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Abstract—The well-known benefits of cloud computing have spurred the popularity of database service outsourcing, where one can
resort to the cloud to conveniently store and query databases. Coming with such popular trend is the threat to data privacy, as the
cloud gains access to the databases and queries which may contain sensitive information, like medical or financial data. A large body
of work has been presented for querying encrypted databases, which has been mostly focused on secure keyword search. In this
paper, we instead focus on the support for secure skyline query processing over encrypted outsourced databases, where little work
has been done. Skyline query is an advanced kind of database query which is important for multi-criteria decision-making systems and
applications. We propose SecSkyline, a new system framework building on lightweight cryptography for fast privacy-preserving skyline
queries. SecSkyline ambitiously provides strong protection for not only the content confidentiality of the outsourced database, the
query, and the result, but also for data patterns that may incur indirect data leakages, such as dominance relationships among data
points and search access patterns. Extensive experiments demonstrate that SecSkyline is substantially superior to the state-of-the-art
in query latency, with up to 813× improvement.
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1 INTRODUCTION

Due to the well-known benefits of cloud computing [1],
[2], there has been growing popularity of enterprises or
organizations leveraging commercial clouds to store and
query their databases (e.g., [3–6], to list a few). However,
as databases may contain rich sensitive and proprietary
information (like databases of medical records or financial
records), deploying such database services in the cloud
may raise critical privacy concerns. Therefore, there is an
urgent demand that security must be embedded in such
database outsourcing services, providing protection for the
information-rich databases, private queries, as well as query
results. In the literature, a large body of work has been
presented for querying encrypted databases, which has been
mostly focused on secure keyword search [7–10].

In this paper, we instead focus on secure skyline queries
over outsourced databases, where little work has been done.
Given a query point, skyline query aims to retrieve a set of
data points (called skyline points) which are not dominated
by any other data point from a multi-dimensional database
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[11]. In particular, given a query point q and two data points
a and b in the target database, a is said to dominate b if
a is nearer to q than b at least in one dimension and not
farther in other dimensions. Skyline query is highly use-
ful for multi-criteria decision-making systems in different
domains, such as web information systems [12], wireless
mobile ad-hoc networks [13], and geographical information
systems [14], especially when it is hard to define a single
distance metric with all dimensions [15].

To make the problem we focus on more concrete, we
brief an example application to demonstrate how skyline
query works. Consider a medical institution who outsources
its database of medical records to the cloud to share its di-
agnosis experiences. Table 1 shows the original database P,
where each record (i.e., a tuple) contains values for health-
related attributes about a patient, including the respiratory
rate (R) and heart rate (H). A doctor from another medical
organization has a patient record with (R = 16, H = 100),
and wants to retrieve records from P whose conditions are
similar to that of the patient based on skyline query process-
ing. Therefore, the doctor sends a query q = (16, 100) to the
cloud. Upon receiving q, the cloud first maps each record
in P to T (i.e., Table 2) using the mapping function [15],
[16] ti[j] = |pi[j] − q[j]|, i ∈ [1, 4], j ∈ [1, 2]. After that, the
cloud finds intermediate skyline tuples {t?} from T if each
t? cannot be dominated by any other tuple in T. The final
returned patients’ records (i.e., target skyline tuples) are p1

and p4, because t1 dominates t2 but does not dominate t3
and t4; and t4 dominates t3. Formal definition of dominance
is given in Section 3.1. The dominance relationships in this
example is illustrated in Fig. 1.

The challenge that we aim to tackle in this paper is
how to enable fast and privacy-preserving skyline queries
over encrypted cloud databases. With respect to the above
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TABLE 1
Original Database P

Record R H

p1 15 102
p2 14 97
p3 20 99
p4 19 101

TABLE 2
Mapped Database T

Record R H

t1 1 2
t2 2 3
t3 4 1
t4 3 1
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Fig. 1. An example of skyline query under a query point q.

application scenario as an example, we aim to allow the
cloud hosting the database P in encrypted form to produce
the skyline query result {p1,p4} in encrypted form as well.
Meanwhile, besides ensuring the data content confidential-
ity for direct protection, it is also demanded that the cloud
should be prevented from knowing data patterns which
may cause indirect data leakage [15–17]. Such data patterns
include the dominance relationships among database tuples,
the number of database tuples that each skyline tuple domi-
nates, and the search access patterns. Here the search pattern
implies whether a new skyline query has been issued before
and the access pattern reveals which database tuples are the
skyline tuples.

In the literature, privacy-preserving skyline queries has
recently received increasing attentions and several research
endeavors have been proposed [15–21]. The state-of-the-art
prior works [16], [17] that are most related to ours rely on
heavy cryptosystems to craft secure protocols, leading to
substantial performance overheads which heavily hinders
the practical usability. In particular, even over very small-
scale databases (e.g., with 1000 2-dimensional tuples), the
state-of-the-art works [16], [17] still require processing la-
tency of more than 1000 seconds and 100 seconds, respec-
tively. Therefore, how to enable privacy-preserving skyline
queries with practical performance is still challenging and
remains to be fully explored.

In light of the above, in this paper, we propose Sec-
Skyline, a new system framework that allows fast privacy-
preserving skyline queries over encrypted databases out-
sourced to the cloud. Different from prior arts [16],
[17], SecSkyline fully utilizes a lightweight cryptographic
technique—additive secret sharing [22] and achieves sub-
stantially superior performance in query latency. We first
conduct an in-depth examination on the procedure of sky-
line query processing and identify that it can be decom-
posed into several essential components for which we pro-
vide customized secure realizations.

Specifically, we first consider how to support secure

database mapping given an encrypted query, allowing the
cloud to securely map the encrypted outsourced database
to the new space so as to facilitate the subsequent secure
skyline tuples fetching. SecSkyline introduces an effective
technique to tackle the challenging operation of computing
absolute value in the secret sharing domain, securely real-
izing the operation of database mapping. Then, SecSkyline
introduces techniques to support secure skyline fetching, al-
lowing the cloud to obliviously fetch skyline tuples without
knowing which tuples they are in the database. After that,
SecSkyline provides techniques for secure skyline and domi-
nated tuples filtering to tackle the remaining challenge, i.e.,
how to allow the cloud to obliviously filter out a currently
found skyline tuple and the tuples dominated by it from the
mapped database without knowing which tuples they are
and the number of dominated tuples. The synergy of these
secure components lead to the full protocol for fast privacy-
preserving skyline queries developed in SecSkyline.

We implement our protocol and conduct extensive ex-
periments on several datasets. The experiment results show
that SecSkyline achieves substantial performance boost
compared to the state-of-the-art works FSSP [16] and SMSQ
[17]. Specifically, SecSkyline improves upon FSSP by up to
8130× and improves upon SMSQ by up to 813× in query
latency. We highlight our main contributions below:
• We present SecSkyline, a new system framework for

secure skyline queries over encrypted databases out-
sourced to the cloud, which provides strong protec-
tion for the content confidentiality of the outsourced
database, the query, and the result, as well as data
patterns that may incur indirect data leakages.

• We devise a suite of secure and lightweight components
to support oblivious skyline query processing at the
cloud, including secure database mapping, secure sky-
line tuples fetching, and secure skyline and dominated
tuples filtering.

• We formally analyze the security of SecSkyline and
conduct extensive evaluations over several datasets.
The results demonstrate that under the same system
model and security guarantees, SecSkyline can achieve
up to 813× better query latency over the state-of-the-art
[17], with promising scalability.

The rest of this paper is organized as follows. Section 2
discusses the related work. In Section 3, we introduce pre-
liminaries. Then, we introduce our system architecture and
threat model in Section 4. After that, we present the design
of SecSkyline in Section 5, followed by security analysis and
experiments in Section 6 and Section 7, respectively. Finally,
we conclude this paper in Section 8.

2 RELATED WORK

2.1 Skyline Query in Plaintext Domain

The skyline operator in the database filed is first proposed
by Börzsönyi et al. [23]. Since this seminal work, great
efforts have been devoted to advancing the design of skyline
query schemes. Kossmann et al. [24] study the online skyline
using the nearest neighbor method. Papadias et al. [25]
propose the branch and bound skyline algorithm, achieving
performance boost in terms of efficiency and storage over
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Algorithm 1 Skyline Query in Plaintext
Input: An m-dimensional database P of n tuples and a

query tuple q.
Output: The set of skyline tuples SKq with respect to q.

1: for i = 1 to n do
2: for j = 1 to m do
3: ti[j] = |pi[j]− q[j]|.
4: end for
5: end for
6: Set {t1, · · · , tn} as the initial mapped database T(0).
7: for i = 1 to n do
8: s[i] =

∑m
j=1 ti[j].

9: end for
10: k = 0.
11: while T(k) 6= ∅ do
12: Select from the current mapped database T(k) the

tuple ti with the minimum s[i], denoted by t?.
13: Add the tuple in P corresponding to t? to the skyline

pool SKq.
14: Delete t? and tuples dominated by t? from T(k).
15: T(k+1) = T(k).
16: k + +.
17: end while
18: return SKq.

prior works. The problem of skyline queries in different
scenarios has also been widely studied, such as skyline on
data streams [26], uncertain skyline [27], [28], and group-
based skyline [29], [30]. However, all of them consider the
execution of skyline queries in the plaintext domain without
considering privacy protection.

2.2 Secure Skyline Query Processing

Bothe et al. [18] initiate the first study on secure skyline
query processing. They introduce a preliminary approach
that relies on a mechanism which multiplies vectors via
secret matrices for protection. Their approach does not
provide formal and rigorous security guarantees. Recently,
Liu et al. propose the FSSP scheme [16] (which first appeared
in [15]), and Ding et al. propose the SMSQ scheme [17].
Both these recent schemes provide strong cryptographic
guarantees for the databases,the skyline queries, as well
as the query results. However, as mentioned above, FSSP
[16] and SMSQ [17] rely on the use of heavy cryptosys-
tems and incur substantial performance overheads, which
heavily affect their practical usability. In contrast, SecSkyline
is a new system design for fast privacy-preserving skyline
queries over encrypted databases hosted in the cloud, which
fully builds on lightweight cryptography and achieves per-
formance substantially better than the state-of-the-art prior
schemes FSSP [16] and SMSQ [17].

There are some works [19], [21] focusing on privacy-
preserving skyline query under application scenarios dif-
ferent from ours. Specifically, the work [21] studies privacy-
preserving user-defined skyline queries, focusing on a dif-
ferent and simplified case of constrained subspace skyline
queries, where the client specifies a constrained region to
search. The underlying skyline query targeted in our secu-
rity design as well as the prior works [16], [17] is generic

and much more challenging. In addition, it is noted that
the scheme in [21] does not offer protection for the access
pattern. Wang et al. [19] focus on the support for verifiability
with respect to location-based skyline queries where the client
is only allowed to customize its skyline queries with two
spatial attributes. In addition, to achieve affordable online
query latency, the scheme in [19] requires the data owner
to pre-compute the dominance relationships with respect
to non-spatial attributes among database tuples before out-
sourcing them to the cloud. An additional work by Wang
et al. [20] proposes a trusted hardware-based approach for
privacy-preserving skyline query. Such approach requires to
put additional trust on trusted hardware vendors. Moreover,
in recent years, various attacks against trusted hardware
have been proposed [31–34], which pose severe threats to
trusted hardware-based secure systems, but the solution in
[20] does not consider these attacks. Hence, the state-of-the-
art prior works that are most related to ours are [16], [17].

3 PRELIMINARIES

3.1 Skyline Query

Definition 1. Given a database P = {p1, · · · ,pn}, where each
database tuple pi (i ∈ [1, n]) is an m-dimensional vector, i.e., a
tuple where each dimension corresponds to an attribute. Let pa
and pb be two different tuples in P. We say pa dominates pb,
if and only if ∀j ∈ [1,m], pa[j] ≤ pb[j] and ∃j ∈ [1,m],
pa[j] < pb[j]. Then the skyline tuples are tuples that are not
dominated by any other tuple.

Given a query tuple, the skyline query targeted in this
paper aims to retrieve from a database tuples that are
not dominated by any other tuple [15], [35]. The formal
definition of skyline query considered in this paper is given
below [16]:

Definition 2. Given a query tuple q and a database P =
{p1, · · · ,pn}, where q has the same dimension as each tuple
in P. Let pa and pb be two different tuples in P. We say
pa dynamically dominates pb with respect to q, if and only if
∀j ∈ [1,m], |pa[j] − q[j]| ≤ |pb[j] − q[j]|, and ∃ j ∈ [1,m],
|pa[j] − q[j]| < |pb[j] − q[j]|. A skyline tuple with respect to
q is a tuple that is not dominated by any other tuple. The set of
skyline tuples under q is denoted by SKq.

Algorithm 1 shows the plaintext-domain processing of
the skyline query [15], [16]. Given a database P and a query
tuple q, the first step is to map the database P to a new
database (referred to as mapped database) with respect to q
(i.e., lines 1-6). Then, for each tuple in the initial mapped
database (i.e., T(0)), the sum over its all attributes (i.e.,
lines 7-9) is computed. Skyline tuples are selected from the
mapped database in turn through multiple rounds. In the
k-th round (k ≥ 0), the current mapped database T(k) is
taken as input, and a skyline tuple t? in T(k) is chosen,
which is the one with the smallest attribute sum. The tuple
in the original database P corresponding to t? is added to
the skyline pool. After that, the skyline tuple t? and those
tuples dominated by it are deleted from T(k), producing the
updated mapped database T(k+1) to be used in the next
round. The process is repeated through multiple rounds
until the mapped database becomes empty.
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3.2 Additive Secret Sharing

Additive secret sharing [22] is a lightweight encryption
technique that allows some secure computation. Given a
secret value x ∈ Z2l , additive secret sharing in a two-
party setting works by splitting it into two secret shares
〈x〉A1 ∈ Z2l and 〈x〉A2 ∈ Z2l . For l > 1, x = 〈x〉A1 + 〈x〉A2 in
Z2l and such sharing is referred to as arithmetic sharing. For
l = 1, x = 〈x〉A1 ⊕〈x〉A2 in Z2, and such sharing is referred to
as binary sharing. Each share alone reveals not information
about x. The shares are to be held by two parties P1 and P2

respectively for subsequent secure computation. We write
JxKA and JxKB respectively to clearly distinguish between
arithmetic sharing and binary sharing in the above form.

With the shares of two secret values x and y held by
two parties P1 and P2 respectively, some operations can be
performed securely among them. We use arithmetic sharing
to illustrate the secure computation. Note that in binary
sharing, the only differences are that addition/subtraction
operations are replaced by XOR (⊕) and multiplication
operations are replaced by AND (⊗).

In particular, the addition/subtraction between two
secret-shared values JxKA and JyKA only requires local com-
putation at each party, i.e., 〈z〉Ai = 〈x〉Ai ± 〈y〉Ai , i ∈ {1, 2}.
Also, the scalar multiplication between a public value η and
a secret-shared value JxKA also only requires local compu-
tation, i.e., 〈z〉Ai = η · 〈x〉Ai . The multiplication between two
secret-shared values JxKA and JyKA, however, requires one
round of online communication. Specifically, to compute
JzKA where z = xy, P1 and P2 need to additionally have as
input a secret-shared Beaver triple (JuKA, JvKA, JwKA) which
can be prepared offline [36], wherew = uv. Then, each party
first locally computes 〈e〉i = 〈x〉i − 〈u〉i, 〈f〉i = 〈y〉i − 〈v〉i,
and then reveal e and f to each other. Finally, P1 and P2

locally compute the secret shares of z by 〈z〉1 = e · f + f ·
〈u〉1 + e · 〈v〉1 + 〈w〉1 and 〈z〉2 = f · 〈u〉2 + e · 〈v〉2 + 〈w〉2,
respectively. For simplicity, we write JzKA = JxKA · JyKA
to denote such secure multiplication. In addition, the NOT
operation (denoted by ¬) in binary secret sharing domain
can be realized by letting one of P1 and P2 locally flip the
share it holds, e.g., 〈¬x〉B1 = ¬〈x〉B1 , 〈¬x〉B2 = 〈x〉B2 .

4 PROBLEM STATEMENT

4.1 System Architecture

Fig. 2 illustrates the system architecture of SecSkyline. There
are three kinds of entities: the data owner, the client, and
the cloud. The data owner can be an organization (e.g.,
a medical institution), who has a database P and wants
to offer skyline query services to clients (e.g., doctors in
a hospital). To leverage the well-known benefits of cloud
computing [1], [2], the data owner intends to store the
database P in the cloud, who then helps provide skyline
query services for the client. Due to privacy concerns, it is
demanded that security must be embedded in such cloud-
empowered service, safeguarding the database P, skyline
query q, as well as the corresponding query result SKq.

For high efficiency, in SecSkyline we resort to
a lightweight cryptographic technique—additive secret
sharing—for fast encryption of the database and skyline
query and for supporting subsequent secure processing in

Cloud Server C1 

Cloud Server C2 

Client Data Owner
3. 

0. P
1.  q 2. Secure Skyline

Query Processing

Fig. 2. The architecture of SecSkyline.

the cloud, through a customized design. To be compatible
with the working paradigm of additive secret sharing, the
power of the cloud in SecSkyline is divided into two cloud
servers (denoted by C1 and C2) who can be hosted by
independent cloud service providers, e.g., Google, AWS,
and Microsoft in practice. Such a two-server model has also
been adopted in state-of-the-art prior works on privacy-
preserving skyline queries [15–17], as well as in other ap-
plication domains [37–45]. In addition to the adoption in
academia, the two-server model has also gained increasing
traction in industry. For example, Mozilla initiates a secure
telemetry data collection service on Firefox under the two-
server model [46]; Apple and Google collaboratively pro-
vide users with automated alerts about potential COVID-19
exposure, while providing strong privacy guarantees [47].
SecSkyline follows such trend and contributes a new design
for enabling fast privacy-preserving skyline queries over
encrypted cloud databases.

4.2 Threat Model

Similar to the state-of-the-art prior works on privacy-
preserving skyline queries [16], [17] as well as other works
in the two-server setting [39], [41], [48], [49], we assume
a semi-honest and non-colluding adversary model where
each cloud server honestly follows our protocol, yet may
individually attempt to learn the private information from
the execution of (dynamic) skyline queries. Following the
prior works [16], [17], we consider the data owner and the
client as trustworthy parties, who will honestly follow the
protocol specification.

Under the above threat model and following the state-
of-the-art prior works [16], [17], SecSkyline aims to protect
against the cloud servers (i) the content of the database P,
skyline query q, and query result SKq, (ii) the dominance
relationships among database tuples, (iii) the number of
database tuples that each skyline tuple dominates, and (iv)
search access patterns. Following the standard definitions
in searchable encryption [50], we describe the search access
patterns in secure skyline queries as follows.

Definition 3. Search pattern. For two skyline queries q and
q′, define Σ(q,q′) ∈ {0, 1}, where Σ(q,q′) = 1 if and only if
the two queries are identical, and otherwise Σ(q,q′) = 0. Here,
“identical” means that all corresponding attribute values of q and
q′ are identical. Let Q = {q1, · · · ,qr} be a non-empty sequence
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of skyline queries. The search pattern reveals an r · r (symmetric)
matrix with element (i, j) equal to Σ(qi,qj).

In short, the search pattern implies whether a new sky-
line query has been issued before.

Definition 4. Access pattern. Given a skyline query q on the
database P, the access pattern reveals the indexes of skyline tuples
with respect to q in P.

In practice, the access pattern reveals which database
tuples are the skyline tuples with respect to a given query.

5 THE DESIGN OF SECSKYLINE

5.1 Overview
At a high level, the protocol in SecSkyline proceeds through
the following phases. Firstly, in an initialization phase, the
data owner adequately encrypts each tuple in its database
P under arithmetic additive secret sharing and produces
JPKA. The data owner then sends the secret shares 〈P〉A1
and 〈P〉A2 to C1 and C2, respectively. Subsequently, it comes
to the online query phase, where the client first encrypts its
skyline query tuple q through arithmetic sharing and sends
the secret shares 〈q〉A1 and 〈q〉A2 to the cloud servers C1 and
C2, respectively. Hereafter, for simplicity of presentation,
we will write C{1,2} to represent the two cloud servers C1

and C2. Upon receiving the encrypted query JqKA, C{1,2}
securely process the encrypted skyline query over JPKA as
per the customized design of SecSkyline.

To allow C{1,2} to perform the skyline query processing
(i.e., Algorithm 1) in an oblivious manner, we first con-
duct an in-depth examination on the whole procedure and
decompose it into several essential components, for which
we provide customized secure realizations. Specifically, we
identify and devise the following secure components for
supporting secure skyline queries.
• Secure database mapping secMap. Given the encrypted

database JPKA and query JqKA, SecSkyline provides
secMap to have C{1,2} securely map the encrypted
database JPKA to the encrypted mapped database JTKA
with respect to JqKA so as to facilitate the subsequent
secure skyline tuples fetching.

• Secure skyline fetching secFetch. Given the current
encrypted mapped database, SecSkyline provides
secFetch to allow C{1,2} to obliviously fetch the skyline
tuple Jt?KA from the current mapped database without
knowing which tuple it is. Meanwhile, secFetch allows
C{1,2} to obliviously fetch the skyline tuple Jp?KA cor-
responding to Jt?KA from JPKA, which is added into
the encrypted skyline pool JSKqKA.

• Secure skyline and dominated tuples filtering secFilt. Given
JTKA and Jt?KA, SecSkyline provides secFilt to allow
C{1,2} to obliviously filter out Jt?KA and the tuples
dominated by Jt?KA without knowing which tuples
they are as well as the number of the dominated tuples.

Next, we will introduce the detailed design of secMap in
Section 5.2, secFetch in Section 5.3, and secFilt in Section 5.4.
Afterwards, in Section 5.5, we give the complete protocol in
SecSkyline for secure skyline query processing at the cloud,
which relies on the synergy of the three secure components
devised in SecSkyline.

Algorithm 2 Secure Database Mapping secMap

Input: The encrypted original database JPKA and skyline
query JqKA.

Output: The encrypted mapped database JTKA.
1: Initialization: JTKA = ∅.
2: for i = 1 to n do
3: for j = 1 to m do
4: JbKB = SecExt(Jpi[j]KA, Jq[j]KA).
5: Jb′KB = J¬bKB .
6: Jti[j]KA = MultiBA(JbKB , Jq[j]KA − Jpi[j]KA) +

MultiBA(Jb′KB , Jpi[j]KA − Jq[j]KA).
7: end for
8: JTKA.append(JtiKA).
9: end for

10: return JTKA.

5.2 Secure Database Mapping

Secure database mapping secMap aims at allowing C{1,2} to
securely map the encrypted database JPKA to the encrypted
mapped database JTKA with respect to the encrypted query
JqKA. From the process in Algorithm 1, i.e., lines 1-6, we
observe that the challenge here is to securely calculate the
absolute value ti[j] = |pi[j] − q[j]| in the secret sharing
domain. Therefore, we design a tailored protocol to allow
C{1,2} to securely evaluate the encrypted absolute value
J|a−b|KA when they hold the secret sharings JaKA and JbKA.

Our solution to this challenge is based on the following
observation:

|a− b| = (a < b) · (b− a) + ¬(a < b) · (a− b), (1)

where ¬ represents the NOT operation and (a < b) = 1 ∈
Z2 if a < b, and (a < b) = 0 ∈ Z2 if a ≥ b. Given this
observation, what needs to be considered is how to securely
realize the computation of (a < b) as well as the NOT
operation in the secret sharing domain. As mentioned in
Section 3.2, the NOT operation on a secret-shared bit can be
simply achieved by letting one of C{1,2} (C1 undertakes this
in SecSkyline) locally flip the share it holds. So it remains
to be considered how to allow C{1,2} to securely evaluate
a < b with the secret sharings JaKA and JbKA.

Here we resort to the strategy of secure bit decompo-
sition in the secret sharing domain [51], [52]. Specifically,
given a, b ∈ Z2l under two’s complement representation, the
most significant bit (MSB) of a − b (denoted as msb(a − b))
can indicate whether a < b or not. Namely, if a − b < 0,
msb(a − b) = 1 and otherwise msb(a − b) = 0. Secure
extraction of the MSB in the secret sharing domain can be
achieved by securely realizing a parallel prefix adder (PPA),
which only requires basic ⊕ and ⊗ operations in the secret
sharing domain. Fig. 3 illustrates an 8-bit PPA for MSB
extraction. In [51], a concrete construction for secure MSB
extraction based on PPA was provided, which allows two
parties holding the secret sharings of two values a and b as
input to obtain the secret sharing of the MSB of a − b. Let
SecExt denote the secure MSB extraction protocol, for which
we have Jmsb(a− b)KB = SecExt(JaKA, JbKA). For more de-
tails on the construction SecExt, we refer the readers to [51].
It is noted that the output Jmsb(a − b)KB from SecExt is in
binary secret sharing domain. However, we need to obtain
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Fig. 3. An 8-bit PPA for MSB extraction.

J|a − b|KA as the result according to the computation in Eq.
1. So we need to consider how to perform multiplication
between Jmsb(a − b)KB (i.e., J(a < b)KB) and Jb − aKA as
well as J¬msb(a − b)KB (i.e., J¬(a < b)KB) and Ja − bKA.
That is, given the secret sharings JxKB and JyKA, we want to
obtain Jx · yKA. Inspired by [52], SecSkyline deals with the
multiplication of secret-shared values in different domains
as follows.

1) C1 draws a random value r1 ∈ Z2l and constructs two
messages: mµ := (µ⊕〈x〉B1 ) · 〈y〉A1 − r1, µ ∈ {0, 1}, and
then sends m0,m1 to C2.

2) C2 chooses mµ according to the secret share 〈x〉B2 it
holds. That is, C2 chooses m0 if 〈x〉B2 = 0 and C2

chooses m1 if 〈x〉B2 = 1. Then, C2 holds the interme-
diate value x · 〈y〉A1 − r1 and C1 holds r1.

3) For the secret share 〈y〉A2 , C2 acts as the sender and C1

acts as the receiver to repeat step 1) and 2). Then C1

holds the intermediate value x · 〈y〉A2 − r2 and C2 holds
the random value r2 it draws.

4) C1 and C2 respectively compute the shares of Jx · yKA
by: 〈x·y〉A1 = r1+x·〈y〉A2 −r2, 〈x·y〉A2 = r2+x·〈y〉A1 −r1.
It is easy to see that 〈x·y〉A1 +〈x·y〉A2 = x·(〈y〉A1 +〈y〉A2 ) =
x · y.

Finally, C1 and C2 can obtain the secret sharing Jx · yKA.
Let MultiBA denote such secret-shared multiplication, for
which we have Jx · yKA = MultiBA(JxKB , JyKA). Analo-
gously, MultiBA can also be applied on the secret-shared
component-wise multiplication between a binary secret-
shared value JxKB and an arithmetic secret-shared vector
JvKA, for which we have Jx · vKA = MultiBA(JxKB , JvKA),
where x · v is a vector from component-wise multiplication.
With the above secure operations, we present the details of
secure database mapping in Algorithm 2.

5.3 Secure Skyline Fetching
After mapping the encrypted database JPKA to JTKA with
respect to JqKA, C{1,2} need to obliviously fetch the skyline
tuples {Jt?KA} from JTKA and the skyline tuples {Jp?KA}
corresponding to {Jt?KA} from JPKA. For simplicity of pre-
sentation, we next introduce how to allow C{1,2} to obliv-
iously fetch one Jt?KA from JTKA and its corresponding
Jp?KA from JPKA.

Algorithm 3 Secure Skyline Fetching secFetch

Input: The encrypted sum vector JsKA, encrypted mapped
database JTKA, and encrypted original database JPKA.

Output: The encrypted minimum JsMinKA ∈ JsKA, and the
encrypted skyline tuples Jt?KA and Jp?KA.

1: Initialization: JsMinKA = Js[1]KA, Jt?KA = Jt1KA ∈
JTKA, Jp?KA = Jp1KA ∈ JPKA.

2: for i = 2 to n do
3: JϕKB = SecExt(Js[i]KA, JsMinKA).
4: Jϕ′KB = J¬ϕKB .
5: JsMinKA = MultiBA(JϕKB , Js[i]KA)+

MultiBA(Jϕ′KB , JsMinKA).
6: Jt?KA = MultiBA(JϕKB , JtiKA)+

MultiBA(Jϕ′KB , Jt?KA).
7: Jp?KA = MultiBA(JϕKB , JpiKA)+

MultiBA(Jϕ′KB , Jp?KA).
8: end for
9: return JsMinKA, Jt?KA, and Jp?KA.

According to the plaintext-domain shown in Algorithm
1, secure skyline fetching first needs to compute the attribute
sum for each tuple JtiKA ∈ JTKA. The summation operation
is naturally supported in the secret sharing domain, namely,

Js[i]KA =
m∑
j=1

Jti[j]KA,

where Js[i]KA represents the attribute sum for tuple JtiKA.
With this, SecSkyline devises a component secFetch to allow
C{1,2} to obliviously fetch the skyline tuple Jt?KA from JTKA
and its corresponding Jp?KA from JPKA. Note that t? refers
to the tuple which has the minimum attribute sum in T.
Therefore, the first challenge of secure skyline fetching in the
secret sharing domain is how to allow C{1,2} to obliviously
fetch the minimum value from a set of secret-shared values
without knowing which and what value it is.

Obviously finding the minimum value from several
values essentially needs comparison followed by swapping
based on the comparison. This can be securely realized as
follows. Firstly, given the secret sharings JaKA and JbKA
held by C1 and C2, we can first leverage SecExt to obtain
the secret-shared result JϕKB of comparison between a and
b, i.e., JϕKB = SecExt(JaKA, JbKA). Then, the smaller value
among a and b can be obliviously selected via

Jmin(a, b)KA = MultiBA(JϕKB , JaKA)+MultiBA(Jϕ′KB , JbKA),

where Jϕ′KB = J¬ϕKB . With this as a basis, we are able to
compute the minimum attribute sum in the secret sharing
domain, as well as obliviously fetch the corresponding
skyline tuple t? from JTKA and the corresponding tuple
p? from JPKA. In particular, when securely switching two
attribute sums based on the secret-shared comparison result,
we can perform secure switching of the two associated
secret-shared tuples from JTKA and JPKA as well. The de-
tails of secure skyline fetching is presented in Algorithm 3.
Note that there may be more than one tuple whose attribute
sum is equal to the smallest value in s, but only one of
them needs to be fetched in the current round, because the
remainders are the skyline tuples to be processed in the
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Algorithm 4 Secure Skyline and Dominated Tuples Filtering
secFilt

Input: The encrypted database JTKA, skyline tuple Jt?KA,
minimum sum of attributes JsMinKA and sum of at-
tributes Js(k)KA.

Output: The new encrypted sum of attributes Js(k+1)KA.
1: Set JflagKB = J0KB .
2: for i = 1 to n do
3: JσiKB = ¬SecExt(JsMinKA, Js(k)[i]KA).
4: JisFirstSkyiKB = JσiKB ⊗ J¬flagKB .
5: JflagKB = JflagKB ⊕ JisFirstSkyiKB .
6: for j = 1 to m do
7: Jδi,jKB = SecExt(Jti[j]KA, Jt?[j]KA).
8: end for
9: Jδ̂iKB = J¬δi,1KB ⊗ · · · ⊗ J¬δi,mKB .

10: JisDomiiKB = Jδ̂iKB ⊗ J¬σiKB .
11: JΦiKB = JisFirstSkyiKB ⊕ JisDomiiKB .
12: Js(k+1)[i]KA = MultiBA(JΦiKB , JvMAXKA)+

MultiBA(J¬ΦiKB , Js(k)[i]KA).
13: end for
14: return Js(k+1)[i]KA.

subsequent rounds. Therefore, SecSkyline lets C{1,2} obliv-
iously choose the first one that has the minimum attribute
sum by performing

JϕKB = SecExt(Js[i]KA, JsMinKA), (2)

where ϕ = 1 if and only if s[i] < sMin, which keeps t? and
p? unchanged when s[i] = sMin.

Note that when implementing Algorithm 3, we can use
the trick of divide-and-conquer [53] to boost the perfor-
mance during secure minimum computation. For example,
the minimum in a vector JvKA of four elements can be calcu-
lated by: min(min(Jv[1]KA, Jv[2]KA),min(Jv[3]KA, Jv[4]KA)),
where min (Jv[1]KA, Jv[2]KA) and min(Jv[3]KA, Jv[4]KA) can
be calculated in parallel, saving communication rounds.

5.4 Secure Skyline and Dominated Tuples Filtering
So far we have introduced how C{1,2} obliviously fetch the
encrypted skyline tuple Jt?KA from the encrypted mapped
database JTKA. Then we should consider how to allow
C{1,2} to obliviously filter out Jt?KA and the tuples domi-
nated by Jt?KA from JTKA without knowing which tuples
they are, i.e., hiding the access pattern and the dominance
relationships. Therefore, we devise a component secFilt (as
given in Algorithm 4) for secure skyline and dominated
tuples filtering.
Challenges. There are two challenges to be tackled in secFilt:
1) how to allow C{1,2} to obliviously locate the skyline tuple
and dominated tuples in JTKA? 2) how to allow C{1,2} to
obliviously filter out these tuples?
Addressing the first challenge. SecSkyline first defines two
encrypted (binary) labels JisFirstSkyiKB and JisDomiiKB for
each tuple JtiKA ∈ JTKA, where isFirstSkyi = 1 indi-
cates that ti is the skyline tuple in the current round and
isDomii = 1 indicates that ti is a tuple dominated by the
skyline tuple. Then C{1,2} can obliviously mark whether
tuple ti needs to be filtered out by calculating

JΦiKB = JisFirstSkyiK
B ⊕ JisDomiiKB . (3)

It is noted that since isFirstSkyi and isDomii cannot both be
equal to 1, Φi = 0 indicates that both isFirstSkyi and isDomii
are equal to 0 and ti does not need to be filtered out, and
Φi = 1 indicates that isFirstSkyi or isDomii is equal to 1 and
ti needs to be filtered out. Next, we introduce how C{1,2}
obliviously evaluate JisFirstSkyiKB and JisDomiiKB for each
tuple JtiKA ∈ JTKA.

We first introduce how C{1,2} obliviously evaluate
JisFirstSkyiKB for each tuple JtiKA ∈ JTKA, i.e. whether ti
is the skyline tuple. Recall that in Algorithm 3, the skyline
tuple has the minimum attribute sum sMin. so SecSkyline
lets C{1,2} obliviously evaluate whether ti’s attribute sum
(i.e., s(k)[i] in the current round k) is equal to sMin. Specifi-
cally, SecSkyline first lets C{1,2} securely compare JsMinKA

and Js(k)[i]KA by

JσiKB = ¬SecExt(JsMinKA, Js(k)[i]KA), (4)

where σi = 1 indicates sMin ≥ s(k)[i]. Note that sMin
is the minimum value in s(k), and thus σi = 1 means
s(k)[i] = sMin. However, since there may be more than
one value in s(k) that is equal to sMin, s(k)[i] = sMin
indicates that ti may be the skyline tuple t?. Recall that
in Algorithm 3, SecSkyline lets C{1,2} obliviously fetch the
first tuple JtiKA whose Js[i]KA is minimum in JsKA (i.e.,
JsMinKA) as the skyline tuple Jt?KA. Therefore, SecSkyline
provides a delicate security design to allow C{1,2} to only
set JisFirstSkyiKB = J1KB for the first tuple JtiKA that
satisfies Js(k)[i]KA = JsMinKA as follows:

JisFirstSkyiK
B = JσiKB ⊗ J¬flagKB , (5)

JflagKB = JflagKB ⊕ JisFirstSkyiK
B , (6)

where JflagKB is an auxiliary variable and set as J0KB at the
beginning of the current round. isFirstSkyi = 1 indicates
that tuple ti is the required skyline tuple t?.

The correctness is analyzed as follows. JflagKB = J0KB
at the beginning. When the first Js(k)[i]KA = JsMinKA ap-
pears, C{1,2} obliviously set JσiKB = J1KB . Since J¬flagKB =
J1KB , C{1,2} obliviously set JisFirstSkyiKB = J1KB (i.e., Eq.
5), which marks the required skyline tuple t?. After that,
C{1,2} obliviously set JflagKB = J1KB , i.e., Eq. 6, and JflagKB
remains equal to J1KB in the following loops. JflagKB = J1KB
prevents C{1,2} from setting JisFirstSkyiKB = J1KB for other
tuples because J¬flagKB = J0KB in the following loops.

We then introduce how C{1,2} obliviously evaluate
JisDomiiKB for each tuple JtiKA ∈ JTKA, i.e. whether ti is a
dominated tuple. According to the definition of dominance
(i.e., Definition 1), given two tuples a and b, we say a domi-
nates b if ∀j, a[j] ≤ b[j] and ∃j, a[j] < b[j]. Therefore, if ∀j,
a[j] ≤ b[j], we have either a dominates b or a is identical to
b. Therefore, SecSkyline defines an encrypted (binary) label
Jδ̂iKB to mark the above dominance relationship. C{1,2}
obliviously evaluate Jδ̂iKB for each tuple JtiKA ∈ JTKA by
first comparing each attribute of the skyline tuple Jt?KA and
JtiKA:

Jδi,jKB = SecExt(Jti[j]KA, Jt?[j]KA), j ∈ [1,m],

and then aggregating the comparison results to Jδ̂iKB by

Jδ̂iKB = J¬δi,1KB ⊗ · · · ⊗ J¬δi,mKB , (7)
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where δ̂i = 1 if and only if ∀δi,j = 0, j ∈ [1,m], i.e., ∀j ∈
[1,m], t?[j] ≤ ti[j]. Therefore, δ̂i = 1 if ti is a dominated
tuple or ti = t?, and otherwise δ̂i = 0. The above process is
described at lines 6-9 of Algorithm 4. Subsequently, C{1,2}
securely evaluate JisDomiiKB for JtiKA by

JisDomiiKB = Jδ̂iKB ⊗ J¬σiKB ,

where isDomii = 1 indicates that tuple ti is a dominated
tuple, and Jδ̂iKB and JσiKB are calculated by Eq. 7 and Eq.
4, respectively. We give the correctness analysis as follows.
Firstly, if and only if both δ̂i = 1 and ¬σi = 1, we have
isDomii = 1. δ̂i = 1 indicates that ti is a dominated tuple
or ti = t?, and ¬σi = 1 rules out the possibility of ti = t?.
Therefore, if and only if the tuple ti is a dominated tuple,
we have isDomii = 1.

So far, C{1,2} have obliviously marked the skyline tuple
by isFirstSkyi = 1 and the dominated tuples by isDomii = 1.
Therefore, C{1,2} can securely evaluate JΦiKB for each tuple
JtiKA ∈ JTKA by Eq. 3 to obliviously mark whether tuple ti
needs to be filtered out.
Addressing the second challenge. We should then consider
how to tackle the second challenge, namely, how to allow
C{1,2} to obliviously filter out tuples which have Φi = 1
underlying the JΦiKB (recall Eq. 3). A naive method is to let
C{1,2} directly open each tuple’s Φi. However, such simple
method will leak which tuple is the skyline tuple and the
dominance relationships, which easily violates the security
requirement for access pattern protection.

Instead, SecSkyline achieves oblivious tuple filtering via
a different strategy. Specifically, SecSkyline lets C{1,2} obliv-
iously set s(k+1)[i] to a pre-set system-wide maximum value
vMAX to mark for filtering if Φi = 1, and obliviously keep
s(k+1)[i] unchanged if Φi = 0. Formally, C{1,2} perform the
following:

Js(k+1)[i]KA = MultiBA(JΦiKB , JvMAXKA)+

MultiBA(J¬ΦiKB , Js(k)[i]KA).

The secret sharing of vMAX can be prepared by C{1,2}
offline. Note that s(k+1)[i] = vMAX will prevent C{1,2} from
selecting ti (or pi) as the skyline tuple in the following
rounds. Therefore, the filtering strategy will not degrade the
skyline query accuracy.

5.5 Putting Things Together
In this section, we introduce how to synthesize the above
three secure components to enable secure skyline query
processing over encrypted cloud databases in SecSkyline.
We first encapsulate them as follows:
• Secure database mapping JTKA = secMap(JPKA,

JqKA), which inputs the encrypted original database
JPKA and skyline query request JqKA, and then outputs
the initial encrypted mapped database JTKA.

• Secure skyline fetching (JsMinKA, Jt?KA, Jp?KA) =
secFetch(Js(k)KA, JTKA, JPKA), which inputs the en-
crypted attribute sum vector Js(k)KA, mapped database
JTKA, and the original database JPKA output from the
previous round, and then outputs the encrypted min-
imum attribute sum JsMinKA ∈ Js(k)KA, the skyline
tuples Jt?KA and Jp?KA.

Algorithm 5 The Complete Construction for Secure Skyline
Query Processing in SecSkyline

Input: The encrypted database JPKA and skyline query
JqKA.

Output: The encrypted resulting set of skyline tuples
JSKqKA.

1: Initialization: JSKqKA = ∅, JsKA = J0KA, isStop = 0.
2: JTKA = secMap(JPKA, JqKA).
3: Js(0)[i]KA =

∑m
j=1Jti[j]K

A, for i ∈ [1, n]. // n is the
number of tuples; m is the dimension of tuples.

4: k = 0.
5: while ¬isStop do
6: (JsMinKA, Jt?KA, Jp?KA) =

secFetch(Js(k)KA, JTKA, JPKA).
7: JisStopKB = ¬SecExt(JsMinKA, JvMAXKA).
8: C{1,2} open the flag isStop to decide whether to stop

the process.
9: JSKqKA.append(Jp?KA).

10: Js(k+1)KA = secFilt(JTKA, Jt?KA, JsMinKA, Js(k)KA).
11: k + +.
12: end while
13: return JSKqKA.

• Secure skyline and dominated tuples filtering
Js(k+1)KA = secFilt(JTKA, Jt?KA, JsMinKA, Js(k)KA),
which inputs the encrypted mapped database JTKA,
minimum sum JsMinKA, and attribute sum vector
Js(k)KA, and then outputs the updated attribute sum
vector Js(k+1)KA.

Algorithm 5 gives the complete construction for secure
skyline query processing in SecSkyline, which is the secure
instantiation of Algorithm 1 and relies on the coordination
of the above three secure components. The only challenge in
the design of Algorithm 5 is how to allow C{1,2} to decide
whether to terminate the secure search process without
leaking other information. Our solution is to let C{1,2} first
securely compare JsMinKA and vMAX:

JisStopKB = ¬SecExt(JsMinKA, JvMAXKA),

and then open the flag isStop, where isStop = 1 indicates
that the smallest element in Js(k)KA is vMAX. Therefore,
C{1,2} can know that all elements in Js(k)KA have been
filtered out, and then terminate the search process.

5.6 Complexity Analysis

It is noted that the performance of SecSkyline is dominated
by three main components: 1) secure database mapping
(secMap), 2) secure skyline fetching (secFetch), and 3) se-
cure skyline and dominated tuples filtering (secFilt). In
practice, the cost of these components is dominated by
the secure MSB extraction operation SecExt(·). Therefore,
we first separately analyze their complexities by counting
SecExt(·) during their execution. For Algorithm 2, the cost
of secMap is dominated by n ·m secure MSB extraction op-
erations SecExt(·). For Algorithm 3, secFetch requires n− 1
secure MSB extraction operations SecExt(·). For Algorithm
4, secFilt requires n ·m+n secure MSB extraction operations
SecExt(·).
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Then we analyze the overall complexity of invoking
SecExt(·) in the complete protocol shown in Algorithm 5.
Note that it is dominated by the While loop, which termi-
nates when all tuples in JT KA are filtered out, as indicated by
the Boolean flag isStop. The number of loops is k+ 1 where
k is the number of skyline tuples returned for the skyline
query, i.e., the size of JSKqKA. In addition, the computation
of JisStopKB in each loop requires a secure MSB extraction
operation SecExt(·) and the (k + 1)-th loop early stops at
line 8. Therefore, we can conclude that the overall execution
of our protocol requires n ·m + k · n · (2 + m) + n secure
MSB extraction operations SecExt(·).

6 SECURITY ANALYSIS

We now analyze the security of SecSkyline. Our analysis
follows the standard ideal/real world paradigm [54]. We
first define the ideal functionality F for the secure skyline
query processing:
• Input. The data owner provides to F the database P

and a client submits a query q.
• Computation. After receiving P and q, F retrieves the

skyline tuples SKq of P with respect to q.
• Output. F returns SKq to the client.

Let
∏

represent a protocol for secure skyline query process-
ing that realizes the ideal functionality F . The security of

∏
is formally defined as follows:

Definition 5. Let A be an adversary who has the view of a
corrupted server during the execution of

∏
. Let ViewReal∏

(A) denote
A’s view in the real world. We say that

∏
is secure in the semi-

honest and non-colluding setting, if for ∀ PPT adversary, ∃ a PPT
simulator S s.t. ViewReal∏

(A)≈ViewIdeal
S . That is, the simulator S

can simulate a view for the adversary, which is indistinguishable
from its view in the real-world.

Theorem 1. In the semi-honest and non-colluding adversary
model, SecSkyline can securely realize the ideal functionality F
according to Definition 5.

Proof. Recall that in the framework of SecSkyline, i.e., Al-
gorithm 5, which consists of several components: 1) se-
cure database mapping (secMap); 2) secure skyline fetching
(secFetch); 3) secure skyline and dominated tuples filtering
(secFilt). Since each of them is invoked in order as per
the processing pipeline and their inputs and outputs are
secret shares, we can conclude that SecSkyline is secure if
the simulator for each component exists [55–57]. We use
SimCi

X to represent the simulator which generates Ci’s view
in the execution of component X on corresponding input
and output. It is noted that the roles of C1 and C2 in these
components are symmetric. So it suffices to analyze the
existence of simulators for C1.
• SimC1

secMap. It is noted that secMap (i.e., Algorithm 2)
consists of three meta operations, i.e., secure MSB ex-
traction (line 4), secure bit flipping (line 5), and secure
multiplication between a binary secret-shared value
and an arithmetic secret-shared value (line 6). Since
these operations are invoked in turn and their inputs
are secret shares, we analyze the existence of their
simulators in turn. Since the secure MSB extraction
consists of basic binary secret sharing operations (i.e.,

AND ⊗ and XOR ⊕), its simulator clearly exists. Note
that the secure bit flipping operation only requires
local computation and C1 receives nothing during its
execution. Therefore, its simulator clearly exists. We
then analyze the existence of the simulator for the
secure multiplication between a binary secret-shared
value JxKB and an arithmetic secret-shared value JyKA.
It is noted that we only need to analyze the case where
C1 acts as the receiver, because in the case whereC1 acts
as the sender, C1 receives nothing. At the beginning of
the operation, C1 has 〈x〉B1 and 〈y〉A1 , and later receives
two messages mµ := (µ⊕ 〈x〉B2 ) · 〈y〉A2 − r2, µ ∈ {0, 1}
from C2. Therefore, we need to prove that the messages
are uniformly random in the view of C1. Note that the
random value r2 generated by C2 is uniformly random
in the view of C1. This implies that m{1,2} are also
uniformly random in C1’s view since r2 is independent
of other values used in the generation of m{1,2} [58].
Therefore, the simulator SimC1

secMap exists.
• SimC1

secFetch. It is noted that secFetch (i.e., Algorithm 3)
consists of secure MSB extraction, secure bit flipping,
secure multiplication between a binary secret-shared
value and an arithmetic secret-shared value, and basic
secret sharing operations. Meanwhile, these operations
are invoked in turn and their inputs are secret shares.
Therefore, based on the above analysis, the simulator
SimC1

secFetch exists.
• SimC1

secFilt. Similarly, SimC1

secFilt exists, since the meta
operations of secFilt (i.e., Algorithm 4) are same as
secMap and secFetch, and they as are invoked in turn
and their inputs are secret shares.

The proof of Theorem 1 is completed.

We now explicitly analyze why SecSkyline can hide
search access patterns as follows.
• Hiding the search pattern. Given an encrypted skyline

query request JqKA, each cloud server Ci, i ∈ {1, 2}
only receives the share 〈q〉Ai . According to the secu-
rity of additive secret sharing, it is ensured that en-
crypting the same query multiple times will produce
different secret shares that are indistinguishable from
uniformly random values. Therefore, given the security
of additive secret sharing [22], C{1,2} cannot determine
whether a new skyline query has been issued before.
Therefore, SecSkyline can hide the search pattern.

• Hiding the access pattern. The access pattern in fact
indicates whether a tuple in the original database JPKA
or the mapped database JTKA is a skyline tuple. That is,
it refers to which tuples will appear in the query result
JSKqKA. Since the skyline tuples are obliviously fetched
in secFetch and obliviously filtered out in secFilt, C{1,2}
cannot know which tuples are the skyline tuples. There-
fore, SecSkyline can hide the access pattern.

7 EXPERIMENTS

7.1 Experiment Setup
We implement our protocol in C++. All experiments are
conducted on a machine with 8 AMD Ryzen 7 5800H CPU
cores and 16 GB RAM running 64-bit Windows 10. In
our experiments, the two cloud servers are simulated by
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TABLE 3
Accuracy of SecSkyline over Plaintext Baseline on Different Datasets

Dataset (n=1000, m=6) CORR INDE ANTI NBA

Accuracy 100% 100% 100% 100%
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Fig. 4. Query latency on different
datasets, for varying number of tu-
ples n (with the number of dimen-
sions m = 2).
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Fig. 5. Query latency on different
datasets, for varying number of di-
mensions m (with the number of
tuples n = 1000).

threads and executed in parallel on the same machine. The
network delay is set to 1 ms. Similar to the previous works
[16], [17], we use three synthetic datasets and a real-world
NBA dataset. Specifically, we generate independent (INDE),
correlated (CORR), and anti-correlated (ANTI) datasets fol-
lowing [16]. We also build a real-world dataset about NBA
players based on the data from the Kaggle dataset1, where
each player has six attributes: minutes, points, rebounds,
assists, blocks, and steals. The results reported in our ex-
periments are the average over 100 skyline queries unless
otherwise stated.

7.2 Evaluation on Accuracy

We first report the accuracy of SecSkyline to demonstrate the
effectiveness of our design. Specifically, we first implement
the plaintext dynamic skyline query algorithm (i.e., Algo-
rithm 1). Then, over different datasets, we randomly gener-
ate 1000 skyline queries and use the plaintext algorithm and
SecSkyline to search the skyline tuples with respect to these
skyline queries. We use the skyline tuples output by the
plaintext algorithm as the baseline to evaluate the accuracy
of SecSkyline. If the skyline query results returned by Sec-
Skyline exactly match that returned by the plaintext base-
line, there is no accuracy loss so the accuracy is measured
to be 100%. The experiment results on different datasets
are summarized in Table 3, where n represents the number
of tuples and m represents the number of dimensions. It
can be observed that SecSkyline outputs exactly the same
skyline tuples as the plaintext algorithm, which validates
the effectiveness of SecSkyline.

7.3 Evaluation on Performance

7.3.1 Evaluation on Query Latency
We now examine the query latency of SecSkyline. That is,
given an encrypted skyline query, we evaluate how long it

1. https://www.kaggle.com/drgilermo/nba-players-stats/data.
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Fig. 6. Communication cost for
varying n, over different datasets
(with m = 2).

2 3 4 5 60

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Co
mm

un
ica

tio
n (

MB
)

D i m e n s i o n  m

 C O R R
 I N D E
 A N T I
 N B A

Fig. 7. Communication cost for
varying number of dimensions m,
over different datasets (with n =
1000).

takes C{1,2} to obliviously execute dynamic skyline search
on the encrypted database and output encrypted skyline
tuples. We start with evaluating SecSkyline on different
datasets with the number of dimensions m = 2, for varying
the number of tuples n, and summarize the results in Fig.
4. It is noted that since the NBA dataset only has 2500
tuples, the curve about its results is shorter than other
datasets. From Fig. 4, it can be observed that under the
same m, the query latency is small even with n ranging
from 1000 to 11000. Specifically, as n increases from 1000 to
11000, the query latency on different datasets with m = 2
increases from about 1 to 2.15 seconds. Moreover, it can be
observed that the query latency on ANTI datasets is larger
than others. The reason is that the dataset tuples in ANTI
datasets show weaker correlation, and thus skyline queries
on them produce more skyline tuples, which require more
rounds of secure skyline tuples search. Then, over different
datasets and with the number of tuples n = 1000, we
evaluate SecSkyline for varying the number of dimensions
m ∈ {2, 3, 4, 5, 6}, and summarize the results in Fig. 5. It can
be observed that under the same n, asm increases, the query
latency grows quickly. Specifically, as m increases from 2 to
6, the query latency on different datasets with n = 1000
increases from about 1 to 27 seconds.

7.3.2 Evaluation on Communication Performance
We now examine the online communication performance of
SecSkyline. That is, given an encrypted skyline query, the
amount of data communicated between C{1,2} to conduct
the secure skyline query processing as per our design and
output encrypted skyline tuples. Note that we use the same
experiment setting as that in Section 7.3.1, and summarize
the results in Fig. 6 and Fig. 7. According to Fig. 6, as n
increases from 1000 to 11000, the communication cost over
different datasets with m = 2 increases from about 6 to
144 MB;. According to Fig. 7, as m increases from 2 to 6,
the communication cost over different datasets with n =
1000 increases from about 6 to 524 MB. So the number of
dimensions m heavily affects the communication cost.

7.4 Scalability Evaluation
To demonstrate the scalability of SecSkyline on large-scale
datasets, we now report the computation cost of SecSkyline
on larger datasets and different numbers of threads. Specif-
ically, we first evaluate SecSkyline on different datasets un-
der m = 2 and single thread, for varying number of tuples

https://www.kaggle.com/drgilermo/nba-players-stats/data
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n ∈ {2×105, 3×105, 4×105, 5×105, 6×105}, and summarize
the results in Fig. 8. It can be observed that even on 6× 105

tuples, the query latency is still on the order of seconds,
which should be tolerable for the client. We then evaluate
SecSkyline on the CORR dataset under m = 2, for varying
number of tuples n ∈ {2× 105, 3× 105, 4× 105, 5× 105, 6×
105} and the number of threads χ ∈ {1, 2, 4}. The results are
summarized in Fig. 9. To reduce the time cost, we use the
data partitioning method [16] to support parallel execution
of our protocol. In the experiment, we divide the dataset
into χ sub-datasets and distribute them to χ sub-threads.
Each sub-thread runs SecSkyline protocol independently to
compute the skyline tuples of the sub-dataset and sends
the candidate set of skyline tuples to a main thread. After
receiving the results from any two sub-threads, the main
thread merges them into a new dataset and assigns it to an
unoccupied sub-thread to securely search the skyline tuples.
This process is repeated until the encrypted skyline tuples of
the last merged dataset has been securely found, and these
tuples are the ultimate encrypted skyline tuples returned to
the client.

7.5 Comparison to State-of-the-art Prior Works

As reported in the state-of-the-art prior works, the protocols
FSSP [16] and SMSQ [17] run secure skyline queries over
small-scale datasets (e.g., CORR, INDE, and ANTI with
size n = 1000,m = 2) in at least 1000 seconds and
100 seconds2, respectively. Meanwhile, we note that they
consider the query latency to be the sum of computation
time and memory copying time between threads, and do
not consider network latency. In contrast, even consid-
ering the network latency, SecSkyline only requires 0.79
seconds on CORR dataset, 0.65 seconds on INDE dataset,
and 1.11 seconds on ANTI dataset, which is 90 ∼ 154×
and 901 ∼ 1538× faster than SMSQ [17] and FSSP [16],
respectively. For the larger datasets (e.g., CORR, INDE, and
ANTI with size n = 11000,m = 2), FSSP and SMSQ require
at least 10000 seconds and 1000 seconds, respectively. In
contrast, even considering the network latency, SecSkyline
only requires 1.54 seconds on CORR dataset, 1.23 seconds
on INDE dataset, and 2.15 seconds on ANTI dataset, which
is 465 ∼ 813× and 4651 ∼ 8130× better than SMSQ [17]
and FSSP [16], respectively.

2. Results are deduced from the figures in their papers since they do
not give the exact values within text.

8 CONCLUSION

In this paper, we design, implement, and evaluate Sec-
Skyline, a new system framework enabling fast privacy-
preserving skyline query over outsourced encrypted cloud
databases. SecSkyline is fully based on the lightweight secret
sharing technique, and is derived from a delicate synergy
of three proposed secure components, including secure
database mapping, secure skyline fetching, and secure sky-
line and dominated tuples filtering. Extensive experiments
over multiple datasets show that SecSkyline greatly im-
proves upon state-of-the-art prior works [16], [17] in query
latency, with up to 8130× improvement over FSSP [16] and
up to 813× improvement over SMSQ [17].
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