method aims to learn (albeit not fully) discriminative repre-
sentations by using the strict consistency-preserving network
to capture I(X; X̂), and the proposed complementarity-
aware contrastive learning approach prompts to capture
I(X;T ∣X̂) and I(X̂;T ∣X). It is worth noting that the
proposed CoCoNet is a general unsupervised representation
learning model and the learned representation can be applied
in a wide range of downstream tasks. In the experiments, we
verify the effectiveness of CoCoNet on image classification
tasks using multi-view data. The major contributions are
four-fold:

• We minimize a specific discrepancy metric to align the
distributions of different views. As a result, the shared
information between multiple views is extracted. This
is to constrain our model to learn the view-consistency
information, thereby reducing the impact of view-
specific and task-irrelevant noise.

• We propose a heuristic complementarity-aware con-
trastive learning approach to enable the encoders to
gain the view-specific and task-relevant information
by using a novel complementarity-factor.

• We provide the information-theory-based analyses to
demonstrate that preserving the global consistency
and local complementarity can improve the discrim-
inability of the learned multi-view representations.

• Following the protocol of [11], we perform empirical
evaluations. Results show that CoCoNet outperforms
previous works on benchmark and practical datasets.
We have also demonstrated the generality of our

method to different forms and types of multiple-view
data with different characteristics.

2 RELATED WORKS

Unsupervised learning. Unsupervised representation learn-
ing gets rid of the reliance on labeled data [12]. It starts
with classical methods (without the use of deep neural
networks), such as independent component analysis (ICA)
[13], self-organizing maps [14], and principal components
analysis (PCA) [15]. SSL is a specific kind of unsupervised
learning. However, there is a principal difference between it
and classical unsupervised learning; it requires a designed
generator of supervised learning problems. SSL methods
must capture helpful information about the data to solve the
generated problems.

SSL performs well with use of deep neural networks,
and it started with seminal techniques (e.g., Boltzmann ma-
chines [16], [17], autoencoders [18], variational autoencoders
[19], β variational autoencoders [20], generative adversarial
networks [21], adversarial autoencoders [22], autoregressive
models [23], BiGAN (a.k.a. adversarially learned inference
with a deterministic encoder [24]), Split-Brain Autoencoders
(SplitBrain) [25], etc.). Recently, SSL is used in many fields,
e.g., the NLP, vision, and robotics communities fields [26],
[27], and with the development of contrastive learning,
several approaches based on it have come to the forefront, for
instance, Noise As Targets (NAT) [28], Contrastive Predictive
Coding (CPC) [29], Deep InfoMax (DIM) [3], a simple
framework for contrastive learning of visual representations
(SimCLR) [4], Momentum Contrast (MoCo) [6], and Con-
trastive Multiview Coding (CMC) [9]. Existing generative
models that maximize MI are also popular in this research
area [3], [30]. However, learning the representations from a
single view does not significantly improve performance of
the task.

Multi-view learning. In order to capture information
from different views, existing Multi-View Learning methods
jointly consider multiple views for different downstream
tasks (e.g., clustering [31] and classification [32]). The multi-
view representation learning methods based on Canonical
Correlation Analysis (CCA) [33] are representative, which
project different views into a common space, e.g., kernelized
CCA [34], CCA-based deep neural network [35], and semi-
pair and semi-supervised generalized correlation analysis
(S2GCA) [36]. The unsupervised multi-view learning meth-
ods [3], [7], [9] have also shown remarkable success in multi-
view representation learning, while there is a crucial issue
that learning from unaligned multiple views can lead to the
poor performance of the representations.

Distributions aligning. Refer to the alignment of domain
distributions, and the existing distribution alignment meth-
ods can be divided into three categories [37]. Instance-based
approaches [38] align the distributions by sub-sampling
the training data of the two domains. Parameter-based
approaches [39] add adaptation layers or adaptive nor-
malization layers to align the distributions. Furthermore,
representation learning (RL) based approaches [40], [41]
primarily map the input to a common latent space and
then align the two distributions in the latent space. Further,
employing deep neural networks to align the distributions
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Figure 3: Overview of the proposed CoCoNet, and we demonstrate an example of adopting three views: RGB view, L
view, and ab view. It consists of two modules: the local complementarity module for capturing the view-complementarity
information and the global consistency module for acquiring the view-consistency information, which can jointly eliminate
view-specific noise and capture both of view-shared and view-specific discriminative information.

by minimizing a certain metric [42], [43] is a standard
method found in RL-based approaches. The metrics of
the RL-base approaches include the KL-divergence, the H-
divergence, and the Wasserstein distance [44], [45], [46], [47].
The strength of Wasserstein distance, compared with other
metrics, is that it takes advantage of gradient superiority. The
literature findings motivated our proposal of a metric based
on Wasserstein distance to align the distribution of different
views in a latent space globally.

3 PROBLEM DEFINITION

Formally, we consider the multi-view dataset Xm
=

[xm
1 , xm

2 , ..., xm
N ], where Xm represents the sample collection

from the m-th view, and xm
i , i = 1, ...,N , m = 1, ...,M

denotes the i-th sample of the m-th view. N is the number
of samples in the m-th view and M is the number of views.
We denote xm as a random variable sampled i.i.d from the
distribution P (xm). Also, we denote xi = [x1

i ;x
2
i ;⋯;xM

i ],
which represents a complete sample that consists of the
same samples from different views, X = [x1, x2,⋯, xN ]
represents a complete dataset, and x presents a variable
sampled i.i.d from distribution P (x). The self-supervised
multi-view learning aims to learn multiple encoders capable
of extracting discriminative features for each view’s data
in an unsupervised manner, so that it can better serve
downstream tasks such as classification. Specifically, we first
project all multi-view data into the latent space through
multiple encoders to obtain their feature representations,
each view corresponds to a encoder, e.g., fm for the m-
th view. Then, a certain objective is minimized to the

parameters of the fm. In this paper, the objective minimized
in our proposed method consists of two parts including
the loss function of the global consistency module and the
complementarity-aware contrastive loss function. We will
introduce these two loss function in the next section.

4 METHOD

In this section, we present the proposed consistency and
complementarity network (CoCoNet) in detail, which aims at
learning feature representations that can jointly model view-
consistent factors and view-complementary factors from
multi-view data. As shown in Figure 3, CoCoNet consists
of two modules, i.e., the local complementarity module for
capturing the view-complementarity information, and the
global consistency module for acquiring the view-consistency
information.

4.1 Global consistency module
The idea behind global consistency module is to learn
a feature representation that globally captures infor-
mation shared among multiple views. We first adopt
the view-specific encoders to project the original inputs
{X1,X2,⋯,XM} into the latent space. The resulting
latent representations {H1,H2,⋯,HM} fit the distribu-
tions P (H1), P (H2) ,⋯,P (HM). Then, we align P (H1),
P (H2) ,⋯,P (HM) in the latent space by minimizing the
discrepancy among the distributions.

Wasserstein distance is widely used as the discrepancy
measure. Let P (H) be the set of Borel probability mea-
sures. For Pr, Pg ∈ P (H) and the corresponding support set
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Σr,Σg , respectively. Then, the p-th Wasserstein distance of
the corresponding distributions is defined as:

Wp (Pr, Pg) = ( inf
µ(xr,xg)∈Π(xr,xg)

∫ c(xr, xg)pdµ)
1
p

, (1)

where xr ∈ Σr, xg ∈ Σg , c (xr, xg) denotes the dis-
tance of two patterns in Σr,Σg , and Π (xr, xg) denotes
the set of all joint distributions µ (xr, xg) that satisfies
Pr = ∫xg

µ (xr, xg) dxg, Pg = ∫xr
µ (xr, xg) dxr.

Directly calculating Wp (p1, p2) is computationally ex-
pensive. An alternative is using the popular dual version
to calculate it, yet the Lipschitz constraint is difficult to
meet. Therefore, we use the generalized sliced Wasserstein
distances (GSWD), which is proposed by [47], to approximate
Wp (p1, p2). GSWD is defined as:

GSWDp (Pr, Pg) = ∫
Ωϑ

Wp (GRϑPr,GRϑPg) dϑ (2)

where Ωϑ denotes a compact set of feasible parameters for
GRϑ, GRϑ represents one-dimensional nonlinear projection
operation, also denoted as the critic neural network. There-
fore, due to the non-linearity of GRϑ, the GSWD is expected
to capture the complex structure of high-dimensional distri-
butions (see the details of GRϑ in Appendix 9.2).

From the perspective of the gradient, we analyze the
superiority of adopting GSWD as the discrepancy metric
compared with other metrics, e.g., Kullback-Leibler (KL)
divergence, which is described in Section 5.2. Empirically,
we further explore the improvement of adopting various
divergences as the discrepancy metric in Section 6.5.3.

Concretely, the loss function of the global consistency
module is defined as:

LGloCo =

M−1

∑
i=1

M

∑
j=i+1

GSWDp (P (Hi) ,P (Hj)) (3)

We denote the network by GloCo if only the global
consistency preserving module is employed.

4.2 Local complementarity module
Each view may contain unique discriminative information
complementary to other views, which cannot be captured
by the conventional contrastive learning approach. The
local complementarity module aims to encode such view-
complementarity information from multiple views in an
instance-based manner. To this end, we first extract a
complementarity-factor and then maximize the MI between
this factor and the latent features of each view. The pipeline
of the local complementarity module is depicted in Figure3.

We incorporate the local discriminative knowledge of all
views into a complementarity-factor. Specifically, given a sam-
ple xi with M -views {x1

i , x
2
i ,⋯, xM

i }, we first encode these
views to obtain the low-level feature maps {z1i , z2i ,⋯, zMi }
with h×w×C2 dimensions by the view-specific feature extrac-
tion networks {f1

ω, f
2
ω,⋯, fM

ω }, where C2, h, and w are the
number of channels, height, and width of the low-level fea-
ture maps, respectively. Then, we map {z1i , z2i ,⋯, zMi } into
C1-dimensional high-level feature vectors {h1

i , h
2
i ,⋯, hM

i }
by the view-specific mapping networks {f1

θ , f
2
θ ,⋯, fM

θ }. We

concatenate these high-level feature vectors to obtain a M ⋅C1-
dimensional syncretic feature vector hi, which is reckoned
to combine the shared information among high-level feature
vectors {h1

i , h
2
i ,⋯, hM

i }. Then, the low-level feature maps
are also concatenated to obtain a h×w×M ⋅C2-dimensional
syncretic feature map zi, which is considered to capture the
shared low-level information from {z1i , z2i ,⋯, zMi }.

For the sake of combining both high-level and low-level
information, we expand hi to a h × w × M ⋅ C1 feature
map, and then concatenate it with the syncretic low-level
feature map zi to obtain a h×w×M ⋅ (C1 +C2) embedding.
Then, we project this embedding to a C1-dimensional feature
vector, called complementarity-factor CFi. For a sample xi,
we finally obtain M high-level vectors {h1

i , h
2
i ,⋯, hM

i } and
a complementarity-factor CFi.

CFi is expected to encode comprehensive and comple-
mentary information from different views, but may also
contain redundant view-specific noises. To filter out such
redundant information while maintain useful complemen-
tary information, we perform contrast learning to maximize
the MI between the high-level features of different views
and the complementarity-factor. In a minibatch with n
samples [x1, x2,⋯, xn], for each sample xi, we regard
{h1

i , h
2
i ,⋯, hM

i } of all its views and the complementarity-
factor CFi as the positive terms, and {h1

j , h
2
j ,⋯, hM

j } and
the corresponding complementarity-factors CFj of the other
samples as the negative terms where j ∈ {1, ..., n} ∩ j ≠ i.

Conventional contrastive loss [29] can be formulated:

Lcontrast = − E
Xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log
Sτ (p)

Sτ (p) +
k

∑
j=1

Sτ (nj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where Sτ is a score function to measure the positive pairs
and the negative pairs, p denotes the positive pair, nj denotes
the negative pair sampled, and k denotes the number of the
sampled negative pairs.

We insert the complementarity-factor into the contrastive
loss to generate a novel complementarity-aware contrastive
loss by reformulating the Equation 4 as follows:

Lcf−contrast = −α ⋅ E
X̃n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log
Sτ (p̃)

Sτ (p̃) +
k

∑
j=1

Sτ (ñj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−β ⋅ E
Xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log
Sτ (p)

Sτ (p) +
k

∑
j=1

Sτ (nj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where, p̃ denotes the positive pair, which consists of a
positive term, i.e., a high-level feature of view hm

i of the
selected sample xi, and the complementarity-factor CFi.
Also, ñj denotes the negative pair of a negative term and
the according complementarity-factor. In order to further
study the impacts of the two parts, we excessively set two
hyper-parameters, i.e., α and β, to balance the two terms.
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More specifically, the positive pair and negative pair
are constructed as follows. For the complementarity-aware
contrastive term, we group one of the positive terms,
{h1

i , h
2
i ,⋯, hM

i } and CFi, to form a positive pair. A negative
term, {h1

j , h
2
j ,⋯, hM

j } and CFj , are bonded as a negative
pair. Then, expending the Equation 5, we formalize the
proposed complementarity-aware contrastive loss function
as follows:

LLoCo = −α ⋅
n

∑
i=1

3

∑
m=1

log
Sτ (hm

i , CFi)

Sτ (hm
i , CFi) +

n

∑
j=1∩j≠i

Sτ (hm
i , CFj)

−β ⋅
n

∑
i=1

3

∑
m=1

3

∑
t=1∩t≠m

log
Sτ (hm

i , ht
i)

Sτ (hm
i , ht

i) +
n

∑
j=1∩j≠i

3

∑
q=1

Sτ (hm
i , h

q
j)

(6)
Sτ is the contrastive feature measurement function, which

is implemented as:

Sτ (a, b) = exp ( ⟨(a) , (b)⟩
∥(a)∥ ⋅ ∥(b)∥ ⋅

1
τ ) (7)

where a and b denote the input high-level feature vectors, ⟨,⟩
is the inner product operator, ∥∥ is the L2-norm, τ is the fixed
temperature coefficient. We denote the local complementarity
module as LoCo.

4.3 Consistency and complementarity network
As shown in Figure 3, our proposed CoCoNet incorporates
the local consistency module and the global consistency
module. Overall, the loss for the proposed CoCoNet is the
weighted sum of the losses for the two modules:

LCoCo = LLoCo + γ ⋅ LGloCo (8)

where γ is the coefficient that controls the balance between
LLoCo and LGloCo. By substituting Equation 3 and Equation
6 into Equation 8, the objective is formulated as follows:

min
fω,fθ

{ − α
n

∑
i=1

3

∑
m=1

log
Sτ (hm

i , CFi)

Sτ (hm
i , CFi) +

n

∑
j=1∩j≠i

Sτ (hm
i , CFj)

−β
n

∑
i=1

3

∑
m=1

3

∑
t=1∩t≠m

log
Sτ (hm

i , ht
i)

Sτ (hm
i , ht

i) +
n

∑
j=1∩j≠i

3

∑
q=1

Sτ (hm
i , h

q
j)
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2
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3

∑
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GloCo

}

(9)
Minimizing the first two terms of equation 9, i.e., the

loss of LoCo, can guide the multi-view representations
to model more discriminative local view-complementarity
information, and minimizing the last term of equation 9,
i.e., the loss of GloCo, can globally make the representations
consistent. We conduct experiments to study the influence of
α, β, and γ, respectively, which is manifested in Section 6.5.

Algorithm 1 CoCoNet

Input: Multi-view dataset Xm
= [xm

1 , xm
2 , ..., xm

N ], mini-
batch size n, critic network training steps s, the learning
rates ℓω and ℓθ for the view-specific feature extractors fω
and mapping networks fθ , the learning rate ℓcritic for the
critic network GRϑ, and hyperparameters α, β, γ.
Initialize ℓω , ℓθ , ℓcritic, fω , fθ , and GRϑ.
repeat

Sample minibatch {xi}ni=1 ∈ Xm.
for t = 1 to s do

# Fix fω and fθ
# Train the critic network GRϑ to get max GSWD
ϑ ← ϑ − ℓcritic ⋅∆ϑ(−LGloCo)

end for
# Fix GRϑ and train fω and fθ
ω ← ω − ℓω ⋅∆ω(LLoCo + γ ⋅ LGloCo)
θ ← θ − ℓθ ⋅∆θ(LLoCo + γ ⋅ LGloCo)

until fω , fθ converge.

Following [9], we maintain a memory bank to store
latent features for each training sample. In addition, we
build an extra memory bank for efficiently retrieving
complementarity-factor features on the fly. We elaborate the
training pipeline in Algorithm 1, and the code is available at
https://github.com/jiangmengli/CoCoNet.

5 THEORETICAL ANALYSES

In this section, we analyze the proposed CoCoNet from the
information-theoretical perspective, and we also provide
the theoretical analysis about the advantages of using the
generalized sliced Wasserstein distance as the selected metric.

5.1 The information-theoretical analysis of CoCoNet
Notation. Figure 1 demonstrates a visual illustration of
CoCoNet by using information theoretical description. We
regard the input random variable as X and another view
of X as X̂ in the figure, e.g., X = X1 and X̂ = X2. T
presents the downstream task-relevant information. Y ∗ is
the optimal representation learned from the deterministic
encoder fϑ,ω(⋅), i.e., fϑ (fω (⋅)) that includes the feature
extraction network fω and the mapping network fϑ. For
random variables A, B, and C, H(A) denotes the entropy
of A, and H(A∣B) denotes the conditional entropy of
H(A) − H(B). Accordingly, I(A;B) presents the MI of
A and B, and I(A;B∣C) represents the conditional MI of
I(A;B) −H(C).

To clarify the information diagrams of CoCoNet, we detail
the definitions as follows:

Definition 5.1. View-Consistency information is the discrimina-
tive information that is shared among views.

Definition 5.2. View-Complementarity information is the task-
relevant information that is view-specific.

Definition 5.3. View-Specific Noise is the task-irrelevant infor-
mation that only exists in one specific view.

Considering the Definitions 5.1, 5.2, and 5.3, we rewrite
the common multi-view assumption [10], [48] to describe
multi-view learning between multiple views:

https://github.com/jiangmengli/CoCoNet
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Assumption 5.1. (Multi-view, rewriting Assumption 1 in work
[10]). The different views are approximately redundant to each
other for the task-relevant information, based on 5.2, which is the
View-Complementarity information, denoted as ϵcomplementarity .
For the View-Complementarity information of each view, we have
I(Xi;T ∣Xj) ≤ ϵcomplementarity with i, j ∈ {1, ...,m} ∩ i ≠ j.

Assumption 5.1 states that, for ϵcomplementarity , when it
is small, the task-relevant information mainly lies in the MI
between the input and the self-supervised signal. Therefore,
when the number of views, m, is not large, as m increases,
I(Xi;T ∣{Xj}mj=1∩j≠i) gets more compressed, and the ratio of
discriminative task-relevant information rise, since the con-
straints of the MI, {maxmi,j=1∩i≠j I(Xi;Xj)} become stronger.
Accordingly, the latent representation is more discriminative,
which is supported by the view-vanishing experiment (See
Section 6.5).

Definition 5.4. (Consistent and Complementary Multi-view
Representations for Self-supervision). Let Y denotes the initially
learned multi-view representation and Y ∗ denotes the consistent
and complementary multi-view representation with restricted
view-shared and view-specific discriminative knowledge: Y ∗

=

argmax
Y

I(Y ; {Xi}mi=1;T ) s.t. I(Y ; {Xi}mi=1) is maximized.

To learn the view-consistent and view-complementary
multi-view representations Y ∗ from the multiple views
{Xi}mi=1, different from previous works that roughly max-
imize the MI I(Y ;X1;X2) in a multi-view manner by
utilizing the conventional contrastive learning framework,
we globally align the distribution of view to guide the
encoders to model view-shared information by availing of
the efficient generalized sliced Wasserstein distance, which,
based on the Definitions 5.1 and 5.3, is defined as:

Theorem 5.1. (View-Consistency information with a potential loss
of View-Specific Noise ϵnoise). Y ∗ is the sufficiently compressed
latent representation, while Y is the self-supervised representation
with part of the view-specific but task-irrelevant information
ϵnoise. Formally, only considering two views, i.e., X1 and X2,
I(X1;Y ) ≥ I(X1;Y ∣ϵnoise) = I(X1;Y ∗) = I(X1;X2).

Proof. See Proof 9.1.1 in Appendix 9.1 for details.

Based on Theorem 5.1, we propose an implicit View-
Consistency preserving regularization, which is approxi-
mated by the global consistency network in Section 4.1.

Theorem 5.2. (View-Complementarity information, which is view-
specific and task-relevant). Y is the sufficiently compressed latent
representation, and Y ∗ is the latent representation of adding view-
specific and task-relevant information into Y . Formally, consid-
ering X1 and X2, I(X1;Y ;T ) = I(X2;Y ;T ) = I(Y ;T ) ≤

I(Y ;T ) + I(X1;Y ∗;T ∣X2) + I(X2;Y ∗;T ∣X1) = I(Y ∗;T ).

Proof. See Proof 9.1.2 in Appendix 9.1 for details.

By the same token, with the intuition of Theorem 5.2,
we introduce an implicit View-Complementarity preserving
regularization and implement it by the local complementarity
network in Section 4.2.

5.2 The gradient advantages of the generalized sliced
Wasserstein distance
In order to align the distributions of views, we
minimize the divergence between distributions
{P (X1) ,P (X2) , ...,P (Xm)}. To this end, we map
data into a common latent space and then measure the
distance based on a specific discrepancy metric, which
reduces the dimensionality of representations in latent
space. The representation’s wide distribution may exist
throughout the latent space. Then, for the conventional
discrepancy metric (e.g., KL-divergence), the data points
located in a region where the probability of a certain
distribution is extremely greater than other distributions
have little contribution to the gradient with cross-entropy
loss. At the same time, the generalized sliced Wasserstein
distance can provide stable gradients for every data point.
Learning from [45], [49], we found that there will be a
gradient vanishing problem if making data indistinguishable
based on the conventional discrepancy metric in the case
of the distributions has supports lying on low dimensional
manifolds in the latent space. Also, we can get stable
gradients by adopting the generalized sliced Wasserstein
distance. Theoretically, consistent performance is achievable
by using the generalized sliced Wasserstein distance.

6 EXPERIMENTS

In this section, we compared the proposed method against a
fully-supervised classifier similar to the Alexnet architecture
and various benchmark unsupervised methods to evaluate
the performance of CoCoNet. To comprehensively evaluate
the performance of the propose method, we imposed Co-
CoNet on four major downstream tasks: 1) benchmark image
classification; 2) benchmark graph prediction; 3) benchmark
action recognition; 4) practical object detection.

6.1 Preparation
We conducted experiments on neural network methods (i.e.,
the convolutional (conv) neural network-based method and
the fully-connected (fc) network-based method) on bench-
mark datasets. Furthermore, we studied the performance of
the ablation models of CoCoNet in conducted experiments,
and we took CIFAR10 as the target dataset for the deepgoing
exploration.

For setting the ablation study of CoCoNet, we compared
with two main ablation models: GloCo, and LoCo. In details,
CoCoNet refers to the complete model that considering the
global consistency preserving, and the local complementarity
preserving (i.e., α = 1, β = 0.5, γ = 10−4). GloCo refers to an
ablation model of CoCoNet by removing the local comple-
mentarity preserving module (i.e., α = 0, β = 0, γ = 10−4).
Since GloCo only employs the global consistency module,
it can be treated as a view-alignment method. Therefore,
GloCo can also be applied to conventional SSL methods. We
combined GloCo and conventional self-supervised methods,
e.g., GloCo+SwAV [5] and GloCo+CMC [9], to evaluate the
performance of GloCo, where GloCo serves as a trimmer to
align the feature distribution of different views. The features
for each view are generated by these SSL methods. Similarly,
LoCo refers to the model with only the local complementarity
module (i.e., α = 1, β = 0.5, γ = 0).
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Figure 4: Example images in the WHEBD-759-SIM dataset.

6.2 Datasets

6.2.1 Benchmark image classification datasets

We conducted experiments on 5 established image represen-
tation learning datasets:

CIFAR10 dataset [50] is a small-scale labeled dataset
composed of 32 × 32 images with 10 classes. CIFAR10 has
45,000 examples for training the classifier, and 5,000 examples
for testing.

CIFAR100 dataset [50] is a small-scale labeled dataset
consisting of 32 × 32 images of 100 categories, and each
category contains 500 examples for training the classifier and
100 examples for testing.

STL-10 dataset [51] is a dataset derived from ImageNet
composed of 96 × 96 images, and it contains a mixture
of 100,000 unlabeled training examples and 500 labeled
examples per class.

Tiny ImageNet dataset [50] is a reduced version of
ImageNet ILSVRC [52], and images are scaled down to 64 ×
64 with 200 classes. Each class has 500 images. The test set
contains 10,000 images.

ImageNet dataset [1] consists of 1,000 image classes
and is frequently considered as a testbed for unsupervised
representation learning algorithms.

6.2.2 Benchmark graph prediction datasets

We conducted experiments on 5 established benchmark
molecule prediction downstream tasks: molesol (mole), mol-
lipo (moll), molbbbp (molb), moltox21 (molt) and molsider
(mols) from Open Graph Benchmark (OGB) [53].

6.2.3 Benchmark action recognition datasets

We conducted experiments on 2 established video datasets:
UCF-101 dataset [54] is a dataset for realistic action videos,

providing 13,320 videos from 101 action categories.
HMDB-51 dataset [55] contains 6,849 samples, divided

into 51 categories, each category contains at least 101 samples.

6.2.4 Practical object detection datasets
We introduced CoCoNet on a practical bird detecting and
classifying dataset to validate the effectiveness of the pro-
posed method under real-world circumstances, as follows:

Waterfowl and Habitat of Earth Big Data dataset
(WHEBD) is a real-world and extensible dataset, which is
automatically updated in cycles. We truncated WHEBD-
759-2020 (WHEBD-759) from the complete WHEBD. An
example of WHEBD-759-SIM is demonstrated in Figure 4,
and the derived WHEBD-759 consists of 759 image classes
and 699,815 samples in total.

6.3 Implementations
6.3.1 Setup of benchmark image classification
In the training, we used fixed hyper-parameters and a batch
size of 128. In the test, we built conventional classifiers on the
high-level vector representations extracted from the previous
conv or fc network and then evaluated the performance
of models by averaging the results of the last 40 epochs
of optimizations. Here, we selected three views: the Red-
Green-Blue (RGB) view of the original image, the luminance
channel (L) view, and the ab-color channel (ab) view. Hence,
in order to improve the discriminability of the learned
features, we adopted a series of data augmentation methods:
color jittering, random grayscale, and random cropping.
We uniformly adopted the MI estimator based on Noise-
Contrastive Estimation [3], [9].

In the comparisons of Table 1, 2, and 4, the encoder
function fϑ,ω , i.e., fϑ (fω (⋅)) that includes the feature
extraction network fω and the mapping network fϑ, is
approximated by a designed Alexnet [52] for the classification
tasks. Inspired by the backbone splitting setting of SplitBrain
[25], we evenly split the Alexnet into sub-networks across
the channel dimension and then used the sub-networks
as encoders. According to the principle of building the
encoders, the Alexnet is split across the channel dimension
with a conjecture that split-Alexnet can also perform well
in learning representations between views, and the split-
Alexnet only has the halved learnable parameters [25]. We,
therefore, built the Alexnet with five convolutional layers
(attached with additional batchnorm layers, ReLU activation
functions, and corresponding maxpool functions), two linear
layers (with corresponding batchnorm layers and ReLU
activation functions), and a fully connected layer followed by
an l2 normalization function, which is to tackle the problem
of distribution drift. Then the split-Alexnets (i.e., the sub-
networks) are served as the encoders. In the experiments,
we used the convolutional (conv) neural network and the
fully-connected (fc) network as the encoders, which use
respectively the layers of Alexnet as the encoders, i.e., conv
has 5 convolutional layers and one fully connected layer, and
fc is the complete Alexnet. For the sake of further exploring
the influence of the network architecture on the performance
of CoCoNet and the ablation models, we chose convn as
the backbone network, where n denotes the number of the
convolutional layers. The comparisons on the large-scale
ImageNet [1] are shown in Table 2.

In addition, we conducted extended experiments on the
CIFAR10 and STL-10 datasets, and Table 3 depicts the results.
We followed the experimental settings of the CPC and DIM
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experiment [3], and then a strode crop architecture [29] (i.e.,
eight × eight crops with four × four strides on the CIFAR10
dataset, and 16 × 16 crops with eight × eight strides on
the STL-10 dataset) is adopted. We chose ResNet-50 [56]
architecture as the encoder fϑ,ω , and the same classifier as in
Table 1 is used, which is conducted to study the performance
of CoCoNet based on a different backbone network.

For a fair comparison, all benchmark datasets use back-
bone encoders without pretraining. In training, we held
the perspective that the representations learned the crucial
features of views through different encoders. Then, we
directly concatenated representations layer-wise from the
encoders into one to achieve the ultimate representation of
an input sample. The classifier’s development leverages a
basic Multi-Layer Perception network (MLP) followed by the
softmax output function. All downstream classification tasks
are subject to the classifiers (i.e., the linear networks) on the
high-level vector representations extracted from the designed
encoders. For building the discrepancy metric calculation
critic network based on generalized sliced Wasserstein
distance (i.e., the critic network), the discrepancy metric
of CoCoNet measures the differences between views in the
learned latent space. Hence, the critic network is designed
based on MLP [57].

6.3.2 Setup of benchmark graph prediction
To evaluate our method on self-supervised graph classifi-
cation and regression tasks. We combined CoCoNet with
GraphCL [58], which is a benchmark graph contrastive
learning method. In detail, given a graph G = {Gi∣i ∈ N},
two augmented graphs G̃1

i , G̃
2
i ∶ G̃i ∼ aug (G̃i∣Gi) are

generated by random graph augmentations [58], [59]. Gi, G̃
1
i ,

and G̃2
i are treated as three views of of a graph. We compared

CoCoNet with 4 baselines, and the reason we selected such
baselines is that the experimental results of InfoGraph [60]
and GraphCL [58] show that they achieve the state-of-the-
art and outperform graph kernel and network embedding
approaches [61], [62], [63], [64], [65], [66]. We followed
the experimental protocol of GraphCL and AD-GCL. The
average classification accuracy and standard deviation of
the test results over the 20 runs are reported in Table 5. For
a fair comparison, baselines and our methods adopt GIN
as the encoder and use a downstream linear classifier or
regressor with the same hyperparameters. To perform the
ablation study, we constructed LoCo and two GloCo variants
by combining GloCo with GraphCL and AD-GCL.

6.3.3 Setup of benchmark action recognition
We combined CoCoNet with CMC [9], and then evaluate the
performance of the combination variant on benchmark action
recognization tasks by following the experimental setting of
[9], [67]. We trained our methods on UCF-101 [54] by using
CaffeNets [68] to learn features from images and optical
flows. Two streams are applied in the method: 1) the ventral
stream, which performs object recognition and connects the
target frame (image) of a video stream with a neighbouring
frame; 2) the dorsal stream, which processes motion and
associates the target frame to optical flow (centered at the
target frame) in video data. In the training, we adopted both
ventral and dorsal streams, which can be treated as two

views, and the target frame (image) in a video stream is the
third view. In the test, the compared methods are tested on
UCF-101 to evaluate the task transferability and on HMDB-
51 [55] to evaluate the task and dataset transferability. It is
worthy to note that, we performed CoCoNet based on the
reimplemented CMC, i.e., CMC∗.

6.3.4 Setup of practical object detection
In a real application, many newly added samples of CWD are
unlabeled, and only a few samples are labeled per category
on the procedure. Therefore, we introduced the proposed
self-supervised method to enhance the performance of the
main detection and classification models, e.g., B-CNN [69]
and Faster RCNN [70], in a semi-supervised manner.

For the experimental settings, we trained the main
models by fully utilizing the labeled samples of WHEBD-
759 as the control group (the results are manifested in
the first 2 rows of Table 7), which is denoted as X =

{(x1, y1), (x2, y2), ..., (x∣X∣, y∣X∣)}. In order to simulate the
real scene of this application, we generated a general
simulated dataset, i.e., WHEBD-759-SIM, from the original
labeled dataset, where only a quarter of the labeled data is
retained for each category, and the labels of the remaining
data are discarded. Hence, WHEBD-759-SIM consists of a
labeled set L = {(xL

1 , y
L
1 ), (xL

2 , y
L
2 ), ..., (xL

∣L∣, y
L
∣L∣)}, and a

unlabeled set U = {xU
1 , x

U
2 , ..., x

U
∣U ∣}. We trained plain main

models on WHEBD-759-SIM as another compared group.
For the sake of taking advantage of the unlabeled data of U ,
we introduced the SSL methods, as the auxiliary methods,
into the main models to form the integral semi-supervised
learning methods. In details, the alternative SSL methods
includes our proposed CoCoNet and the state-of-the-art self-
supervised methods, for instance, SimCLR [4], SwAV [5], and
CMC [9]. The supervised methods contains B-CNN [69] and
Faster-RCNN [70], and both of VGG-16 [71] and VGG-19 [71]
are selected as the alternative encoders. We used the self-
supervised methods to pretrain the backbone networks and
then leveraged the supervised methods to train the model.

6.4 Results and discussion
6.4.1 Comparisons on benchmark image classification
We extensively evaluated our proposed CoCoNet method
on several benchmark datasets and tasks against the state-
of-the-art methods. Table 1 shows the comparison results
on the CIFAR10, CIFAR100, Tiny ImageNet, and STL-10
benchmark datasets respectively. The last 4 rows of tables
represent the results of our proposed methods. Specifically,
GloCo+SwAV, GloCo+CMC, and LoCo are the ablation
models designed to eliminate different parts’ influence.
In general, CoCoNet outperforms all models presented
here by a significant margin when using the benchmark
datasets. CoCoNet even outperforms the fully-supervised
classifier without fine-tuning for the specific architectures
presented, which shows that the representations learned by
CoCoNet are better than the original images. However, in
different experimental settings, we found that a designed
fully-supervised classifier can outperform the state-of-the-art
methods by a wider margin. Meanwhile, when more power-
ful backbone networks are used as encoders and specific data
augmentations are adopted, the approaches perform better
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Table 1: Performance of top-1 classification accuracy (%) on the CIFAR10, CIFAR100, Tiny ImageNet, and STL-10 datasets. In
the experiments, we evaluated CoCoNet and the ablation models. Fully-supervised classification results are provided for
comparison. ‡ indicates that the results are reproduced by our reimplementation. For a fair comparison, we adopted the
same backbone networks with benchmarks. Note that the results of SplitBrain and CMC on STL-10 are reported in [9].

Model CIFAR10 CIFAR100 Tiny ImageNet STL-10
conv fc Average conv fc Average conv fc Average conv fc Average

Fully supervised 75.39 42.27 36.60 68.70
VAE [19] 60.71 60.54 60.63 37.21 34.05 35.63 18.63 16.88 17.76 58.27 56.72 57.50
AE [18] 62.19 55.78 58.99 31.50 23.89 27.70 19.07 16.39 17.73 58.19 55.57 56.88
β-VAE [20] 62.40 57.89 60.15 32.28 26.89 29.59 19.29 16.77 18.03 57.15 55.14 56.15
AAE [22] 59.44 57.19 58.32 36.22 33.38 34.80 18.04 17.27 17.66 59.54 54.47 57.01
BiGAN [24] 62.57 62.74 62.66 37.59 33.34 35.47 24.38 20.21 22.30 71.53 67.18 69.36
NAT [28] 56.19 51.29 53.74 29.18 24.57 26.88 13.70 11.62 12.66 64.32 61.43 62.88
SplitBrain‡ [25] 77.56 76.80 77.18 51.74 47.02 49.38 32.95 33.24 33.10 72.35 63.15 67.75
DIM [3] 73.25 73.62 73.44 48.13 45.92 47.03 33.54 36.88 35.21 72.86 70.85 71.86
SimCLR‡ [4] 80.58 80.07 80.33 50.03 49.82 49.93 36.24 39.83 38.04 75.57 77.15 76.36
SwAV‡ [5] 66.18 69.23 67.71 50.87 51.23 51.05 39.56 38.87 39.22 70.32 71.40 70.86
CMC‡ [9] 81.31 83.28 82.30 58.13 56.72 57.43 41.58 40.11 40.85 83.03 85.06 84.05

GloCo+SwAV 74.63 73.58 74.11 57.09 55.21 56.15 40.20 41.02 40.61 72.38 71.06 71.72
GloCo+CMC 82.27 82.95 82.61 59.02 57.38 58.20 42.21 39.62 40.92 84.12 85.03 84.58
LoCo 82.74 82.31 82.53 57.86 58.29 58.08 42.74 40.94 41.84 82.63 83.75 83.19
CoCoNet 83.10 83.24 83.17 58.64 58.21 58.43 42.28 43.63 42.96 85.34 83.82 84.58

Table 2: Performance of top-1 classification accuracy (%) on
the ImageNet dataset. We followed the experiments of CMC
[9], and we further reimplemented SimCLR and SwAV based
on the same backbone networks.

Model ImageNet
conv1 conv2 conv3 conv4 conv5 Average

Fully supervised 19.3 36.3 44.2 48.3 50.5 39.7
Context [72] 16.2 23.3 30.2 31.7 29.6 26.2
Colorization [73] 13.1 24.8 31.0 32.6 31.8 26.7
Jigsaw [74] 19.2 30.1 34.7 33.9 28.3 29.2
BiGAN [24] 17.7 24.5 31.0 29.9 28.0 26.2
SplitBrain [25] 17.7 29.3 35.4 35.2 32.8 28.7
Counting [75] 18.0 30.6 34.3 32.5 25.7 28.2
Inst-Dis [76] 16.8 26.5 31.8 34.1 35.6 29.0
RotNet [77] 18.8 31.7 38.7 38.2 36.5 32.8
DeepCluster [78] 12.9 29.2 38.2 39.8 36.1 32.2
DIM [3] 14.5 24.9 29.1 32.4 35.9 27.4
SimCLR‡ [4] 15.9 22.4 34.5 34.0 37.7 28.9
SwAV‡ [5] 13.6 23.8 32.2 27.3 38.0 27.0
CMC [9] 18.4 33.5 38.1 40.4 42.6 34.6

GloCo+SwAV 16.8 28.5 33.7 26.2 34.9 28.0
GloCo+CMC 17.7 36.2 39.6 41.1 43.0 35.5
LoCo 17.9 34.4 38.4 38.6 43.7 34.6
CoCoNet 18.2 36.3 39.8 40.5 43.8 35.7

on the benchmark datasets (albeit in different settings, e.g.,
AMDIM [7]). However, these approaches leverage different
and deeper networks as their backbone encoders, so we
excluded these methods from the benchmarks. Hence, the
ablation models, i.e., GloCo+SwAV, GloCo+CMC, and LoCo,
outperform most state-of-the-art approaches on all datasets.
Yet, our proposed methods only outperform CMC with a
small advantage. After comparison, we found out that CMC
adopts a specialized architecture with carefully-chosen data
augmentations, and in general, our proposed GloCo can
additionally enhance CMC, e.g., GloCo+CMC outperforms
CMC. To our knowledge, in the field of unsupervised
learning, the results of CoCoNet are state-of-the-art following

Table 3: Performance of top-1 classification accuracy (%)
on the CIFAR10 and STL-10 datasets. We compared the
proposed method with the state-of-the-art unsupervised
methods. We adopted ResNet-50 [56] as the encoders.

Model CIFAR10 STL-10 Average

CPC [29] 77.45 77.81 77.63
DIM [3] 77.51 78.21 77.86
SwAV‡ [5] 83.15 82.93 83.04
SimCLR‡ [4] 84.63 83.75 84.19
CMC‡ [9] 86.10 86.83 86.47

GloCo+SwAV 84.62 85.81 85.22
GloCo+CMC 87.78 89.11 88.45
LoCo 89.06 88.21 88.64
CoCoNet 89.58 89.37 89.48

the proposed experimental settings. Specifically, the results
support the proposed CoCoNet effectiveness to preserve
the consistency of unlabeled data across views. As shown
in Tables 1, the best results are in the last row, indicating
that the feature representations learned by CoCoNet are
discriminative.

Benchmarking CoCoNet on a large-scale dataset. As
demonstrated in Table 2, the proposed CoCoNet has consis-
tent performance even on a large benchmark dataset (e.g.,
ImageNet) within different network architectures. CoCoNet
beats the state-of-the-art unsupervised method (e.g., CMC)
by 1.1% on average. The performance of LoCo is on par
with that of CMC, which demonstrates that our proposed
local complementarity preserving module can improve
the discriminability of the learned features by utilizing
the complementarity-factor to capture the complementary
information from different views. Furthermore, the abla-
tion model GloCo+SwAV outperforms SwAV by 1.8%, and
GloCo+CMC outperforms CMC by 0.9% respectively, which
indicates that the global consistency preserving network
enhances the baseline methods by aligning the distribution
of views in the hidden space. We also observed that the
performance of the compared methods is unstable within
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weaker backbone networks, such as conv1 or conv2, and our
consideration behind this phenomenon is that oversimplified
networks do not have enough mapping capabilities to learn
discriminative high-dimensional feature representations by
utilizing complex self-supervised tasks.

Performing CoCoNet with ResNet. We performed ex-
tended classification comparisons on the CIFAR10 and STL-
10 datasets with results shown in Table 3. We set the
experiments by following the same principle of the CPC
and DIM comparison [3]. The results show that CoCoNet
and the experimental ablation models outperform state-
of-the-art methods on the CIFAR10 and STL-10 datasets,
respectively. Since ResNet-based encoders are adopted on
the comparisons, and our proposed methods outperform
the benchmarks, we reckoned that CoCoNet has strong
adaptability to different encoders.

Evaluation with F1-Measure. In Table 4, we evaluated
the compared methods with F1-Measure. We observed that
CoCoNet is still state-of-the-art. It is widely acknowledged
that there would be a big difference between the results of
Accuracy and F1-Measure in the case of imbalanced sample
categories (e.g., long-tail datasets). The benchmark datasets
we conducted are all balanced datasets, including CIFAR10,
CIFAR100, Tiny ImageNet, STL-10, and ImageNet. So, we
considered that the results of our comparisons would not
show a big difference, whether it is based on Accuracy or
F1-Measure. However, in the case of imbalanced datasets, we
have also included the F1-measure scores for the comparisons
on the test sets of benchmark datasets to provide support
for the superiority of our proposed CoCoNet, which is
demonstrated in Table 4. Note that the comparisons are
based on Macro F1-Measure, and the results indicate that
CoCoNet can still achieve the best performance.

6.4.2 Comparisons on benchmark graph prediction
To evaluate the generalization of our proposed CoCoNet,
we conducted comparisons in the field of graph prediction.
As shown in Table 5, our methods beat the compared
baselines on most benchmark downstream tasks. However,
comparing the results of the combination variants of GloCo,
e.g., GloCo + GraphCL, with the original baselines, e.g.,
GraphCL, we observed that the improvement is limited (or
even arbitrary). We attributed such a phenomenon to the
learning paradigm of our proposed GloCo, which prompts
the model to capture view-consistency information by globally
aligning the distributions of views. Such a process requires
the data of different views to form different and constant
distributions. Yet, we constructed views of graphs by using
the same and random graph augmentations, which is contrary
to our original intention of developing GloCo. So in the
setting of conventional graph contrastive learning, GloCo’s
poor improvement is understandable. The experimental
results further support the effectiveness of CoCoNet and
the ablation variant LoCo, which proves that our proposed
view-complementarity information also applies to the graph
self-supervised representation learning task, and mining such
information can improve the benchmark methods. However,
the effect of mining view-complementarity’s boost on the
model is reduced, because randomly and inconsistently
generated multiple views degenerate the performance of
our proposed CoCoNet.

6.4.3 Comparisons on benchmark action recognition
To evaluate the effectiveness of CoCoNet on data of another
modality, we conducted comparisons in the field of action
recognition, which is based on video data. The results,
reported in Table 6, support that our proposed methods
can improve the performance of benchmark methods on
the action recognition task of video data. Comparing the
test results on UCF-101, we observed that CoCoNet and
variants have remarkable task transferability, and comparing
the test results on HMDB-51, we found that our methods
have the good task and dataset transferability. Therefore, on
the action recognition task of video data, our proposed view-
consistency and -complementary information is valuable to
mine in the paradigm of self-supervised multiview video
representation learning, and CoCoNet can effectively model
such information.

6.4.4 Comparisons on practical object detection
In order to deal with real-world issues, we further performed
the proposed CoCoNet on a practical dataset against state-of-
the-art methods. As demonstrated in Table 7, the comparison
results on the practical dataset show that the methods in
bold generally have better performance than other compared
methods in the same experimental settings. The first 2 rows
in the table represent the results of the pure supervised
methods trained on the completely labeled WHEBD-759
dataset, and we observed that the models under such training
strategy have the best performance, e.g., B-CNN trained on
WHEBD-759 beats B-CNN w/ CoCoNet trained on WHEBD-
759-SIM by 17.9%, and Faster-RCNN trained on WHEBD-
759 beats Faster-RCNN w/ CoCoNet trained on WHEBD-
759-SIM by 20.2% on average. This phenomenon indicates
that the label information is important for models to learn
discriminative representations, which is hard to be replaced
by the self-supervised method. However, considering the
fundamental idea that SSL can enhance the models to learn
discriminative features, we used self-supervised methods to
pretrain the encoders and then trained the supervised models
on WHEBD-759-SIM to get better classification performance,
and it is proved by the experiments. We first introduced
the advanced self-supervised methods (e.g., SimCLR, SwAV,
and CMC) to pretrain the encoders, and the results support
that this pretraining procedure can improve the supervised
models, where CMC has the best results, and, in detail, B-
CNN w/ CMC beats the single B-CNN by 3.4%, and Faster-
RCNN w/ CMC beats Faster-RCNN by 2.8% on average.
Furthermore, the best results are always acquired by our pro-
posed CoCoNet, for example, B-CNN w/ CoCoNet improves
B-CNN w/ CMC by 1.5%, and Faster-RCNN w/ CoCoNet
improves Faster-RCNN w/ CMC by 1.3% on average. The
ablation models also have better performance than other
self-supervised methods, which proves the effectiveness of
the proposed method ulteriorly.

6.5 Deepgoing exploration
We conducted further experiments to explore the deep
properties of CoCoNet.

6.5.1 CoCoNet with different settings of views
To validate whether CoCoNet has consistent performance
under different settings of views, we selected several views
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Table 4: Performance of classification (F1-Measure) on the CIFAR10, CIFAR100, STL-10, Tiny ImageNet, and ImageNet.

Model
CIFAR10 CIFAR100 Tiny ImageNet STL-10 ImageNet

conv fc conv fc conv fc conv fc conv

DIM [3] 0.7280 0.7276 0.4729 0.4435 0.3308 0.3461 0.7264 0.7042 0.3210
SwAV [5] 0.6578 0.6842 0.4990 0.4932 0.3808 0.3642 0.7000 0.7076 0.3407
SimCLR [4] 0.7980 0.7937 0.4856 0.4810 0.3508 0.3919 0.7542 0.7681 0.3445
CMC [9] 0.8101 0.8210 0.5753 0.5611 0.3952 0.3858 0.8280 0.8461 0.3918

GloCo + SwAV 0.7409 0.7324 0.5567 0.5338 0.3858 0.4056 0.7223 0.7039 0.3372
LoCo 0.8232 0.8203 0.5609 0.5746 0.3996 0.3983 0.8234 0.8308 0.4085
CoCoNet 0.8258 0.8241 0.5786 0.5745 0.4122 0.4239 0.8512 0.8347 0.4062

10-4

a) Fix α, and study on β and γ b) Fix β, and study on α and γ b) Fix γ, and study on α and β
Figure 5: Influences of hyper-parameters α, β and γ of CoCoNet. We conducted comparisons on the CIFAR10 dataset.

Table 5: Performance of chemical molecules property pre-
diction in OGB datasets, including two downstream tasks:
graph regression and graph classification.

Model
mole moll molb molt mols
Regression Classification
(RMSE ↓) (ROC-AUC% ↑)

GIN RIU [79] 1.706 1.075 64.48 71.53 62.29
InfoGraph [60] 1.344 1.005 66.33 69.74 60.54
GraphCL [58] 1.272 0.910 68.22 72.40 61.76
AD-GCL [59] 1.270 0.926 68.26 71.08 61.83
GloCo + GraphCL 1.272 0.913 68.21 72.42 61.76
GloCo + AD-GCL 1.271 0.925 68.24 71.09 61.78
LoCo 1.268 0.910 68.49 71.32 61.81
CoCoNet 1.269 0.907 68.53 72.37 61.80

from the RGB optical (RGB) view, the luminance (L) view,
and the ab-color (ab) view and conducted experiments on
CIFAR10 using conv encoder. As manifested in the Table 8,
CoCoNet has consistent performance and outperforms the
compared methods on most tasks, and in details, CoCoNet
beats the best benchmark method, i.e., CMC, by 0.96% with
RGB and L views, by 0.34% with RGB and ab views, by 0.57%
with L and ab views, and by 1.79% with all alternative views.
We further added an experimental study on the comparison
of the proposed CoCoNet and a typical contrastive learning
method with more views. On the CIFAR10 dataset, we
increased the number of views from 1 to 5 by sequentially
adding the L, ab, RGB, Grayscale, and CbCr (belongs to
YCbCr color space, where CB and Cr are the concentration
offset components of blue and red) views. Results are shown
in Figure 6. CoCoNet maintains its advantage over SimCLR
when different view-settings are used for training. Compared
with the addition of L, ab, and RGB, the additions of
Grayscale and CbCr improve the performance of methods by
a limited margin, and we considered the reason is that most
information of Grayscale and CbCr is already contained
by L, ab, and RGB. Concretely, our proposed consistency
and complementarity regularization can indeed enhance the
ability of the encoders to model multiple views, and such

Table 6: Action recognition accuracy (%) to evaluate task
and dataset transferability on benchmark video datasets.
We followed the setting of [9]. † denotes different network
architecture. ∗ denotes our reimplementation.

Method Number UCF-101 HMDB-51
of Views

Random - 48.2 19.5
ImageNet - 67.7 28.0
VGAN† [80] 2 52.1 -
LT-Motion† [81] 2 53.0 -
TempCoh [82] 1 45.4 15.9
Shuffle and Learn [83] 1 50.2 18.1
Geometry [84] 2 55.1 23.3
OPN [85] 1 56.3 22.1
ST Order [86] 1 58.6 25.0
Cross and Learn [87] 2 58.7 27.2
CMC [9] 3 59.1 26.7
CMC∗ 3 58.8 26.3
GloCo + CMC 3 59.5 27.0
LoCo 3 59.2 26.8
CoCoNet 3 59.4 27.4

65
67
69
71
73
75
77
79
81
83
85

+ L + ab + RGB + Grayscale + CbCr

SimCLR CoCoNet Figure 6: Comparisons
with sequentially adding
views on CIFAR10 using
conv, which further indi-
cates the superiority of
CoCoNet over the com-
pared baseline under dif-
ferent view-settings.

superiority is consistent under different view-settings.

6.5.2 Hyper-parameter heatmap
Specifically, we performed several experiments to study
the influence of the tunable hyper-parameters. The hyper-
parameter α balances the impact of the local complementarity
preserving module. β balances the impact of conventional
contrastive learning loss. γ balances the impact of the
global consistency preserving module. To explore the in-
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Table 7: Comparison of classification top-1 accuracies (%) on the real-world WHEBD-759-SIM dataset. We incorporated
various SSL methods, e.g., SimCLR [4], SwAV [5], CMC [9], the proposed CoCoNet, and the ablation models of CoCoNet,
into the main supervised detection and classification methods, e.g., B-CNN [69], and Faster-RCNN [70], to form the improved
semi-supervised learning methods for the tasks, respectively. VGG-16 [71] and VGG-19 [71] are the backbone networks.

Training set Supervised model Self-supervised model Backbone network Average
VGG-16 VGG-19

WHEBD-759 B-CNN N/A 87.7 86.2 87.0
Faster-RCNN N/A 86.3 90.2 88.3

WHEBD-759-SIM

B-CNN

N/A 63.7 64.6 64.2
SimCLR 64.5 67.0 65.8
SwAV 64.1 65.3 64.7
CMC 66.5 68.7 67.6
GloCo+SwAV 64.7 66.2 65.5
GloCo+CMC 67.4 68.5 68.0
LoCo 65.5 69.1 67.3
CoCoNet 69.2 69.0 69.1

Faster-RCNN

N/A 61.3 66.7 64.0
SimCLR 61.8 67.4 64.6
SwAV 63.3 66.8 65.1
CMC 65.0 68.5 66.8
GloCo+SwAV 63.6 67.0 65.3
GloCo+CMC 65.9 69.6 67.8
LoCo 64.3 68.4 66.4
CoCoNet 65.2 70.9 68.1

Table 8: Comparison of applying different settings of views.
Views Methods Results

RGB L ab

✓ ✓

SimCLR [4] 76.37
SwAV [5] 66.14
CMC [9] 79.92
CoCoNet 80.88

✓ ✓

SimCLR [4] 74.30
SwAV [5] 64.72
CMC [9] 76.01
CoCoNet 76.35

✓ ✓

SimCLR [4] 75.74
SwAV [5] 65.90
CMC [9] 77.69
CoCoNet 78.26

✓ ✓ ✓

SimCLR [4] 80.58
SwAV [5] 66.18
CMC [9] 81.31
CoCoNet 83.10

fluence of α and β, we fixed γ and selected α from the
range of {10−6, 10−4, 10−2, 1, 102} and β from the range
of {10−6, 10−4, 10−2, 1, 102}. Following the same principle,
we selected γ from the range of {10−6, 10−4, 10−2, 1, 102}.
As a), b), and c) shown in Figure 5, we observed that
good classification performance is highly dependent on
the local complementarity preserving module, i.e., α. An
appropriate tuning of the impact of the contrastive loss, i.e.,
β, is needed for CoCoNet to enhance the cross-view feature
discriminability. As such, the global consistency preserving
module helps in classification performance with a small
amount of γ, because it aligns the distribution of views,
which helps to model the view-shared information.

6.5.3 CoCoNet with different discrepancy metrics
We conducted an ablation comparison by employing different
discrepancy metrics for the proposed method. As shown in

Table 9, we directly replaced the discrepancy metric in GloCo
module with KL, WD, etc. We observed that no matter which
discrepancy metric is based on, GloCo + CMC can improve
CMC, which proves the effectiveness of aligning the distri-
butions of multiple views. Yet the improvements in taking
different discrepancy metrics are inconsistent. Generally, the
Wasserstein distance-based methods beat the KL divergence-
based method, and we discussed the reasons in Section 5.2.
Since directly calculating the high-dimensional Wasserstein
distance is extremely computationally expensive, the dif-
ference between the Wasserstein distance-based methods is
that the approaches to approximately calculate Wasserstein
distances. In detail, WD uses the dual form of Wasserstein
distance, yet the Lipschitz constraint is difficult to meet.
SWD first obtains the one-dimensional representation of
the high-dimensional probability distribution through linear
mapping and then calculates the Wasserstein distance of
the one-dimensional representation of the two probability
distributions. Likewise, GSWD uses a similar approach
except that generalized nonlinear mapping is used instead of
linear mapping. The results demonstrate that, in the setting
of multi-view learning, GSWD can retain more discriminative
information than SWD in dimensionality reduction.

6.5.4 Validating the effectiveness of modeling low-level
information of the LoCo module
To decouple the design of the architecture and the design of
the learning objective, we conducted a further exploration
with CoCoNet, LoCo, and an ablation model HLoCo by
removing the low-level feature maps from LoCo, i.e., HLoCo
only uses the high-level feature vectors, not the information
of low-level feature maps. As shown in Figure 8 and Table 1,
we observed that HLoCo beats the baselines with the same
high-level representations, which shows the effectiveness
of the learning objective LLoCo. Moreover, both LoCo and
CoCoNet can outperform HLoCo on benchmark datasets,
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Figure 7: Visual comparisons of the top category-averages features of correct and incorrect classifications in the representation
space of CoCoNet and CMC. We derived averaged features for each category, and according to the classification results,
we retrieved the top category-averages features to evaluate the activated feature elements of CoCoNet and CMC, which
is conducted on the Tiny ImageNet dataset by following the experimental principle of [88]. We observe that the correct
classification contains specific activated feature elements that are more salient (colorful) than other feature elements, whereas
the incorrect classifications do not.

Table 9: Classification top-1 accuracy (%) on the CIFAR10 and
Tiny ImageNet datasets. We conducted several experiments
based on the conv encoder and classifier as in Table 1.
We introduced the optional discrepancy metrics, e.g., KL-
divergence (KL) [89], Wasserstein distance (WD) [46], sliced
Wasserstein distance (SWD) [90], and generalized sliced
Wasserstein distance (GSWD) [47], to GloCo + CMC. Notably,
the GSWD-based GloCo + CMC outperforms benchmark
methods but falls short compared to CoCoNet.

Model CIFAR10 Tiny ImageNet Average
CMC 81.31 41.58 61.45
GloCo + CMC w/ KL 81.62 42.08 61.85
GloCo + CMC w/ WD 82.02 42.14 62.08
GloCo + CMC w/ SWD 82.07 42.05 62.06
GloCo + CMC w/ GSWD 82.27 42.21 62.24
CoCoNet 83.10 42.28 62.69

40
45
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55
60
65
70
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80
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CIFAR10 Tiny ImageNet

图表标题

CMC HLoCo LoCo CoCoNet Figure 8: Research on
the effectiveness of a
specific sub-structure of
the LoCo module. Specifi-
cally, we decoupled mod-
eling the low-level feature
information from learn-
ing the complementarity-
factor CF and evaluate
the ablation model.

indicating that modeling the discriminative information from
low-level feature maps can generally improve the perfor-
mance of our method. The reason behind such a phenomenon
is that from the perspective of the information theory,
compared with the low-level feature map, the high-level
feature vector may loss some complementarity information.
Therefore, according to the amount of information entropy,
HLoCo, like typical contrastive learning methods [4], [5], [9],
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Figure 9: The average
computational time costs
of the training of a batch
during the first 20 epochs.
The process includes the
feed-forward calculation
and the back-propagation
training of the encoders.

only contains the information of high-dimensional feature
vectors, while the useful complementarity information may
be lost within the encoding process so that compared with
LoCo and CoCoNet, complementarity information is not
sufficiently explored by HLoCo. We further observed that
comparing HLoCo and LoCo, LoCo improves HLoCo by
a larger margin on Tiny ImageNet than on CIFAR10. We
reckoned that the classification on Tiny ImageNet requires
more complementarity information, since Tiny ImageNet
contains 200 categories while CIFAR10 only contains 10
categories.

6.5.5 Case study
As shown in Figure 7, each class has a discriminatory set of
feature elements that contribute to correct classifications, i.e,
each category requires different sets of discriminative feature
elements for classifications. The observations on the incorrect
classifications demonstrate that the over-consistency (trivial)
of feature elements is a crucial reason that the feature
cannot be correctly classified, indicating that the misclassified
features model much task-irrelevant information. We observe
that compared with CMC, CoCoNet learns features with
more salient elements, indicating that CoCoNet can learn
more activated feature elements for each category in classifi-
cations. The reason behind such an observation is that CMC
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Query CoCoNet GloCo+SwAV DIM
Figure 10: Visual comparisons for studying the merits of CoCoNet on the CIFAR10 dataset. We retrieved the 4 nearest
neighbors to evaluate the discriminability by using L1 distance. The leftmost images are randomly selected images as
queries, and the other images are their nearest neighbors measured in the representations of compared methods.

only leverages the typical contrastive approach to model
consistency information, while CoCoNet further imposes
the proposed LoCo module to extract complementarity
information. Hence, in addition to the feature elements
modeling consistency information, the feature elements
modeling complementary information can also contribute
to the classification of each category. The extra elements in
the features learned by our method can be regarded as the
elements modeling complementary information. Therefore, a
larger amount of discriminative information can empower
CoCoNet to be robust to task-irrelevant noisy information,
resulting in better performance on downstream tasks.

6.5.6 Limitations and discussion
Discussion on the time complexity. In head-to-head com-
parisons, CoCoNet achieves the state-of-the-art, which sup-
ports that mining view-consistency and -complementarity
knowledge can improve to model multiple views in multi-
view SSL. Yet compared with benchmark self-supervised
methods, CoCoNet has relatively higher time complexity in
training. As shown in Figure 9, the computational time cost
of CoCoNet is lower than SwAV but higher than the baseline
CMC. We reckoned the reasons are 1) the training of the
critic network of GloCo; 2) the matrix operations of LoCo.
However in the test, the compared methods adopt the same
paradigm, and the test time complexities are the same.

Threats to validity [91]. For the conclusion validity, we
followed the benchmark experimental settings [3], [9], e.g.,
choice of statistical tests, choice of sample size, etc. In order
to avoid the threat to validity caused by imbalanced datasets,
in addition to accuracy, we further adopted F1-Measure as a
metric to measure the experiments, which is shown in Table
4. For the internal validity, we introduced sufficient ablation
studies, demonstrated in Section 6.4, to prove the effective-
ness of the proposed parts of CoCoNet, i.e., GloCo and LoCo.
To further explore whether replacing specific components
of CoCoNet with variants may affect the conclusion that
“the improvement in results is due to the proposed method”, we
conducted comparisons in Table 9 and Figure 8, and the
results support the effectiveness of CoCoNet’s components.
For the construct validity, a foundational assumption of multi-
view SSL is stated in Assumption 5.1, which is theoretically

proved by [10], [48], [92]. Moreover, such an assumption is
empirically proved by [4], [5], [9] to be applicable to image-
related tasks, by [58] to be applicable to graph-related tasks,
and by [9] to be applicable to video-related tasks. For the
external validity, to avoid the influence of random factors
(such as random seeds) in the experiment on the results, we
collected the results of 5 trials for comparisons. The average
result of the last 10 epochs is used as the final result of each
trial. The average results from all trials are presented in tables.
We conducted comparisons on multiple downstream tasks,
including image classification tasks, graph prediction tasks,
and action recognition tasks, to avoid artificial experimental
settings that may affect the generalization of the model.
In order to further verify whether the experiments on
benchmark datasets can be generalized to actual real-world
scenarios, we conducted comparisons on a practical dataset,
i.e., WHEBD-759, and the results demonstrate that CoCoNet
can still improve the performance of benchmark supervised
methods in a self-supervised manner.

6.5.7 Visual comparisons
As shown in Figure 10, the representations learned by
CoCoNet lead to more interpretable metric structures since
neighboring representations correspond to visually similar
images of the same category. There are three reasons for
this circumstance: 1) CoCoNet learns representations from
multiple views instead of a single view; 2) LoCo helps
to refine the representations by improving the feature’s
view-specific discriminability; 3) GloCo further enhances
the learned representations’ view-shared discriminability by
measuring the discrepancy metric between views.

7 CONCLUSIONS

This paper proposes a novel CoCoNet to mine discriminative
knowledge from multi-view data in an unsupervised manner.
To this end, CoCoNet globally aligns the distributions of
views in the latent space by adopting an efficient align-
ment method based on GSWD, which helps to capture
view-consistency information. CoCoNet leverages the pro-
posed complementarity-factor to maintain the cross-view
complementarity of the latent representations on the local
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stage. Compared with the conventional methods, CoCoNet
explores more, albeit still not full, discriminative information
from multiple views. The provided theoretical and experi-
mental analyses support the effectiveness of CoCoNet.
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9 APPENDIX

9.1 Theoretical proofs
In Section 5, we propose two theorems: Theorem 5.1, i.e.,
the View-Consistency information with a potential loss of
View-Specific Noise ϵnoise theorem; Theorem 5.2, i.e., the
View-Complementarity information, which is view-specific
and task-relevant theorem. Here, we provide a formalized
view to describe the proofs of them.

9.1.1 Proof of Theorem 5.1
We validate that I(X1;Y ) ≥ I(X1;Y ∣ϵnoise) by introducing
the KL-divergence [93] measurement into the calculation of
mutual information:

Proof. To proof I(X1;Y ) ≥ I(X1;Y ∣ϵnoise)

∵I(X;Y ) = ∑
x∈X

∑
y∈Y

P(x, y)log P(x,y)
P(x)⋅P(y)

∴I(X1;Y ) = ∑
x∈X1

∑
y∈Y

P(x, y)log P(x,y)
P(x)⋅P(y)

∴I(X1;Y ∣ϵnoise) = ∑
x∈X1

∑
y∈{Y −ϵnoise}

P(x, y)log P(x,y)
P(x)⋅P(y)

And KL-divergence is defined as:

DKL(P ∣∣Q) = ∫ P(x) log P(x)
Q(x)dx

The discrete form of KL-divergence is:

DKL(P ∣∣Q) = ∑P(x) log P(x)
Q(x)

We try to use KL divergence to fit the calculation of
mutual information, and the P and Q are approximated by:

P̂(x) = P(x, y)

Q̂(x) = P(x) ⋅ P(y)

Put P̂(x) and Q̂(x) into the above formula of the
discrete KL-divergence:

DKL(PXY ∣∣PXPY ) = ∑
x∈X

∑
y∈Y

P(x, y)log P(x,y)
P(x)⋅P(y)

Then, we get:

DKL(PXY ∣∣PXPY ) = I(X;Y )

∴I(X1;Y ) = DKL(PX1Y ∣∣PX1PY )

∴I(X1;Y ∣ϵnoise) = DKL(PX1{Y −ϵnoise}∣∣PX1P{Y −ϵnoise})

Because Y is not fully compressed, which means
I(X1;Y ∣T ) ≥ 0, it is acknowledged that ϵnoise ≥ 0. For
the KL-divergence, PX1 is constant, and Y ≥ {Y − ϵnoise}.
Therefore, compared with the joint PX1Y and PX1 ⋅ PY , the
distributions of the joint PX1{Y −ϵnoise} and PX1 ⋅P{Y −ϵnoise}
are more consistent, and then we get:

DKL(PX1{Y −ϵnoise}∣∣PX1P{Y −ϵnoise}) ≤ DKL(PX1Y ∣∣PX1PY )

∴I(X1;Y ) ≥ I(X1;Y ∣ϵnoise)

9.1.2 Proof of Theorem 5.2

We validate that I(Y ;T ) ≤ I(Y ;T ) + I(X1;Y ∗;T ∣X2) +
I(X2;Y ∗;T ∣X1) by introducing the KL-divergence [93]
measurement into the calculation of mutual information:

Proof. To proof I(Y ;T ) ≤ I(Y ;T ) + I(X1;Y ∗;T ∣X2) +
I(X2;Y ∗;T ∣X1)

Transpose the mentioned equation:

I(Y ;T ) − I(Y ;T ) ≤ I(X1;Y ∗;T ∣X2) + I(X2;Y ∗;T ∣X1)

I(X1;Y ∗;T ∣X2) + I(X2;Y ∗;T ∣X1) ≥ 0

Since, we assume that Y ∗ is a extended representation of
Y , and it can contain part of the View-Complementarity
information, i.e., I(X1;T ∣X2) + I(X2;T ∣X1). Therefore,
we only need to proof that I(X1;T ∣X2) or I(X2;T ∣X1) is
not null, because the mutual information cannot be negative.
The proof is reformed to:

I(X1;T ∣X2) ≥ 0

I(X2;T ∣X1) ≥ 0

∵I(X;Y ) = ∑
x∈X

∑
y∈Y

P(x, y)log P(x,y)
P(x)⋅P(y)

∴I(X1;T ∣X2) = ∑
x∈X1

∑
y∈{T−X2}

P(x, y)log P(x,y)
P(x)⋅P(y)

∴I(X2;T ∣X1) = ∑
x∈X2

∑
y∈{T−X1}

P(x, y)log P(x,y)
P(x)⋅P(y)

As the equation deducing in Proof 9.1.1, we use the
discrete form of KL divergence to fit the calculation of
mutual information, and then we get:

DKL(PXY ∣∣PXPY ) = I(X;Y )

∴I(X1;T ∣X2) = DKL(PX1{T−X2}∣∣PX1P{T−X2})

∴I(X2;T ∣X1) = DKL(PX2{T−X1}∣∣PX2P{T−X1})

The downstream task-relevant information T is not
fully contained in any view of data, e.g., X1 or X2,
with a strong possibility meant for H(T ∣X1) ≥ 0 and
H(T ∣X2) ≥ 0, and so, based on the view of KL-divergence,
we reckon that P{T−X1} and P{T−X2} exist. For the
KL-divergence, PX1 or PX2 is constant, and therefore
it is very likely that DKL(PX1{T−X2}∣∣PX1P{T−X2}) or
DKL(PX2{T−X1}∣∣PX2P{T−X1}) exists in like manner:

DKL(PX1{T−X2}∣∣PX1P{T−X2}) ≥ 0

DKL(PX2{T−X1}∣∣PX2P{T−X1}) ≥ 0

∴I(X1;T ∣X2) ≥ 0 and I(X2;T ∣X1) ≥ 0

∴I(X1;Y ∗;T ∣X2) ≥ 0 and I(X2;Y ∗;T ∣X1) ≥ 0

∴I(Y ;T ) ≤ I(Y ;T ) + I(X1;Y ∗;T ∣X2) + I(X2;Y ∗;T ∣X1)



SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 20

a) LoCo loss of CoCoNet c) Classifier loss of CoCoNetb) WD Critic loss of CoCoNet

83.10 83.10 83.10

d) Total loss of LoCo e) Total loss of CoCoNet

83.1082.74

Figure 11: Extended verification for studying the loss convergence properties of CoCoNet and LoCo on the CIFAR10 dataset.

9.2 How does GSWD implement nonlinear mapping?
As mentioned in Section 4.1, GRϑ represents one-
dimensional nonlinear projection operation on the probability
measure Pr and Pg , which is defined as:

GRϑPi (xi) = ∫
Σi

Pi (xi)δ (t − ge (xi, ϑ)) dxi (10)

where i ∈ {r, g}, δ (⋅) is the one-dimensional Dirac delta
function, t ∈ R, and ge (⋅, ϑ) is a pre-defined nonlinear
function that must satisfy the following four conditions:

• ge (⋅, ϑ) is a real-valued C∞ function.
• ge (⋅, ϑ) is homogeneous of degree one in ϑ, i.e.,

∀υ ∈ R, ge (⋅, υϑ) = υge (⋅, ϑ) (11)

• ge (⋅, ϑ) is non-degenerate in the sense that

∀ϑ ∈ Ωϑ\ {0} , x ∈ X,
∂ge

∂x
(x, ϑ) ≠ 0 (12)

• The mixed Hessian of ge (⋅, ϑ) is strictly positive, i.e.

det
⎛
⎜
⎝
( ∂2ge

∂xi∂ϑj
)
i,j

⎞
⎟
⎠
> 0 (13)

ge (⋅, ϑ) is a nonlinear function so that the GSWD achieves
to map high-dimensional representations to one-dimensional
representations in a nonlinear manner.

9.3 Extended comparisons
In this section, we conduct further experiments to study the
intrinsic property of our proposed method.

9.3.1 Study on the Wasserstein distance changing trends
As a) and b) in Figure 12, they show the changing trends
of the sum of Wasserstein distances between views in
optimization. In a), it is based on GloCo+CMC, and the
result of CoCoNet is shown in b). We found that, although the
Wasserstein distance in both a) and b) can reach convergence,
the Wasserstein distance in b) converges slower than in
a). Additionally, the Wasserstein distance’s peak value in

a) Wasserstein distance of GloCo+CMC b) Wasserstein distance of CoCoNet

82.27 83.10

Figure 12: Extended verification of studying the Wasserstein
distance changing trend properties of GloCo+CMC and
CoCoNet in optimization on the CIFAR10 dataset.

a) Encoder learning rate b) LoCo learning rate

Figure 13: Extended verification of studying learning rates
of the encoders and LoCo network in optimization on the
benchmark CIFAR10 dataset.

b) is much higher than that in a). The additional local
complementarity preserving module affects the convergence
of Wasserstein distance, and eventually, both the loss of the
local complementarity preserving module and Wasserstein
distance can converge. As such, the findings indicate that the
game of simultaneously training the local complementarity
and global consistency preserving modules is similar to the
adversarial learning process, which helps CoCoNet to learn
features with local complementarity and global consistency.

9.3.2 Study on optimizations
As manifested in Figure 13, we studied the learning rates
of the encoders and the local complementarity preserving
module (i.e., LoCo) respectively, while we excluded the
learning rate parameter study of the global consistency
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preserving network (i.e., GloCo) from the experiment, be-
cause we found that the learning rate of the GloCo has
little effect on the performance of the proposed method.
Furthermore, the objective of GloCo is to calculate the
Wasserstein distances between views, so the learning rate
of GloCo does not enhance the accuracy of CoCoNet. To
explore the influence of different parts of CoCoNet, we
selected wide ranges for the target learning rates, e.g., a range
of {10−9, 10−8, ..., 10−3−, 10−2} is for the uniform learning
rate of the encoders, a range of {10−8, 10−7, ..., 10−3, 10−2} is
for the learning rate of LoCo and fixed the other learning
rates. We observed that the appropriate learning rates of
the encoders and LoCo can promote the performance of
our proposed method by a wide margin. Consider that
the learning rate determines the step length of the weight
iteration, so it is a very sensitive parameter. It has a significant
effect on the model performance (e.g., the initial learning
rate must have an optimal value. If it is too large, the model
will not converge, and if it is too small, the model will
converge slowly or fail to learn). Therefore, we concluded
that the encoders and LoCo both have great impacts on the
performance of CoCoNet.

9.3.3 Study on the loss convergence
From a), b), and c) in Figure 11, it can be found that all
losses can reach convergence smoothly, which proves that the
gradient descent of the loss of each part will not conflict with
others in optimization. Moreover, it also verifies the integrity,
robustness, and consistency of the proposed method.

We also conducted additional experiments to clarify the
loss convergence of CoCoNet and the ablation model, i.e.,
LoCo. As in Figure 11, plots d) and e) separately show the
relationships between the total loss and the accuracy based
on LoCo and CoCoNet. We can find that in both of the
optimization processes of LoCo and CoCoNet models, the
total losses will eventually converge, while CoCoNet will
be slightly slower to reach convergence during the training
process. Meanwhile, as demonstrated in the classification
comparisons, CoCoNet outperforms LoCo, which indicates
that the global consistency preserving module can indeed
enhance the performance of the proposed method. Hence,
with the addition of GloCo, the initial loss tends to increase,
and this shows that the additional module allows CoCoNet
to have greater optimization potential.
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