
PREPRINT 1

Random Walk on Multiple Networks
Dongsheng Luo, Yuchen Bian, Yaowei Yan, Xiong Yu, Jun Huan, Xiao Liu, Xiang Zhang

Abstract—Random Walk is a basic algorithm to explore the structure of networks, which can be used in many tasks, such as local
community detection and network embedding. Existing random walk methods are based on single networks that contain limited
information. In contrast, real data often contain entities with different types or/and from different sources, which are comprehensive and
can be better modeled by multiple networks. To take the advantage of rich information in multiple networks and make better inferences
on entities, in this study, we propose random walk on multiple networks, RWM. RWM is flexible and supports both multiplex networks
and general multiple networks, which may form many-to-many node mappings between networks. RWM sends a random walker on
each network to obtain the local proximity (i.e., node visiting probabilities) w.r.t. the starting nodes. Walkers with similar visiting
probabilities reinforce each other. We theoretically analyze the convergence properties of RWM. Two approximation methods with
theoretical performance guarantees are proposed for efficient computation. We apply RWM in link prediction, network embedding, and
local community detection. Comprehensive experiments conducted on both synthetic and real-world datasets demonstrate the
effectiveness and efficiency of RWM.

Index Terms—Random Walk, Complex Network, Local Community Detection, Link Prediction, Network Embedding

✦

1 INTRODUCTION

Networks (graphs) are natural representations of relational
data in the real world, with vertices modeling entities and
edges describing relationships among entities. With the
rapid growth of information, a large volume of network data
is generated, such as social networks [25], author collabora-
tion networks [39], document citation networks [34], and
biological networks [41]. In many emerging applications,
different types of vertices and relationships are obtained
from different sources, which can be better modeled by
multiple networks.

There are two main kinds of multiple networks. Fig. 1
shows an example of multiple networks with the same
node set and different types of edges (which are called
multiplex networks [19], [37] or multi-layer networks). Each
node represents an employee of a university [18]. These
three networks reflect different relationships between em-
ployees: co-workers, lunch-together, and Facebook-friends.
Notice that more similar connections exist between two
offline networks (i.e., co-worker and lunch-together) than
that between offline and online relationships (i.e., Facebook-
friends).

Fig. 2 is another example from the DBLP dataset with
multiple domains of nodes and edges (which is called

• D. Luo is with the Florida International University, Miami, FL, 33199.
E-mail: dluo@fiu.edu.

• Y. Bian is with Amazon Search Science and AI, USA.
E-mail: yuchbian@amazon.com.

• Y. Yan is with Meta Platforms, Inc., USA.
E-mail: yanyaw@meta.com.

• X. Liu, and X. Zhang are with the Pennsylvania State University, State
College, PA 16802.
E-mail: {xxl213, xzz89}@psu.edu.

• X. Yu is with Case Western Reserve University.
E-mail: xxy21@case.edu

• J. Huan is with AWS AI Labs; work done before joining AWS.
E-mail: lukehuan@amazon.com

multi-domain networks [40], [33]). The left part is the author-
collaboration network and the right part is the paper-
citation network. A cross-edge connecting an author and
a paper indicates that the author writes the paper. We see
that authors and papers in the same research field may have
dense cross-links. Multiplex networks are a special case of
multi-domain networks with the same set of nodes and the
cross-network relations are one-to-one mappings.

Given a starting node in a graph, we randomly move
to one of its neighbors; then we move to a neighbor of
the current node at random etc,. This process is called
random walk on the graph [30]. Random walk is an effective
and widely used method to explore the local structures in
networks, which serves as the basis of many advanced tasks
such as network embedding [9], [15], [46], [47], link pre-
diction [35], node/graph classification [21], [20], and graph
generation [8]. Various extensions, such as the random walk
with restart (RWR) [49], second-order random walk [55],
and multi-walker chain [5] have been proposed to analyze
the network structure. Despite the encouraging progress,
most existing random walk methods focus on a single net-
work merely. Some methods merge the multiple networks as
a single network by summation and then apply traditional
random walk[12]. However, these methods neglect types of
edges and nodes and assume that all layers have the same
effect, which may be too restrictive in most scenarios.

To this end, in this study, we propose a novel random
walk method, RWM (Random Walk on Multiple networks),
to explore local structures in multiple networks. The key
idea is to integrate complementary influences from multiple
networks. We send out a random walker on each network
to explore the network topology based on corresponding
transition probabilities. For networks containing the starting
node, the probability vectors of walkers are initiated with
the starting node. For other networks, probability vectors
are initialized by transiting visiting probability via cross-
connections among networks. Then probability vectors of
the walkers are updated step by step. The vectors repre-

ar
X

iv
:2

30
7.

01
63

7v
1

 [
cs

.S
I]

 4
 J

ul
 2

02
3

PREPRINT 2

(a) Co-worker (b) Lunch-together (c) Facebook-friends

Figure 1. An example of multiple social networks with the same node
set.

Author Collaboration Network Paper Citation Network

Figure 2. An example of general multiple networks. Many-to-many map-
pings exist between networks.

sent walkers’ visiting histories. Intuitively, if two walkers
share similar or relevant visiting histories (measured by
cosine similarity and transited with cross-connections), it
indicates that the visited local typologies in correspond-
ing networks are relevant. And these two walkers should
reinforce each other with highly weighted influences. On
the other hand, if visited local typologies of two walkers
are less relevant, smaller weights should be assigned. We
update each walker’s visiting probability vector by aggre-
gating other walkers’ influences at each step. In this way,
the transition probabilities of each network are modified
dynamically. Compared to traditional random walk models
where the transition matrix is time-independent [2], [27],
[22], [54], [53], RWM can restrict most visiting probability in
the local subgraph w.r.t. the starting node, in each network
and ignore irrelevant or noisy parts. Theoretically, we pro-
vide rigorous analyses of the convergence properties of the
proposed model. Two speeding-up strategies are developed
as well. We conduct extensive experiments on real and
synthetic datasets to demonstrate the advantages of our
RWM model on effectiveness and efficiency for local com-
munity detection, link prediction, and network embedding
in multiple networks.

Our contributions are summarized as follows.

• We propose a novel random walk model, RWM, on
multiple networks, which serves as a basic tool to
analyze multiple networks.

• Fast estimation strategies and sound theoretical
foundations are provided to guarantee the effective-
ness and efficiency of RWM.

• Results of comprehensive experiments on synthetic
and real multiple networks verify the advances of
RWM.

2 RELATED WORK

Random Walk. In the single network random walk, a ran-
dom walker explores the network according to the node-
to-node transition probabilities, which are determined by
the network topology. There is a stationary probability for
visiting each node if the network is irreducible and ape-
riodic [24]. Random walk is the basic tool to measure the
proximity of nodes in the network. Based on the random
walk, various proximity measurement algorithms have been
developed, among which PageRank [44], RWR [49], Sim-
Rank [17], and MWC [5] have gained significant popularity.
In PageRank, instead of merely following the transition
probability, the walker has a constant probability to jump
to any node in the network at each time point. Random
walk with restart, a.k.a. personalized PageRank, is the query
biased version of PageRank. At each time point, the walker
has a constant probability to jump back to the query (start-
ing) node. SimRank aims to measure the similarity between
two nodes based on the principle that two nodes are similar
if their neighbors are similar. With one walker starting
from each node, the SimRank value between two nodes
represents the expected number of steps required before two
walkers meet at the same node if they walk in lock-step.
MWC sends out a group of walkers to explore the network.
Each walker is pulled back by other walkers when deciding
the next steps, which helps the walkers to stay as a group
within the cluster.

Very limited work has been done on the multiple net-
work random walk. In [38], the authors proposed a clas-
sical random walk with uniform categorical coupling for
multiplex networks. They assign a homogeneous weight ω
for all cross-network edges connecting the same nodes in
different networks. In [12], the authors propose a random
walk method, where for each step the walker has (1 − r)
probability to stay in the same network and r probability
to follow cross-network edges. However, both of them are
designed for multiplex networks and cannot be applied to
general multiple networks directly. Further, both ω and r are
set manually and stay the same for all nodes, which means
these two methods only consider the global relationship
between networks, which limits their applications in general
and complex networks. In [58], the authors propose a ran-
dom walk method on multi-domain networks by including
a transition matrix between different networks. However,
the transition matrix between networks is set manually and
is independent of the starting node(s).

Multiple Network Analysis. Recently, multiple networks
have drawn increasing attention in the literature due to their
capability in describing graph-structure data from different
domains [26], [40], [43], [14], [61], [59], [60], [56]. Under the
multiple network setting, a wide range of graph mining
tasks have been extended to support more realistic real-life
applications, including node representation learning [40],
[26], [14], [60], node clustering [11], [29], [43], [33], and
link prediction [61], [59]. For example, Multiplex Graph
Neural Network is proposed to tackle the multi-behavior
recommendation problem [61]. In [59], the authors consider
the relational heterogeneity within multiplex networks and
propose a multiplex heterogeneous graph convolutional
network (MHGCN) to learn node representations in hetero-

PREPRINT 3

Table 1
Main notations

Notation Definition
K The number of networks
Gi The ith network.
Vi The node set of Gi

Ei The edge set of Gi

Pi Column-normalized transition matrix of Gi.
Ei−j The cross-edge set between network Gi and Gj

Si→j Column-norm. cross-trans. mat. from Vi to Vj

uq A given starting node uq from Vq

eq One-hot vector with only one value-1 entry for uq

x
(t)
i Node visit. prob. vec. of the ith walker in Gi at t

W(t) Relevance weight matrix at time t

P(t)
i Modified trans. mat. for the ith walker in Gi at t

α, λ, θ restart factor, decay factor, covering factor.

geneous networks. Compared to previous ones, MHGCN
can adaptively extract useful meta-path interactions. Instead
of focusing on a specific graph mining task, in this paper, we
focus on designing a novel random walk model that can be
used in various tasks as a fundamental component.

3 RANDOM WALK ON MULTIPLE NETWORKS

In this section, we first introduce notations. Then the re-
inforced updating mechanism among random walkers in
RWM is proposed.

3.1 Notations

Suppose that there are K undirected networks, the ith

(1 ≤ i ≤ K) network is represented by Gi = (Vi, Ei)
with node set Vi and edge set Ei. We denote its transition
matrix as a column-normalized matrix Pi ∈ R|Vi|×|Vi|. The
(v, u)th entry Pi(v, u) represents the transition probability
from node u to node v in Vi. Then the uth column Pi(:, u)
is the transition distribution from node u to all nodes in
Vi. Next, we denote Ei−j the cross-connections between
nodes in two networks Vi and Vj . The corresponding cross-
transition matrix is Si→j ∈ R|Vj |×|Vi|. Then the uth column
Si→j(:, u) is the transition distribution from node u ∈ Vi

to all nodes in Vj . Note that Si→j ̸= Sj→i. And for the
multiplex networks with the same node set (e.g., Fig. 1),
Si→j is just an identity matrix I for arbitrary i, j.

Suppose we send a random walker on Gi, we let x(t)
i be

the node visiting probability vector in Gi at time t. Then the
updated vector x(t+1)

i = Pix
(t)
i means the probability tran-

siting among nodes in Gi. And Si→jx
(t)
i is the probability

vector propagated into Gj from Gi. Important notations are
summarized in Table 1.

3.2 Reinforced Updating Mechanism

In RWM, we send out one random walker for each network.
Initially, for the starting node uq ∈ Gq , the corresponding
walker’s x

(0)
q = eq where eq is a one-hot vector with only

one value-1 entry corresponding to uq . For other networks
Gi(i ̸= q), we initialize x

(0)
i by x

(0)
i = Sq→ix

(0)
q . That is1:

x
(0)
i =

{
eq if i = q

Sq→ieq otherwise
(1)

To update ith walker’s vector x
(t)
i , the walker not only

follows the transition probabilities in the corresponding
network Gi, but also obtains influences from other net-
works. Intuitively, networks sharing relevant visited local
structures should influence each other with higher weights.
And the ones with less relevant visited local structures have
fewer effects. We measure the relevance of visited local
structures of two walkers in Gi and Gj with the cosine sim-
ilarity of their vectors x(t)

i and x
(t)
j . Since different networks

consist of different node sets, we define the relevance as
cos(x(t)

i ,Sj→ix
(t)
j). Notice that when t increases, walkers

will explore nodes further away from the starting node.
Thus, we add a decay factor λ (0 < λ < 1) in the rele-
vance to emphasize the similarity between local structures
of two different networks within a shorter visiting range.
In addition, λ can guarantee and control the convergence of
the RWM model. Formally, we let W(t) ∈ RK×K be the local
relevance matrix among networks at time t and we initialize
it with identity matrix I. We update each entry W(t)(i, j) as
follow:

W(t)(i, j) = W(t−1)(i, j) + λt cos(x
(t)
i ,Sj→ix

(t)
j) (2)

For the ith walker, influences from other networks are re-
flected in the dynamic modification of the original transition
matrix Pi based on the relevance weights. Specifically, the
modified transition matrix of Gi is:

P(t)
i =

K∑
j=1

Ŵ(t)(i, j)Sj→iPjSi→j (3)

where Sj→iPjSi→j represents the propagation flow pat-
tern Gi → Gj → Gi (counting from the right side) and
Ŵ(t)(i, j) = W(t)(i,j)∑

k W(t)(i,k)
is the row-normalized local rele-

vance weights from Gj to Gi. To guarantee the stochastic
property of the transition matrix, we also column-normalize
P(t)
i after each update.

At time t+1, the visiting probability vector of the walker
on Gi is updated:

x
(t+1)
i = P(t)

i x
(t)
i (4)

Different from the classic random walk model, transition
matrices in RWM dynamically evolve with local relevance
influences among walkers from multiple networks. As a re-
sult, the time-dependent property enhances RWM with the
power of aggregating relevant and useful local structures
among networks.

Next, we theoretically analyze the convergence proper-
ties. First, in Theorem 1, we present the weak convergence

1. If there are no direct connections from uq to nodes in Vi(i ̸= q), we
first propagate probability to other nodes in Gq from uq via breadth-
first-search layer by layer until we reach a node which has cross-edges
to nodes in Vi. Then we initialize x

(0)
i = Sq→iP

t
qeq , where t is the

number of hops that we first reach the effective node from uq in Gq .

PREPRINT 4

property [5] of the modified transition matrix P(t)
i . The con-

vergence of the visiting probability vector will be provided
in Theorem 3.

Theorem 1. When applying RWM on multiple networks, for any
small tolerance 0 < ϵ < 1, for all i, when t > ⌈logλ ϵ

K2(|Vi|+2)⌉,

∥ P(t+1)
i − P(t)

i ∥∞< ϵ, where Vi is the node set of network Gi

and ∥ · ∥∞ is the ∞-norm of a matrix.

For the multiple networks with the same node set (i.e.,
multiplex networks), we have a faster convergence rate.

Theorem 2. When applying RWM on multiple networks with
the same node set, for any small tolerance 0 < ϵ < 1, for all i,
∥ P(t+1)

i − P(t)
i ∥∞< ϵ, when t > ⌈logλ ϵ

K ⌉.

Proof. In the multiplex networks, cross-transition matrices
are just I, so the stochastic property of P(t)

i can be naturally
guaranteed without the column-normalization of P(t)

i . We
then define ∆(t+ 1) =∥ P(t+1)

i − P(t)
i ∥∞.

Based on Eq. (3) and Eq. (2), we have

∆(t+ 1) =∥P(t+1)
i − P(t)

i ∥∞

=∥
K∑

j=0

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞

=∥
∑
j∈Li

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj

+
∑
j∈L̄i

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞

where Li = {j|Ŵ(t+1)(i, j) >= Ŵ(t)(i, j)}, and L̄i =
{1, 2...,K} − Li. Since all entries in Pj are non-negative,
for all j, all entries in the first part are non-negative and all
entries in the second part is non-positive. Thus, we have

∆(t+ 1) = max{∥
∑
j∈Li

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞,

∥
∑
j∈L̄i

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞}

Since for all i, score vector x(t)
i is non-negative, we have

cos(x(t)
i ,x

(t)
k) ≥ 0. Thus,

∑
k W

(t+1)(i, k) ≥
∑

k W
(t)(i, k).

For the first part, we have

∥
∑
j∈Li

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞

= ∥
∑
j∈Li

[
W(t+1)(i, j)∑
k W

(t+1)(i, k)
− W(t)(i, j)∑

k W
(t)(i, k)

]Pj ∥∞

≤ ∥
∑
j∈Li

[
W(t)(i, j) + λt∑

k W
(t)(i, k)

− W(t)(i, j)∑
k W

(t)(i, k)
]Pj ∥∞

≤ ∥
∑
j∈Li

λt∑
k W

(t)(i, k)
Pj ∥∞

≤ ∥
∑
j∈Li

λtPj ∥∞

≤λtK

Similarly, we can prove the second part has the same bound.

∥
∑
j∈L̄i

[Ŵ(t+1)(i, j)− Ŵ(t)(i, j)]Pj ∥∞

= ∥
∑
j∈L̄i

[
W(t)(i, j)∑
k W

(t)(i, k)
− W(t+1)(i, j)∑

k W
(t+1)(i, k)

]Pj ∥∞

= ∥
∑
j∈L̄i

[
W(t)(i, j)∑
k W

(t)(i, k)

−
W(t)(i, j) + λ(t+1)cos(x(t+1)

i ,x
(t+1)
j)∑

k W
(t)(i, k) + λ(t+1)cos(x(t+1)

i ,x
(t+1)
k)

]Pj ∥∞

≤λt|
∑

k cos(x(t+1)
i ,x

(t+1)
k)−

∑
j∈L̄i

cos(x(t+1)
i ,x

(t+1)
j)∑

k W
(t)(i, k)

|

≤λtK

Thus, we have
∆(t+ 1) ≤ λtK

Then, we know ∆(t+ 1) ≤ ϵ when t > ⌈logλ ϵ
K ⌉.

Next, we consider the general case. In Theorem 1,
we discuss the weak convergence of the modified tran-
sition matrix P(t)

i in general multiple networks. Because
after each iteration, P(t)

i needs to be column-normalized
to keep the stochastic property, we let P̂(t)

i represent the
column-normalized one. Then Theorem 1 is for the residual
∆(t+ 1) =∥ P̂(t+1)

i − P̂(t)
i ∥∞.

∆(t+ 1) = ∥ P̂(t+1)
i − P̂(t)

i ∥∞
=max{|P̂(t+1)

i (x, y)− P̂(t)
i (x, y)|}

=max{| P
(t+1)
i (x, y)∑

z P
(t+1)
i (z, y)

− P(t)
i (x, y)∑

z P
(t)
i (z, y)

|}

Based on Eq. (2), we have for all t, 1
K ≤

∑
z P

(t)
i (z, y) ≤

1.
We denote min{P(t+1)

i (x, y),P(t)
i (x, y)} as p and

min{
∑

z P
(t+1)
i (z, y),

∑
z P

(t)
i (z, y)} as m. From the proof

of Theorem 2 , we know that

|P(t+1)
i (x, y)− P(t)

i (x, y)| ≤ λtK

and

|
∑
z

P(t+1)
i (z, y)−

∑
z

P(t)
i (z, y)| ≤ λtK|Vi|

Then, we have

| P
(t+1)
i (x, y)∑

z P
(t+1)
i (z, y)

− P(t)
i (x, y)∑

z P
(t)
i (z, y)

|

≤p+ λtK

m
− p

m+ λtK|Vi|

≤mλtK + |Vi|(λtK)2 + pK|Vi|λt

m2

=λtmK +K2|Vi|λt + pK|Vi|
m2

When t > ⌈− logλ(K
2|Vi|)⌉, we have λtK2|Vi| ≤ 1.

Thus,

∆(t+ 1) ≤λtmK +K2|Vi|λt + pK|Vi|
m2

≤ λtK2(|Vi|+ 2)

Then, it’s derived that ∆(t + 1) ≤ ϵ when t >
⌈logλ ϵ

K2(|Vi|+2)⌉.

PREPRINT 5

3.3 RWM With Restart Strategy

RWM is a general random walk model for multiple net-
works and can be further customized into different varia-
tions. In this section, we integrate the idea of random walk
with restart (RWR) [49] into RWM.

In RWR, at each time point, the random walker explores
the network based on topological transitions with α(0 <
α < 1) probability and jumps back to the starting node with
probability 1−α. The restart strategy enables RWR to obtain
proximities of all nodes to the starting node.

Similarly, we apply the restart strategy for RWM in
updating visiting probability vectors. For the ith walker, we
have:

x
(t+1)
i = αP(t)

i x
(t)
i + (1− α)x

(0)
i (5)

where P(t)
i is obtained by Eq. (3). Since the restart com-

ponent does not provide any information for the visited
local structure, we dismiss this part when calculating local
relevance weights. Therefore, we modify the cos(·, ·) in Eq.
(2) and have:

W(t)(i, j) = W(t−1)(i, j)+

λtcos((x(t)
i − (1− α)x

(0)
i),Sj→i(x

(t)
j − (1− α)x

(0)
j))

(6)

Theorem 3. Adding the restart strategy in RWM does not affect
the convergence properties in Theorems 1 and 2. The visiting
vector x(t)

i (1 ≤ i ≤ K) will also converge.

We skip the proof here. The main idea is that λ first guar-
antees the weak convergence of P(t)

i (λ has the same effect
as in Theorem 1). After obtaining a converged P(t)

i , Perron-
Frobenius theorem [31] can guarantee the convergence of
x
(t)
i with a similar convergence proof of the traditional RWR

model.

3.4 Time complexity of RWM.

As a basic method, we can iteratively update vectors until
convergence or stop the updating at a given number of
iterations T . Algorithm 1 shows the overall process.

In each iteration, for the ith walkers (line 4-5), we update
x
(t+1)
i based on Eq. (3) and (5) (line 4). Note that we do not

compute the modified transition matrix P(t)
i and output.

If we substitute Eq. (3) in Eq. (5), we have a probability
propagation Sj→iPjSi→jx

(t)
i which reflects the information

flow Gi → Gj → Gi. In practice, a network is stored
as an adjacent list. So we only need to update the visit-
ing probabilities of direct neighbors of visited nodes and
compute the propagation from right to left. Then calculating
Sj→iPjSi→jx

(t)
i costs O(|Vi|+|Ei−j |+|Ej |). And the restart

addition in Eq. (5) costs O(|Vi|). As a result, line 4 costs
O(|Vi|+ |Ei|+

∑
j ̸=i(|Ei−j |+ |Ej |)) where O(|Ei|) is from

the propagation in Gi itself.
In line 5, based on Eq. (6), it takes O(|Ei−j |+ |Vj |) to get

Sj→ix
(t)
j and O(|Vi|) to compute cosine similarities. Then

updating W(i, j) (line 5) costs O(|Ei−j | + |Vi| + |Vj |). In
the end, normalization (line 6) costs O(K2) which can be
ignored.

In summary, with T iterations, power iteration method
for RWM costs O((

∑
i |Vi| +

∑
i |Ei| +

∑
i ̸=j |Ei−j |)KT).

Algorithm 1: Random walk on multiple networks

Input: Transition matrices {Pi}Ki=1, cross-transition
matrices {Si→j}i ̸=j , tolerance ϵ, starting node
uq ∈ Gq , decay factor λ, restart factor α, iteration
number T

Output: Visiting prob. vec. for K walkers ({x(T)
i }

K
i=1)

1 Initialize {x(0)
i }

K
i=1 based on Eq. (1), and

W(0) = Ŵ(0) = I;
2 for t← 0 to T do
3 for i← 1 to K do
4 calculate x

(t+1)
i according to Eq. (3) and (5);

5 calculate W(t+1) according to Eq. (6);

6 Ŵ(t+1) ← row-normalize W(t+1);

For the multiplex networks with the same node set V , the
complexity shrinks to O((

∑
i |Ei| + K|V |)KT) because of

the one-to-one mappings in Ei−j .
Note that power iteration methods may propagate

probabilities to the entire network. Next, we present two
speeding-up strategies to restrict the probability propaga-
tion into only a small subgraph around the starting node.

4 SPEEDING UP

In this section, we introduce two approximation methods
that not only dramatically improve computational efficiency
but also guarantee performance.

4.1 Early Stopping
With the decay factor λ, the modified transition matrix of
each network converges before the visiting score vector
does. Thus, we can approximate the transition matrix with
early stopping by splitting the computation into two phases.
In the first phase, we update both transition matrices and
score vectors, while in the second phase, we keep the
transition matrices static and only update score vectors.

Now we give the error bound between the early-
stopping updated transition matrix and the power-iteration
updated one. In Gi, we denote P(∞)

i the converged modi-
fied transition matrix.

In Gi(1 ≤ i ≤ K), when properly selecting the split time
Te, the following theorem demonstrates that we can securely
approximate the power-iteration updated matrix P(∞)

i with
P(Te)
i .

Theorem 4. For a given small tolerance ϵ, when t > Te =

⌈logλ
ϵ(1−λ)

K2(|Vi|+2)⌉, ∥ P(∞)
i −P(t)

i ∥∞< ϵ. For the multiplex net-

works with the same node set, we can choose Te = ⌈logλ
ϵ(1−λ)

K ⌉
to get the same estimation bound ϵ.

Proof. According to the proof of Theorem 1, when Te >
⌈− logλ(K

2|Vi|)⌉, we have

∥ P(∞)
i − P(Te)

i ∥∞
≤ ∥

∑∞

t=Te

∥ P(t+1)
i − P(t)

i ∥∞

≤
∑∞

t=Te

λtK2(|Vi|+ 2)

=
λTeK2(|Vi|+ 2)

1− λ

PREPRINT 6

So we can select Te = ⌈logλ
ϵ(1−λ)

K2(|Vi|+2)⌉ such that when

t > Te, ∥ P(∞)
i − P(t)

i ∥∞< ϵ.

The time complexity of the first phase is O((
∑

i |Vi| +∑
i |Ei|+

∑
i ̸=j |Ei−j |)KTe).

Algorithm 2: Partial Updating

Input: x(t)
i , x(0)

i , {Pi}Ki=1, {Si→j}i ̸=j , λ, α, θ
Output: approximation score vector x̃(t+1)

i

1 initialize an empty queue que;
2 initialize a zero vector x(t)

i0 with the same size with x
(t)
i ;

3 que.push(Q) where Q is the node set with positive
values in x

(0)
i ; mark nodes in Q as visited;

4 cover ← 0;
5 while que is not empty and cover < θ do
6 u← que.pop();
7 mark u as visited;
8 for each neighbor node v of u do
9 if v is not marked as visited then

10 que.push(v);

11 x
(t)
i0 [u]← x

(t)
i [u];

12 cover ← cover + x
(t)
i [u];

13 Update x̃
(t+1)
i based on Eq. (7);

4.2 Partial Updating

In this section, we propose a heuristic strategy to further
speed up the vector updating in Algorithm 1 (line 4) by only
updating a subset of nodes that covers most probabilities.

Specifically, given a covering factor θ ∈ (0, 1], for walker
i, in the tth iteration, we separate x

(t)
i into two non-negative

vectors, x(t)
i0 and ∆x

(t)
i , so that x

(t)
i = x

(t)
i0 + ∆x

(t)
i , and

∥ x
(t)
i0 ∥1≥ θ. Then, we approximate x

(t+1)
i with

x̃
(t+1)
i = αP(t)

i x
(t)
i0 + (1− α ∥ x

(t)
i0 ∥1)x(0)

i (7)

Thus, we replace the updating operation of x
(t+1)
i in

Algorithm 1 (line 4) with x̃
(t+1)
i . The details are shown in

Algorithm 2. Intuitively, nodes close to the starting node
have higher scores than nodes far away. Thus, we utilize the
breadth-first search (BFS) to expand x

(t)
i0 from the starting

node set until ∥ x
(t)
i0 ∥1≥ θ (lines 3-12). Then, in line 13, we

approximate the score vector in the next iteration according
to Eq. (7).

Let V (t)
i0 be the set of nodes with positive values in x

(t)
i0 ,

and |E(t)
i0 | be the summation of out-degrees of nodes in

V
(t)
i0 . Then |E(t)

i0 | ≪ |Ei| dramatically reduces the number
of nodes to update in each iteration.

5 AN EXEMPLAR APPLICATION OF RWM

Random walk based methods are routinely used in various
tasks, such as local community detection [2], [1], [27], [22],
[6], [7], [4], [57], [51], link prediction [35], and network
embedding [9], [15], [46], [47]. In this section, we take
the local community detection as an example to show
the application of the proposed RWM. As a fundamental
task in large network analysis, local community detection

has attracted extensive attention recently. Unlike the time-
consuming global community detection, the goal of local
community detection is to detect a set of nodes with dense
connections (i.e., the target local community) that contains
a given query node or a query node set. Specifically, given
a query node2 uq in the query network Gq , the target of
local community detection in multiple networks is to detect
relevant local communities in all networks Gi(1 ≤ i ≤ K).

To find the local community in network Gi, we follow
the common process in the literature [2], [5], [22], [58]. By
setting the query node as the starting node, we first apply
RWM with restart strategy to calculate the converged score
vector x

(T)
i , according to which we sort nodes. T is the

number of iterations. Suppose there are L non-zero elements
in x

(T)
i , for each l (1 ≤ l ≤ L), we compute the conductance

of the subgraph induced by the top l ranked nodes. The
node set with the smallest conductance will be considered
as the detected local community.

6 EXPERIMENTS

We perform comprehensive experimental studies to evalu-
ate the effectiveness and efficiency of the proposed methods.
Our algorithms are implemented with C++. The code and
data used in this work are available.3 All experiments are
conducted on a PC with Intel Core I7-6700 CPU and 32 GB
memory, running 64-bit Windows 10.

6.1 Datasets

Datasets. Eight real-world datasets are used to evaluate the
effectiveness of the selected methods. Statistics are summa-
rized in Table 2.
• RM [18] has 10 networks, each with 91 nodes. Nodes
represent phones and one edge exists if two phones detect
each other under a mobile network. Each network describes
connections between phones in a month. Phones are divided
into two communities according to their owners’ affiliations.
• BrainNet [50] has 468 brain networks, one for each partic-
ipant. In the brain network, nodes represent human brain
regions and an edge depicts the functional association be-
tween two regions. Different participants may have different
functional connections. Each network has 264 nodes, among
which 177 nodes are studied to belong to 12 high-level func-
tional systems, including auditory, memory retrieval, visual
, etc. Each functional system is considered a community.

The other four are general multiple networks with dif-
ferent types of nodes and edges and many-to-many cross-
edges between nodes in different networks.
• 6− NG & 9− NG [40] are two multi-domain net-
work datasets constructed from the 20-Newsgroup dataset.
6− NG contains 5 networks of sizes {600, 750, 900, 1050,
1200} and 9− NG consists of 5 networks of sizes {900,
1125, 1350, 1575, 1800}. Nodes represent news documents
and edges describe their semantic similarities. The cross-
network relationships are measured by cosine similarity

2. For simplicity, the illustration is for one query node. We can easily
modify our model for a set of query nodes by initializing the visiting
vector x(0)

q with uniform entry value 1/n if there are n query nodes.
3. https://github.com/flyingdoog/RWM/

PREPRINT 7

between two documents from two networks. Nodes in the
five networks in 6− NG and 9− NG are selected from 6 and
9 newsgroups, respectively. Each newsgroup is considered
a community.
• Citeseer [28] is from an academic search engine, Citeseer. It
contains a researcher collaboration network, a paper citation
network, and a paper similarity network. The collaboration
network has 3,284 nodes (researchers) and 13,781 edges
(collaborations). The paper citation network has 2,035 nodes
(papers) and 3,356 edges (paper citations). The paper simi-
larity network has 10,214 nodes (papers) and 39,411 edges
(content similarity). There are three types of cross-edges:
2,634 collaboration-citation relations, 7,173 collaboration-
similarity connections, and 2,021 citation-similarity edges.
10 communities of authors and papers are labeled based on
research areas.
• DBLP [48] consists of an author collaboration network
and a paper citation network. The collaboration network
has 1,209,164 nodes and 4,532,273 edges. The citation net-
work consists of 2,150,157 papers connected by 4,191,677
citations. These two networks are connected by 5,851,893
author-paper edges. From one venue, we form an author
community by extracting the ones who published more than
3 papers in that venue. We select communities with sizes
ranging from 5 to 200, leading to 2,373 communities.

The above six datasets are with community information.
We also include two datasets without label information for
link prediction tasks only.
• Athletics [42]: is a directed and weighted multiplex net-
work dataset, obtained from Twitter during an exceptional
event: the 2013 World Championships in Athletics. The mul-
tiplex network makes use of 3 networks, corresponding to
retweets, mentions and replies observed between 2013-08-05
11:25:46 and 2013-08-19 14:35:21. There are 88,804 nodes and
(104,959, 92,370, 12,921) edges in each network, respectively.
• Genetic [13] is a multiplex network describing different
types of genetic interactions for organisms in the Biologi-
cal General Repository for Interaction Datasets (BioGRID,
thebiogrid.org), a public database that archives and dissem-
inates genetic and protein interaction data from humans and
model organisms. There are 7 networks in the multiplex
network, including physical association, suppressive genetic
interaction defined by inequality, direct interaction, syn-
thetic genetic interaction defined by inequality, association,
colocalization, and additive genetic interaction defined by
inequality. There are 6,570 nodes and 282,754 edges.

Table 2
Statistics of datasets

Dataset #Net. #Nodes #Inside
net. edges

#Cross
net. edges

RM 10 910 14,289 –
BrainNet 468 123,552 619,080 –
Athletics 3 88,804 210250 -
Genetic 7 6,570 28,2754 -
6− NG 5 4,500 9,000 20,984
9− NG 5 6,750 13,500 31,480
Citeseer 3 15,533 56,548 11,828
DBLP 2 3,359,321 8,723,940 5,851,893

6.2 Local community detection
6.2.1 Experimental setup
We compare RWM with seven state-of-the-art local commu-
nity detection methods. RWR [49] uses a lazy variation of
random walk to rank nodes and sweeps the ranked nodes
to detect local communities. MWC [5] uses the multi-walk
chain model to measure node proximity scores. QDC [54]
finds local communities by extracting query biased dens-
est connected subgraphs. LEMON [27] is a local spectral
approach. k-core [3] conducts graph core-decomposition
and queries the community containing the query node.
Note that these five methods are for single networks. The
following two are for multiple networks. ML-LCD [16] uses
a greedy strategy to find the local communities on multiplex
networks with the same node set. MRWR [58] only focuses
on the query network. Besides, without prior knowledge,
MRWR treats other networks contributing equally.

For our method, RWM, we adopt two approximations
and set ϵ = 0.01, θ = 0.9. Restart factor α and decay factor
λ are searched from 0.1 to 0.9. Extensive parameter studies
are conducted in Sec. 6.2.3. For baseline methods, we tune
parameters according to their original papers and report the
best results. Specifically, for RWR, MWC, and MRWR, we
tune the Restart factor from 0.1 to 0.9. Other parameters
in MWC are kept the default values [5]. For QDC, we
follow the instruction from the original paper and search
the decay factor from 0.6 to 0.95 [54]. For LEMON [27], the
minimum community size and expand step are set to 5 and
6, respectively. For ML-LCD, we adopt the vanilla Jaccard
similarity as the node similarity measure [16].

6.2.2 Effectiveness Evaluation

Evaluation on detected communities. For each dataset, in
each experiment trial, we randomly pick one node with
label information from a network as the query. Our method
RWM can detect all query-relevant communities from all
networks, while all baseline methods can only detect one
local community in the network containing the query node.
Thus, in this section, to be fair, we only compare detected
communities in the query network. In Sec. 6.2.4, we also
verify that RWM can detect relevant and meaningful local
communities from other networks.

Each experiment is repeated 1000 trials, and the Macro-
F1 scores are reported in Table 3. Note that ML-LCD can
only be applied to the multiplex network with the same
node set.

From Table 3, we see that, in general, random walk
based methods including RWR, MWC, MRWR, and RWM
perform better than others. It demonstrates the advance
of applying random walk for local community detection.
Generally, the size of detected communities by QDC is very
small, while that detected by ML-LCD is much larger than
the ground truth. k-core suffers from finding a proper node
core structure with a reasonable size, it either considers
a very small number of nodes or the whole network as
the detected result. Second, performances of methods for a
single network, including RWR, MWC, QDC, and LEMON,
are relatively low, since the single networks are noisy and
incomplete. MRWR achieves the second best results on
6− NG, RM, and DBLP but performs worse than RWR and

PREPRINT 8

Table 3
Accuracy performances comparison

Method RM BrainNet 6− NG 9− NG Citeseer DBLP
RWR 0.621 0.314 0.282 0.261 0.426 0.120
MWC 0.588 0.366 0.309 0.246 0.367 0.116
QDC 0.150 0.262 0.174 0.147 0.132 0.103

LEMON 0.637 0.266 0.336 0.250 0.107 0.090
k-core 0.599 0.189 0.283 0.200 0.333 0.052

MRWR 0.671 0.308 0.470 0.238 0.398 0.126
ML-LCD 0.361 0.171 - - - -

RWM (ours) 0.732* 0.403* 0.552* 0.277* 0.478* 0.133*
Improve 9.09% 10.11% 17.4% 6.13% 12.21% 5.56%

*We do student-t test between RWM and the second best method MRWR
(* corresponds to p < 0.05).

MWC on other datasets. Because not all networks provide
equal and useful assistance for detection, treating all net-
works equally in MRMR may introduce noises and decrease
performance. Third, our method RWM achieves the highest
F1-scores on all datasets and outperforms the second best
methods by 6.13% to 17.4%. We conduct student-t tests
between our method RWM and the second best method,
MRWR. Low p-values (< 0.05) indicate that our results are
statistically significant. This is because RWM can actively
aggregate information from highly relevant local structures
in other networks during updating visiting probabilities.
We emphasize that only RWM can detect relevant local
communities from other networks except for the network
containing the query node. Please refer to Sec. 6.2.4 for
details.

Ranking evaluation. To gain further insight into why RWM
outperforms others, we compare RWM with other random
walk based methods, i.e., RWR, MWC, and MRWR, as
follows. Intuitively, nodes in the target local community
should be assigned with high proximity scores w.r.t. the
query node. Then we check the precision of top-ranked
nodes based on score vectors of those models, i.e., prec. =
(|top-knodes ∩ ground truth|)/k

The precision results are shown in Fig. 3. First, we
can see that the precision scores of the selected methods
decrease when the size of the detected community k in-
creases. Second, our method consistently outperforms other
random walk-based methods. Results indicate that RWM
ranks nodes in the ground truth more accurately. Since
ranking is the basis of a random walk based method for
local community detection, better node-ranking generated
by RWM leads to high-quality communities (Table 3).

6.2.3 Parameter Study
In this section, we show the effects of the four important
parameters in RWM: the restart factor α, the decay factor λ,
tolerance ϵ for early stopping, and the covering factor θ in
the partial updating. We report the F1 scores and running
time on two representative datasets RM and 6− NG. Note
that ϵ and θ control the trade-off between running time and
accuracy.

The parameter α controls the restart of a random walker
in Eq. (5). The F1 scores and the running time w.r.t. α are
shown in Fig. 4(a) and Fig. 4(b). When α is small, the ac-
curacy increases as α increases because larger α encourages

further exploration. When α reaches an optimal value, the
accuracy begins to drop slightly. Because a large α impairs
the locality property of the restart strategy. The running time
increases when α increases because larger α requires more
iterations for score vectors to converge.

λ controls the updating of the relevance weights in
Eq. (6). Results in Fig. 4(c) and Fig. 4(d) reflect that for
RM, RWM achieves the best result when λ = 0.9. This is
because large λ ensures that enough neighbors are included
when calculating relevance similarities. For 6− NG, RWM
achieves high accuracy in a wide range of λ. For the running
time, according to Theorem 4, larger λ results in larger Te,
i.e., more iterations in the first phase, and longer running
time.

ϵ controls Te, the splitting time in the first phase. Instead
of adjusting ϵ, we directly tune Te. Theoretically, a larger Te

(i.e., a smaller ϵ) leads to more accurate results. Based on
results shown in Fig. 4(e) and Fig. 4(f), we notice that RWM
achieves good performance even with a small Te in the first
phase. The running time decreases significantly as well. This
demonstrates the rationality of early stopping.

θ controls the number of updated nodes (in Sec. 4.2). In
Fig. 4(g) and 4(h), we see that the running time decreases
along with θ decreasing because a smaller number of nodes
are updated. The consistent accuracy performance shows
the effectiveness of the speeding-up strategy.

6.2.4 Case Studies

BrainNet and DBLP are two representative datasets for
multiplex networks (with the same node set) and the general
multi-domain network (with flexible nodes and edges). We
do two case studies to show the detected local communities
by RWM.

Case Study on the BrainNet Dataset. Detecting and moni-
toring functional systems in the human brain is an impor-
tant task in neuroscience. Brain networks can be built from
neuroimages where nodes and edges are brain regions and
their functional relations. In many cases, however, the brain
network generated from a single subject can be noisy and
incomplete. Using brain networks from many subjects helps
to identify functional systems more accurately. For example,
brain networks from three subjects are shown in Fig. 5.
Subjects 1 and 2 have similar visual conditions (red nodes);
subjects 1 and 3 are with similar auditory conditions (blue

PREPRINT 9

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45
 P

re
c.

Top K

RWM
RWR

MRWR
MWC

(a) RM

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45

 P
re

c.

Top K

RWM
RWR

MRWR
MWC

(b) BrainNet

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40 45

 P
re

c.

Top K

RWM
RWR

MRWR
MWC

(c) 6− NG

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45

 P
re

c.

Top K

RWM
RWR

MRWR
MWC

(d) 9− NG

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60 70 80 90 100

 P
re

c.
Top K

RWM
RWR

MRWR
MWC

(e) Citeseer

 0

 0.1

 0.2

 0.3

 10 20 30 40 50 60 70 80 90 100

 P
re

c.

Top K

RWM
RWR

MRWR
MWC

(f) DBLP

Figure 3. Ranking evaluation of random walk based methods

nodes). For a given query region, we want to find related
regions with the same functionality.
•Detect relevant networks. To see whether RWM can au-
tomatically detect relevant networks, we run RWM model
for Query 1 and Query 2 in Fig. 5 separately. Fig. 6 shows
the cosine similarity between the visiting probability vec-
tors of different walkers along iterations. x1, x2, and x3

are the three visiting vectors on the three brain networks,
respectively. We see that the similarity between the visiting
histories of walkers in relevant networks, i.e., subjects 1 and
2 in Fig. 6(a), subjects 1 and 3 in 6(b), increases along with
the updating. But similarities in query-oriented irrelevant
networks are very low during the whole process. This indi-
cates that RWM can actively select query-oriented relevant
networks to help better capture the local structure for each
network.
•Identify functional systems. In this case study, we fur-
ther evaluate the detected results of RWM in the BrainNet
dataset. Note that other methods can only find a query-
oriented local community in the network containing the
query node.

Figure 7(a) shows the brain network of a subject in the
BrainNet dataset. The nodes highlighted in red represent the
suggested visual system of the human brain, which is used
as the ground truth community. We can see that nodes in the
visual system are not only functionally related but also spa-
tially close. We choose a node from the visual system as the
query node, which is marked in Figure 7(a). We apply our
method as well as other baseline methods to detect the local
community in the brain network of this subject. The iden-
tified communities are highlighted in red in Figure 7. From
Figure 7(b), we can see that the community detected by our
method is very similar to the ground truth. Single network
methods, such as RWR (Figure 7(c)), MWC (Figure 7(d)),
LEMON (Figure 7(e)) and QDC (Figure 7(f)), suffer from the
incomplete information in the single network. Compared to
the ground truth, they tend to find smaller communities.
MRWR (Figure 7(b)) includes many false positive nodes.

The reason is that MRWR assumes all networks are similar
and treat them equally. ML-LCD (Figure 7(h)) achieves a
relatively reasonable detection, while it still neglects nodes
in the boundary area.

Case Study on DBLP Dataset. In the general multiple
networks, for a query node from one network, we only have
the ground truth local community in that network but no
ground truth about the relevant local communities in other
networks. So in this section, we use DBLP as a case study
to demonstrate the relevance of local communities detected
from other networks by RWM. We use Prof. Danai Koutra
from UMich as the query. The DBLP dataset was collected
in May 2014 when she was a Ph.D. student advised by
Prof. Christos Faloutsos. Table 4 shows the detected author
community and paper community. Due to the space limita-
tion, instead of showing the details of the paper community,
we list venues where these papers were published in. For
example, “KDD(3)” means that 3 KDD papers are included
in the detected paper community. The table shows that our
method can detect local communities from both networks
with high qualities. Specifically, the detected authors are
mainly from her advisor’s group. The detected paper com-
munities are mainly published in Database/Data Mining
conferences.

6.3 Network Embedding

Network embedding aims to learn low dimensional repre-
sentations for nodes in a network to preserve the network
structure. These representations are used as features in
many tasks on networks, such as node classification [62],
recommendation [52], and link prediction [10]. Many net-
work embedding methods consist of two components: one
extracts contexts for nodes, and the other learns node rep-
resentations from the contexts. For the first component, ran-
dom walk is a routinely used method to generate contexts.
For example, DeepWalk [46] uses the truncated random
walk to sample paths for each node, and node2vec [15] uses

PREPRINT 10

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.4 0.6 0.8
 0

 20

 40

 60

 80

 100

F
1

T
im

e
(m

s)

α

F1
Time

(a) RM

 0.4

 0.5

 0.6

 0.2 0.4 0.6 0.8
 0

 50

 100

 150

 200

F
1

T
im

e
(m

s)

α

F1
Time

(b) 6− NG

 0.5

 0.6

 0.7

 0.8

 0.2 0.4 0.6 0.8
 0

 20

 40

 60

 80

F
1

T
im

e
(m

s)

λ

F1
Time

(c) RM

 0.4

 0.5

 0.6

 0.2 0.4 0.6 0.8
 0

 50

 100

 150

 200

F
1

T
im

e
(m

s)

λ

F1
Time

(d) 6− NG

 0.5

 0.6

 0.7

 0.8

 2 4 6 8
 0

 10

 20

 30

 40

 50

F
1

T
im

e(
m

s)

The 1st phase iteration

F1
Time

(e) RM

 0.4

 0.5

 0.6

 2 4 6 8
 0

 50

 100

 150

 200

F
1

T
im

e(
m

s)

The 1st phase iteration

F1
Time

(f) 6− NG

 0.4

 0.5

 0.6

 0.7

 0.8

 0.6 0.7 0.8 0.9
 0

 20

 40

 60

 80

 100

F
1

T
im

e
(m

s)

θ

F1
Time

(g) RM

 0.4

 0.5

 0.6

 0.6 0.7 0.8 0.9
 0

 50

 100

 150

 200

F
1

T
im

e
(m

s)

θ

F1
Time

(h) 6− NG

Figure 4. Parameter study on RM and 6− NG

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 5. Brain networks of three subjects.

biased second order random walk. In this part, we apply
the proposed RWM for the multiple network embedding.
RM and Citeseer are used in this part.

6.3.1 Experimental setup
To evaluate RWM on network embedding, we choose
two classic network embedding methods: DeepWalk and
node2vec, and replace the first components (sampling parts)
with RWM. We denote the DeepWalk and node2vec with

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
o
si

n
e

S
im

il
ar

it
y

Iteration

(x1,x2)
(x1,x3)
(x2,x3)

(a) Query 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
o
si

n
e

S
im

il
ar

it
y

Iteration

(x1,x2)
(x1,x3)
(x2,x3)

(b) Query 2

Figure 6. Similarity scores of walkers w.r.t. the iteration

Table 4
Case study on DBLP

Author community Paper community
Danai Koutra (query) KDD (3)

Christos Faloutsos PKDD (3)
Evangelos Papalexakis PAKDD (3)

U Kang SIGMOD (2)
Tina Eliassi-Rad ICDM (2)

Michele Berlingerio TKDE(1)
Duen Horng Chau ICDE (1)

Leman Akoglu TKDD (1)
Jure Leskovec ASONAM (1)

Hanghang Tong WWW(1)
... ...

replacements by DeepWalk RWM and node2vec RWM re-
spectively. Specifically, For each node on the target net-
work, RWM based methods first use the node as the
starting node and calculate the static transition matrix of
the walker on the target network. Then truncated random
walk (DeepWalk RWM) and second order random walk
(node2vec RWM) are applied on the matrix to generate
contexts for the node. we compare these two methods with
traditional ones. Since we focus on the sampling phase of
network embedding, to control the variables, for all four
algorithms, we use word2vec (skip-gram model) [36] with
the same parameters to generate node embeddings from
sampling.

For all methods, the dimensionality of embeddings is
100. The walk length is set to 40 and walks per node is
set to 10. For node2vec, we use a grid search over p, q ∈
{0.25, 0.5, 1, 2, 4} [15]. For RWM based methods, we set λ =
0.7, ϵ = 0.01, θ = 0.9. Windows size of word2vec is set to its
default value 5.

6.3.2 Accuracy Evaluation.
We compare different methods through a classification task.
On each dataset, embedding vectors are learned from the
full dataset. Then the embeddings are used as input to
the SVM classifier [45]. When training the classifier, we
randomly sample a portion of the nodes as the training set
and the rest as the testing set. The ratio of training is varied
from 10% to 90%. We use NMI, Macro-F1, and Micro-F1
scores to evaluate classification accuracy. For RM, we set
a network as the target network at one time and report
the average results here. For Citeseer, we only embed the
collaboration network, since only authors are labeled.

Fig. 8 shows the experimental results. RWM based net-
work embedding methods consistently perform better than

PREPRINT 11

(a) Groud Truth (b) RWM

(c) RWR (d) MWC

(e) LEMON (f) QDC

(g) MRWR (h) ML-LCD

Figure 7. Ground truth and detected visual systems by different algo-
rithms given the query node.

traditional counterparts in terms of all metrics. This is
because RWM can use additional information on multiple
networks to refine node embedding, while baseline methods
are affected by noise and incompleteness on a single net-
work. In most cases, node2vec achieves better results than
DeepWalk in both the traditional setting and RWM setting,
which is similar to the conclusion drawn in [15]. Besides,
RWM based methods are much better than other methods in

Citeseer dataset, when the training ratio is small, e.g., 10%,
which means RWM is more useful in real practice when
the available labels are scarce. This advantage comes from
more information from other networks when embedding
the target network.

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
M

I

Training ratio

(a) NMI in RM

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
M

I

Training ratio

(b) NMI in Citeseer

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ac

ro
-F

1

Training ratio

(c) Macro-F1 in RM

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ac

ro
-F

1

Training ratio

(d) Macro-F1 in Citeseer

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ic

ro
-F

1

Training ratio

(e) Micro-F1 in RM

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ic

ro
-F

1

Training ratio

(f) Micro-F1 in Citeseer

Figure 8. Accuracy performances of network embedding

6.4 Link Prediction
We chose two multiplex networks, Genetic and Athletics to
test our approach.

6.4.1 Experimental setup
Here we apply RWM based random walk with restart
(RWR) on multiplex networks to calculate the proximity
scores between each pair of nodes on the target network,
denoted by RWM. Then we choose the top 100 pairs of
unconnected nodes with the highest proximity scores as the
predicted links. We compare this method with traditional
RWR on the target networks, denoted by Single, and RWR
on the merged networks, which is obtained by summing up
the weights of the same edges in all networks, denoted by
Merged. We choose the probability of restart α = 0.9 for all
three methods and decay factor λ = 0.4 for RWM.

We focus on one network, denoted by the target network,
at one time. For the target network, we randomly remove
30% edges as the probe edges, which are used as the ground
truth for testing. Other networks are unchanged [32]. We
use precision100 as the evaluation measurement. The final
results are averaged over all networks in the dataset.

PREPRINT 12

6.4.2 Experimental Results
As shown in Fig. 9, for Athletics, our method consistently
performs better than the other two methods. Specifically,
RWM based RWR outperforms the traditional RWR and
RWR on the merged network by (93.37%, 218%) in G1,
(351.69%, 61.3%) in G2, (422.31%, 8.17%) in G3, in average,
respectively. For Genetic, RWM based RWR achieves the
best results in 6 out of 7 networks. From the experimental
results, we can draw a conclusion that using auxiliary link
information from other networks can improve link predic-
tion accuracy. Single outperforms Merged in 1 out of 3
and 4 out of 7 networks in these two multiplex networks,
respectively, which shows that including other networks
does not always lead to better results. Thus, RWM is an
effective way to actively select useful information from other
networks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

G1 G2 G3

A
cc

u
ra

cy

RWM
Single

Merged

(a) Athletics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

G1 G2 G3 G4 G5 G6 G7

A
cc

u
ra

cy

RWM
Single

Merged

(b) Genetic

Figure 9. Accuracy Performances of Link Prediction

6.5 Efficiency Evaluation
Note that the running time of RWM using basic power-
iteration (Algorithm 1) is similar to the iteration-based ran-
dom walk local community detection methods but RWM
obtains better performance than other baselines with a large
margin (Table 3). Thus, in this section, we focus on RWM
and use synthetic datasets to evaluate its efficiency. There
are three methods to update visiting probabilities in RWM:
(1) power iteration method in Algorithm 1 (PowerIte), (2)
power iteration with early stopping introduced in Sec. 4.1
(A1), and (3) partial updating in Sec. 4.2 (A2).

10
1

10
2

10
3

10
4

 2 3 4 5 6 7 8 9 10

R
u
n
n
in

g
 T

im
e

(m
s)

of Layers

PowerIte.
A1
A2

(a) Total time w.r.t. # of networks

 0

 500

 1000

 1500

10
4

10
5

10
6

10
7

R
u
n
n
in

g
 T

im
e

(m
s)

of Nodes

PowerIte.
A1
A2

(b) Total time w.r.t. # of nodes

Figure 10. Efficiency evaluation with synthetic datasets

We first evaluate the running time w.r.t. the number of
networks. We generate 9 datasets with different numbers of
networks (2 to 10). For each dataset, we first use a graph
generator [23] to generate a base network consisting of
1,000 nodes and about 7,000 edges. Then we obtain multiple
networks from the base network. In each network, we
randomly delete 50% edges from the base network. For each

Table 5
Number of visited nodes v.s. different network size

104 105 106 107

visited nodes (Te) 47.07 50.58 53.27 53.54
visited nodes (end) 1977.64 2103.43 2125.54 2177.70

dataset, we randomly select a node as the query and detect
local communities. In Fig. 10(a), we report the running time
of the three methods averaged over 100 trials. The early
stopping in A1 saves time by about 2 times for the iteration
method. The partial updating in A2 can further speed up
by about 20 times. Furthermore, we can observe that the
running time of A2 grows slower than PowerIte. Thus the
efficiency gain tends to be larger with more networks.

Next, we evaluate the running time w.r.t. the number
of nodes. Similar to the aforementioned generating process,
we synthesize 4 datasets from 4 base networks with the
number of nodes ranging from 104 to 107. The average
node degree is 7 in each base network. For each dataset,
we generate multiplex networks with three networks, by
randomly removing half of the edges from the base network.
The running time is shown in Fig. 10(b). Compared to the
power iteration method, the approximation methods are
much faster, especially when the number of nodes is large.
In addition, they grow much slower, which enables their
scalability on even larger datasets.

We further check the number of visited nodes, which
have positive visiting probability scores in RWM, in
different-sized networks. In Table 5, we show the number
of visited nodes both at the splitting time Te and the
end of updating (averaged over 100 trials). Note that we
compute Te = ⌈logλ

ϵ(1−λ)
K ⌉ according to Theorem 4 with

K = 3, ϵ = 0.01, λ = 0.7. We see that in the end, only a
very small proportion of nodes are visited (for the biggest
107 network, probability only propagates to 0.02% nodes).
This demonstrates the locality of RWM. Besides, in the first
phase (early stop at Te), visiting probabilities are restricted
to about 50 nodes around the query node.

7 CONCLUSION

In this paper, we propose a novel random walk model,
RWM, on multiple networks. Random walkers on differ-
ent networks sent by RWM mutually affect their visiting
probabilities in a reinforced manner. By aggregating their
effects from local subgraphs in different networks, RWM
restricts walkers’ most visiting probabilities among the most
relevant nodes. Rigorous theoretical foundations are pro-
vided to verify the effectiveness of RWM. Two speeding-
up strategies are also developed for efficient computation.
Extensive experimental results verify the advantages of
RWM in effectiveness and efficiency.

ACKNOWLEDGMENTS

This project was partially supported by NSF project IIS-
1707548.

PREPRINT 13

REFERENCES

[1] M. Alamgir and U. Von Luxburg. Multi-agent random walks for
local clustering on graphs. In ICDM, pages 18–27, 2010.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning
using pagerank vectors. In FOCS, pages 475–486, 2006.

[3] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient and
effective community search. Data mining and knowledge discovery,
29(5):1406–1433, 2015.

[4] Y. Bian, D. Luo, Y. Yan, W. Cheng, W. Wang, and X. Zhang.
Memory-based random walk for multi-query local community
detection. Knowledge and Information Systems, pages 1–35, 2019.

[5] Y. Bian, J. Ni, W. Cheng, and X. Zhang. Many heads are better
than one: Local community detection by the multi-walker chain.
In ICDM, pages 21–30, 2017.

[6] Y. Bian, J. Ni, W. Cheng, and X. Zhang. The multi-walker chain
and its application in local community detection. Knowledge and
Information Systems, 60(3):1663–1691, 2019.

[7] Y. Bian, Y. Yan, W. Cheng, W. Wang, D. Luo, and X. Zhang. On
multi-query local community detection. In ICDM, pages 9–18,
2018.

[8] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann. Netgan:
Generating graphs via random walks. In International conference on
machine learning, pages 610–619. PMLR, 2018.

[9] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations
with global structural information. In CIKM, 2015.

[10] H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen, and X. Li.
Pme: projected metric embedding on heterogeneous networks for
link prediction. In SIGKDD, 2018.

[11] W. Cheng, X. Zhang, Z. Guo, Y. Wu, P. F. Sullivan, and W. Wang.
Flexible and robust co-regularized multi-domain graph clustering.
In SIGKDD, pages 320–328. ACM, 2013.

[12] M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall.
Identifying modular flows on multilayer networks reveals highly
overlapping organization in interconnected systems. Physical
Review X, 5(1):011027, 2015.

[13] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora. Structural
reducibility of multilayer networks. Nature communications, 6:6864,
2015.

[14] M. Ghorbani, M. S. Baghshah, and H. R. Rabiee. Multi-layered
graph embedding with graph convolutional networks. arXiv
preprint arXiv:1811.08800, 2018.

[15] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In SIGKDD, pages 855–864, 2016.

[16] R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry, and P. Pon-
celet. Local community detection in multilayer networks. Data
Mining and Knowledge Discovery, 31(5):1444–1479, 2017.

[17] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[18] J. Kim and J.-G. Lee. Community detection in multi-layer graphs:
A survey. ACM SIGMOD Record, 44(3):37–48, 2015.

[19] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter. Multilayer networks. Journal of complex networks,
2(3):203–271, 2014.

[20] J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then
propagate: Graph neural networks meet personalized pagerank.
In ICLR, 2018.

[21] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion im-
proves graph learning. In NeurIPS, 2019.

[22] K. Kloster and D. F. Gleich. Heat kernel based community
detection. In SIGKDD, pages 1386–1395, 2014.

[23] A. Lancichinetti and S. Fortunato. Benchmarks for testing commu-
nity detection algorithms on directed and weighted graphs with
overlapping communities. Physical Review E, 2009.

[24] A. N. Langville and C. D. Meyer. Google’s PageRank and beyond: The
science of search engine rankings. Princeton University Press, 2011.

[25] J. Leskovec and J. J. Mcauley. Learning to discover social circles in
ego networks. In NIPS, pages 539–547, 2012.

[26] J. Li, C. Chen, H. Tong, and H. Liu. Multi-layered network
embedding. In SDM, 2018.

[27] Y. Li, K. He, D. Bindel, and J. E. Hopcroft. Uncovering the small
community structure in large networks: A local spectral approach.
In WWW, pages 658–668, 2015.

[28] K. W. Lim and W. Buntine. Bibliographic analysis on research
publications using authors, categorical labels and the citation
network. Machine Learning, 103(2):185–213, 2016.

[29] R. Liu, W. Cheng, H. Tong, W. Wang, and X. Zhang. Robust multi-
network clustering via joint cross-domain cluster alignment. In
ICDM, pages 291–300. IEEE, 2015.

[30] L. Lovász et al. Random walks on graphs: A survey. Combinatorics,
Paul erdos is eighty, 2(1):1–46, 1993.

[31] D. Lu and H. Zhang. Stochastic process and applications. Tsinghua
University Press, 1986.

[32] L. Lü, C.-H. Jin, and T. Zhou. Similarity index based on local
paths for link prediction of complex networks. Physical Review E,
80(4):046122, 2009.

[33] D. Luo, J. Ni, S. Wang, Y. Bian, X. Yu, and X. Zhang. Deep multi-
graph clustering via attentive cross-graph association. In WSDM,
pages 393–401, 2020.

[34] S. Ma, C. Gong, R. Hu, D. Luo, C. Hu, and J. Huai. Query
independent scholarly article ranking. In ICDE, 2018.

[35] V. Martı́nez, F. Berzal, and J.-C. Cubero. A survey of link prediction
in complex networks. ACM Computing Surveys, 2017.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their com-
positionality. In NIPS, 2013.

[37] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela. Community structure in time-dependent, multiscale, and
multiplex networks. Science, 328(5980):876–878, 2010.

[38] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela. Community structure in time-dependent, multiscale, and
multiplex networks. science, 328(5980):876–878, 2010.

[39] M. E. Newman. Coauthorship networks and patterns of scien-
tific collaboration. Proceedings of the national academy of sciences,
101(suppl 1):5200–5205, 2004.

[40] J. Ni, S. Chang, X. Liu, W. Cheng, H. Chen, D. Xu, and X. Zhang.
Co-regularized deep multi-network embedding. In WWW, pages
469–478, 2018.

[41] J. Ni, W. Cheng, W. Fan, and X. Zhang. Comclus: A self-grouping
framework for multi-network clustering. IEEE Transactions on
Knowledge and Data Engineering, 30(3):435–448, 2018.

[42] E. Omodei, M. D. De Domenico, and A. Arenas. Characterizing
interactions in online social networks during exceptional events.
Frontiers in Physics, 3:59, 2015.

[43] L. Ou-Yang, H. Yan, and X.-F. Zhang. A multi-network clustering
method for detecting protein complexes from multiple heteroge-
neous networks. BMC bioinformatics, 2017.

[44] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR,
2011.

[46] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In SIGKDD, 2014.

[47] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line:
Large-scale information network embedding. In WWW, pages
1067–1077, 2015.

[48] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer:
extraction and mining of academic social networks. In SIGKDD,
pages 990–998, 2008.

[49] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart
and its applications. In ICDM, pages 613–622, 2006.

[50] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub,
K. Ugurbil, W.-M. H. Consortium, et al. The wu-minn human
connectome project: an overview. Neuroimage, 80:62–79, 2013.

[51] N. Veldt, C. Klymko, and D. F. Gleich. Flow-based local graph
clustering with better seed set inclusion. In SDM, pages 378–386,
2019.

[52] Y. Wen, L. Guo, Z. Chen, and J. Ma. Network embedding based
recommendation method in social networks. In WWW, 2018.

[53] Y. Wu, Y. Bian, and X. Zhang. Remember where you came from:
on the second-order random walk based proximity measures.
Proceedings of the VLDB Endowment, 10(1):13–24, 2016.

[54] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community
detection: on free rider effect and its elimination. PVLDB, 8(7):798–
809, 2015.

[55] Y. Wu, X. Zhang, Y. Bian, Z. Cai, X. Lian, X. Liao, and
F. Zhao. Second-order random walk-based proximity measures
in graph analysis: formulations and algorithms. The VLDB Journal,
27(1):127–152, 2018.

PREPRINT 14

[56] L. Xia, Y. Xu, C. Huang, P. Dai, and L. Bo. Graph meta network
for multi-behavior recommendation. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 757–766, 2021.

[57] Y. Yan, Y. Bian, D. Luo, D. Lee, and X. Zhang. Constrained local
graph clustering by colored random walk. In WWW, pages 2137–
2146, 2019.

[58] Y. Yan, D. Luo, J. Ni, H. Fei, W. Fan, X. Yu, J. Yen, and X. Zhang. Lo-
cal graph clustering by multi-network random walk with restart.
In PAKDD, pages 490–501, 2018.

[59] P. Yu, C. Fu, Y. Yu, C. Huang, Z. Zhao, and J. Dong. Multiplex
heterogeneous graph convolutional network. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 2377–2387, 2022.

[60] H. Zhang and G. Kou. Role-based multiplex network embedding.
In International Conference on Machine Learning, pages 26265–26280.
PMLR, 2022.

[61] W. Zhang, J. Mao, Y. Cao, and C. Xu. Multiplex graph neural
networks for multi-behavior recommendation. In Proceedings of
the 29th ACM International Conference on Information & Knowledge
Management, pages 2313–2316, 2020.

[62] W. Zhao, J. Zhu, M. Yang, D. Xiao, G. P. C. Fung, and X. Chen.
A semi-supervised network embedding model for protein com-
plexes detection. In AAAI, 2018.

	Introduction
	Related Work
	Random Walk on Multiple Networks
	Notations
	Reinforced Updating Mechanism
	RWM With Restart Strategy
	Time complexity of RWM.

	Speeding Up
	Early Stopping
	Partial Updating

	An Exemplar application of RWM
	Experiments
	Datasets
	Local community detection
	Experimental setup
	Effectiveness Evaluation
	Parameter Study
	Case Studies

	Network Embedding
	Experimental setup
	Accuracy Evaluation.

	Link Prediction
	Experimental setup
	Experimental Results

	Efficiency Evaluation

	Conclusion
	References

