
Hyperbolic Neural Collaborative Recommender
Anchen Li

College of Computer Science and Technology, Jilin
University, China

liac20@mails.jlu.edu.cn

Bo Yang∗
College of Computer Science and Technology, Jilin

University, China
ybo@jlu.edu.cn

Hongxu Chen
University of Technology Sydney, Australia

Hongxu.Chen@uts.edu.au

Guandong Xu
University of Technology Sydney, Australia

Guandong.Xu@uts.edu.au

ABSTRACT
This paper explores the use of hyperbolic geometry and deep learn-
ing techniques for recommendation. We presentHyperbolicNeural
CollaborativeRecommender (HNCR), a deep hyperbolic representa-
tion learningmethod that exploits mutual semantic relations among
users/items for collaborative filtering (CF) tasks. HNCR contains
two major phases: neighbor construction and recommendation
framework. The first phase introduces a neighbor construction
strategy to construct a semantic neighbor set for each user and
item according to the user-item historical interaction. In the second
phase, we develop a deep framework based on hyperbolic geometry
to integrate constructed neighbor sets into recommendation. Via a
series of extensive experiments, we show that HNCR outperforms
its Euclidean counterpart and state-of-the-art baselines.

KEYWORDS
Collaborative Filtering; Hyperbolic Geometry; Deep learning

1 INTRODUCTION
In the era of information explosion, recommender systems have
been playing an indispensable role in meeting user preferences by
recommending products or services. Collaborative filtering (CF),
which focuses on utilizing the historical user-item interactions
to generate recommendations, remains to be a fundamental task
towards effective personalized recommendation [12, 13, 33, 47].

User and item embedding learning is the key to CF. Early models
like Matrix Factorization (MF) embed users and items in a shared
latent space and model the user preference to an item as the in-
ner product between user and item embeddings [17]. However,
due to the complex interaction between users and items, the shal-
low representations in MF-based methods lack expressiveness to
model features [11, 15]. As deep learning developed, some recom-
mendation approaches utilize neural networks to capture complex
interaction behaviors, which enhance the performance of previous
shallow models [4, 5, 9, 11, 15, 42, 46].

Notably, most of the existing deep CF models primarily operate
in Euclidean spaces. From the perspective of the graph, the user-
item interactions can be considered as a bipartite graph, which in
turn renders a so-called complex network [8]. The properties of
complex networks have been widely studied before, and it is known
that they are closely related to hyperbolic geometry [18]. Moreover,
real-world user-item interaction relations often exhibit the power-
law distribution. Recent research shows that hyperbolic geometry
∗Corresponding author.

enables embeddings with much smaller distortion when embedding
data with the power-law distribution [3, 22]. This motivates us to
consider whether we can combine hyperbolic geometry and deep
learning techniques for boosting performance.

In addition, most deep recommendation models have less focus
on explicitly modeling user-user or item-item high-order semantic
correlations, while such relations could provide valuable informa-
tion to inference user or item features. Although some existing
works [5, 15] utilize the co-occurrence relation (co-engage between
users or co-engaged between items) to define the neighbors for
users and items, we argue that such co-occurrence relation is macro-
level and coarse-grained. For instance, Figure 1(a) shows a simple
user-item interaction in the movie domain. Although user 𝑎 and
user 𝑑 are not co-occurrence relations, they both share common
preferences with user 𝑏 and user 𝑐 . Such high-order semantic corre-
lation is also a very significant signal for revealing user preferences
and item properties, while it is ignored by most existing works.
Moreover, for inactive users and items, their co-occurrence rela-
tions may be sparse, which is insufficient to provide complementary
information for these users and items.

 movie a movie b movie c

 user a user b user c user d

 movie d movie e

 user e

Description
interaction

co-occurrence relation

semantic relation

Figure 1: A simple user-item interaction scenario.

Motivated by the above observations, we propose to consider
user-user and item-item semantic correlations and utilize hyper-
bolic representation learning to integrate them into recommenda-
tion. Indeed, it is a non-trivial task due to the following two key
challenges. First, as hyperbolic spaces are not vector spaces, Eu-
clidean embedding operations (e.g., addition, multiplication) for
users and items cannot be carried in hyperbolic spaces. How can
we effectively design a deep recommendation model in hyperbolic
spaces in an elegant way? Second, mutual semantic relations among
users/items are latent in user-item interactions and difficult to cap-
ture directly. A recent work [25] proposes to map the original graph
to a latent space and then find nodes’ semantic neighbors in the
latent space, while their methods cannot be directly applied to our
setting, as there is no explicit user/item graph. Thus, how to build
user/item semantic neighborhoods becomes another challenge.

ar
X

iv
:2

10
4.

07
41

4v
1

 [
cs

.I
R

]
 1

5
A

pr
 2

02
1

Anchen Li, Bo Yang, Hongxu Chen, and Guandong Xu

Our approach. To solve the above technical challenges, in this
paper, we present a novel methodHyperbolicNeural Collaborative
Recommender (HNCR) for the CF task. Our method HNCR contains
two phases. In the first phase, HNCR devises a neighbor construc-
tion strategy to find semantic neighbors for users and items. More
specifically, HNCR first utilizes the user-item interaction informa-
tion to construct a user relational graph and an item relational
graph and then map each graph to a latent continuous space to find
neighbors with semantic transitive relation for users and items. In
the second phase, HNCR carries a deep framework based on hyper-
bolic representation learning to integrate constructed neighbor sets
into recommendation. To support vector operations, we utilize the
operations of gyrovector spaces [37, 38] to build our framework.

Our contributions. In summary, our main contributions in this
paper are listed as follows:

• We propose a hyperbolic neural approach HNCR that explicitly
models mutual semantic relations among users/items for CF tasks.

• We introduce a method to find user and item semantic neighbors.
• We propose a framework based on hyperbolic geometry, which
employs gyrovector space operations to integrate constructed
semantic neighbors into recommendations.

• Experimental results on four datasets show HNCR not only out-
performs its Euclidean counterpart but also boosts the perfor-
mance over the state-of-the-art approaches.

2 BACKGROUND
In this section, we review the background of hyperbolic geometry
and gyrovector space, which forms the basis of our method.

2.1 Hyperbolic Geometry
The hyperbolic space is uniquely defined as a complete and simply
connected Riemannian manifold with constant negative curvature
[18]. A key property of hyperbolic spaces is that they expand faster
than Euclidean spaces. To describe the hyperbolic space, there
are multiple commonly used models of hyperbolic geometry, such
as the Poincaré model, hyperboloid model, and Klein model [50].
These models are all connected and can be converted into each
other. In this paper, we work with the Poincaré ball model because
it is well-suited for gradient-based optimization [22].

Poincaŕe ball model. Let D𝑛 = {x ∈ R𝑛 : ∥x∥ < 1} be the 𝑜𝑝𝑒𝑛
𝑛-dimensional unit ball, where ∥·∥ denotes the Euclidean norm. The
Poincaré ball model is the Riemannian manifold (D𝑛, 𝑔D), which is
defined by the manifold D𝑛 equipped with the Riemannian metric
tensor 𝑔Dx = _2x𝑔

E, where _x = 2
1−∥x∥2 ; x ∈ D𝑛 ; and 𝑔E = I denotes

the Euclidean metric tensor.

2.2 Gyrovector Spaces
The framework of gyrovector spaces provides vector operations
for hyperbolic geometry [7]. We will make extensive use of these
gyrovector operations to design our model. Specifically, these oper-
ations in gyrovector spaces are defined in an open 𝑛-dimensional
ball D𝑛𝑐 =

{
x ∈ R𝑛 : 𝑐 ∥x∥2 < 1

}
of radius 1√

𝑐
(𝑐 ≥ 0). Some widely

used vector operations of gyrovector spaces are defined as follows:

• Möbius addition: For x, y ∈ D𝑛𝑐 , the Möbius addition of x and y
is defined as follows:

x ⊕𝑐 y =
(1 + 2𝑐 ⟨x, y⟩ + 𝑐 ∥y∥2)x + (1 − 𝑐 ∥x∥2)y

1 + 2𝑐 ⟨x, y⟩ + 𝑐2 ∥x∥2 ∥y∥2
. (1)

In general, this operation is not commutative nor associative.
• Möbius scalar multiplication: For 𝑐 > 0, the Möbius scalar multi-
plication of x ∈ D𝑛𝑐 \ {0} by 𝑟 ∈ R is defined as follows:

𝑟 ⊗𝑐 x =
1
√
𝑐
tanh

(
𝑟 tanh−1

(√
𝑐 ∥x∥

)) x
∥x∥ , (2)

and 𝑟 ⊗𝑐 0 = 0. This operation satisfies associativity:
• Möbius matrix-vector multiplication: ForM ∈ R𝑛′×𝑛 and x ∈ D𝑛𝑐 ,
if Mx ≠ 0, the Möbius matrix-vector multiplication of M and x
is defined as follows:

M ⊗𝑐 x =
1
√
𝑐
tanh

(
∥Mx∥
∥x∥ tanh−1

(√
𝑐 ∥x∥

)) Mx
∥Mx∥ . (3)

This operation satisfies associativity.
• Möbius exponential map and logarithmic map: For x ∈ D𝑛𝑐 , it has
a tangent space𝑇xD𝑛𝑐 which is a local first-order approximation
of the manifold D𝑛𝑐 around x. The logarithmic map and the
exponential map can move the representation between the two
manifolds in a correct manner. For any x ∈ D𝑛𝑐 , given v ≠ 0 and
y ≠ x, the Möbius exponential map exp𝑐x : 𝑇xD

𝑛
𝑐 → D𝑛𝑐 and

logarithmic map log𝑐x : D𝑛𝑐 → 𝑇xD
𝑛
𝑐 are defined as follows:

exp𝑐x (v) = x ⊕𝑐
(
tanh

(√
𝑐
_𝑐x ∥v∥

2

)
v

√
𝑐 ∥v∥

)
, (4)

log𝑐x (y) =
2

√
𝑐_𝑐x

tanh−1 (
√
𝑐 ∥−x ⊕𝑐 y∥)

−x ⊕𝑐 y
∥−x ⊕𝑐 y∥

, (5)

where _𝑐x = 2
1−𝑐 ∥x∥2 is the conformal factor of (D𝑛𝑐 , 𝑔𝑐), where

𝑔𝑐 is the generalized hyperbolic metric tensor.
• Distance: For x, y ∈ D𝑛𝑐 , the generalized distance between them
in Gyrovector spaces are defined as follows:

𝑑𝑐 (x, y) =
2
√
𝑐
tanh−1 (

√
𝑐 ∥−x ⊕𝑐 y∥). (6)

We will make use of these Möbius gyrovector space operations
to design our recommendation framework.

3 METHODOLOGY
In this section, we first introduce the notations and formulate the
problems. We then describe two phases of HNCR: (i) neighbor
construction and (ii) recommendation framework.

3.1 Notations and Problem Formulation
In a typical recommendation scenario, we suppose there are𝑀 users
U = {𝑢1, 𝑢2, ..., 𝑢𝑀 } and 𝑁 items V = {𝑣1, 𝑣2, ..., 𝑣𝑁 }. We define
Y ∈ R𝑀×𝑁 as the user-item interaction matrix whose element
𝑦𝑎𝑖 ∈ {0, 1} indicates whether 𝑢𝑎 has engaged with 𝑣𝑖 or not.

Given the above information (U,V,Y), the first phase of HNCR
outputs user relational data N𝑢 = {N𝑢 (1),N𝑢 (2), ...,N𝑢 (𝑀)} and
item relational data N𝑣 = {N𝑣 (1),N𝑣 (2), ...,N𝑣 (𝑁)}. N𝑢 and N𝑣

contain semantic neighbors for users and items, respectively. The
details of building up N𝑢 and N𝑣 are discussed in Section 3.2.

Hyperbolic Neural Collaborative Recommender

In the HNCR’s second phase, given the interaction matrix Y,
user neighbor data N𝑢 and item neighbor data N𝑣 , the recom-
mendation framework aims to learn a prediction function 𝑦𝑎𝑖 =

F (𝑢𝑎, 𝑣𝑖 |Θ,Y,N𝑢 ,N𝑣), where 𝑦𝑎𝑖 is the preference probability that
𝑢𝑎 will engage with 𝑣𝑖 , and Θ is the framework parameters of the
function F . The details of this phase are discussed in Section 3.3.

3.2 Neighbor Construction
In this subsection, we describe the neighbor construction strategy
of HNCR. This strategy contains three major steps: (i) construct the
user relational graph and item relational graph; (ii) map user and
item relational graphs to latent spaces respectively; and (iii) find
semantic neighbors for users and items from their latent spaces.
In this work, the construction of the relational data is constrained
to utilizing the user-item interaction records in the training split.
Figure 2 illustrates the process of neighbor construction strategy.
In the following statement, we illustrate the process for the user
side and the same process works for the item side.

X

Ya

a

b

b

c

c

d

d

e

e X

Y

X

Y

d

b

c

ae

d

b

c

ae

e

b

cd

a

 (a2) item relational graph (b2) item latent space (c2) neighbors for item ve

Gu

Gv

K = 3u

K = 3v

 (a1) user relational graph (b1) user latent space (c1) neighbors for user ua

X

Y

e

b

cd

a

wu
acwu

ab
wu

bc

wu
bd

wv
ab

wu
de

wu
cd

wv
cewv

de

wv
bc

Figure 2: An illustration of neighbor construction. (a)→ (b):
map user and item relational graphs to latent spaces respec-
tively. (b)→ (c): find semantic neighbors for users and items.

3.2.1 Step 1: Construction of relational graphs. The user-item in-
teraction data can be represented by a bipartite graph structure.
We first transform the bipartite graph to construct the user rela-
tional graph G𝑢 = (U, E𝑢) for identifying user-user relationships.
In the user relational graph G𝑢 , the edge 𝑒𝑢 ∈ E𝑢 connects two
users if they at least engaged one common item before. In addition,
𝑒𝑢 is associated with a weight 𝑤𝑢 > 0 to indicate the relational
strength between two users. We design a delicate method to define
the weight, which can represent the relations between users in a
fine-grained way. Specifically, we define the weight 𝑤𝑢

𝑎𝑏
for the

edge 𝑒𝑢
𝑎𝑏

between𝑢𝑎 and𝑢𝑏 as𝑤𝑢
𝑎𝑏

= ℎ𝑢
𝑎𝑏

·𝑐𝑢
𝑎𝑏
, which is determined

by two aspects, the historical behavior factorℎ𝑢
𝑎𝑏

and the popularity
of co-interacted items factor 𝑐𝑢

𝑎𝑏
.

For the first aspect, if the historical behaviors of 𝑢𝑎 and 𝑢𝑏 are
similar, the weight𝑤𝑢

𝑎𝑏
should be large, and vice versa. We use heat

kernel to define ℎ𝑢
𝑎𝑏

as follows:

ℎ𝑢
𝑎𝑏

= 𝑒−
∥Y𝑎−Y𝑏 ∥2

𝑡 , (7)

where Y𝑎 and Y𝑏 are the corresponding rows in the user-item
interaction matrix Y for 𝑢𝑎 and 𝑢𝑏 . 𝑡 is the time parameter in the
heat conduction equation and we set 𝑡 = 100.

For the second aspect, if the co-interacted items are unpopular,
the weight 𝑤𝑢

𝑎𝑏
should be large, and vice versa. This is because

unpopular items can better reflect users’ personalized preferences
[10]. We define 𝑐𝑢

𝑎𝑏
as follows:

𝑐𝑢
𝑎𝑏

=
2

|C𝑎𝑏 |
·
∑︁

𝑣𝑖 ∈C𝑎𝑏
1

|I𝑣 (𝑖) |
, (8)

where C𝑎𝑏 contains items that rated by𝑢𝑎 and𝑢𝑏 andI𝑣 (𝑖) contains
users that rated 𝑣𝑖 before.

Figure 2(a1) and (a2) are toy examples of building relational
graphs for users and items in the user-item interaction scenario
of Figure 1. The advantage is that such relational graphs not only
reflect the strength of co-occurrence relations (one-hop neighbors)
but also infers high-order semantic relations (multi-hop neighbors).

3.2.2 Step 2: Relational graph mapping. After the relational graph
construction, we utilize the node embedding method to map the
relational graph to a latent continuous space. Specifically, for the
user relational graph, we use a function 𝑓𝑢 : 𝑢 → 𝑧𝑢 to map a user
node 𝑢 ∈ U from G𝑢 to a low-dimensional vector 𝑧𝑢 ∈ R𝑙𝑢 in a
latent continuous space, where 𝑙𝑢 is the dimension number of the
vector for users. After the mapping, both structures and properties
of relational graphs are preserved and presented as the geometry in
the latent space. Also, for the target user, users with important high-
order transitive semantic relations will appear near the target user,
while nodes with irrelevant information will appear far away from
the target users. Recent research reveals that a common embedding
method which only preserves the connection patterns of a graph
can be effective [25]. Since node embedding is not the main concern
of our work, we employ LINE [14] as our embedding method to
map the user and item relational graphs to their corresponding
latent continuous spaces. Note that, one can employ or redesign
other embedding methods to create other suitable latent spaces,
such as struc2vec [30], DeepWalk [26], SDNE [40].

Figure 2(b1) and (b2) are examples of the latent space after map-
ping when 𝑙𝑢 = 𝑙𝑣 = 2. Although user 𝑎 and user 𝑑 are not in
co-occurrence relation, their distance in the latent space may be
close because they are the one-hop neighbors of user 𝑏 and user 𝑐 .

3.2.3 Step 3: Construction of relational data. Based on the latent
spaces, user relational data N𝑢 can be constructed. Specifically,
user 𝑢𝑎 ’s relational data N𝑢 (𝑎) is a user set that contains 𝐾𝑢 (a
pre-defined hyper-parameter) nearest neighbors in the user latent
space based on the particular distance metric in the space.

Figure 2(c1) and (c2) show examples of semantic correlations
relation corpus for user 𝑢𝑎 and item 𝑣𝑒 . The neighbor set for user
𝑢𝑎 is N𝑢 (𝑎) = {𝑢𝑏 , 𝑢𝑐 , 𝑢𝑑 } when 𝐾𝑢 = 3, and the neighbor set for
item 𝑣𝑒 is N𝑣 (𝑒) = {𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 } when 𝐾𝑣 = 3.

3.3 Recommendation Framework
In this subsection, we present the recommendation framework of
the HNCR (as illustrated in Figure 3), which is based on hyperbolic
representation learning. The framework consists of two parallel
neural networks, one for user modeling, and another for item mod-
eling. By taking a user, an item, their semantic neighborhood, and

Anchen Li, Bo Yang, Hongxu Chen, and Guandong Xu

their historical behaviors as inputs, the framework outputs the
predicted scores. The details of HNCR are provided as follows.

……Nu(a)

multi-layer transformation

……Iu(a) ……Nv(i) ……

Fermi-Dirac decoder

multi-layer transformation

iV

Iv(i)

User Modeling Item Modeling

aU

b1U Ubp d1V dqV j1V jwV k1U kxU

π LN�πDE�1 πDES1 IπDG�I πDGTI π LM�1 π LMZ1 π LN[I

ŷai

aU iVL L

yaiLoss

historical interactionssemantic neighbors historical interactionssemantic neighbors

�� � �� � � �

Figure 3: Recommendation framework of HNCR, which is
based on hyperbolic representation learning.

3.3.1 Embedding Layer. The embedding layer takes a user and
an item as inputs, and encodes them with dense low-dimensional
embedding vectors. Specifically, given one hot representations of
target user 𝑢𝑎 and target item 𝑣𝑖 , the embedding layer outputs their
embeddings u𝑎 and v𝑖 , respectively. We will learn user and item
embedding vectors in the hyperbolic space D𝑑𝑐 .

3.3.2 Aggregation Layer. We design an aggregator that aggregates
semantic neighborhood and historical behaviors for better modeling
user and item embeddings. Since user modeling and item modeling
are symmetric, we mainly present user modeling for illustration in
the following statement.

Given user 𝑢𝑎 , we first aggregate the representations of her
semantic neighbors into a single embedding. We can directly utilize
Möbius addition to achieve this goal, as follows:

uN
𝑎 =

∑︁⊕𝑐

𝑢𝑏 ∈N𝑢 (𝑎)
𝜋
N𝑢

𝑎𝑏
⊗𝑐 u𝑏 , (9)

where
∑⊕𝑐 is the accumulation of Möbius addition, and 𝜋 ·

· is calcu-
lated from an attention mechanism which indicates the importance
of different neighbors. Specifically, 𝜋N𝑢

𝑎𝑏
is defined as:

𝜋
N𝑢

𝑎𝑏
=

exp(−𝑑𝑐 (u𝑎,u𝑏)/𝜏)∑
𝑢𝑏′ ∈N𝑢 (𝑎) exp(−𝑑𝑐 (u𝑎,u𝑏′)/𝜏)

, (10)

where 𝜏 is the temperature parameter which is used for producing a
softer distribution over neighbors. Since hyperbolic distance meets
the triangle inequality, the attention mechanism can preserve the
transitivity among nodes [7, 48].

For the second aggregation, it accounts for the user’s historical
behaviors. Specifically, we aggregate user’s interacted items:

uI
𝑎 =

∑︁⊕𝑐

𝑣𝑑 ∈I𝑢 (𝑎)
𝜋
I𝑢
𝑎𝑑

⊗𝑐 v𝑑 , (11)

where I𝑢 (𝑎) is the itemset user 𝑢𝑎 shows implicit feedback. 𝜋I𝑢
𝑎𝑑

denotes the attraction of item 𝑑 to user 𝑎, which can be defined as:

𝜋
I𝑢
𝑎𝑑

=
exp(−𝑑𝑐 (u𝑎, v𝑑)/𝜏)∑

𝑣𝑑′ ∈I𝑢 (𝑎) exp(−𝑑𝑐 (u𝑎, v𝑑′)/𝜏) . (12)

The final step in the aggregation layer is to aggregate the target
user representation u𝑎 , her semantic neighborhood representation

uN
𝑎 , and her historical preference representation uI

𝑎 into a sin-
gle vector. We design a multi-layer structure to obtain sufficient
representation power, which is formulated as follows:

u𝐿𝑎 = M𝐿
𝑢 (M𝐿−1

𝑢 (· · ·M1
𝑢 (u0𝑎))), (13)

u0𝑎 = u𝑎 ⊕𝑐 uN
𝑎 ⊕𝑐 uI

𝑎 , (14)

M𝑙
𝑢 (u𝑙−1𝑎) = 𝜎

(
M𝑙

𝑢 ⊗𝑐
(
u𝑙−1𝑎 ⊕𝑐 b𝑙𝑢

))
, 𝑙 ∈ [1, 𝐿], (15)

where 𝐿 is the number of hidden layers, M𝑢 : R𝑑 → R𝑑 is a linear
map, 𝑏𝑢 ∈ D𝑑𝑐 is the bias,and 𝜎 is the nonlinear activation function
defined as LeakyReLU [21].

3.3.3 Prediction Layer. After the aggregation layer, we feed user
aggregation representation u𝐿𝑎 and target item aggregation repre-
sentation v𝐿

𝑖
into a function 𝑝 for predicting the probability of 𝑢𝑎

engaging 𝑣𝑖 : 𝑦𝑎𝑖 = 𝑝 (u𝐿𝑎 , v𝐿𝑖). Here we implement function 𝑝 as the
Fermi-Dirac decoder [18, 22], a generalization of sigmoid function,
to compute probability scores between 𝑢𝑎 and 𝑣𝑖 :

𝑦𝑎𝑖 =
1

𝑒 (𝑑𝑐 (u
𝐿
𝑎 ,v𝐿𝑖)−𝑟)/𝑡 + 1

, (16)

where 𝑟 and 𝑡 are hyper-parameters.

3.3.4 Framework Optimization.

Objective Function. To estimate parameters of HNCR’s frame-
work, we have the following objective function:

min
Θ

L = −
∑︁

(𝑢,𝑣,𝑣) ∈D

(
𝑦𝑢𝑣 log(𝑦𝑢𝑣) + (1 − 𝑦𝑢𝑣) log(1 − 𝑦𝑢𝑣)

)
, (17)

where Θ is the total parameter space, including user embeddings
{u𝑖 }|U |

𝑖=1 , item embeddings {v𝑖 }|V |
𝑖=1 , and weight parameters of the

networks
{
M𝑙

𝑢 ,M𝑙
𝑣,∀𝑙 ∈ {1, · · · , 𝐿}

}
. D is the set of training

triplets. We donate I𝑢 is the item set which user 𝑢 has interacted
with, and D can be defined as:

D = {(𝑢, 𝑣, 𝑣) | 𝑢 ∈ U ∧ 𝑣 ∈ I𝑢 ∧ 𝑣 ∈ V\I𝑢 } . (18)

Gradient Conversion. Since the Poincaré Ball has a Riemannian
manifold structure, we utilize Riemannian stochastic gradient de-
scent (RSGD) to optimize our model [2]. As similar to [22], the
parameter updates are of the following form:

\𝑡+1 = ℜ\𝑡 (−[𝑡∇𝑅L(\𝑡)), (19)

where ℜ\𝑡 denotes a retraction onto D at \ and [𝑡 denotes the
learning rate at time 𝑡 . The Riemannian gradient ∇𝑅 can be com-
puted by rescaling the Euclidean gradient ∇𝐸 with the inverse of
the Poincaré ball metric tensor as ∇𝑅 =

(1−∥\𝑡 ∥2)2
4 ∇𝐸 .

3.4 Discussions
3.4.1 Acceleration Strategy. Since Möbius addition operation is
not commutative nor associative [7, 48], we have to calculate the
accumulation of Möbius addition by order in Equation (14) (for
simplicity, we omit the attention score 𝜋 ·

·) :

u0𝑎 = u𝑎 ⊕𝑐
((
(u𝑏1

⊕𝑐 u𝑏2
) ⊕𝑐 u𝑏3

)
⊕𝑐 · · ·

)
⊕𝑐

((
(v𝑑1

⊕𝑐 v𝑑2
) ⊕𝑐 v𝑑3

)
⊕𝑐 · · ·

)
.

(20)

Hyperbolic Neural Collaborative Recommender

As is known to all, there exist some active users and popular
items that have many interactions in real recommendation scenar-
ios, so the calculation in Equation (11) is seriously time-consuming,
which will affect the efficiency of our method HNCR. Therefore, it
is necessary to devise a new way to calculate the aggregation.

Following the approaches in [48], we resort to Möbius logarith-
mic map and exponential map, as illustrated in Figure 4. Specifically,
we first utilize the logarithmic map to project user and item rep-
resentations into a tangent space, then perform the accumulation
operation to aggregate the representations in the tangent space, and
finally project aggregated representations back to the hyperbolic
space with the exponential map. Take user 𝑢𝑎 as an example, the
process is formulated as:

u0𝑎 = exp𝑐0

(
log𝑐0 (u𝑎) +

∑︁
𝑢𝑏 ∈N𝑢 (𝑎)

𝜋
N𝑢

𝑎𝑏
· log𝑐0 (u𝑏)

+
∑︁

𝑣𝑑 ∈I𝑢 (𝑎)
𝜋
I𝑢
𝑎𝑑

· log𝑐0 (v𝑑)
)
.

(21)

Different from Equation (14), we can calculate the results in a
parallel way in Equation (21) because the accumulation operation
in the tangent space is commutative and associative, which enables
our model more efficient. Therefore, we replace Equation (14) with
Equation (21) for neighbor aggregation.

logc0 (.)

expc0 (.)

 tangent space

 hyperbolic space

target user

semantic neighbors

historical interactions

Figure 4: Illustration of the acceleration strategy.

3.4.2 Time Complexity Analysis. The time cost of our proposed
method HNCR is from two parts: neighbor construction and rec-
ommendation framework. (i) For the neighbor construction, the
time complexity is𝑂 (𝑁 ·𝐶𝑢 +𝑀 ·𝐶𝑣), where𝐶𝑢 and𝐶𝑣 denote the
average number of co-occurrence neighbors for users and items,
respectively. For the relational graph mapping, the time complexity
depends on the selected node embedding method. For the process
of obtaining semantic neighbors, the time complexity for a user is
𝑂 (𝑀 · 𝑙𝑢). Similarly, for an item, the time complexity is 𝑂 (𝑁 · 𝑙𝑣).
In practice, we can utilize some acceleration computation methods
proposed by previous works [1, 20, 24] to speed up the process
of obtaining semantic neighbors. Note that the relational data N𝑢

and N𝑣 can be computed offline in advance, so we can prepare N𝑢

andN𝑣 before generating recommendations. (ii) As we can see, the
neighbor aggregation is the main operation in recommendation
framework. For a user, the time consumption of the attention mech-
anism is 𝑂 (𝐾𝑢 · 𝑑 + 𝐻𝑢 · 𝑑), where 𝐾𝑢 is the number of semantic
neighbors for each user, 𝐻𝑢 denotes the average number of user’s
interaction, and 𝑑 denotes the embedding size. The time cost of the
multi-layer structure is 𝑂 (𝐿 · 𝑑2), where 𝐿 is the total layers in the

aggregation layer. Similarly, the time consumption for an item in the
aggregation layer is𝑂 (𝐾𝑣 ·𝑑+𝐻𝑣 ·𝑑+𝐿 ·𝑑2), where𝐾𝑢 is the number
of semantic neighbors for each item and 𝐻𝑣 denotes the average
number of items’ interactions. In general, the time consumption of
the whole training epoch is𝑂 (𝑌 · ((𝐾𝑢 +𝐻𝑢 +𝐾𝑣 +𝐻𝑣) ·𝑑 +𝐿 ·𝑑2)),
where 𝑌 denotes the number of user-item interactions.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets. We experimented with four datasets: Ciao1, Yelp2,
Epinion3, and Douban4. Each dataset contains users’ ratings of the
items. In the data preprocessing step, we transform the ratings into
implicit feedback (denoted by “1”) indicating that the user has rated
the item positively. Then, for each user, we sample the same amount
of negative samples (denoted by “0”) as their positive samples from
unwatched items. The statistics of the datasets are summarized in
Table 1.

Table 1: Statistical details of the four datasets.

dataset # users # items # interactions density
Ciao 7,267 11,211 147,995 0.181%
Yelp 10,580 13,870 171,102 0.116%

Epinion 20,608 23,585 454,022 0.093%
Douban 12,748 22,347 785,272 0.275%

4.1.2 Comparison Methods. To verify the performance of our pro-
posedmethodHNCR,we compared it with the following state-of-art
recommendation methods. The characteristics of the comparison
methods are listed as follows:
• SVD is a famous baseline which is a hybrid model combining
the latent factor model and the neighborhood model [16].

• NFM is a feature-based factorization model, which improves
FM [29] by using the MLP component to capture high-order
feature interaction [9]. Here we concatenate user ID embedding
and item ID embedding as input for NFM.

• CMN is a memory-based model, which designs the memory
slots of similar users to learn user embeddings [5]. Note that
it only focuses on the user’s neighbors without accounting for
the information about similar items.

• MMCF is a memory-based model, which models user-user and
item-item co-occurrence contexts by memory networks [15].
Different from our methods, it only focuses on co-occurrence
relations and ignores high-order semantic transitive relations.

• NGCF is a graph-based recommender system, which utilizes
multiple propagation layers to learn user and item representa-
tions by propagating embeddings on the bipartite graph [42].

• LR-GCCF is a graph-based recommender system, which de-
signs a linear propagation layer to leverage the user-item graph
structure for user and item embedding modeling [4].

• PoincaréEmb is a hyperbolic embedding method [22]. Here
PoincaréEmb considers matrix completion for recommendation
from the point of view of link prediction on graphs.

1Ciao: http: //www.cse.msu.edu/~tangjili/index.html
2Yelp: http://www.yelp.com/
3Epinion: http://alchemy.cs.washington.edu/data/epinions/
4Douban: http://book.douban.com

Anchen Li, Bo Yang, Hongxu Chen, and Guandong Xu

Table 2: The results of AUC and Accuracy in CTR prediction on four datasets. ** denotes the best values among all methods,
and * denotes the best values among all competitors.

Method Ciao Yelp Epinion Douban
AUC ACC AUC ACC AUC ACC AUC ACC

SVD 0.7240 0.6574 0.8170 0.7518 0.8026 0.7279 0.8257 0.7514
NFM 0.7333 0.6638 0.8230 0.7588 0.8094 0.7330 0.8373 0.7601
CMN 0.7360 0.6613 0.8255 0.7595 0.8133 0.7393 0.8382 0.7597
MMCF 0.7567 0.6838 0.8284 0.7635 0.8269 0.7486 0.8498 0.7728*
NGCF 0.7646 0.6948 0.8279 0.7628 0.8235 0.7450 0.8512 0.7721

LR-GCCF 0.7683* 0.6980* 0.8354* 0.7665* 0.8305* 0.7541* 0.8521* 0.7717
PoincaréEmb 0.7595 0.6880 0.8230 0.7608 0.8029 0.7342 0.8377 0.7669

HNCR 0.8002** 0.7104** 0.8598** 0.7915** 0.8527** 0.7703** 0.8792** 0.8018**
ENCR 0.7763 0.6985 0.8295 0.7650 0.8301 0.7518 0.8441 0.7690

• ENCR is the Euclidean counterpart of HNCR, which replaces
Möbius addition, Möbius matrix-vector multiplication, Gyrovec-
tor space distance with Euclidean addition, Euclidean matrix
multiplication, Euclidean distance, and remove Möbius logarith-
mic map and exponential map.

• HNCR is our complete model.
It is worth noting that, MMCF, NGCF, LR-GCCF are recently

proposed state-of-the-art models.

4.1.3 Parameter Settings. We implemented our method using the
python library of Pytorch. For each dataset, we randomly split it
into training, validation, and test sets following 6 : 2 : 2. The learning
rate [is tuned among [10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2]; the
embedding size 𝑑 is searched in [8, 16, 32, 64, 128]; the semantic
neighbor size factor 𝐾𝑢 , 𝐾𝑣 is chosen from [5, 10, 15, 20, 25]; and
the layer size 𝐿 is selected from [1, 2, 3, 4]. In addition, we set batch
size 𝑏 = 1024, curvature 𝑐 = 1, temperature 𝜏 = 0.1, and Fermi-
Dirac decoder parameters 𝑟 = 2, 𝑡 = 1. The best settings for the
hyper-parameters in all baselines are reached by either empirical
study or following their original papers.

4.1.4 Evaluation Protocols. We evaluate our method HNCR in two
experiment scenarios: (i) in click-through rate (CTR) prediction,
we adopt two metrics AUC (area under the curve) and Accuracy,
which are widely utilized in binary classification problems; and
(ii) in top-𝐾 recommendation, we use the model obtained in CTR
prediction to generate top-𝐾 items. Since it is time-consuming
to rank all items for each user in the evaluation procedure, to
reduce the computational cost, following the strategy in [11, 44],
for each user, we randomly sample 1000 unrated items at each
time and combine them with the positive items in the ranking
process. We use the metrics Precision@K and Recall@K to evaluate
the recommended sets. We repeated each experiment 5 times and
reported the average performance.

4.2 Empirical Study
Researches show that data with a power-law structure can be nat-
urally modeled in the hyperbolic space [18, 22, 43]. Therefore, we
conduct an empirical study to check whether the power-law distri-
bution also exists in the user-item interaction relation. We present
the distribution of the number of interactions for users and items
in Figure 5. Due to the space limitation, we only show the results

of Ciao and Epinion datasets. We observed that these distributions
show the power-law distribution: a majority of users/items have
very few interactions, and a few users/items have a huge number of
interactions. The above findings empirically demonstrate user-item
interaction relations exhibit power-law structure, thus we believe
that using hyperbolic geometry might be suitable for the CF task.

100 101 102 103

Number of interactions

100

101

102

103

N
um

be
r

of
 u

se
rs

(a) Distribution of user's interaction (Ciao)

101 102 103

Number of interactions

100

101

102

103

N
um

be
r

of
 it

em
s

(b) Distribution of item's interaction (Ciao)

101 102 103

Number of interactions

100

101

102

103

N
um

be
r

of
 u

se
rs

(c) Distribution of user's interaction (Epinion)

101 102 103

Number of interactions

100

101

102

103

N
um

be
r

of
 it

em
s

(d) Distribution of item's interaction (Epinion)

Figure 5: Distributions of the user-item interaction on Ciao
(top row) and Epinion (bottom row). The X-axis presents the
number of interactions associated with a user or item, and
the Y-axis shows the number of such users or items.

4.3 Performance Comparison
Table 2 and Figures 6, 7 show the performance of all compared
methods in CTR prediction and top-𝐾 recommendation (ENCR are
not plotted in Figure 2 for clarity), respectively. From the results,
we have the following main observations:

(i) SVD achieves poor performance on four datasets, which indi-
cates the shallow representation is insufficient to capture complex
user-item interaction. NFM consistently outperforms SVD, which
suggests the significance of non-linear feature interactions between
user and item embeddings in recommender systems. However, both
SVD and NFM ignore user-user and item-item relations.

Hyperbolic Neural Collaborative Recommender

10 15 20 25 30
K

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ec

is
io

n@
K

(a) Ciao

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.04

0.06

0.08

0.10

Pr
ec

is
io

n@
K

(b) Yelp

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.05

0.06

0.07

0.08

Pr
ec

is
io

n@
K

(c) Epinion

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.13

0.15

0.17

0.19

0.21

0.23

Pr
ec

is
io

n@
K

(d) Douban

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

Figure 6: The results of Precision@K in top-𝐾 recommendation on four datasets.

10 15 20 25 30
K

0.12

0.15

0.18

0.21

0.24

R
ec

al
l@

K

(a) Ciao

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.13

0.18

0.23

0.28

0.33

R
ec

al
l@

K

(b) Yelp

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.16

0.22

0.28

0.34

R
ec

al
l@

K
(c) Epinion

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

10 15 20 25 30
K

0.19

0.27

0.35

0.43

R
ec

al
l@

K

(d) Douban

HNCR(Ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

Figure 7: The results of Recall@K in top-𝐾 recommendation on four datasets.

(ii) CMN and MMCF generally achieve better performance than
NFM in most cases. This may because both of them consider re-
lations among users (or items). Besides, MMCF consistently out-
performs CMN. It makes sense since CMN only account for user
neighbor information, while MMCF considers co-occurrence infor-
mation for both users and items.

(iii) Both SVD and PoincaréEmb are shallow representation mod-
els, while PoincaréEmb achieves better performance; meanwhile,
HNCR consistently outperforms Euclidean variant ENCR. These
results indicate that using hyperbolic space for learning user-item
embeddings can enhance the recommendation performance.

(iv) Intuitively, HNCR has made great improvements over state-
of-the-art baselines in both recommendation scenarios. For CTR
prediction task, our method HNCR yields the best performance
on four datasets. For example, HNCR improves over the strongest
baselines w.r.t. AUC by 4.15%, 2.92%, 2.67%,and 3.18% in Ciao, Yelp,
Epinion and Douban datasets, respectively. In top-𝐾 recommenda-
tion, HNCR achieves 4.91%, 5.61%, 5.15%, and 3.47% performance
improvement against the strongest baseline w.r.t. Recall@20 in Ciao,
Yelp, Epinion and Douban datasets, respectively.

4.4 Handling Data Sparsity Issue
The data sparsity problem is a great challenge for most recom-
mender systems. To investigate the effect of data sparsity, we bin
the test users into four groups with different sparsity levels based
on the number of observed ratings in the training data, meanwhile,
keep each group including a similar number of interactions. For
example, [11,26) in the Ciao dataset means for each user in this
group has at least 11 interaction records and less than 26 interaction
records. Due to the space limitation, we show the Accuracy results
on different user groups with different models of Ciao and Epinion

datasets in Figure 8. From the results, we observe that HNCR consis-
tently outperforms the other methods including the state-of-the-art
methods like MMCF and LR-GCCF, which verifies our method can
maintain a decent performance in different sparse scenarios.

[0-11) [11-26) [29-59) [59-)
Group

0.63

0.65

0.67

0.69

0.71

0.73

A
cc

ur
ac

y

(a) Ciao

HNCR(ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

[0-11) [11-26) [29-59) [59-)
Group

0.70

0.73

0.76

0.79

A
cc

ur
ac

y

(b) Epinion

HNCR(ours)
SVD
NFM
CMN
MMCF
NGCF
LR-GCCF
PoincareEmb

Figure 8: Performance comparison over the sparsity distri-
bution of user groups on Ciao and Epinion datasets.

4.5 Ablation Study
4.5.1 Effect of Weighted Strategy. To explore the effect of our
weighted strategy in relational graph construction, we conducted
experiments with the two variants of HNCR and ENCR: (1) HNCR-
N and ENCR-N (using the number of common neighbors in the
bipartite graph as the weight), and (2) HNCR-0 and ENCR-0 (with-
out using any weighted strategy). Table 3 shows the AUC results
on four datasets. From the results, we find using the other two
methods leads to a slight decrease in performance. Although the
performance drop is not quite significant, the experiment shows
that our weighted strategy is beneficial.

4.5.2 Semantic Neighborhood vs Co-occurrence Neighborhood. To
compare the effectiveness of semantic neighborhood and co-occurrence

Anchen Li, Bo Yang, Hongxu Chen, and Guandong Xu

Table 3: Effect of the weighted strategy on four datasets.

Dataset Ciao Yelp Epinion Douban
HNCR 0.8002 0.8598 0.8527 0.8792

HNCR-N 0.7986 0.8566 0.8515 0.8770
HNCR-0 0.7972 0.8570 0.8499 0.8772
ENCR 0.7763 0.8295 0.8301 0.8441

ENCR-N 0.7727 0.8282 0.8295 0.8418
ENCR-0 0.7722 0.8274 0.8271 0.8407

neighborhood, we design two variants HNCR-C and ENCR-C by
replacing semantic neighborhood with co-occurrence neighbor-
hood in the aggregation layer. We also design a variant MMCF-S for
MMCF, in which it utilizes our constructed semantic neighborhood
instead of co-occurrence neighborhood. Table 4 shows the AUC
results on four datasets. From the results, we find HNCR-C and
ENCR-C perform worse than HNCR and ENCR, respectively, and
MMCF-S achieve better performance than MMCF, which verifies
constructed semantic neighbors can provide more useful informa-
tion than co-occurrence neighborhood.

Table 4: Effect of semantic neighborhood and co-occurrence
neighborhood on four datasets.

Dataset Ciao Yelp Epinion Douban
HNCR 0.8002 0.8598 0.8527 0.8792
HNCR-C 0.7933 0.8510 0.8468 0.8704
ENCR 0.7763 0.8295 0.8301 0.8441
ENCR-C 0.7698 0.8211 0.8237 0.8366
MMCF 0.7567 0.8284 0.8269 0.8498
MMCF-S 0.7651 0.8346 0.8315 0.8557

4.5.3 Effect of Aggregator. The key part of the recommendation
framework is that we devise an aggregator to refine user and item
hyperbolic representations. In this subsection, we evaluate the ag-
gregator by analyzing the contributions from different components.

To this end, we conducted experiments with the three variants
of HNCR and ENCR: (1) HNCR-S and ENCR-S (without using se-
mantic neighbor information); (2) HNCR-H and ENCR-H (without
using historical behavior information); and (3) HNCR-A and ENCR-
A (without using attention mechanism). Table 5 shows the AUC
results of different variants on four datasets. From the results, we
find that removing any components will decrease recommendation
performance of our models. For example, HNCR-S and HNCR-H
perform worse than the complete model HNCR, which shows that
both semantic neighbors and historical behaviors benefit the rec-
ommendation; HNCR also achieves better scores than HNCR-A,
which validates considering the importance of different neighbors
in aggregation operation is helpful for improving performance.

4.6 Parameter Sensitivity
We explore the impact of three hyper-parameters: embedding size
𝑑 , semantic neighbor size 𝐾𝑢 , 𝐾𝑣 , and layer size 𝐿. The results on
Ciao and Yelp are plotted in Figure 9. We have the following obser-
vations: (i) A proper embedding size 𝑑 is needed. If it is too small,
the model lacks expressiveness, while a too large 𝑑 increases the
complexity of the recommendation framework and may overfit the

Table 5: Effect of aggregator’s components on four datasets.

Dataset Ciao Yelp Epinion Douban
HNCR 0.8002 0.8598 0.8527 0.8792
HNCR-S 0.7918 0.8488 0.8432 0.8685
HNCR-H 0.7880 0.8462 0.8441 0.8673
HNCR-A 0.7943 0.8521 0.8494 0.8746
ENCR 0.7763 0.8295 0.8301 0.8441
ENCR-S 0.7644 0.8187 0.8210 0.8322
ENCR-H 0.7621 0.8120 0.8184 0.8301
ENCR-A 0.7745 0.8286 0.8297 0.8404

datasets. In addition, we observe that HNCR always significantly
outperforms ENCR regardless of the embedding size, especially in
a low-dimensional space, which shows that HNCR can effectively
learn high-quality representations for CF tasks. (ii) For neighbor
size𝐾𝑢 , 𝐾𝑣 , we find that theAUC results increase first and then start
to decrease. It may probably because a larger semantic neighbor
size will be prone to be misled by noises. (iii) For layer size 𝐿, we
observe HNCR and ENCR achieve the best performance when 𝐿 = 1
and 𝐿 = 2, respectively, which shows that stacking more layers
are not helpful in our models. The results also indicate that utiliz-
ing hyperbolic geometry can achieve good performance without
designing complex multi-layer structures.

8 16 32 64 128
d

0.73

0.75

0.77

0.81

0.79

A
U

C

(a) embedding size(Ciao)

HNCR
ENCR

5 10 15 20 25
Ku, Kv

0.75

0.77

0.79

0.81

(b) neighbor size(Ciao)

HNCR
ENCR

1 2 3 4
L

0.73

0.75

0.77

0.79

0.81

(c) layer size(Ciao)

HNCR
ENCR

8 16 32 64 128
d

0.82

0.84

0.86

0.88

0.80

A
U

C

(d) embedding size(Yelp)

HNCR
ENCR

5 10 15 20 25
Ku, Kv

0.81

0.83

0.85

0.87

(e) neighbor size(Yelp)

HNCR
ENCR

1 2 3 4
L

0.81

0.83

0.85

0.87

(f) layer size(Yelp)

HNCR
ENCR

Figure 9: Parameter sensitivity on Ciao and Yelp.

4.7 Case Study
In the empirical study, we have shown that the user-item interaction
relation exhibits the power-law structure. Power-law distributions
often suggest the underlying hierarchical structure [22, 28]. In this
case study, we evaluate whether learned embeddings in our models
can reflect such structure in the user-item bipartite graph.

In general, the distances between embeddings and the origin
can reflect the latent hierarchy of graphs [22, 43]. We utilize Gy-
rovector space distance and Euclidean distance to calculate the
distance to the origin for HNCR and ENCR, respectively. We bin
the nodes in the user-item bipartite graph into four groups accord-
ing to their distances to the origin (from the near to the distant),
meanwhile, keep each group including a similar number of nodes.
For example, nodes in group 1 have the nearest distances to the
origin while nodes in group 4 have the furthest distances to the

Hyperbolic Neural Collaborative Recommender

origin. To evaluate the nodes’ activity in the bipartite graph, we
compute the average number of nodes’ interaction behaviors in
each group. Figure 10 shows the results on Ciao, Yelp, and Douban
datasets. From the results, we can see that the average number of
interaction behaviors decreases from group 1 to group 4. This result
indicates that hierarchy of interaction behaviors can be modeled
by our methods HNCR and ENCR. Compared with ENCR, we find
that HNCR more clearly reflects the hierarchical structure, which
indicates that hyperbolic space is more suitable than Euclidean
space to embed data with the power-law distribution.

1 2 3 4
Group

0

7

14

21

28

A
ve

ra
ge

 n
um

be
r

of
 d

eg
re

e

(a) Ciao

HNCR
ENCR

1 2 3 4
Group

0

8

16

24

32

A
ve

ra
ge

 n
um

be
r

of
 d

eg
re

e

(b) Yelp

HNCR
ENCR

1 2 3 4
Group

10

24

38

52

66

80
A

ve
ra

ge
 n

um
be

r
of

 d
eg

re
e

(c) Douban

HNCR
ENCR

Figure 10: Analysis of hierarchical structure on Ciao, Yelp,
and Douban datasets.

To further show the hierarchical structure learned in the embed-
dings, we randomly select 200 users and 200 items from Ciao, Yelp,
and Douban datasets, and plot them in Figure 11 (from left to right)
where the x-axis and y-axis represent the distance from the center
and the average distance from all other nodes in the dataset, respec-
tively. The results show that active nodes (near the center) generally
have small average distances and vice versa. Moreover, we find that
users are closer to the center than items, which is consistent with
previous studies [36]. Compared with ENCR, we find the distribu-
tion of nodes in HNCR is more regular, which indicates utilizing
hyperbolic geometry to learn user and item representations can
better organize the underlying hierarchical structure.

2 3 4 5 6 7
Distance to the center

2

4

6

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

Users
Items

2 4 6 8 10
Distance to the center

0

2

4

6

8

10

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

(a) Analysis of the embeddings for HNCR on Ciao, Yelp, and Douban datasets.

Users
Items

2 3 4 5 6
Distance to the center

1

2

3

4

5

6

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

Users
Items

3 4 5
Distance to the center

2

3

4

5

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

Users
Items

3 4 5 6
Distance to the center

1
2
3
4
5
6
7

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

(b) Analysis of the embeddings for ENCR on Ciao, Yelp, and Douban datasets.

Users
Items

2 3 4
Distance to the center

1

2

3

4

A
ve

ra
ge

 d
is

ta
nc

e
to

 o
th

er
 n

od
es

Users
Items

Figure 11: Analysis of the embeddings for our methods on
Ciao, Yelp, and Douban datasets.

5 RELATEDWORK
In this section, we provide a brief overview of two areas that are
highly relevant to our work.

5.1 Collaborative Filtering
Collaborative filtering can generally be grouped into three cate-
gories: neighborhood-based model, latent factor model, and hybrid
model [16, 31]. Neighborhood-based methods are centered on iden-
tifying neighborhoods of similar users or items based on the user-
item interaction history [19, 41]. For example, ItemKNN utilizes
collaborative item-item similarities (i.g. cosine similarity) to gener-
ate recommendations [41]. The latent factor model, such as Matrix
Factorization[17], projects users and items into low-dimensional
vector spaces and then uses the inner product to model the in-
teractions. With the development of deep learning, some latent
factor models utilize deep neural networks as representation learn-
ing tools to capture complex user-item interactions [11, 45, 46].
To further capture high-order interaction information between
users and items, researchers propose using GCNs and their vari-
ants in CF tasks [4, 10, 27, 34, 42, 49]. As for the hybrid model, it
merges the latent factor model and the neighborhood-based model.
SVD is a well-known hybrid model, which leverages users’ explicit
feedbacks and implicit feedbacks to predict user preferences [16].
Recently, a line of work leverages co-occurrence relations to define
the neighbors for users and items and integrates deep components
into the hybrid model [5, 15]. Since the co-occurrence relation is
coarse-grained and lacks high-order semantics, these methods are
insufficient to generate better recommendations. Different from the
above-mentioned work, our method HNCR first devises a neighbor
construction strategy to find semantic neighbors for users and items
and then carries a deep framework based on hyperbolic representa-
tion learning to integrate constructed neighbor sets and historical
behaviors into recommendation.

5.2 Hyperbolic Representation Learning
In recent years, representation learning in hyperbolic spaces has
attracted an increasing amount of attention. Specifically, [22] em-
bedded hierarchical data into the Poincaré ball, showing that hyper-
bolic embeddings can outperform Euclidean embeddings in terms
of both representation capacity and generalization ability. [23] fo-
cused on learning embeddings in the Lorentz model and showed
that the Lorentz model of hyperbolic geometry leads to substan-
tially improved embeddings. [6] extended Poincaré embeddings to
directed acyclic graphs by utilizing hyperbolic entailment cones.
[32] analyzed representation trade-offs for hyperbolic embeddings
and developed and proposed a novel combinatorial algorithm for
embedding learning in hyperbolic space. Besides, researchers be-
gan to combining hyperbolic embedding with deep learning. [7]
introduced hyperbolic neural networks which defined core neural
network operations in hyperbolic space, such as Mübius addition,
Mübius scalar multiplication, exponential and logarithmic maps.
After that, hyperbolic analogues of other algorithms have been
proposed, such as Poincaré Glove [35], hyperbolic graph attention
network [48], and hyperbolic attention networks [50].

Some recent works using hyperbolic representation learning for
CF tasks. For instance, HyperBPR learns user and item hyperbolic
representations and leverages Bayesian Personalized Ranking (BPR)
for recommendation [39]. HyperML is a metric learning method,
which makes use of Möbius gyrovector space operations to de-
sign the distance of user-item pairs [36]. However, these models are

Anchen Li, Bo Yang, Hongxu Chen, and Guandong Xu

different from our model as they treat every user-item pair as an iso-
lated data instance, without considering semantic relations among
users (or items). Also, they are the shallow models, which may lack
expressiveness to model features for users and items. In this paper,
we explicitly consider semantic correlations among users/items
and develop a deep framework based on hyperbolic representation
learning for recommendation. To the best of our knowledge, this
work is the first hyperbolic neural approach that explicitly models
user-user and item-item semantic relations for CF tasks.

6 CONCLUSION AND FUTUREWORK
In this work, we make use of hyperbolic geometry and deep learn-
ing techniques for recommendation. We develop a novel method
called HNCR, which includes (i) a neighbor construction method
that utilizes the user-item interaction information to construct se-
mantic neighbor sets for users and items; and (ii) a deep framework
that uses hyperbolic geometry to integrate constructed neighbor
sets and interaction history into recommendation. Extensive exper-
imental results on four datasets demonstrate HNCR outperforms
its Euclidean counterpart and state-of-the-art models.

For future work, we will (i) integrate side information into HNCR
such as knowledge graphs and social networks to further enhance
the performance; and (ii) try to generate recommendation explana-
tions for comprehending the user behaviors and item attributes.

REFERENCES
[1] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. (1975), 509–517.
[2] Silvere Bonnabel. 2013. Stochastic Gradient Descent on Riemannian Manifolds.

IEEE Trans. Automat. Control 58, 9 (2013), 2217–2229.
[3] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic

Graph Convolutional Neural Networks. In NeurIPS. 4869–4880.
[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI. 27–34.

[5] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In SIGIR. 515–524.

[6] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic
Entailment Cones for Learning Hierarchical Embeddings. In ICML. 1632–1641.

[7] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic
Neural Networks. In NeurIPS. 5350–5360.

[8] Jean-Loup Guillaume and Matthieu Latapy. 2006. Bipartite graphs as models of
complex networks. (2006), 795–813.

[9] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In SIGIR. 355–364.

[10] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639–648.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, and Tat-Seng Chua Xia Hu.
2017. Neural collaborative filtering. In WWW. 173–182.

[12] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
SIGIR. 549–558.

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In ICDM. 263–272.

[14] Mingzhe Wang Ming Zhang Jun Yan Qiaozhu Mei Jian Tang, Meng Qu. 2015.
LINE: Large-scale Information Network Embedding. In WWW. 1067–1077.

[15] Xunqiang Jiang, Binbin Hu, Yuan Fang, and Chuan Shi. 2020. Multiplex Memory
Network for Collaborative Filtering. In SDM. 91–99.

[16] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 426–434.

[17] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (August 2009),
30–37.

[18] Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguñá. 2010. Hyperbolic Geometry of Complex Networks. In CoRR
abs/1006.5169.

[19] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering. In IEEE Internet Computing. 76–80.

[20] Ting Liu, Andrew W. Moore, and Alexander G. Gray. 2006. New Algorithms for
Efficient High-Dimensional Nonparametric Classification. (2006), 1135–1158.

[21] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinear-
ities improve neural network acoustic models. In ICML.

[22] Maximilian Nickel and Douwe Kiela. 2017. Poincare Embeddings for Learning
Hierarchical Representations. In NeurIPS. 6338–6347.

[23] Maximilian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in
the Lorentz Model of Hyperbolic Geometry. In ICML. 3776–3785.

[24] Stephen M Omohundro. 1989. Five balltree construction algorithms.
[25] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.
[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In KDD. 701–710.
[27] Yanru Qu, Ting Bai, Weinan Zhang, Jian-Yun Nie, and Jian Tang. 2019. An

End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced
Recommendation. In CoRR abs/1908.04032.

[28] Erzsebet Ravasz and Albert-Laszlo Barabasi. 2003. Hierarchical organization in
complex networks. Physical review E 67, 2 (2003), 026112.

[29] Steffen Rendle. 2010. Factorization Machines. In ICDM. 995–1000.
[30] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R. Figueiredo.

2017. struc2vec: Learning Node Representations from Structural Identity. In KDD.
385–394.

[31] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-
mender systems handbook. (2011).

[32] Frederic Sala, Christopher De Sa, Albert Gu, and Christopher Ré. 2018. Represen-
tation Tradeoffs for Hyperbolic Embeddings. In ICML. 4457–4466.

[33] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. InWWW. 285–
295.

[34] Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming
Tang, and Xiuqiang He. 2019. Multi-graph Convolution Collaborative Filtering.
In ICDM. 1306–1311.

Hyperbolic Neural Collaborative Recommender

[35] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. 2019. Poincaré
Glove: Hyperbolic Word Embeddings. In ICLR.

[36] Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, and Xiaoli Li. 2020. HyperML:
A Boosting Metric Learning Approach in Hyperbolic Space for Recommender
Systems. In WSDM. 609–617.

[37] Abraham Albert Ungar. 2001. Hyperbolic trigonometry and its application in the
Poincare ball model of hyperbolic geometry. (2001), 135–147.

[38] Abraham Albert Ungar. 2008. A gyrovector space approach to hyperbolic geome-
try. (2008), 1–194.

[39] Tran Dang Quang Vinh, Yi Tay, Shuai Zhang, Gao Cong, and Xiao-Li Li. 2018.
AAAI. In CoRR abs/1809.01703.

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In KDD. 1225–1234.

[41] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In SIGIR.
501–508.

[42] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[43] Xiao Wang, Yiding Zhang, and Chuan Shi. 2019. Hyperbolic Heterogeneous
Information Network Embedding. In AAAI. 5337–5344.

[44] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.
2019. A Neural Influence Diffusion Model for Social Recommendation. In SIGIR.
235–244.

[45] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collabo-
rative Denoising Auto-Encoders for Top-N Recommender Systems. In WSDM.
153–162.

[46] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
2017. Deep Matrix Factorization Models for Recommender Systems. In IJCAI.
3203–3209.

[47] Hanwang Zhang, Fumin Shen,Wei Liu, XiangnanHe, Huanbo Luan, and Tat-Seng
Chua. 2016. Discrete Collaborative Filtering. In SIGIR. 325–334.

[48] Yiding Zhang, Xiao Wang, Xunqiang Jiang, Chuan Shi, and Yanfang Ye. 2019.
Hyperbolic Graph Attention Network. In CoRR abs/1912.03046.

[49] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral
collaborative filtering. In RecSys. 311–319.

[50] Çaglar Gülçehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu,
Karl Moritz Hermann, Peter W. Battaglia, Victor Bapst, David Raposo, Adam
Santoro, and Nando de Freitas. 2019. Hyperbolic Attention Networks. In ICLR.

	Abstract
	1 Introduction
	2 Background
	2.1 Hyperbolic Geometry
	2.2 Gyrovector Spaces

	3 Methodology
	3.1 Notations and Problem Formulation
	3.2 Neighbor Construction
	3.3 Recommendation Framework
	3.4 Discussions

	4 Experiments
	4.1 Experiment Setup
	4.2 Empirical Study
	4.3 Performance Comparison
	4.4 Handling Data Sparsity Issue
	4.5 Ablation Study
	4.6 Parameter Sensitivity
	4.7 Case Study

	5 Related Work
	5.1 Collaborative Filtering
	5.2 Hyperbolic Representation Learning

	6 Conclusion and Future Work
	References

