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Nessy: A Neuro-Symbolic System for
Label Noise Reduction

Alisa Smirnova , Jie Yang , Dingqi Yang , and Philippe Cudre-Mauroux

Abstract—Noisy labels represent one of the key issues in supervised machine learning. Existing work for label noise reduction mainly

takes a probabilistic approach that infers true labels from data distributions in low-level feature spaces. Such an approach is not only

limited by its capability to learn high-quality data representations, but also by the low predictive power of data distributions in inferring

true classes. To address those problems, we introduce Nessy, a neuro-symbolic system that integrates deep probabilistic modeling and

symbolic knowledge for label noise reduction. Our deep probabilistic model infers the true classes of data instances with noisy labels by

exploiting data distributions in an underlying latent feature representation space. For data instances where inference is not reliable

enough, Nessy extracts symbolic rules and ranks them according to several utility metrics. Top-ranking rules are injected into the deep

probabilistic model via expectation regularization, i.e., via a posterior regularization term constraining the class distribution in the

objective function. In a real deployment over multiple relation extraction tasks, we demonstrate that Nessy is able to significantly

improve the state of the art, by 7% accuracy and 10.7% AUC on average.

Index Terms—Noise reduction, neuro-symbolic systems, deep probabilistic model, relation extraction, distant supervision

Ç

1 INTRODUCTION

THE success of deep learning models heavily relies on the
quality and quantity of labeled training data [1]. Obtain-

ing large amounts of high-quality training data, however, is
a long, laborious, and usually costly process. Addressing the
label quantity issue, several approaches have been proposed
to enable the fast creation of large training sets by exploiting
low-quality but easily accessible labeling sources. Typical
methods include distant supervision [2], [3], crowdsourcing
[4], and automatic data augmentation [5]. The effectiveness
of these approaches, in terms of scalability and cost-effective-
ness, has been evaluated on a variety of tasks, ranging from
information retrieval [4], [6] and extraction [7], [8], [9] to
image segmentation and recognition [10], [11]. Those meth-
ods, efficient, result in noisy labels for the training data.

In contrast to the growing body of work addressing
the label quantity issue, little attention has been devoted
to the labels quality. Due to the lack of transparency and

accountability of deep learning models [12], [13], incorrect
labels in the training set are generally difficult to identify; con-
sequently, label noise has become a main obstacle for devel-
oping, deploying, and improving deep learningmodels.

Existing work mainly suggest probabilistic methods that
leverage data distributions for debugging noisy labels [14],
[15], [16]. The basic assumption is that data points distrib-
uted close to each other are more likely to have the same
label, hence it is possible to infer the true class of an instance
from its neighbors. Those methods, however, suffer from
two major limitations. First, they model data distributions in
low-level feature spaces with oversimplified structures (e.g.,
lexical features such as tokens or patterns). As for most lan-
guage and vision problems, the low-level distributions
learned by these methods are limited compared to the true
distributions on the higher-level latent feature representa-
tion space that present complex dependencies among fea-
tures [17]. The second limitation, and probably the most
important one, is that all existing methods are data-driven
methods that learn statistical patterns from the data only. As
a result, the performance of such methods is further limited
by the intrinsic predictive power of data distributions for the
true classes, a limiting factor of any data-driven method that
relies on data distributions for debugging noisy labels.

Deep neural networks are able to learn data representa-
tions that encompass complex dependencies among features
and provide data distributions that are more effective for the
inference of true labels. Those methods, however, are never-
theless limited by the amount of relevant information in the
training data for the inference of true classes. The presence of
noisy labels makes it even harder for neural networks to rec-
ognize such relevant information for truth inference. Besides,
deep learning methods—despite their flexibility—are typi-
cally not robust to noise in the training data, especially when
the size of the training data is not sufficiently large. Compared
to data-driven approaches, knowledge-driven approaches are
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more robust due to their capability in representing concepts
and causal relations among them. Those two types of
approaches are complementary to each other in the sense that
knowledge can be acquired in parallel to the data itself (e.g.,
from humans) and can be integrated into data-driven meth-
ods to improve the effectiveness of models. Recent discus-
sions in the AI communities have converged on the idea of
integrating symbolic methods with machine learning, i.e.,
neuro-symbolic methods, which benefit from the robustness
of symbolic methods, the flexibility of machine learning,
and their complementarity in utilizing different informa-
tion sources [18].

Inspired by those developments, we propose to integrate
deep learning with symbolic knowledge for label noise
reduction. In that way, deep learning methods are used to
infer the true classes from data distributions on the latent
feature representation space, and symbolic knowledge is
introduced to further improve the accuracy of the inferred
labels, in particular for instances for which the latent feature
representation learned by the deep neural model is domi-
nated by class-irrelevant information. However, developing
such an approach is challenging. The first challenge is to
develop a deep learning model that can learn high-quality
data representations to capture data distributions while
using them for true class inference. Second, it remains
unclear what knowledge is the most beneficial for the
model, how to identify such knowledge, and how to inte-
grate that knowledge into the deep learning model for noise
reduction.

In this paper, we present Nessy, a new neuro-symbolic
system that takes advantage of deep and probabilistic model-
ling for inferring latent classes, and of symbolic knowledge
expressed as a set of logic rules for improving model infer-
ence. Unlike previous probabilistic methods, our deep prob-
abilistic model adopts deep neural networks to parameterize
data distributions, thus is able tomodel complex feature rela-
tionships in the data and to learn high-quality latent feature
representations. Nessy then extracts logic rules from the data
following the recommendations of the domain experts and
injects them into the deep probabilistic model to improve the
accuracy of true class inference. To extract themost beneficial
rules, Nessy employs a data sampling component that
selects instances for which the probabilistic inference is unre-
liable. Those rules are ranked by several metrics that quan-
tify the potential utility of the rules for label noise reduction,
including support (how many instances match the rule) and
confidence (how useful the rule is in discriminating one class
from another). To inject rules into the deep probabilistic
model, Nessy leverages expectation regularization [19] that
takes rules as soft constraints. The rules are added to the
objective function of the deep probabilistic model to regular-
ize the inference results.

The proposed system is task-independent and can be
used for any classification problem. In this paper, we inves-
tigate the effectiveness of Nessy on the task of relation
extraction. Historically, distant supervision is widely used
to obtain training data for this task [3], [20]: some external
Knowledge Base is used to obtain the relations between two
entities; the relations are then used to automatically label
sentences that mention those entities. This approach inevita-
bly brings noise into the training data, i.e., some of the labels

are incorrect (see example on Fig. 1). We use the term distant
supervision noise to denote this type of noise. In our experi-
mental evaluation, we demonstrate the effectiveness of
Nessy in reducing both the distant supervision noise and
random noise, across multiple relations and different noise
levels.

In summary, we make the following key contributions:

� We introduce the notion of debugging noisy training
data through a neuro-symbolic approach;

� We propose a deep probabilistic model that infers the
true classes of training instances with noisy labels by
learning their data distributions in the latent repre-
sentation space;

� We present Nessy, a system architecture that orches-
trates the operations of the deep probabilistic model
and of the symbolic methods through a set of compo-
nents for rule extraction, ranking, and integration.

� We demonstrate the effectiveness of our approach
through an extensive evaluation on several relation
extraction tasks and show that Nessy improves the
state of the art by 7% in accuracy and 10.7% in AUC.

To the best of our knowledge, we are the first to suggest a
neuro-symbolic approach for debugging noisy training
data. Compared to our previous work Scalpel-CD [21],
where we introduced deep probabilistic modeling coupled
with a human-in-the-loop approach for post-processing the
model’s inference, Nessy introduced in this paper is an
alternative approach that involves humans in a much ligh-
ter way for improving model inference: humans only need
to examine the validity of the rules in Nessy, whereas in
Scalpel-CD they need to process data on a per-instance
basis. Results show that Nessy outperforms its predecessor
on challenging datasets with distant supervision noise by
4.3% in accuracy while requiring much less human input.

2 RELATED WORK

Label Noise Reduction. Existing methods are mainly devel-
oped for crowdsourcing and distant supervision. In crowd-
sourcing, noise reduction has been a central problem as
worker annotations are often noisy. Typical methods
assume a redundancy of worker annotations, e.g., majority
voting and those based on Expectation Maximization (EM)
[22]. EM methods simultaneously estimate the true labels

Fig. 1. In the manually labeled data, this instance is labeled with relation
per:title between the two following entities: producer and Danny
Glover. However, this information might be missing from the Knowledge
Base; consequently, this data instance is labeled as not having relation
per:title.
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and parameters of the annotation process, e.g., worker reli-
ability by Dawid and Skene [23] and task difficulty by
Whitehill et al. [24]. Our work is different in that we con-
sider the broader scope of noisy data, where labels are not
necessarily redundant.

Distant supervision is a popular approach for creating
training data for relation extraction. Variety of methods
were proposed to tackle distant supervision noise. Those
methods mainly leverage data distributions in the low-level
feature space, e.g., the factor graph model by Riedel et al.
[14] and the generative model by Takamastu et al. [15].
Alfonseca et al. [16] introduce a hierarchical model to cap-
ture the data distribution in the topic space. In comparison,
our deep generative model is flexible to capture data distri-
butions with more complex data structures.

Most of the deep learning models designed for distantly
supervised relation extraction do not explicitly filter out
noisy instances. Instead, attention mechanism is used to
weigh the instances depending on their relevance to the
relation [25], [26].

Neural-Symbolic Learning. While being flexible to capture
complex mapping between the features and label, machine
learning approaches – deep learning in particular – are gener-
ally data-hungry (sample inefficient) and not robust—they
only learn (possibly spurious) statistical correlations. Com-
pared to data-driven, learning-based approaches, knowledge-
driven, reasoning-based approaches aremore sample-efficient
and more robust due to their capability in representing con-
cepts and the causal relations among them. Recent discussions
in the AI communities have converged on the idea of integrat-
ing symbolic methods with machine learning. A visible trend
is the growing body of work on neural-symbolic methods
[27]. For instance, Xu et al. [28] introduce the semantic loss
that augments the training objective of neural networks with
soft-constraints specified with domain knowledge; Allamanis
et al. [29] propose to learn continuous representations of sym-
bolic knowledge for integration into neural networks. On the
application side, neural-symbolic methods have been applied
to both vision and language tasks including visual relation
prediction [30], visual question answering (VQA) [31], [32],
and semantic parsing [33]. In debugging noisy training data,
deep learning approaches suffer more from the sample-effi-
ciency and robustness issues. To the best of our knowledge,
we are the first to investigate the integration of symbolic

knowledge into deep learning for debugging noisy training
data.

We note though, that there are some work making use of
symbolic knowledge for distantly supervised relation
extraction: Koch et al. [34] filter out relation instances with
incompatible entity types; Ji et al. [26] add a constraint to
the objective function that is based on the entity descriptions
extracted from Wikipedia pages. Rockt€aschel et al. [35]
explore logical dependencies between relations. However,
none of those work focuses on the noise reduction.

3 ARCHITECTURE

Fig. 2 gives an overview of our system. Nessy takes as input
a noisy dataset, e.g., in the context of relation extraction (the
main application we are currently exploring in the context
of this work), the dataset is a corpus of sentences, each asso-
ciated with a noisy label that represents a relation between
two entities. The dataset is first passed to a deep probabilistic
model (C1 on Fig. 2), which infers the latent true class for
each data instance along with a high-level latent feature
representation of it. The inferred class is subsequently used
as an input to a data sampler (C2), which calculates the reli-
ability of the model’s inference and selects data instances
that are fed to the knowledge extractor (C3). The knowledge
extractor extracts symbolic rules from the sampled instances
and ranks them according to rule utility metrics that mea-
sure their potential benefit for improving the deep probabi-
listic model. Then, the top-ranking rules are injected to the
model through a knowledge injector using expectation regu-
larization (C4). In this way, the model is integrated with
additional knowledge for better predictions. Next, we
describe the components in more detail.

C1: Deep Probabilistic Model. The deep probabilistic model
receives a noisy dataset and simultaneously infers two types
of latent variables, i.e., the latent true class and the latent fea-
ture representation. The latent feature representations, rep-
resented as a set of low-dimensional vectors, capture the
underlying data structure for the inference of the latent true
classes. The inference process relies both on existing noisy
labels and latent feature representations. The basic idea is
that data instances distributed around the same region of the
latent feature representation space are likely to belong to
the same class. Consider for example a data instance whose

Fig. 2. The architecture of Nessy: our system takes as input a noisy training dataset and infers the true classes of data instances with deep probabilis-
tic modeling; it identifies from the data instances for which inference is unreliable, and extracts and ranks symbolic rules by their potential utility in
improving the accuracy of label inference by the deep probabilistic model. Top-ranking rules are then injected into the deep probabilistic model for
model retraining and improvement.
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surrounding neighbors are all positively labeled; it is then
likely that the instance be positive also, even if its existing
noisy label is actually negative. In most cases, the surround-
ing neighbors are partially labeled as positive and partially
as negative. The deep probabilistic model is able to strike a
balance between the latent features and the noisy labels to
obtain a reasonable estimate of the latent class. This compo-
nent is described in further detail in Sections 4.1 and 4.2.

C2: Data Sampler. The data sampler component is critical
in identifying the rules that the deep probabilistic model
might have missed during training. Its main purpose is
selecting data instances for which the deep probabilistic
model’s inference is not reliable enough. As in previous
work [21], the model reliability is approximated by the
(inverse) uncertainty of model inference. In addition, it fur-
ther considers random sampling as an alternative sampling
method, which is more suitable for data with structural
noise. Additional detail on our sampling algorithm is given
in Section 4.3.

C3: Knowledge Extractor. From sampled data instances,
Nessy then extracts symbolic knowledge as a set of rules for
complementing the deep probabilistic model. In this work,
we consider textual features from the input sentences to
compose rules, e.g., part-of-speech tags and NER tags. The
extracted rules are ranked according to their potential utility
in improving the accuracy of label inference by the deep
probabilistic model. The utility is approximated by two met-
rics: 1) support, denoting the number of instances matching
the rule, and 2) confidence, denoting the discrminative
power of the rule. We explain our extraction algorithm in
detail in Section 4.4.

C4: Knowledge Injector. Nessy injects the extracted rules
into the training process using expectation regularisation
[19]. The underlying idea is that the instances matching a
certain rule should follow a different label distribution than
the whole data. This distribution might be estimated using
validation data with manual labels whenever available.
Otherwise, heuristics might be used to estimate the label
distribution. Providing a deep probabilistic model with
such a set of rules together with their label distribution can
significantly improve both the accuracy of true label infer-
ence and model interpretability, as we explain in Section 4.5
and demonstrate in our empirical evaluation in Section 5.

4 NESSY COMPONENTS AND TRADE-OFFS

Nessy orchestrates human and machine intelligence via the
set of components described in the previous section. These
components seek a trade-off between different key features
of our system that have impact on the resulting system per-
formance. The deep probabilistic model infers the latent
class of a data instances by striking a balance between the
trust in existing noisy labels and the data distribution. Simi-
larly, the data sampler component is concerned with the
trade-off between data representativeness and label reliabil-
ity: it aims at selecting data instances that are most repre-
sentative to capture useful rules, and those whose labels are
most unreliable to effectively reduce noise in the training
set. The knowledge extractor seeks the rules that are fre-
quent in the data, but are not (yet) captured by the deep
probabilistic model. Finally, the knowledge injector strikes

a balance between the model’s predictions and the knowl-
edge-driven constraints.

In this section, we first briefly describe our deep probabi-
listic model, and then characterize the trade-off space for all
four system components: deep probabilistic model, data
sampler, knowledge extractor, and knowledge injector. For
each of them, we propose an algorithmic solution that sim-
plifies the search of the optimal trade-off.

4.1 Deep Probabilistic Model

Overview. Our goal is to infer a true latent class label given a
data instance and its noisy label. To infer the latent class of
a data instance, the basic intuition of our deep probabilistic
model is that data instances similar to each other (i.e., close
in the latent feature space) are more likely to belong to the
same class. With this in mind, we utilize generative model-
ing to model the relation between observed variables (i.e.,
data instance and its noisy label) and latent variables (i.e.,
latent features and latent true class). Parameters of the gen-
erative model are learned simultaneously with the inference
of true labels given a dataset with noisy labels. In the follow-
ing, we first describe the generative model and then the
inference and learning processes.

Generative Model.We consider a generative model to fully
capture the data distribution of a large training dataset. For-
mally, the process is described as follows. Given a noisy
dataset D ¼ fðxi; ŷiÞgNi¼1, where xi is a data instance and ŷ is
its corresponding noisy label (we omit the index iwhenever
it is clear that we are referring to a single data instance). For
each data instance ðxi, ŷiÞ 2 D:
� Draw a latent feature vector zi � P ðzÞ where P ðzÞ ¼
N ð0; IÞ is a standard Gaussian distribution;

� Draw a latent class yi � P ðyÞ where P ðyÞ ¼ CatðyjpppppppÞ
is a Multinoulli distribution, where ppppppp ¼ f1=K; . . . ;
1=Kg⊺ (K is the number of classes). Multinoulli (or
Categorical) distribution suits best for encoding a
discrete random variable;

� Draw a data instance xi � Puðxjz; yÞ;
� Draw a noisy label ŷ � Pgðŷjz; yÞ.
Our generative model is depicted in Fig. 3. The data

instances and the noisy labels are both dependent on the
latent feature vector z and on the latent class y, which cap-
tures the class specification. z can include both class and
non-class related features. For example, for a sentence x, the
latent feature vector z can represent topics related to a certain

Fig. 3. Graphical model of the generative model. The data instance x and
the noisy label ŷ are both generated from distributions conditioned on the
latent feature vector z and the latent class y. u and g are the parameters
of the likelihood function for generating the data and noisy labels,
respectively (the priors of z and y are omitted). x and ŷ are observed vari-
ables; all the rest is inferred or learned.
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class, and additionally, it can capture the author’s writing
style that is not class-related. The non-class related features,
when mistaken as class-related, are likely to lead to wrong
labels during the labeling process. z and y are conditionally
dependent given the observed data instance x and the noisy
label ŷ.

Formally, the deep probabilistic model is expressed by
the following factorization:

P ðx; ŷ; z; yju; gÞ ¼ Puðxjz; yÞPgðŷjz; yÞP ðzÞP ðyÞ; (1)

The likelihood functions Puðxjz; yÞ and Pgðŷjz; yÞ are parame-
terized by deep neural networks to accurately capture the
distributions of the data and the noisy labels, and u and g

denote the set of parameters of the corresponding networks.
Depending on the specific form of the data, different likeli-
hood functions can be used for Puðxjz; yÞ: Gaussian likelihood
is suitable for image data, while Multinomial likelihood is
more suitable for textual data (see [36], [37]). Pgðŷjz; yÞ is rep-
resented by aMultinoulli likelihood.

Inference and Learning. The inference for the latent feature
vector z and the latent class y is closely related to the learn-
ing of the deep probabilistic model parameters. The param-
eters are learned by maximizing the log likelihood of the
observed data instances and the associated noisy labels:

logP ðx; ŷju; gÞ ¼ log

Z Z
P ðx; ŷ; z; yju; gÞdzdy: (2)

Due to the intractability of the integral, we approximate the
true posteriors of z and y with variational ones, denoted by
Qfðzjx; yÞ and QcðyjxÞ, respectively. We use a Gaussian dis-
tribution for Qfðzjx; yÞ and a Multinoulli distribution for
QcðyjxÞ. Given the complex dependencies among the low-
level features of data instances and their relationships with
the latent variables, these distributions are again parameter-
ized by deep neural networks. The parameters, including
those of the generation networks u and g and those of the
inference networks c and f, are then learned by maximiz-
ing the evidence lower bound (ELBO) [38] of the objective
as follows:

L ¼EQf;cðz;yjxÞ½logPu;gðx; ŷjz; yÞ�
�DKL½Qf;cðz; yjxÞkP ðz; yÞ�; (3)

where Eð�Þ is an expectation and DKL½�k�� is the KL-diver-
gence between two distributions. The first term in Eq. (3) cor-
responds to the generative model that aims to reconstruct
the data instances and their labels (reconstruction error). The
second term corresponds to the inference model and can be
seen as a regularization term to prevent overfitting.1

4.2 Inferring the Latent Class

From a neural network perspective, the first part of the
ELBO (Equation 3) can be interpreted as the sum of the
(negative) reconstruction errors of the observed feature x

and noisy label ŷ. Hence, we rely both on data distribution
and existing noisy labels when inferring latent classes.

The original ELBO weights both types of reconstruction
errors as equally important. While this can result in a power-
ful generative model for data and label generation, our goal
is different: we are interested in inferring latent classes, for
which data distribution and existing noisy labels might have
different importance. Furthermore, their relative importance
varies across different datasets: for datasets whose data dis-
tributions are highly indicative of the true class and for
which the noise ratio of the existing labels is high, the infer-
ence process should rely on the data distribution more
heavily. Otherwise, existing labels should be trustedmore.

Therefore, it is natural to extend the original ELBO by
introducing a parameter b to weight the importance of the
two types of reconstruction errors:

EQf;cðz;yjxÞ½logPu;gðx; ŷjz; yÞ� ¼
EQf;cðz;yjxÞ½logPgðŷjz; yÞ� þ b �EQf;cðz;yjxÞ½logPuðxjz; yÞ�: (4)

In case b 6¼ 1, we are no longer optimizing the ELBO on the
log marginal likelihood (Equation 2). When b < 1, we put
more weight on existing labels rather than the data distribu-
tion; consequently, the model will tend to refrain from
denoising labels by resorting to the data distribution. Other-
wise, when b > 1, we are weakening our trust on the exist-
ing noisy labels while putting more weight on the data
distribution in determining label noise. While this allows
for more flexibility, it could also bring additional noise to
the labels due to the non-class related features in the data
distribution. Identifying a proper value of b is important to
achieve a good performance in label noise reduction.

Algorithm 1. Learning Deep Probabilistic Model

Input: the set of N i.i.d. data instances D ¼ fxi; ŷigNi¼1, ELBO
adapter b, and the maximum number of iterations Iter

1 Initialize f;c; u; g;
2 for t ¼ 1; t � Iter; tþþ do
3 Sample a batch of data instances;
4 forall xi 2 the batch do
5 Compute yi and zi;
6 Compute the noisy gradient Df;c;u;gL;
7 Average noisy gradients from batch;
8 Update f;c; u; g with gradient descent;
9 if L has converged then
10 break;

The resulting optimization algorithm is given in Algo-
rithm 1. It iteratively goes over two steps, i.e., the forward
and the backward step. At each iteration, the forward step
(row 5) computes the latent variables given current parame-
ters; the backward step (row 6-8) then updates the parame-
ters by backpropagating the gradients of the errors. In the
calculation of the gradients (row 6), we use an adapted ver-
sion of the ELBO (Equation 4).

4.3 Data Sampling

New symbolic rules that can best improve the inference
accuracy of the deep probabilistic model are likely to rise
from instances where our deep probabilistic model’s

1. We describe the detailed steps for deriving the ELBO in the
supplementary material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2022.3199570.
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inference is most unreliable. We therefore extract rules from
such instances. The model reliability is approximated by the
inverse of the model’s uncertainty, measured by Shannon
entropy [39], [40]:

H½yjx� ¼ �
XK
C¼1

pðy ¼ CjxÞlog pðy ¼ CjxÞ (5)

where C is the class and K is the number of classes. We
hypothesize that uncertainty sampling is effective for noisy
datasets where labels might be disconnected from the data
(e.g., random noise, given that the noise ratio is lower than
1=K). In this case, for data instances far away from the true
decision boundary, the deep probabilistic model can take
advantage of the majority label of the data instances and
provide satisfactory results; however, for data instances
close to the decision boundary, the deep probabilistic model
will have a high uncertainty due to the mix of data instances
from different classes and might generate incorrect results.

For datasets with structural noise (i.e., when labels are
generated from data as in [41]), there can exist substantial
regions of the data distribution where the majority of the
labels are incorrect. In that case, the inference of the deep
probabilistic model can be totally off while being highly
probable according to themodel. Therefore, we also consider
random sampling, which is independent of the deep proba-
bilistic model. The effectiveness of the two sampling meth-
ods can be evaluated using a set of validation instances with
ground truth labels; in this context, a good sampling method
is one from which the sampled data instances cover more
validation instances where the deep probabilistic model’s
inference is wrong.

4.4 Knowledge Extraction

Knowledge extraction focuses on extracting rules from sam-
pled data instances. We consider rules where the rule body
contains features and its head indicates the class of instan-
ces matching the rule. Features composing the rules depend
on the domain knowledge of specific tasks. In the context of
relation extraction tasks, we consider the following features:

� The sequence of words between the two entities;
� The part-of-speech tags of these words;
� The NER tag of the word to the left of the left-most

entity;
� The NER tag of the word to the right of the right-

most entity.
We give an example of such rules in Table 1. This set of

rules is similar to the lexical features used by Mintz et al.
[3], which proved their efficiency on relation extraction
from a distantly supervised dataset.

After the rules are identified, we select the ones that are
potentially useful for label denoising. The quality of the
rules with respect to noise reduction depends on two
important factors: support and confidence. Rule support is
defined as the number of instances that match the rule and
corresponds to the rule’s coverage. Confidence of the rule
corresponds to the rule’s effectiveness in discriminating one
class from another; it is defined as the percentage of instan-
ces supporting the rule that have the same label. Intuitively,
both rule support and confidence should be high for the
rule to be effective in improving label inference.

The noise ratio of the dataset also plays an important role
in identifying rules that might be useful for label noise
reduction. The noisy labels have an average accuracy 1�
NR where NR denotes noise ratio. Suppose that we are
using a rule alone to predict a label (i.e., we assign the most
frequent label to all data instances supporting the rule). Let
S denote rule support, Conf denote rule confidence, and
N ¼ S � Conf is the number of instances that support the
rule and have the same label. The number of correct predic-
tions is a sum of true positive and true negative predictions.
Therefore, accuracy of the rule is defined as follows:

N � Conf
zfflfflfflfflfflffl}|fflfflfflfflfflffl{true positives

þðS �NÞ � ð1� ConfÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{true negatives

S
¼

Conf2 þ ð1� ConfÞ2 � 1�NR; (6)

By solving this inequality, we obtain the following
restriction:

Conf � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�NR

2

r
(7)

That is, rule confidence should be high enough. For exam-
ple, if rule support is 1000 and the noise ratio is 20% then
the number of instances of the same class conforming to
that rule should be at least 888 for a rule to be efficient (i.e.,
rule confidence � 0:888).

The full algorithm for extracting rules is given in Algo-
rithm 4.4. The rules identified as potentially useful for label
denoising are then passed to the knowledge injector.

Algorithm 2. Extracting the Rules

Input: Data instances represented by latent features and
inferred classes D ¼ fzi; P ðyiÞgNi¼1, validation instan-
ces with ground truth labels V, sampling ratio p

Output: Set of rulesR
1 R ;;
2 Decide the sampling strategy using V;
3 D̂  Pick p top-ranking data instances
4 foreach di 2 D̂ do
5 Ri  rules extracted from d
6 R R[Ri

7 R Pick the rules with the highest support
8 R Keep only the rules that satisfy Eq. (7)

4.5 Knowledge Injection

The key idea behind Nessy is to strike a balance between the
labels given by a set of symbolic rules and predictions inferred

TABLE 1
Example of the Rules Extracted From one Instance

Sentence Extracted Rules

Folded intoDillinger ’s office ,
the program is headed by director
Duncan McCormack , a 51-year-
old with a diverse background
that includes mental health
counseling .

“SUBJ-PERSON ’s office , the
program is headed by OBJ-
TITLE”, “SUBJ-PERSON POS
NN , DT NN VBZ VBN IN OBJ-
TITLE”, “SUBJ_LEFT_O”,
“OBJ_RIGHT_PERSON”

Subject and object entities are boldfaced (“Dillinger” and “director”, respectively).
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from the data. To inject the rules into the model, we apply
expectation regularization [19]. An additional term is added
to the loss function that promotesmodel predictions on a sub-
set of the data instances to match a rule-specific expectation:
the likelihood of an instance that matches the rule belonging
to a class. This expectation might either be some human prior
knowledge or it can be estimated using the labeled data (e.g.,
development set). Formally speaking, let p̂u be the model pre-
dictions and ~p be the provided expectation, then the expecta-
tion regularization term for the objective function is

Dð~p; p̂uÞ;

where D is a distance function, e.g., KL-divergence as we
use in this work.

Recall Equation 3: the loss function of our deep probabi-
listic model has a regularization term expressed as the KL-
divergence between the posterior and prior distributions of
z and y. Therefore, the additional constraints on the distri-
bution of the latent variable y can be naturally expressed
using the existing regularization term. To do this, we first
factor the second term in Equation 3 into two parts:

DKL½Qf;cðz; yjxÞkP ðz; yÞ� ¼
DKL½PcðyjxÞkP ðyÞ� þDKL½PfðzjxÞkN ð0; IÞ� (8)

By default, P ðyÞ is a Multinoulli distribution as explained in
Section 4.1. Our goal is to predict a true label y, therefore,
we add knowledge-driven constraints into the correspond-
ing regularization term from Eq. (8). We encourage our
deep probabilistic model to match the posterior distribution
~P ðyjriðxÞÞ if data instance x matches rule ri (we denote it as
riðxÞ). In addition, we introduce a coefficient a for the expec-
tation regularization term. Similarly to b, the parameter a

reflects the strength of our beliefs about the provided label
expectation.

DKL½Qf;cðz; yjxÞkP ðz; yÞ� ¼
a �

X
ri2R

DKL½PcðyjxÞk ~P ðyjriðxÞÞ� þDKL½PfðzjxÞkN ð0; IÞ� (9)

To train the model with a set of knowledge-driven con-
straints, we change the micro-batch generation in a way that
each batch contains only the instances that match the same
rule. We verify that each instance appears only once during
one training epoch. The algorithm for micro-batch genera-
tion is given in Algorithm 4.5. The generated batches are
used in the mini-batch optimization algorithm (Algorithm 1)
to retrain the parameters of the deep probabilistic model.

Algorithm 3. Injecting the Rules

Input: Raw data instances D, set of rulesR, validation instan-
ces with ground truth labels V

Output: Batch generator
1 foreach ri 2 R do
2 ~Pi  Estimate label distribution using V
3 Ri  Collect data instances from D that match ri
4 forallRi do
5 shuffleRi

6 yieldmicro-batches fromRi, ~Pi

5 EXPERIMENTS AND RESULTS

In this section, we present experimental results for evaluat-
ing the performance of Nessy on several relation extraction
tasks with two types of noise: random noise and distant
supervision noise. We start by presenting an evaluation of
the key components of our system by answering the follow-
ing questions:

� Q1: How well does the deep probabilistic model per-
form when inferring the latent class from noisy data?

� Q2: How well do the uncertainty and random sam-
pling perform on datasets with different types of
noise?

� Q3: How does the impact of the rules depend on
their utility properties?

� Q4: How effective is knowledge injection for improv-
ing model performance in label inference?

For each of the above questions, we also analyze the
influence of the type of noise.

5.1 Experimental Setup

Datasets. We evaluate Nessy on the TAC Relation Extraction
Dataset constructed by Zhang et al. [42] from the TAC KBP
evaluations (2009-2015) and annotated by crowds. Since this
dataset includes the ground truth, it allows us to fairly evalu-
ate our proposed noise reduction methods2. Moreover, when
knowing gold labels we can model different types of noise
and analyze their properties. Given the original TACRED, we
sub-sample the datasets for binary classification for three rela-
tion labels that have the maximum number of instances.
These relation labels are per:title (Title dataset), org:
top_members/employees (Top Members dataset) and
per:employee_of (Employee dataset). We took all positive
instances for each dataset, and for the negative ones, we sub-
sample the instances that contain entities with types compati-
ble with a given relation. Then, we add noise into each data-
set. We consider two types of noise for each dataset: distant
supervision (DS) noise and random noise. To create DS noise,
we apply the original pipeline proposed byMintz et al. in [3].
To that end, we perform entity linking to Wikipedia articles
using the BLINK software [43] for entities of type Person (in
all three datasets, either the subject or object entity is of type
PERSON). To obtain the labels, we perform an exact match of
the second entity with the corresponding Wikipedia abstract.
The noise ratio varies between the datasets (see Table 2).

For random noise, we fix the noise ratio similar to the one
for distant supervision noise by flipping the relation label
with a probability equal to that noise ratio.

Noise Type Analysis. Distant supervision noise is struc-
tural (i.e., not completely random) and depends on the pro-
cedure used to create the labels, while random noise is
uniformly distributed across the labels. TACRED is derived
from news wires and online text, therefore, the sentences
might mention entities that are not very popular, and thus,
are missing from the Knowledge Base (this problem is
known as Knowledge Base incompleteness). This situation
is more likely than the opposite, when there is a relation

2. Note that in real-life scenario noise ratio might be unknown.
Noise ratio can be estimated using reasonable heuristics from domain
experts or by labeling a representative subsample of the data.
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instance in the Knowledge Base but the sentence does not
express a relation between the given entities. This causes
some label distribution shift, which we cannot avoid unless
we subsample the datasets. While in the Title dataset 52.9%
of instances are positive (according to the gold labels), the
noisy datasets contain 50.5% and 36.1% of positive instances
for random and distant supervision noise, respectively. A
similar observation holds for the other two datasets. For the
Top Members dataset, the percentage of positive instances
drops from 26.7% to 17.1% while for the Employee dataset
it drops from 54% to 25.6%, making the distant supervision
noise datasets more challenging than random noise ones.

Comparison Methods. We compare the following data-
driven noise reductionmethods to our system. 1) Ratio [44]: a
ratio-based method that finds the most predictive features
and identifies data instances with the most uncertain labels
as those containing such features yet labeled differently from
the label indicated by the features. The predictive power of a
feature is calculated as the ratio between the number of data
instances of a certain class containing such a feature and the
overall number of data instances. 2) Pattern [15]: a generative
model designed to capture the labeling process as a genera-
tive process from the latent classes. The model facilitates the
inference of the posterior of the latent class given the
observed features, thus it can be used for noise reduction.
However, unlike our deep probabilistic model that infers the
latent class by exploiting the data distribution in the latent
feature space, Pattern is a probabilistic model that directly
models the generative process of low-level features. 3) Hier-
Topic [16]: a hierarchical topic model that assumes a latent
topic-word hierarchy for the data generation process. Unlike
our probabilistic model which learns complex hidden data
structures, HierTopic is only capable of learning a hierarchi-
cal structure. 4) Scalpel-CD [21], our previous approach that
involves human workers for debugging noisy labels. For our
proposed system, we compare an automated variant and the
full system incorporating symbolic knowledge: 5) DPM, our
proposed deep probabilistic model, which is used in isola-
tion to automatically correct wrong labels. 6) Nessy, our pro-
posed system which makes use of both deep probabilistic
modeling and symbolic knowledge.

Parameter Settings and Model Training. We empirically set
optimal parameters based on the development set. These
include hyperparameters for the deep probabilistic model
architecture, model configuration, i.e., values of a and b and
those for model training, e.g., batch size and learning rate. As
an input for the inference network of the deep probabilistic
model Qf and Qc we use the sentence representations
inferred by PA-LSTM model [42] that is trained on the
same noisy dataset with default hyperparameters. Doing so
allows us to have feature-rich sentence representations while
avoiding extensivemodel engineering that is usually required
for such complex tasks. It is worth noting that these sentence

representations also carry some label noise. Additional details
of the hyperparameters for both the neural architecture and
training are included in the supplementarymaterial, available
online.

Evaluation Protocols. We separately evaluate the perfor-
mance of Nessy on noise reduction and its effect on relation
extraction using different protocols. For noise reduction, we
train themodel on the noisy training dataset and compare our
predictions on the training set with the ground truth. For rela-
tion extraction, noise reduction by our system is performed
on the training set. A PA-LSTMmodel [42] is then trained on
the denoised training set and evaluated on the test set.

We measure the performance of our proposed system in
noise reduction using two metrics: accuracy and Area
Under the ROC Curve (AUC). Note that a higher ROC AUC
indicates a greater distinction between True Positives and
True Negatives and hence better latent representations.

5.2 Inferring the Latent Class (Q1)

To understand the effectiveness of our deep probabilistic
model in inferring the latent class, we analyze the relation-
ship between capturing the data distribution and inferring
the latent class. We compare the performance of the deep
probabilistic model with different settings of b, which con-
trols the relative importance of the reconstruction errors of
data instances and that of the noisy labels in the objective
function. We analyze the dynamics of our deep probabilistic
model on the validation set during the training process,
with b selected from f0:001; 0:01; 0:1; 1; 10g. Results on the
Title dataset with random noise and with a noise ratioNR ¼
40% are shown in Fig. 4.

From Figs. 4a and 4b, we observe that with the increase
of b, the performance of the deep probabilistic model first
increases but then decreases. b values in a range from 0.01
to 1 yield better results, with the best performance achieved
with b ¼ 1. Such a result is aligned with our previous work
[21], confirming the need for striking a balance in minimiz-
ing the two different types of reconstruction errors (data
and noisy labels). This can be further verified by Fig. 4c and

TABLE 2
Characteristics of the Datasets With Distant Supervision Noise

Dataset # Train instances # Test instances Noise ratio

Title 4621 974 0.418
Employee 2821 604 0.382
Top Members 7071 1258 0.281

Fig. 4. Comparison of performance against loss in data and label recon-
struction with different settings of b on TACRED with 40% random noise.
The upper figures represent (a) the accuracy and (b) AUC on the validation
set during the training process; the lower figures depict the reconstruction
loss (negative log-likelihood) of noisy labels (c) and data instances (d).
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Fig. 4d. We observe that the label reconstruction error
decreases fast for all values of b, whereas there is significant
difference in the decreasing speed of the data reconstruction
error; the relative importance of those two types of errors,
therefore, plays an important role in the inference of true
classes. We note that the similar decreasing speed of the
label reconstruction error is due to the pre-trained sentence
representations already trained on the noisy labels.

Impact of Datasets and Noise Ratios. We observe similar
results for all other datasets. The optimal value of b is between
0.01 and 1 and performance on b ¼ 1 is slightly higher than
that on other values. Experiments with different noise ratios
for the Title dataset show that for NR ¼ 30; 40% the model
achieves performance higher than 1�NR. However, with
lower noise ratio (NR ¼ 20%) the performance is slightly
worse yielding an accuracy 79.8%. Overall, we observe
that relative performance Acc:� ð1�NRÞ monotonically
increases with the increase of noise ratio. This means that
using the deep probabilistic model is more efficient for larger
noise ratioswhile for lower noise ratios its effectiveness is lim-
ited by the predictive power of sentence representation.

5.3 Uncertainty and Random Sampling (Q2)

The data sampling component of Nessy allows for two sam-
pling strategies, i.e., uncertainty sampling and random sam-
pling, which are model-dependent and model-independent,
respectively. We argue that uncertainty sampling is more
effective for identifying wrong predictions for both random
anddistant supervision noise than random sampling3. To ver-
ify this, we conduct a comparative analysis on each dataset
with both types of noise. The comparison is carried out by 1)
visually locating in the latent feature space the selected data
instances using the two sampling strategies and the data
instances where the inference of the latent classes is wrong,
and 2) statistically comparing the coverage of the selected
data instances on data instanceswhere the inference iswrong.

We start by investigating the effectiveness of uncertainty
sampling on the Title dataset with random noise (noise ratio
40%) and DS noise that has similar noise ratio. We apply t-
SNE [45] to embed the latent features of the data instances
into a two-dimensional space, and then visualize the noisy
label and the inferred latent class in Figs. 5a, 5b and Figs. 6a,
6b. Given our previous results (high performance of our
deep probabilistic model in latent class inference in Figs. 4a
and 4b), we observe from Figs. 5a, 5b that the inferred latent
features are highly indicative of the latent class: data instan-
ces of different classes are located separately in the latent
feature space. Fig. 5c then shows the data instances for
which the inference is correct and incorrect using two col-
ors. We observe that our model can effectively recover the
true classes of data instances located far away from the
model’s decision boundary. In contrast, the majority of the
data instances with wrong class inference are located close
to the decision boundary. This is due to the fact that at the
decision boundary, data instances of different classes are
mixed with each other, leading to high model uncertainty.
This is confirmed by Fig. 5d, which visualizes the top-20%
data instances selected by uncertainty sampling. Comparing
Figs. 5c and 5d, we observe that uncertainty sampling is a
highly effective method in selecting data instances when
the model inference is wrong. This result is further verified
by Fig. 5c, where we observe that the instances selected by
uncertainty sampling show significantly higher coverage
for instances where the inference is wrong.

Impact of Noise Types. We observe similar results with DS
noise (see Fig. 6). This confirms our intuition that distant
supervision noise is similar to random noise as for both types
of noise, the labels are disconnected from textual data. How-
ever, comparing Figs. 7a and 7b, we observe that uncertainty
sampling is slightly less effective in case of DS noise than for
random noise. For the Employee dataset with DS noise, we
also observe high coverage of uncertainty sampling: 20% of
the selected instances cover 50% of the wrong predictions.
The Top Members dataset is more challenging due to a
higher class imbalance (only 26.7% of the original labels are

Fig. 5. Effect of uncertainty on Title dataset with random noise.

Fig. 6. Effect of uncertainty sampling on Title dataset with DS noise.

3. We have demonstrated the effectiveness of random sampling for
structural noise in our prior work [21].
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positive) causing a fuzzy decision boundary between the two
classes; consequently, uncertainty sampling performs equiv-
alently well to random. Overall, our evaluation shows that
for both DS and random noise, uncertainty sampling per-
forms at least as well as random sampling while achieving
notably higher performancemost of the time.

5.4 Impact of Symbolic Rules (Q3)

For all datasets, we automatically extract rules according to
the instances sampled by uncertainty samplingwith ratio p ¼
0:2. For each of the extracted rules, we plot the support value
(i.e., the number of instances matching a certain rule) against
the number of sampled instances in Fig. 8. This gives us a bet-
ter understanding of what rules could not be captured by the
model because of noisy labels. Specifically, a decreasing
curve means that the deep probabilistic model is highly
uncertain about the instances matching the rule and vice
versa. Therefore, rules corresponding to a decreasing curves
are considered as the most beneficial for noise reduction. For
instance, from Fig. 8a we observe that for the Title dataset
with random noise, the curves corresponding to the rules
“Obj-Title Subj-Person” and “Obj_Right_Person” are slightly
increasing, which means that the model captured them dur-
ing initial training. However, for the Title dataset with DS
noise, the curve “Obj_Right_Person” is slightly decreasing
(see Fig. 8b), therefore, themodel is likely to benefit from it.

For the other two datasets, the picture is more precise:
there are certain rules that correspond to sharply decreasing
curves, such as the “Obj-Person , JJ NN IN DT Subj-Org”
rule for Top Members. It improves the resulting accuracy
by 2.4% and 3.9% AUC while there are only 68 instances in
the dataset matching this rule. Similarly, for Employee the
rule “Subj-Person , NN IN DT Obj-Org” with 39 data instan-
ces boosts the accuracy by 12.3% and 6.5% AUC. While hav-
ing the same confidence close to 1, the rule “Obj-Org NN
Subj-Person” (see Fig. 8d) is less beneficial: it improves
accuracy by 6.7% and 4.1% AUC while its support is much
higher (128 data instances). Thus, we conclude that uncer-
tainty sampling helps identifying the most useful rules for
debugging noisy labels.

It is worth noting that using part-of-speech tags in addi-
tion to tokens (see Section 4.4) allows to better generalize
over the existing rules and extract rules with higher support.

Impact of Noise Types. Table 3 presents the performance of
these rules on debugging noisy labels for both types of
noise. We use the same value of b that yielded the top
results of the deep probabilistic model and we select the
optimal parameter a from f0:1; 1; 10g for each of the rules
using the validation set: a ¼ 10 for the two rules with the

highest coverage and a ¼ 1 for the remaining rules. It is
worth noting that a rule with low confidence (e.g., “Obj-
Title , Subj-Person” with confidence 0.76) might hurt the
performance even though is satisfies Eq. (7).

For random noise, we observe that the deep probabilistic
model reconstructs the true labels effectively during the ini-
tial training. Using rules does not have significant impact
on the performance, which is consistent with our conclu-
sions from Fig. 8a. DS noise is more challenging for the
model. Injecting the rules boosts model performance by
2.4% in accuracy and 3.8% in AUC and allows the model to
infer true classes more effectively.

5.5 Performance on Debugging Labels (Q4)

We now analyze the effect of injecting knowledge into the
deep probabilistic model and compare performance of our
proposed system with state-of-the-art noise reduction mod-
els on datasets with DS noise. Table 4 (“Noise Reduction”)
presents the experimental results of our deep probabilistic
model alone and Nessy as a whole system, along with the
baselines including our previous work Scalpel-CD 4. For
Nessy we report the best results achieved with the combina-
tion of the rules obtained as described in Section 4.4.

Ratio works well on Title and Employee, however, it fails
for Top Members due to its class imbalance and the larger
number of features (i.e., patterns between the pairs of enti-
ties). Pattern improves label quality for Title and Top Mem-
bers, however it performs marginally worse than Ratio on
Employee. Recall that both methods use low-level features
(i.e., patterns between the entities) for label inference. Both
Ratio and Pattern improve label quality, indicating that even
such features carry valuable information about the true label
and consequently are useful for debugging noisy labels. On
the other hand, HierTopic builds a hierarchical structure
from the data and does not improve over Pattern on the Title
dataset, but demonstrates its ability to effectively recover
true labels on Employee and Top Members. Thus, we con-
clude that low-level features and modeling the inherent

Fig. 7. Comparison of uncertainty and random sampling on Title dataset
with random noise (NR ¼ 40%) and distant supervision noise with simi-
lar noise ratio.

Fig. 8. Rule support depending on the sampling ratio.

4. We also include a case study in the supplementary material, avail-
able online.
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structure of the data are complementary to each other and
applying them jointly lies at the core of a robust method for
label noise reduction.

Our proposed deep probabilistic model also performs
differently on the different datasets. Similar to HierTopic, it
is less accurate than Pattern on Title, highlighting the fact
that low-level features in this case are indicative enough to
achieve a notable improvement over the noisy labels. Our
model outperforms HierTopic on Employee and achieves
similar performance on Top Members, highlighting the
importance of learning data structures for those datasets
where low-level features are insufficient.

Nessy achieves the best performance on all studied data-
sets. Nessy outperforms the deep probabilistic model alone
by 6.5% in accuracy and 6.6% in AUC on average. This high-
lights the importance of integrating symbolic knowledge
with deep learning models. Compared to the state of the art,
Nessy improves accuracy by 7% and AUC by 10.7% on
average on the datasets with distant supervision noise.

Impact on Learning Task. We separately evaluate the
impact of using Nessy for denoising training data and for
relation extraction (see Table 4, “Learning”). The perfor-
mance of the state-of-the-art models improves significantly
when using our deep probabilistic model on all datasets
except Top Members. The model achieves further improve-
ment on each dataset when the whole system is applied. On
average, performance of PA-LSTM on relation extraction
improves by 14.8% accuracy and 14.3% AUC using Nessy.
These results clearly highlight the benefits of debugging
noisy labels and the effectiveness of Nessy.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented Nessy, a neuro-symbolic system
that integrates deep probabilistic modeling with symbolic
knowledge for debugging noisy labels. Nessy extracts sym-
bolic rules, ranks them according to their utility, and injects
them into a deep probabilistic model via expectation regulari-
zation by adding a posterior regularization term to the objec-
tive function for constraining model inference on instances
that match those rules. Our extensive evaluation on several
relation extraction tasks demonstrate that the symbolic rules
provide an efficient boost to the deep probabilistic model in
inferring the true classes. Integrated with those rules, Nessy
significantly improves both label quality and the performance

of the state-of-the-art relation extraction models. We make
our code available at https://github.com/eXascaleInfolab/
Nessy_RE. As future work, we plan to explore possible rela-
tionships between the rules and other features [46].
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