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1 INTRODUCTION

Stock Movement Prediction (SMP) is a hot topic in Fintech area since investors continuously attempt to predict the stock

future trend of listed companies for seeking maximized profit in the volatile financial market [Cheng and Li 2021; Hu et al.

2018; Li et al. 2017; Wang et al. 2021]. The task has spurred the interest of researchers over the years to develop better

predictive models [Wang et al. 2021]. In particular, the application of machine learning approaches yields a promising

performance for SMP task [Feng et al. 2019b; Ye et al. 2020]. Previous studies in both finance and AI research fields

predicting a stock movement rely on time-series analysis techniques using its own historical prices (e.g. opening price,

closing price, volume, etc) [Feng et al. 2019a; Lin et al. 2017]. According to the Efficient Market Hypothesis (ETH)

that implies financial market is informationally efficient [Malkiel and Fama 1970], therefore, besides these stock trading

factors, other researchers mine more indicative features from its outside-market data such as web media [Li et al. 2017],

including news information [Li et al. 2020b; Liu et al. 2018; Ming et al. 2014] and social media [Bollen et al. 2011;

Nguyen et al. 2015; Si et al. 2013], while ignoring the stock fluctuation diffusion influence from its related companies,

which is also known as momentum spillover effect [Ali and Hirshleifer 2020] in finance.

Recent studies attempt to model stock momentum spillover via Graph Neural Networks (GNN) [Velickovic et al. 2018].

However, most of them only consider the simple explicit relations among related companies [Feng et al. 2019b; Li et al.

2020a; Sawhney et al. 2020b; Ye et al. 2020], which inevitably fail to model the complex connections of listed companies

in real financial market, such as the implicit relation, and the associated executives-based meta-relations [Cai et al. 2016;

Jing and Zhang 2021].

To address this issue, we construct a more comprehensive Market Knowledge Graph (MKG), which consists of a

considerable amount of triples in the form of (head entity, relation, tail entity), indicating that there exists a relation

between the two entities. Different from previous graphs in other SOTA works [Chen et al. 2018; Cheng and Li 2021;

Feng et al. 2019b; Li et al. 2020a; Sawhney et al. 2021; Ye et al. 2020], the newly constructed MKG develops two

essential characteristics: (1) Bi-typed, i.e. containing the significant associated executive entities aside from the ordinary

company entities; (2) Hybrid-relational, i.e. providing an additional implicit relation among listed companies aside from

their typical explicit relations. Figure 1 shows a toy example of MKG (See Section 3.1 for more details).

Afterward, to learn the stock1 momentum spillover signals on such bi-typed hybrid-relational MKG for stock movement

prediction, we pertinently propose a novel Dual Attention Networks (DANSMP), as shown in Figure 2-II. Specifically, the

proposed model DANSMP is equipped with dual attention modules that are able to learn the inter-class interaction among

listed companies and associated executives, and their own complex intra-class interaction alternately. Different from

previous methods that can only model homogeneous stock graph [Chen et al. 2018; Cheng and Li 2021] or heterogeneity

of stock explicit relations [Chen et al. 2019; Nelson et al. 2017; Sawhney et al. 2021], our method is able to learn bi-typed

heterogeneous entities and hybrid-relations in newly constructed market graph of stock for its spillover effects. The

comprehensive comparison between the existing state-of-the-art (SOTA) methods with our newly proposed DANSMP

model in terms of used market signals and main ideas is shown in Table 1, demonstrating the distinguished advantage of

our work.
1The term “listed company" and “stock" are used interchangeably.
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Fig. 1. Example of a bi-typed (i.e. listed companies, and executives) hybrid-relational (i.e. explicit relations, and implicit
relation) market knowledge graph (MKG). The relational information in MKG is essential for stock prediction but has not
been well utilized in previous works.

We collect public data and construct two new SMP datasets (named CSI100E2 and CSI300E) based on Chinese Stock

Index to evaluate the proposed method, since no existing benchmark datasets can satisfy our need. Aside from the typical

stock historical prices and media news, our newly published benchmark datasets CSI100E and CSI300E also provide rich

market knowledge graph as mentioned above. The empirical experimental results on CSI100E and CSI300E against nine

SOTA methods demonstrate the better performance of our model DANSMP with MKG. The ablation studies reaffirm that

the performance gain mainly comes from the use of the associated executives, and additional implicit relation among

companies in MKG via the proposed DANSMP.

The contributions of this paper are threefold:

• To model stock momentum spillover via the complex relations among companies in real market, we first construct

a novel market knowledge graph. To the best of our knowledge, this study is the first attempt to explore such

bi-typed hybrid-relational knowledge graph of stock via heterogeneous GNNs for its spillover effects.

• We then propose DANSMP, a novel Dual Attention Networks to learn the stock momentum spillover features based

on the newly constructed bi-typed hybrid-relational MKG for stock prediction, which is also a non-trivial and

challenging task.

2"E" denotes an extension version.
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• We propose two new benchmark datasets (CSI100E and CSI300E) to evaluate our method, which are also expected

to promote Fintech research field further. The empirical experiments on our constructed datasets demonstrate

our method can successfully improve stock prediction with bi-typed hybrid-relational MKG via the proposed

DANSMP3.

The rest of the paper is organized as follows. In Section 2, we summarize and compare the related work. In Section

3, we introduce the market signals for stocks prediction. Section 4 introduces the details of the proposed methodology.

Extensive experiments are conducted to evaluate the effectiveness of the proposed model in Section 5. Finally, we

conclude the paper in Section 6.

2 RELATED WORK

In this section, we evaluate the existing relevant research on stock prediction. Stock movement prediction (SMP) has

received a great deal of attention from both investors and researchers since it helps investors to make good investment

decisions [Deng et al. 2019; Ding et al. 2016; Li et al. 2016; Rather et al. 2015]. In general, traditional SMP methods

mainly can be categorized into two classes: technical analysis and fundamental analysis, according to the different types

of the available stock own information they mainly used. Another major aspect for yielding better stock prediction is to

utilize the stock connection information [Chen et al. 2018; Cheng and Li 2021; Sawhney et al. 2020b; Ye et al. 2020]. We

review them in the following.

2.1 Technical Analysis

Technical analysis takes time-series historical market data of a stock, such as trading price and volume, as features to

make prediction [Chen et al. 2019; Edwards et al. 2018]. The basic idea behind this type of approach is to discover the

hidden trading patterns that can be used for SMP. Most recent methods of this type predict stock movement trend using

deep learning models [Bao et al. 2017; Lin et al. 2017; Nelson et al. 2017]. To further capture the long-term dependency

in time series, the Recurrent Neural Networks (RNN) especially Long Short-Term Memory networks (LSTM) have been

usually leveraged for prediction [Gao 2016]. Bao et al. [2017] presented a deep learning framework for stock forecasting

using stacked auto-encoders and LSTM. Nelson et al. [2017] studied the usage of LSTM networks to predict future

trends of stock prices based on the price history, alongside with technical analysis indicators. Lin et al. [2017] proposed

an end-to-end hybrid neural networks that leverage convolutional neural networks (CNNs) and LSTM to learn local

and global contextual features respectively for predicting the trend of time series. Zhang et al. [2017] proposed a state

frequency memory recurrent network to capture the multi-frequency trading patterns for stock price prediction. Feng et al.

[2019a] proposed to employ adversarial training and add perturbations to simulate the stochasticity of price variable, and

train the model to work well under small yet intentional perturbations. Despite their achieved progress, however, technical

analysis faces an issue that it is incapable of unveiling the rules that govern the fluctuation of the market beyond stock

price data.

2.2 Fundamental Analysis

On the contrary, fundamental analysis takes advantage of information from outside market price data, such as economic

and financial environment, and other qualitative and quantitative factors [Hu et al. 2018; Xu and Cohen 2018; Zhang et al.

2018]. Many methods are proposed to explore the relation between stock market and web media, e.g., news information,

3The source code and our newly constructed benchmark datasets (CSI100E and CSI300E) will be released on Github:
https://github.com/trytodoit227/DANSMP
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and social media opinion [Akita et al. 2016; Li et al. 2017; Wu et al. 2018; Zhang et al. 2018]. For instance, Ming et al.

[2014] mined text information from Wall Street Journal for SMP. Akita et al. [2016] presented a deep learning method for

stock prediction using numerical and textual information. Vargas et al. [2017] proposed a deep learning method for stock

market prediction from financial news articles. Xu and Cohen [2018] put forward a novel deep generative model jointly

exploiting text and price signals for this task. Liu et al. [2018] presented a hierarchical complementary attention network

for predicting stock price movements with news. Li et al. [2020b] proposed a multimodal event-driven LSTM model for

stock prediction using online news. Some researchers mined market media news via analyzing its sentiment, and used it

for SMP [Qin and Yang 2019; Sedinkina et al. 2019]. For instance, Bollen et al. [2011] analyzed twitter mood to predict

the stock market. Si et al. [2013] exploited topics based on twitter sentiment for stock prediction. Nguyen et al. [2015]

incorporated the sentiments of the specific topics of the company into the stock prediction model using social media.

Rekabsaz et al. [2017] investigated the sentiment of annual disclosures of companies in stock markets to forecast volatility.

Qin and Yang [2019] proposed a multimodal method that takes CEO’s vocal features, such as emotions and voice tones,

into consideration. In this paper, we extract the signals from stock historical prices and media news sentiments as the

sequential embeddings of stocks.

2.3 Stock Relations Modeling

Recent SMP studies take stock relations into consideration [Chen et al. 2018; Cheng and Li 2021; Li et al. 2020a; Sawhney

et al. 2020b]. For instance, Chen et al. [2018] proposed to incorporate corporation relationship via graph convolutional

neural networks for stock price prediction. Feng et al. [2019b] captured the stock relations in a time-sensitive manner

for stock prediction. Kim et al. [2019] proposed a hierarchical attention network for stock prediction using relational

data. Li et al. [2019] presented a multi-task recurrent neural network (RNN) with high-order Markov random fields

(MRFs) to predict stock price movement direction using stock’s historical records together with its correlated stocks. Li

et al. [2020a] proposed a LSTM Relational Graph Convolutional Network (LSTM-RGCN) model, which models the

connection among stocks with their correlation matrix. Ye et al. [2020] encoded multiple relationships among stocks

into graphs based on financial domain knowledge and utilized GCN to extract the cross effect based on these pre-defined

graphs for stock prediction. Sawhney et al. [2020b] proposed a spatio-temporal hypergraph convolution network for

stock movement forecasting. Cheng and Li [2021] proposed to model the momentum spillover effect for stock prediction

via attribute-driven graph attention networks. Despite the substantial efforts of these SOTA methods, surprisingly, most

of them only focus on modeling the momentum spillover via the explicit relations among stocks, while ignoring their

complex relations in real market.

Table 1 summarizes the key advantages of our model, comparing with a variety of previous state-of-the-art (SOTA)

studies in terms of the used market signals, their methods and GNN types. (1) Different from previous studies, our

method takes advantage of all three types of stock market signals, including stock historical data, media news, and

market knowledge graph. In particular, we construct a more comprehensive heterogeneous market graph that contains

explicit relations, implicit relations and executive relations. (2) Different from most existing models that can only model

homogeneous stock graph [Chen et al. 2018; Cheng and Li 2021], or heterogeneity of stock explicit relations [Feng et al.

2019b; Sawhney et al. 2021, 2020a; Ye et al. 2020], which fall down in modeling heterogeneity of entities in real market,

we propose a novel dual attention networks that is able to model bi-typed heterogeneous entities and hybrid-relations in

newly constructed market graph of stock for its spillover effects. (3) To the best of our knowledge, this work is the first

attempt to study stock movement prediction via heterogeneous GNNs.
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3 MARKET SIGNALS

In this section, we introduce the significant signals of stocks in real financial market. We first give the details of the

newly proposed bi-typed hybrid-relational market knowledge graph. Afterward, we introduce the historical price data and

media news of stocks. Most of previous works focus on partial financial market information, which makes their modeling

insufficient. In this work, we take advantage of all three types of market data, fusing numerical, textual, and relational

data together, for stock prediction. The features of each data used in this study are summarized in Table 2.

Table 2. Features

Information data Features

Entities companies, executives.

Relations explicit relations (industry category, supply chain, business partnership, investment), implicit relation.

Historical price opening price (op), closing price (cp), highest price (hp), lowest price (lp), trade volume (tv).

Media news positive media sentiment of a stock 𝑄 (𝑖)+, negative media sentiment of a stock 𝑄 (𝑖)−, media sentiment divergence of a stock 𝐷 (𝑖).

3.1 Bi-typed Hybrid-relational Market Knowledge Graph (MKG)

3.1.1 Bi-typed Entities. Most existing SMP methods solely learn from company relationships in market [Kim et al.

2019; Li et al. 2020a; Ye et al. 2020]. In fact, in most stock markets there are also significant associated executives for

listed companies, with rich associative information about these companies [Cai et al. 2016; Jing and Zhang 2021]. Hence,

our constructed MKG contains not only company entities but also executive entities. The executive entities can act as

the intermediary among companies to build the meta-relations involved in company entities (e.g. Company-Executive-

Company (CEC), Company-Executive-Executive-Company (CEEC)). For example, in Fig. 1 we show the associated

executives of the companies sampled from Chinese Stock Index. The stock spillover signals can pass from neighboring

companies to a target company through the meta-relations established by their connected executives, such as Company

4-Executive C-Company 1; Company 2-Executive A
𝑐𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒←→ Executive B-Company 1. In sum, the newly constructed

MKG contains bi-typed entities, i.e. listed companies and their associated executives.

3.1.2 Hybrid-relations. Most existing methods only take the explicit relations among companies, such as industry

category, supply chain, business partnership and investment, into consideration [Chen et al. 2018]. However, the limited

explicit company relationships are always insufficient for market knowledge graph construction due to the complex nature

of financial market. To solve the MKG incompleteness issue, here we propose an attribute-driven method to conduct

MKG completion by inferring missing implicit correlative relation among stocks, which employs stocks attributions.

Specifically, the attribute-driven implicit unobserved relation is calculated based on the features from both its historical

prices and news information filtered by a normalized threshold. A single-layer feed-forward neural network is adopted to

calculate the attention value 𝛼𝑡
𝑖 𝑗

between company 𝑖 and 𝑗 for inferring their implicit relation.

𝛼𝑡𝑖 𝑗 = LeakyRelu
(
u⊤ [s𝑡𝑖 ∥ s

𝑡
𝑗 ]

)
, (1)

where s𝑡
𝑖

and s𝑡
𝑗

are fused market signals of 𝑖 and 𝑗 , which are calculated by the Equation 6 (Section 4.1). ∥ denotes the

concatenate operation. u denotes the learnable matrix and LeakyReLU is a nonlinearity activation function. Borrowing

gate mechanism in [Cheng and Li 2021], we set an implicit relation between 𝑖 and 𝑗 if 𝛼𝑡
𝑖 𝑗

> 𝜂. 𝜂 denotes a pre-defined

threshold. In short, the constructed MKG contains hybrid-relations, i.e. explicit relations and implicit relation.
Manuscript submitted to ACM
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3.2 Historical Price and Media News

3.2.1 Technical Indicators. Transactional data is the main manifestation of firms’ intrinsic value and investors’

expectations. We collect the daily stock price and volume data, including opening price (op), closing price (cp), highest

price (hp), lowest price (lp), and trade volume (tv). In order to better compare and observe the fluctuation of stock price,

the stock price is transferred to the return ratio, and the trade volume is transferred to the turnover ratio before being fed

into our model. The return ratio is an index reflecting the level of stock return, the higher the return ration is; the better the

profitability of the stock is. The turnover is the total value of stocks traded over a period of time; the higher the share

turnover could indicate that the share haves good liquidity. p𝑖 ∈ R5 indicates the technical indicators of company 𝑖, as

follows:

p𝑖 = [𝑜𝑝 (𝑖), 𝑐𝑝 (𝑖), ℎ𝑝 (𝑖), 𝑙𝑝 (𝑖), 𝑡𝑣 (𝑖)]⊤ . (2)

3.2.2 Sentiment Signals. Modern behavioral finance theory [Li et al. 2017] believes that investors are irrational,

tending to be influenced by the opinions expressed in the media. Media sentiment reflects investors’ expectations

concerning the future of a company or the whole stock market, resulting in the fluctuations of stock price. To capture

media sentiment signals, we extract the following characteristics: positive media sentiment, negative media sentiment and

media sentiment divergence [Li et al. 2020b]. They are denoted respectively as follows:

𝑄 (𝑖)+ = 𝑁 (𝑖)+
𝑁 (𝑖)+ + 𝑁 (𝑖)− ,

𝑄 (𝑖)− =
𝑁 (𝑖)−

𝑁 (𝑖)+ + 𝑁 (𝑖)− ,

𝐷 (𝑖) = 𝑁 (𝑖)+ − 𝑁 (𝑖)−
𝑁 (𝑖)+ + 𝑁 (𝑖)− ,

(3)

where 𝑁 (𝑖)+ and 𝑁 (𝑖)− are the sum of the frequency of each positive and negative sentiment word found in the financial

news articles of company 𝑖, respectively. 𝐷 (𝑖) denotes the sentiment divergence. Since many negative sentiment words

in the general sentiment dictionary no longer express negative emotional meanings in the financial field, we resort to a

finance-oriented sentiment dictionary created in previous study [Li et al. 2016]. q𝑖 ∈ R3 indicates the news sentiment

signals of company 𝑖.

q𝑖 = [𝑄 (𝑖)+, 𝑄 (𝑖)−, 𝐷 (𝑖)]⊤ . (4)

Note that we do not have everyday news for all companies since the randomness of the occurrence of media news. In

order to make the technical indicators aligned with the media sentiment signals and keep pace with the real situation, the

sentiment feature q𝑖 of the firm 𝑖 is assigned to zero on the day when there are no any media news about it.

4 METHODOLOGY

In this section, we introduce the details of our proposed method. Figure 2 gives an overview of the proposed framework.

(I) First, the stock sequential embeddings are learned with historical price and media news via multi-modal feature fusion

and sequential learning. (II) Second, a Dual Attention Networks is proposed to learn the stock relational embeddings

based upon the constructed MKG. (III) Last, the combinations of sequential embeddings and relational embeddings are

utilized to make stock prediction.
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Fig. 2. The overall framework of the proposed method. (I) Learning Stock Sequential Embeddings based on Tensor
Fusion and GRU. Tensor Fusion is the Neural Tensor Network (NTN) to learn the fusion of the technical indicators vector p𝑖
and media news sentiment features q𝑖 . The GRU is designed to learn the sequential embedding s𝑡

𝑖
. (II) Learning Stock

Relational Embeddings by a dual mechanism to model the mutual affects and inner interaction among the bi-typed entities
(i.e. companies and executives) alternately, including: (a) inter-class attention, and (b) intra-class attention. The former
aims to deal with the interaction between listed companies and their associated executives and the latter aims to learn the
interaction among the same type of entities. (III) Stock Movement Prediction via Feed-forward Neural Network (FNN) with
the learned firm embeddings.

4.1 Learning Stock Sequential Embeddings

The stocks are influenced by multi-modal time-series market signals. Considering the strong temporal dynamics of stock

markets, the historical state of the stock is useful for predicting its future trend. Due to the fact that the influence of market

signals on the stock price would last for some time, we should consider the market signals in the past couple of days when

predicting stock trend 𝑦𝑡
𝑖

of company 𝑖 at date 𝑡 . We first capture the multimodal interactions of technical indicators and

sentiment signals. We then feed the fused features into a one-layer GRU and take the last hidden state as the sequential

embedding of stock 𝑖 which preserves the time dependency, as shown in Figure 2-I.

4.1.1 Multimodal Features Fusion. To learn the fusion of the technical indicators vector p𝑖 and media news sentiment

features q𝑖 , we adopt a Neural Tensor Network (NTN) which replaces a standard linear neural network layer with a

𝑀-dimensional bilinear tensor layer that can directly relate the two features across multiple dimensions. The fused daily

market signals4 of stock 𝑖, x𝑖 ∈ R𝑀 , are calculated by the tensor-based formulation as follows:

x𝑖 = 𝜎

(
p𝑖𝑊

[1:𝑀 ]
T q𝑖 + V

[
p𝑖
q𝑖

]
+ b

)
, (5)

where 𝜎 is an activation function,𝑊 [1:𝑀 ]
T ∈ R5×3×𝑀 is a trainable tensor,V ∈ R8×𝑀 is the learned parameters matrix

and b ∈ R𝑀 is the bias vector. Three parameters are shared by all stocks.

4Here, the superscript 𝑡 is omitted for simplicity.
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4.1.2 Sequential Learning. We feed the fused daily market signals in the past 𝑇 days into the GRU to learn its

sequential embedding s𝑡
𝑖
, as follows:

s𝑡𝑖 = GRU
(
x𝑡−𝑇𝑖 , x𝑡−𝑇+1𝑖 , . . . , x𝑡−1

𝑖

)
, (6)

where s𝑡
𝑖
∈ R𝐹 denotes the last hidden state of GRU. 𝐹 is the hidden size of GRU.

4.2 Learning Stock Relational Embeddings via Dual Attention Networks

In real market, the stock fluctuation is partially affected by its related stocks which is known as momentum spillover

effect in finance [Ali and Hirshleifer 2020]. In this section, based upon our newly constructed bi-typed hybrid-relational

MKG, we propose a Dual Attention Networks to learn the relational embeddings of stocks that represent their received

spillover signals. Specifically, we employ a dual mechanism to model the mutual affection and inner influence among the

bi-typed entities (i.e. companies and executives) alternately, including inter-class interaction and intra-class interaction, as

shown in Figure 2-II.

4.2.1 Inter-class Attention Networks. The inter-class attention aims to deal with the interaction between listed

companies and their associated executives, as shown in Figure 2 (II-a). Since they are different types of entities, their

features usually lie in different space. Hence, we first project their embeddings into a common spaces. Specifically, for a

company entity 𝑢 ∈ E1 with type 𝜏 (𝑢) and an executive entity 𝑣 ∈ E2 with type 𝜏 (𝑣), we design two type-specific matrices

W𝜏 ( ·) to map their features h𝑢 , h𝑣 into a common space.

h′𝑢 = W𝜏 (𝑢)h𝑢 ,

h′𝑣 = W𝜏 (𝑣)h𝑣 ,
(7)

where h′𝑢 ∈ R𝐹
′

and h𝑢 ∈ R𝐹 denote the original and transformed features of the entity 𝑢, respectively. E1 and E2 are

the sets of listed companies and the executives, respectively. Here, the original vectors of company entities (h𝑢 , h𝑣) are

initialized by learned sequential embeddings (s𝑢 , s𝑣) learned in Section 4.1, which can bring rich semantic information in

downstream learning. The initial features of executives are then simply an average of the features of the companies which

they work for.

We assume that the target company entity 𝑢 connects with other executives via a relation 𝜃𝑖 ∈ Θinter which denotes the

set of inter-class relations, so the neighboring executives of a company 𝑢 with relation 𝜃𝑖 can be defined as N𝜃𝑖
inter (𝑢). For

entity 𝑢, different types of inter-class relations contribute different semantics to its embeddings, and so do different entities

with the same relation. Hence, we employ attention mechanism here in entity-level and relation-level to hierarchically

aggregate signals from other types of neighbors to target entity 𝑢.

We first design an entity-level attention to learn the importance of entities within a same relation. Then, to learn the

importance 𝑒
𝜃𝑖
𝑢𝜐 which means how important an executive 𝑣 for a company 𝑢 under a specific relation 𝜃𝑖 , we perform

self-attention [Vaswani et al. 2017] on the entities as follows:

𝑒
𝜃𝑖
𝑢𝑣 = 𝑎𝑡𝑡𝑛𝑜𝑑𝑒 (h′𝑢 , h′𝑣 ;𝜃𝑖 )

= LeakyRelu(a⊤
𝜃𝑖
· [h′𝑢 ∥h′𝑣]) ,

(8)

where h′𝑢 and h′𝜐 are the transformed representations of the node 𝑢 and 𝜐. a𝜃𝑖 ∈ R2𝐹 ′ is a trainable weight vector. ∥ denotes

the concatenate operation. LeakyReLU is a nonlinearity activation function. To make 𝑒
𝜃𝑖
𝑢𝜐 comparable over different
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entities, we normalize it using the softmax function.

𝛾
𝜃𝑖
𝑢𝑣 = softmax𝜐 (𝑒𝜃𝑖𝑢𝑣) =

exp (𝑒𝜃𝑖𝑢𝑣)∑
𝑣∈N𝜃𝑖

inter (𝑢)
exp (𝑒𝜃𝑖𝑢𝑣)

, (9)

where 𝛾𝜃𝑖𝑢𝑣 denotes the attention value of entity 𝑣 with relation 𝜃𝑖 to entity 𝑢. N𝜃𝑖
inter (𝑢) denotes the specific relation-based

neighbors with the different type. We apply entity-level attention to fuse inter-class neighbors with a specific relation 𝜃𝑖 :

h𝜃𝑖𝑢 = 𝜎

( ∑︁
𝑣∈N𝜃𝑖

inter (𝑢)

𝛾
𝜃𝑖
𝑢𝑣 · h′𝑣

)
, (10)

where 𝜎 is a nonlinear activation, and h′𝑣 is the projected feature of entity 𝑣 .

Once we learned all relation embeddings {h𝜃𝑖𝑢 }, we utilize relation-level attention to fuse them together to obtain the

inter-class relational embedding 𝑧𝑢 for entity 𝑢. We first calculate the importance of each relation 𝑤𝜃𝑖 as follows:

𝑤𝜃𝑖 =
1
|E1 |

∑︁
𝑢∈E1

q𝜏 (𝑢) · h𝜃𝑖𝑢 +
1
|E2 |

∑︁
𝑣∈E2

q𝜏 (𝑣) · h𝜃𝑖𝑣 , (11)

𝜖𝜃𝑖 =
exp (𝑤𝜃𝑖 )∑

𝜃 𝑗 ∈Θinter

exp (𝑤𝜃 𝑗 )
, (12)

where q𝜏 ( ·) ∈ R𝐹 ′×1 is learnable parameter. We fuse all relation embeddings to obtain the inter-class relational embedding

z𝑢 ∈ R𝐹
′

of entity u.

z𝑢 =
∑︁

𝜃𝑖 ∈Θintra

𝜖𝜃𝑖 · h𝜃𝑖𝑢 . (13)

In inter-class attention, the aggregation of different entities’ embedding are seamlessly integrated, and they are mingled

and interactively affected each other in nature, as shown in Figure 2 (II-a).

4.2.2 Intra-class Attention Networks. The intra-class attention aims to learn the interaction among the same type of

entities, as shown in Figure 2 (II-b). Specifically, given a relation 𝜙𝑘 ∈ Φ
𝜏 (𝑢)
intra that starts from entity 𝑢, we can get the

intra-class relation based neighbors N𝜙𝑘

intra (𝑢). Φ
𝜏 (𝑢)
intra indicates the set of all intra-class relations of 𝑢. For instance, as

shown in Figure 1, Company 5 is a neighbor of Company 3 based on an implicit relation, and Company 4 is a neighbor

of Company 1 based on meta-relation CEC. Each intra-class relation represents one semantic interaction, and we apply

relation-specific attention to encode this characteristic. We first calculate the attention value of entity 𝑢̃ with relation 𝜙𝑘 to

entity 𝑢 as follows:

𝛼
𝜙𝑘

𝑢𝑢̃
=

exp (LeakyRelu(a⊤
𝜙𝑘
· [Wz𝑢 ∥Wz𝑢̃ ]))∑

𝑢′∈N𝜙𝑘
intra (𝑢)

exp (LeakyRelu(a⊤
𝜙𝑘
· [Wz𝑢 ∥Wz𝑢′]))

, (14)

where z𝑢 and z𝑢̃ are output representations of the inter-class attention, respectively. W ∈ R𝐹 ′×𝐹 ′ is a trainable weight

matrix which is shared to every node of the same type. a𝜙𝑘
∈ R2𝐹 ′ is the node-level attention weight vector for relation 𝜙𝑘 .

N𝜙𝑘

intra (𝑢) denotes the intra-class neighbors of 𝑢 under relation 𝜙𝑘 . The embedding h𝜙𝑘
𝑢 of entity 𝑢 for the given relation

𝜙𝑘 is calculated as follows.

h𝜙𝑘
𝑢 = 𝜎

( ∑︁
𝑢̃∈N𝜙𝑘

intra (𝑢)

𝛼
𝜙𝑘

𝑢𝑢̃
·Wz𝑢̃

)
, (15)
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where 𝜎 is a non-linear activation. In total, we can get |Φ𝜏 (𝑢)intra | embeddings for entity 𝑢. Then, we conduct relation-level

attentions to fuse them into the relational embedding h𝑢 ∈ R𝐹
′
:

h𝑢 =
∑︁

𝜙𝑘 ∈Φ𝜏 (𝑢)
intra

𝛽𝜙𝑘 · h𝜙𝑘
𝑢 , (16)

where Φ
𝜏 (𝑢)
intra denotes the set of all intra-class relationships of entity 𝑢. 𝛽𝜙𝑘 denotes the importance of intra-class relation

𝜙𝑘 , which is calculated as follows:

g𝜙𝑘 =
1
|E1 |

∑︁
𝑢∈E1

q𝜏 (𝑢) · h𝜙𝑘
𝑢 ,

𝛽𝜙𝑘 =
exp (g𝜙𝑘 )∑

𝜙𝑙 ∈Φ𝜏 (𝑢)
intra

exp (g𝜙𝑙 )
.

(17)

where q𝜏 (𝑢) ∈ R𝐹 ′ is a learnable parameter.

4.3 SMP with Stock Final Embeddings

Finally, the stock final embeddings by combining learned sequential embeddings and relational embeddings are utilized

to make stock prediction by a dense layer feed-forward neural network (FNN) and a softmax function, as shown in Figure

2-III.
𝑦𝑡𝑖 = SMP

(
s𝑡𝑖 ∥ h

𝑡
𝑖

)
= Softmax

(
W𝑠𝑚𝑝 [s𝑡𝑖 ∥ h

𝑡
𝑖 ] + 𝑏𝑠𝑚𝑝

)
,

(18)

where W𝑠𝑚𝑝 is a trainable weight matrix, and 𝑏𝑠𝑚𝑝 is the bias vector. We leverage the Adam algorithm [Kingma and Ba

2014] for optimization by minimizing the cross entropy loss function L.

L = −
|𝑁 |∑︁
𝑖=1

∑︁
𝑡

𝑦𝑡𝑖 𝑙𝑛
(
𝑦𝑡𝑖

)
, (19)

where 𝑦𝑡
𝑖

and 𝑦𝑡
𝑖

represent the ground truth and predict stock trend of stock 𝑖 at 𝑡 day, respectively. |𝑁 | is the total number

of stocks.

5 EXPERIMENTS

In this section, we present our experiments, mainly focusing on the following research questions:

• RQ1: Can our model achieve better performance than the state-of-the-art stock prediction methods?

• RQ2: Can our model achieve a higher investment return and lower risk in the investment simulation on real-world

datasets?

• RQ3: How is the effectiveness of different components in our model?

• RQ4: Are all firm relations equally important for SMP? How do different parameters influence our model’s

performance?

In the following, we first present the experimental settings and then answer these research questions by analyzing the

experimental results.
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Table 3. Statistics of datasets.

CSI100E CSI300E

#Companies(Nodes) 73 185
#Executives(Nodes) 163 275

#Investment(Edges) 7 44
#Industry category(Edges) 272 1043
#Supply chain(Edges) 27 37
#Business partnership(Edges) 98 328
#Implicit relation(Edges) dynamic dynamic
#meta-relation CEC 18 42
#meta-relation CEEC 134 252

#Classmate(Edges) 338 592
#Colleague(Edges) 953 2224

#Management(Edges) 166 275
#Investment(Edges) 1 8

#Train Period 21/11/2017-05/08/2019 21/11/2017-05/08/2019
#Valid Period 06/08/2019-22/10/2019 06/08/2019-22/10/2019
#Test Period 23/10/2019-31/12/2019 23/10/2019-31/12/2019

5.1 Experimental Settings

5.1.1 Data Collection. Since no existing stock prediction benchmark datasets can satisfy our need to evaluate the

effectiveness of our method, we collect public available data about the stocks from the famous China Securities Index

(CSI) and construct two new datasets. We name them CSI100E and CSI300E with different number of listed companies,

respectively. 185 stocks in CSI300E index without missing transaction data and having at least 60 related news articles

during the selected period are kept. Similarly, 73 stocks in CSI100E index are kept. First, we get historical price of

stocks5 from November 21, 2017 to December 31, 2019 which include 516 transaction days. Second, we collect web

news published in the same period from four financial mainstream sites, including Sina6, Hexun7, Sohu8 and Eastmoney9.

Last, we collect four types of company relations10 and the connections of executives11 for CSI300E and CSI100E. The

basic statistics of the datasets are summarized in Table 3. The usage details of the multimodal market signals are described

in Section 3.2.

5.1.2 Evaluation Protocols. SMP is usually treated as a binary classification problem. If the closing price of a stock

𝑖 is higher than its opening price at day 𝑡 , the stock movement trend is defined as “upward”
(
𝑦𝑡
𝑖
= 1

)
, otherwise as

“downward”
(
𝑦𝑡
𝑖
= 0

)
. According to statistics, there are 46.7% “upward” stocks and 53.3% “downward” ones in CSI100E,

and 47.8% “upward” and 52.2% “downward” stocks in CSI300E. Hence, the datasets are roughly balanced.

5We collect daily stock price and volume data from https://www.wind.com.cn/
6http://www.sina.com
7http://www.hexun.com
8http://www.sohu.com
9http://www.eastmoney.com
10We collect four types of company relations by a publicly available API tushare: https://tushare.pro/.
11We collect executives relationships from : http://www.51ifind.com/.
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Some indicators [Sousa et al. 2019; Ye et al. 2020] are selected to demonstrate the effectiveness of the proposed

method, i.e. Directional Accuracy (DA), Precision, (AUC), Recall, F1-score. We use the Directional Accuracy (DA)
and AUC (the area under the precision-recall curve) to evaluate classification performance in our experiments, which

are widely adopted in previous works [Cheng and Li 2021; Li et al. 2020b]. Similar to [Sawhney et al. 2021, 2020b],

to evaluate DANSMP’s applicability to real-world trading, we assess its profitability on CSI100E and CSI300E using

metrics: cumulative investment return rate (IRR) and Sharpe Ratio [Sharpe 1994]. Similar to previous method [Cheng

and Li 2021; Li et al. 2020b], we use the market signals of the past 𝑇 trading days (also called lookback window size) to

predict stock movement on 𝑡𝑡ℎ day. The DA, IRR and SR are defined as follows:

𝐷𝐴 =
𝑛

𝑁
,

𝐼𝑅𝑅𝑡 =
∑︁

𝑖∈𝑆𝑡−1

𝑝𝑡
𝑖
− 𝑝𝑡−1

𝑖

𝑝𝑡−1
𝑖

,

𝑆𝑅𝑎 =
𝐸

[
𝑅𝑎 − 𝑅𝑓

]
𝑠𝑡𝑑

[
𝑅𝑎 − 𝑅𝑓

] ,

(20)

where 𝑛 is the number of predictions, which witness the same direction of stock movements for the predicted trend and

the actual stock trend and 𝑁 is the total number of predictions. 𝑆𝑡−1 denotes the set of stocks on day 𝑡 − 1, and 𝑝𝑡
𝑖

is the

price of stock i at day 𝑡 . 𝑅𝑎 denotes an asset return and 𝑅𝑓 is the risk-free rate. In this study, the risk-free rate is set as the

one-year deposit interest rate of the People’s Bank of China in 2019, i.e. 𝑅𝑓 = 1.5%.

Note that, to ensure the robustness of the evaluation, we repeat the testing procedure 10 times with different initialization

for all the experimental results and the average performance is reported as the final model result.

5.1.3 Parameter Settings. All trainable parameters vectors and matrices are initialized using the Glorot initialization

[Xavier and Yoshua 2010]. In our DANSMP, we set the lookback window size 𝑇 among [10, 15, 20, ... , 40]. We search

the learning rate from [0.00005, 0.0001, 0.00015, ... , 0.002]. The slice size of NTN 𝑀 and attention layer hidden size 𝐹 ′

are determined in [5,10,15, ... ,50] and [10, 11, 12, ... , 50], respectively. The GRU hidden size 𝐹 is set from [20, 22, 24, ...

, 100]. In our model, all hyperparameters were optimized with the validation set, and Table 4 shows the hyper-parameter

settings of our method. The proposed DANSMP is implemented with PyTorch12 and PyTorch Geometric13, and each

training process costs 1.5hrs averagely using a GTX 1080 GPU. To prevent overfitting, we use early stopping based on

AUC (the area under the precision-recall curve) over the validation set.

Table 4. The hyper-parameter settings on two datasets.

Parameter CSI100E CSI300E

Lookback window size 𝑇 20 20
The slice size of NTN 𝑀 10 10
Attention layer hidden size 𝐹 ′ 39 22
GRU hidden size 𝐹 78 44
Learing rate 0.0008 0.00085
Implicit relation threshold 𝜂 0.0054 0.0052
Maximum number of epochs 400 400

12https://pytorch.org/.
13https://pytorch-geometric.readthedocs.io/en/latest/.
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5.1.4 Baselines. To demonstrate the effectiveness of our proposed model DANSMP, we compare the results with the

following baselines.

• LSTM [Hochreiter and Schmidhuber 1997]: a typical RNN model that has promising performance on time-series

data. In the evaluation, two-layer LSTM networks are implemented.

• GRU [Cho et al. 2014]: a simpler RNN that achieves similar performance with LSTM. In the comparison, two-layer

GRU networks are implemented.

• GCN [Kipf and Welling 2017]: It performs graph convolutions to linearly aggregate the attributes of the neighbor

nodes. In this study, two-layer GCN network was implemented.

• GAT [Velickovic et al. 2018]: It introduces attention mechanism which assigns different importance to the neighbors

adaptively. Two-layer GAT networks are implemented.

• RGCN [Schlichtkrull et al. 2018]: It designs specialized mapping matrices for each relations. Two-layer RGCN

network was implemented.

• HGT [Hu et al. 2020]: It uses transformer architecture to capture features of different nodes based on type-specific

transformation matrices.

• MAN-SF [Sawhney et al. 2020a]: It fuses chaotic temporal signals from financial data, social media and stock

relations in a hierarchical fashion to predict future stock movement.

• STHAN-SR [Sawhney et al. 2021]: It uses hypergraph and temporal Hawkes attention mechanism to rank stocks with

only historical price data and explicit firm relations. We only need to slightly modify the objective function of MAN-SF

to predict future stock movement.

• AD-GAT [Cheng and Li 2021]: a SOTA method to use an attribute-driven graph attention network to capture

attribute-sensitive momentum spillover of stocks, which can modeing market information space with feature interaction

to further improve stock movement prediction.

These baselines cover different model characters. Specifically, the sequential-based LSTM [Hochreiter and Schmid-

huber 1997] and GRU [Cho et al. 2014] can capture the time dependency of stock data, and the fused market signals

were used as the input to the LSTM and GRU model. The homogeneous GNNS-based GCN [Kipf and Welling 2017],

GAT [Velickovic et al. 2018], RGCN [Schlichtkrull et al. 2018], HGT [Hu et al. 2020], MAN-SF [Sawhney et al. 2020a],

STHAN-SR [Sawhney et al. 2021] and AD-GAT [Cheng and Li 2021] can capture the influence of related stocks based

on the fused market signals and simple firm relations. Note that, for fair comparison, we do not select the methods that are

incapable of dealing with all fused multi-modal market signals (i.e. historical price, media news and stock relations) as

baselines.

5.2 Experimental Results and Analysis (RQ1)

Table 5 shows the evaluation results of the two datasets against nine state-of-the-art (SOTA) baselines, from which

we observe that our proposed method outperforms all baselines for stock movement prediction in terms of all metrics

on CSI100E and CSI300E. It confirms the capability of our method in modeling the comprehensive market signal

representations via dual attention networks.

Analysis. (1) The LSTM and GRU, which only consider historical prices and media news, perform largely worse than

our method. The results indicate that the relation datas contribute to stock movement prediction and the proposed method

can take full advantage of the relational information in MKG to improve performance. (2) The graph-based methods, such

as GCN and GAT, are homogeneous GNNs which are incapable of modeling heterogeneous market graph. Although being
Manuscript submitted to ACM
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Table 5. Stock prediction results of different models.

Methods CSI100E CSI300E
Accuracy AUC Accuracy AUC

LSTM [Hochreiter and Schmidhuber 1997] 51.14 51.33 51.78 52.24
GRU [Cho et al. 2014] 51.66 51.46 51.11 52.30

GCN [Kipf and Welling 2017] 51.58 52.18 51.68 51.81
GAT [Velickovic et al. 2018] 52.17 52.78 51.40 52.24
RGCN [Schlichtkrull et al. 2018] 52.33 52.69 51.79 52.59
HGT [Hu et al. 2020] 53.01 52.51 51.70 52.19
MAN-SF [Sawhney et al. 2020a] 52.86 52.23 51.91 52.48
STHAN-SR [Sawhney et al. 2021] 52.78 53.05 52.89 53.48
AD-GAT [Cheng and Li 2021] 54.56 55.46 52.63 54.29

DANSMP (ours) 57.75 60.78 55.79 59.36

Table 6. Profitability of all methods in back-testing.

Methods CSI100E CSI300E
IRR SR IRR SR

LSTM [Hochreiter and Schmidhuber 1997] -4.57% -2.1713 -0.38% -0.326
GRU[Cho et al. 2014] -2.55% -1.053 -3.73% -1.197

GCN [Kipf and Welling 2017] 1.59% 0.719 3.55% 1.873
GAT [Velickovic et al. 2018] 0.3% 0.050 -1.82% -1.121
RGCN [Schlichtkrull et al. 2018] 6.41% 3.789 -3.64% -1.905
HGT[Hu et al. 2020] 2.54% 1.716 0.36% 0.076
MAN-SF[Sawhney et al. 2020a] -2.91% -1.590 1.38% 0.604
STHAN-SR[Sawhney et al. 2021] -0.12% -0.092 5.41% 1.565
AD-GAT [Cheng and Li 2021] 2.34% 1.190 15.12% 4.081

DANSMP (ours) 10.18% 4.112 16.97% 4.628

able to model multi-relational graph, RGCN can not sufficiently encode bi-typed heterogeneous graph become of the fact

that it ignores the heterogeneity of node attributes and calculates the importance of neighbors within the same relation

based on predefined constants. HGT focuses on handling web-scale heterogeneous graphs via graph sampling strategy,

which thus is prone to overfitting when dealing with relative sparse MKG. HGT can not learns multi-level representation

by sufficiently utilize interactions between two types of nodes. We believe that is the reason they perform worse than our

model DANSMP which is pertinently designed to model bi-typed hybrid-relational MKG. (3) The proposed DANSMP

consistently outperforms three other SMP competitors, including AD-GAT, STHAN-SR and MAN-SF. Specifically, it

exceeds the second place by approximately 3.19% and 5.32% in terms of Accuracy and AUC in CSI100E, and 3.16% and

5.07% in CSI300E. The results clearly demonstrate the effectiveness of DANSMP and the explicit relation and executives

relation are meaningful for stock movement prediction.
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Fig. 3. Profitability analysis on CSI100E and CSI300E.

5.3 Investing simulation (RQ2)

To test whether a model can make a profit, we set up a back-testing via simulating the stock investment in CSI100E and

CSI300E over the test period, during which the CSI100 and CSI300 index increased by 4.20% and 5.14% (from 4144.05

to 4317.93 and 3896.31 to 4096.58), respectively. Specifically, the top-15 stocks with the highest predicted ranking score

in each model are bought and held for one day. We choose RMB 10,000 as the investment budget, and take into account

a transaction cost of 0.03% when calculating the investment return rate, which is in accordance with the stock market

practice in China. The cumulative profit will be invested into the next trading day. From Table 6 and Figure 3, we can find

that DANSMP achieves approximately stable and continuous positive returns throughout the back-testing. Particularly, the
Manuscript submitted to ACM
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Table 7. The ablation study over DANSMP.

Variants CSI100E CSI300E
Accuracy AUC Accuracy AUC

DANSMP 57.75 60.78 55.79 59.36

w/o executives 52.71 52.62 53.80 55.88
w/o implicit rel. 53.52 54.38 52.13 53.37
w/o explicit rel. 55.12 57.05 54.10 55.49

w/o dual 56.12 58.60 55.43 57.85

advantage of DANSMP over all baselines mainly lies in its superior performance when the stock market is in a bear stage.

The proposed DANSMP achieves significantly higher returns than all baselines with the cumulative rate of 10.18% and

16.97% in CSI100E and CSI300E. In addition, DANSMP results in a more desirable risk-adjusted return with Sharpe

Ratio of 4.113 and 4.628 in CSI100E and CSI300E, respectively. These results further demonstrate the superiority of the

proposed method in terms of the trade-off between the return and the risk.

5.4 Ablation Study (RQ3)

To examine the usefulness of each component in DANSMP, we conduct ablation studies on CSI100E and CSI300E. We

design four variants: (1) DANSMP w/o executives, which deletes the executive entities. MKG is degraded into a simple

uni-type knowledge graph. (2) DANSMP w/o implicit relation, which removes the implicit relation when we model the

stock momentum spillover effect. (3) DANSMP w/o explicit relation, which deletes the explicit relations and only use

the implicit relation to predict stock movement. (4) DANSMP w/o dual, which replaces the dual attention module by

conventional attention mechanism and does not distinguish the node intra-class and inter-class relation.

From Table 7, we observe that removing any component of DANSMP would lead to worse results. The effects of the

four components vary in different datasets, but all of them contribute to improving the prediction performance. Specifically,

removing executives relations and implicit relations leads to the most performance drop, compared to the other two, which

means a company can influence the share price of other companies through interactions between executives. In contrast,

using the conventional attention mechanism produces the least performance drop. Compared with conventional attention

mechanism, the dual attention module enables DANSMP to adaptively select more important nodes and relations. This

finding further proves that the proposed DANSMP fully leverages bi-typed hybrid-relational information in MKG via dual

mechanism for better stock prediction.

5.5 Analysis of Firm Relation (RQ4)

To investigate the impact of using different types of relations for stock prediction, we show the learned attention scores of

our model in Figure 4. The attention score is learned parameter for different firm relations. Some main findings are as

follows: (1) We can observe Figure 4 that the learned attention score of implicit relation gains more weight than other

relations, and the implicit relation which contains a lot of valuable information proved to be helpful for stock movement

prediction. (2) The industry category, supply chain and investment get almost the same attention scores, and those can

improve the performance of model. (3) Compared with other relations, the business partnership has the lowest score.

Although the number of business partnership relation is greater than that of investment and supply chain, the relatively

dense business partnership relation may carry some noise, which adds irrelevant information to the representations of
Manuscript submitted to ACM
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Fig. 4. The presentation of the learned attention scores of DANSMP on CSI100E and CSI300E. Here, IC denotes the
industry category; BP stands for the business partnership; IV denotes the investment; SC is the supply chain; IR denotes
the implicit relation.
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Fig. 5. Sensitivity to parameters 𝑇 and 𝜂.

target nodes. The results further demonstrate the necessity of considering the implicit relation in modeling the momentum

spillover effect. In addition, our model can adaptively weight important company relations to obtain better representations

of target nodes, which can improve the performance of the model for stock movement prediction.

Manuscript submitted to ACM



20 Y. Zhao, H. Du, Y. Liu et al.

5.6 Parameter Sensitivity Analysis (RQ4)

We also investigate on the sensitivity analysis of two parameters in DANSMP. We report the results of DANSMP under

different parameter settings on CSI100E and CSI300E and experimental results are shown in Figure 5.

Lookback window size 𝑇 . We analyze the performance variation with different lookback window size 𝑇 in Figure 5 (a).

Our model performs best when 𝑇 is set to about 20 in both datasets.

Implicit relation threshold 𝜂. The results of our model with different implicit relation thresholds are reported in Figure

5 (b). The performance of our proposed model grows with the increment of 𝜂 and achieves the best performance when

𝜂 is set to 0.0054 in CSI100E. With the increment of 𝜂, the performance raises at first and then drops gradually in the

dataset CSI300E. When the 𝜂 becomes bigger, the performance decreases possibly because some meaningful implicit

edges are neglected.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on stock movement prediction task. To model stock momentum spillover in real financial market,

we first construct a novel bi-typed hybrid market knowledge graph. Then, we propose a novel Dual Attention Networks,

which are equipped with both inter-class attention module and intra-class attention module, to learn the stock momentum

spillover features on the newly constructed MKG. To evaluate our method, we construct two new datasets CSI100E

and CSI300E. The empirical experiments on the constructed datasets demonstrate our method can successfully improve

stock prediction with bi-typed hybrid-relational MKG via the proposed DANSMP. The ablation studies reaffirm that

the performance gain mainly comes from the use of the associated executives, and additional implicit relation between

companies in MKG.

An interesting future work direction is to explore web media about the executives including: (i) the negative facts from

news, such as accusation of crime, health issue, etc; (ii) the improper speech on social media, such as Twitter and Weibo.

We believe these factual event information of executives can be detected and utilized to feed into graph-based methods for

better SMP performance.
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