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Abstract—Heterogeneous social networks, which are characterized by diverse interaction types, have resulted in new challenges 

for missing link prediction. Most deep learning models tend to capture type-specific features to maximize the prediction 

performances on specific link types. However, the types of missing links are uncertain in heterogeneous social networks; this 

restricts the prediction performances of existing deep learning models. To address this issue, we propose a multi-type transferable 

method (𝑀𝑇𝑇𝑀) for missing link prediction in heterogeneous social networks, which exploits adversarial neural networks to remain 

robust against type differences. It comprises a generative predictor and a discriminative classifier. The generative predictor can 

extract link representations and predict whether the unobserved link is a missing link. To generalize well for different link types to 

improve the prediction performance, it attempts to deceive the discriminative classifier by learning transferable feature 

representations among link types. In order not to be deceived, the discriminative classifier attempts to accurately distinguish link 

types, which indirectly helps the generative predictor judge whether the learned feature representations are transferable among 

link types. Finally, the integrated 𝑀𝑇𝑇𝑀 is constructed on this minimax two-player game between the generative predictor and 

discriminative classifier to predict missing links based on transferable feature representations among link types. Extensive 

experiments show that the proposed 𝑀𝑇𝑇𝑀 can outperform state-of-the-art baselines for missing link prediction in heterogeneous 

social networks. 

Index Terms—Missing link prediction, heterogeneous social network, transferable feature representation 

——————————   ◆   —————————— 

1 INTRODUCTION

ARIOUS research lines in social network analysis 

have attracted a lot of attention, from group plan-

ning queries [1] to anomalous node detection [2], and 

from ranking users [3] to unobserved paths identifica-

tions [4]. Among them, the research on missing link pre-

diction in heterogeneous social networks has become a 

unique challenge. Heterogeneous social networks are 

usually represented as general network graphs wherein 

the nodes represent individuals belonging to different 

categories (e.g., people, organizations, or other social 

entities), and the links represent interactions of different 

types (e.g., friendship, co-working, or information ex-

change). Owing to the complexity of real-world social 

networks [5, 6], it is difficult to construct a complete net-

work graph to represent the whole heterogeneous social 

network by observing all existent links. In particular, we 

refer to the existent links that have not been observed in 

the network structure as missing links. The existence of 

missing links is a common phenomenon in the collected 

heterogeneous network graphs in actual applications 

[7], which severely affects the integrity of the heteroge-

neous social network and causes misleading conclu-

sions in social network analysis. Therefore, it is im-

portant to develop a universal missing link prediction 

method for heterogeneous social networks to shape 

complete social intersections among individuals. 

Thus far, various methods have been proposed for 

missing link prediction, mainly including topological 

calculation methods [8] and deep learning methods [9]. 

Topological calculation methods exploit the topological 

structural attributes among nodes to approximate the 

likelihood of the existence of a link. By contrast, deep 

learning methods have achieved impressive perfor-

mance improvements owing to their strength in auto-

matic feature extraction. However, owing to the type 
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uncertainty of missing links, we cannot obtain the prior 

information of the types of missing links. The formation 

of missing links on different types in the social network 

can follow different evolution mechanisms to shape dif-

ferent type-specific features [10]. Verified links on dif-

ferent types are characterized by type-specific features 

that are not sharable. Existing deep learning methods 

tend to extract type-specific features to maximize the 

prediction performances on specific link types, and 

their trained models cannot generalize well for other 

different link types, especially for newly emerged link 

types that are not covered in the training set. This re-

stricts their performances in missing link prediction in 

heterogeneous social networks wherein there are uncer-

tain types of missing links. Hence, we aim to construct 

a generalization model to promote the prediction per-

formance of missing links by learning transferable fea-

ture representations among link types. 

To learn transferable feature representations among 

link types, the first challenge is capturing the shared 

features on different link types by removing the type-

specific features. The shared features and type-specific 

features are coexistent in the feature representations 

corresponding to different link types. It is difficult to 

distinguish shared features and type-specific features.  

The second challenge is predicting missing links based 

on learned transferable feature representations among 

link types. The differences among the link representa-

tions on different types are changeable during the train-

ing stage, and it is difficult to provide accurate charac-

terizations of shared features among different link types. 

An efficient use of these shared features is the premise 

of developing a universal missing link prediction 

method. 

To solve the challenges above, we propose a multi-

type transferable method (𝑀𝑇𝑇𝑀) for missing link pre-

diction in heterogeneous social networks, consisting of 

a generative predictor and a discriminative classifier. 

The generative predictor can extract the feature repre-

sentations of link samples and predict whether the link 

sample is missing or not. To generalize well for different 

link types, the generative predictor is required to be 

trained on transferable feature representations among 

link types by capturing shared features. Thus, the dis-

criminative classifier is designed to help the generative 

predictor judge whether the learned feature representa-

tions are transferable. Inspired by adversarial networks 

[11], the generative predictor attempts to learn transfer-

able feature representations among link types to de-

ceive the discriminative classifier. Simultaneously, the 

discriminative classifier aims to distinguish the types of 

link samples based on learned feature representations, 

and not be deceived by the generative predictor. The 

corresponding loss of the discriminative classifier can 

be used to evaluate the extent to which the learned fea-

ture representations in the generative predictor can fit 

the criteria of transferable ones. Finally, the integrated 

𝑀𝑇𝑇𝑀 applies the minimax two-player game between 

the generative predictor and discriminative classifier to 

predict missing links in heterogeneous social networks.  

The remainder of this paper is organized as follows. 

Section 2 introduces the background of our study. Sec-

tion 3 formally defines the missing link prediction prob-

lem in heterogeneous social networks, which is solved 

by the proposed 𝑀𝑇𝑇𝑀 as described in Section 4. In Sec-

tion 5, we detail the extensive experiments performed 

to verify the performance of 𝑀𝑇𝑇𝑀 on real-world social 

networks. Section 6 concludes this paper and outlines 

future study directions.  

2 BACKGROUND  

In this section, we briefly introduce the preliminary con-

cepts of heterogeneous social networks and adversarial 

neural networks, and discuss related work. 

2.1 Preliminaries 

Heterogeneous social network. Most real-world social sys-

tems contain multi-typed interacting components that 

generate numerous social interactions; we model them 

as heterogeneous social networks with different node 

categories and link types. The heterogeneous social net-

work extracts relatively complex structural information 

from real social systems, and strictly distinguishes the 

heterogeneity of nodes and links in data [12]. Compared 

with homogeneous networks, the heterogeneous net-

work can effectively fuse more structural information in 

a unified mechanism and contain rich semantic mean-

ing of node categories and link types. There is an influx 

of heterogeneous networks in many data mining tasks, 

especially in recommend systems. Many excellent het-

erogeneous network representation methods [13-15] 

have been developed for recommend systems. Hetero-

geneous social networks have also brought new chal-

lenges for missing link prediction because of the type 

uncertainty of missing links. 

Adversarial neural networks. Adversarial neural networks 

are composed of a generative model and a discrimina-

tive model [11]. The task of the generative model is to 

generate natural-looking and realistic instances that are 

similar to the original data in real-world applications. 

Simultaneously, the discriminative model is designed 

to attempt to determine whether a given generated 



  

 

instance appears genuine. These two models are in con-

stant conflict with each other. The generative model at-

tempts to deceive the discriminative model by generat-

ing indistinguishable instances to simulate the original 

data, and the discriminative model attempts not to be 

deceived by the generative model. Through adversarial 

training, the generative model and the discriminative 

model continue to develop and finally achieve a balance 

when they become optimal. Adversarial neural net-

works have been adopted for many tasks in different 

application domains. 

2.2 Related Work 

As an important line of link prediction research [16], the 

research of missing link prediction has attracted a lot of 

attentions. Many useful methods can be applied to solve 

the missing link prediction problem, mainly including 

topological calculation methods and deep learning 

methods. 

Topological calculation methods have been in exist-

ence for a long time, which exploit the topological struc-

tural attributes among nodes to approximate the likeli-

hood of the existence of a link. Tian and  Zafarani [17] 

considered that the specific assumptions in most link 

prediction methods may lead to the bad generalization 

ability for different networks. They proposed general 

link prediction methods that captured network-specific 

patterns. Their proposed methods measured the pair-

wise similarities between nodes more accurately, even 

when only using common neighbor information. Yu et 

al. [18] studied fast high-quality link-based similarity 

search on billion-scale graphs. They devised a “varied-

D” method to accurately compute SimRank in linear 

memory and aggregated duplicate computations. They 

proposed a novel “cosine-based” SimRank model to cir-

cumvent the “connectivity trait” problem.  

Concomitant with the development of deep learning 

technologies [19], many deep learning methods have 

been developed to solve the issue of missing link pre-

diction. Because of superior feature extraction [20], deep 

learning methods have achieved excellent results in 

missing link prediction. Zhang and Chen [21] proposed 

a graph neural network framework (𝑆𝐸𝐴𝐿) to obtain 

heuristics from each local subgraph and learn the heu-

ristic learning paradigm. Their method captured gen-

eral graph structure features from local enclosing sub-

graphs and defined a function that mapped the sub-

graph patterns to the link existence. In addition, Cen et 

al. [22] proposed a general attributed multiplex hetero-

geneous network embedding (𝐺𝐴𝑇𝑁𝐸) to address the 

problem of embedding learning and provided an 

effective link prediction approach for attributed multi-

plex heterogeneous networks. Their proposed frame-

work both captured rich attribute information and uti-

lized multiplex topological structures from different 

node categories for transductive and inductive learning. 

Further, many missing link prediction methods have 

been specially designed to exploit heterogeneous struc-

tural information. Hu et al. [23] developed a heteroge-

neous general adversarial network (𝐻𝑒𝐺𝐴𝑁) for hetero-

geneous networks embedding, which trained both a 

discriminator and a generator in a minimax game. Their 

generator learned the node distribution to generate neg-

ative samples and cooperated with a discriminator to 

capture the rich heterogeneous semantics. Negi et al. [24] 

consider the link prediction in heterogeneous networks 

as a multitask, metric learning problem. They utilized 

both network and node features to learn the distance 

measure in a coupled fashion by employing the multi-

task structure preserving metric learning setup. In ad-

dition, Wang et al. [25] designed a self-supervised learn-

ing of contextual embedding (𝑆𝐿𝑖𝐶𝐸) model using local-

ized attention driven mechanisms. They pre-trained 

their model in a self-supervised manner by introducing 

higher-order semantic associations and masking nodes, 

and then fine-tuned it for a specific link prediction task. 

Chen et al. [26] proposed a projected metric embedding 

model (𝑃𝑀𝐸) on heterogeneous networks for link pre-

diction. They captured both first-order and second-or-

der proximities in a unified manner to alleviate the po-

tential geometrical inflexibility of existing metric learn-

ing approaches. Further, Zhang et al. [27] proposed a 

heterogeneous graph neural network model by jointly 

considering heterogeneous structural information and 

content information. They leveraged a graph context 

loss and a mini-batch gradient descent procedure to 

train the model in an end-to-end manner. Fu et al. [28] 

proposed a Metapath Aggregated Graph Neural Net-

work by employing node content transformation, intra-

metapath, and inter-metapath aggregation. The content 

information of nodes was fully exploited in their em-

bedding work [27, 28]. 

However, although the aforementioned studies can 

achieve good performances of missing link prediction 

in heterogeneous social networks, their ignoration of 

the potential uncertainty in the corresponding types of 

missing links  restricts their prediction performances. 

The missing links may belong to different link types, 

and each link type has its type-specific features that are 

not sharable with other types. Existing deep learning 

models tend to capture the type-specific features from 

link samples and may provide contradictory prediction 



  

 

results of missing links on different types. Therefore, 

this study aims to capture shared features among differ-

ent link types to propose a universal missing link pre-

diction method in heterogeneous social networks. 

3 PROBLEM DEFINITION 

TABLE 1  

The Frequently-Used Symbols in This Study. 

Symbol Meaning   Symbol Meaning 

𝐺 

 

Heterogeneous social 

network. 

𝑇𝑝
ℎ 

 

Set of historical link 

types. 

𝐴 Set of node categories. 𝜑 Mapping function. 

𝑉 Set of observed nodes. 𝑒 A link sample. 

𝐸𝑈 Set of unobserved links. 𝑇𝑝 Possible link-type sets. 

𝑀𝑠 Matching set. 𝑇𝑝
𝑛 Set of new link types. 

 𝐸 Set of observed links. 𝑆 Link sample set. 
𝑟(𝑒) 

 

Feature Representation 

of the link sample 𝑒. 

𝑓(𝑢) 

 

Feature representation 

of node 𝑢. 

𝑃(𝑒) 

 

Existent likelihood of the 

link sample 𝑒. 

𝑅𝐹 

 

Set of feature represen-

tations of link samples. 

𝐿𝑓𝑖𝑛𝑎𝑙  

 

Final loss of this mini-

max game. 

(𝑎1, 𝑎2) 

 

Link type of the link 

sample 𝑒. 

𝐿𝑝 Prediction loss. 𝐿𝑐 Classification loss. 

𝑆𝑇 Training sample set. 𝜂 Learning rate. 

𝑌𝑇 Set of sample labels. 𝑍𝑇  Type label set 

To facilitate the presentation in this study, Table 1 sum-

marizes the frequently used symbols. A heterogeneous 

social network is expressed as a network graph denoted 

by 𝐺 = (𝑉, 𝐸, 𝐴, 𝜑 ). 𝑉 and 𝐸 denote the sets of observed 

nodes and links, respectively. 𝐴 denotes the set of node 

categories and |𝐴| ≥ 2. 𝜑 denotes the mapping function 

from the node in 𝑉 to the node category in 𝐴. 𝜑(𝑣) de-

notes the node category of a node 𝑣 ∈ 𝑉 and 𝜑(𝑣) ∈ 𝐴. 

In addition, although the social interactions among in-

dividuals are diverse, social data can be universally rep-

resented in the form of undirected and unweighted 

graphs. To develop a generalized method for missing 

link prediction in heterogeneous social networks, 𝐺  is 

defined as an undirected and unweighted graph. 

The set of unobserved links can be denoted by 𝐸𝑈 =

{(𝑖, 𝑗)|𝑖 ∈ 𝑉 ∩ 𝑗 ∈ 𝑉 ∩ 𝑖 ≠ 𝑗 ∩ (𝑖, 𝑗) ∉ 𝐸}. The unobserved 

links in 𝐸𝑈 may contain missing links, the existence of 

which we aim to predict. The set of possible link types 

can be denoted as 𝑇𝑝 = {〈𝑎1, 𝑎2〉|𝑎1 ∈ 𝐴⋂𝑎2 ∈ 𝐴}, where 

〈𝑎1, 𝑎2〉  and 〈𝑎2, 𝑎1〉 represent the same link type. The 

types of links in 𝐸 are collected to construct the histori-

cal link-type set 𝑇𝑝
ℎ. Except for 𝑇𝑝

ℎ, the remaining types 

in 𝑇𝑝 construct the new link-type set 𝑇𝑝
𝑛. The types of the 

missing links in 𝐸𝑈 are unknown, and each missing link 

may belong to a certain historical type in 𝑇𝑝
ℎ or a certain 

new type in 𝑇𝑝
𝑛. The uncertainty of the types of missing 

links creates the prediction challenge in a heterogene-

ous social network. Formally, we define this problem as 

follows: given 𝐺 = (𝑉, 𝐸, 𝐴, 𝜑) , we need to design a 

matching set  𝑀𝑠 = {(𝑒, 𝛿)|𝑒 ∈ 𝐸𝑈 ∩ 𝛿 ∈ [0,1]}  for the 

unobserved links in 𝐸𝑈, where each unobserved link 𝑒 

in 𝐸𝑈 is assigned with a reasonable value 𝛿 to quantify 

its existent likelihood. The missing link prediction prob-

lem can be considered as a binary classification, which 

classifies the unobserved links in 𝐸𝑈  into the missing 

link set 𝐸𝑚 and the nonexistent link set 𝐸𝑛 . The perfect 

solution to this problem is that 𝛿 = 1 for the link in 𝐸𝑚 

and 𝛿 = 0 for the links in 𝐸𝑛. 

4 METHODOLOGY 

We detail the proposed 𝑀𝑇𝑇𝑀 in this section. An over-

view of 𝑀𝑇𝑇𝑀 is presented in Section 4.1. Section 4.2 ex-

plains the generative predictor that predicts whether 

the link sample is missing or not based on learned fea-

ture representations. Section 4.3 explains the discrimi-

native classifier used to distinguish the accurate types 

of different link samples. In Section 4.4, based on the 

generative predictor and discriminative classifier, the 

integration of 𝑀𝑇𝑇𝑀 to predict missing links in a heter-

ogeneous social network is detailed. 

4.1 Framework 

In this section, the framework of our proposed 𝑀𝑇𝑇𝑀 is 

illustrated in Fig. 1. Differing from traditional homoge-

neous networks, the inherent heterogeneity of heteroge-

neous social networks leads to the diversity and uncer-

tainty of missing links. To develop a universal method 

for missing link prediction on different link types, we 

propose 𝑀𝑇𝑇𝑀  to provide a generalized prediction 

method based on transferable feature representations 

among link types. To achieve this, as shown in Fig. 1, 

the generative predictor and discriminative classifier in 

𝑀𝑇𝑇𝑀 cooperate in missing link  prediction  through  a 

minimax two-player game. Based on the heterogeneous 

structure of links, the generative predictor attempts to  

learn transferable feature representations among differ-

ent link types to deceive the discriminative classifier. 

Simultaneously, to avoid  being  deceived  by the gen-

erative predictor, the discriminative classifier distin-

guishes the link types and attempts to predict the accu-

rate link types. Finally, the integrated 𝑀𝑇𝑇𝑀 combines 

the generative predictor and discriminative classifier to 

learn transferable  feature  representations  among  link  

types as input for missing link prediction in the hetero-

geneous social network. 



  

 

 
Fig. 1. Framework of 𝑀𝑇𝑇𝑀. 

4.2 Generative Predictor 

The generative predictor aims to predict whether link 

samples are missing links or not based on learned fea-

ture representations. Many state-of-the-art representa-

tion learning methods have been developed to produce 

a low-dimensional vector embedding for each node in 

the heterogeneous social network, such as Meta-

path2vec [29], ie-HGCN [30], and MAGNN [31]. How-

ever, to extract shared features among link types, we 

use node2vec as core module to reduce the extra  se-

mantic information brought by the type heterogeneity 

of the heterogeneous social network [32].  

We first introduce 𝑓(𝑢) as the mapping function from 

a node 𝑢 to its feature representation by node2vec. For 

a link 𝑒 = (𝑢, 𝑣), we first obtain the feature representa-

tions 𝑓(𝑢) and 𝑓(𝑣) of the nodes 𝑢 and 𝑣, respectively. 

Then, the initial feature representation of the link sam-

ple 𝑒 is expressed as follows. 

𝑟(𝑒) =  𝑓(𝑢)  ∗ 𝑓(𝑣)                               (1) 

We denote the set of inputted link samples as 𝑆. To 

train the generative predictor to obtain generalization 

ability, 𝑆 is required to contain link samples on more 

than one type during the training stage. To keep the in-

put flexibility in actual applications, 𝑆 can contain link 

samples on one or more types during the prediction 

stage. To represent the initial feature representations of 

all link samples in 𝑆, we define the initial representation 

set 𝑅𝐹 as follows. 

𝑅𝐹 = {𝑟(𝑒)|𝑒 ∈ 𝑆}                                 (2) 

A convolutional neural network and a full connection 

layer are added to aggregate the transferable feature 

representations based on the initial feature representa-

tions in 𝑅𝐹. 𝜃𝑟 is used to represent the parameters to be 

learned in this process. To achieve this, we introduce the 

aggregated representation set 𝑅𝐹 . Similar to the con-

struction of 𝑅𝐹 , we define 𝑅𝐹 = {𝑟(𝑒)|𝑒 ∈ 𝑆}, where 𝑟(𝑒) 

represents the aggregated feature representation of the 

link sample 𝑒 in 𝑆. In the competition process between 

the generative predictor and discriminative classifier, 

the aggregated feature representations in 𝑅𝐹  are con-

sistently adjusted to be transferable ones by capturing 

the shared features in 𝑅𝐹. The final aggregated feature 

representations in 𝑅𝐹  are considered as transferable 

ones, which are used as the final ground truth for train-

ing. We further use 𝐺𝑝(𝑆 ; 𝜃𝑟 , 𝜃𝑝) to denote the genera-

tive predictor. Three fully connected layers with the 

softmax function are employed to distinguish between 

missing links and nonexistent links. 𝜃𝑝 represents their 

contained parameters. For a given link sample 𝑒 , the 

output of the generative predictor can be denoted as fol-

lows. 

  𝑃(𝑒) = 𝐺𝑝({𝑒}; 𝜃𝑟 , 𝜃𝑝)                      (3) 

Here, 𝑃(𝑒)  denotes the existent likelihood of 𝑒 . 

Among unobserved link samples, the existent likeli-

hoods of missing links are reasonable to have larger val-

ues than these of nonexistent links. A large 𝑃(𝑒) value 

implies that the link sample 𝑒 has a large likelihood to 

be a missing one. For a given link sample set 𝑆, we de-

fine the prediction loss of the generative predictor by 

cross entropy as follows. 

𝐿𝑝(𝜃𝑟 , 𝜃𝑝) =                                                                   (4)       

 − ∑ [𝑚𝑒 𝑙𝑜𝑔(𝑃(𝑒)) + (1 − 𝑚𝑒) 𝑙𝑜𝑔(1 − 𝑃(𝑒))]𝑒∈𝑆     

Here, 𝑚𝑒 ∈ {0,1}. 𝑚𝑒 = 1 denotes that the link sample 

𝑒 is positive; otherwise, 𝑚𝑒 = 0. To achieve a better pre-

diction performance of missing links, the preliminary 

task of the generative predictor is to minimize the pre-

diction loss. This process to seek the optimal parameters 

𝜃̂𝑟 and 𝜃̂𝑝 can be expressed as follows. 

 (𝜃̂𝑟 , 𝜃̂𝑝) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃𝑟,𝜃𝑝

𝐿𝑝(𝜃𝑟 , 𝜃𝑝) (5) 

The direct minimization of the prediction loss in 

Equation (5) promotes the learning performance of 



  

 

discriminable representations by capturing both type-

specific features and shared features in 𝑅𝐹 . However, 

the challenge for missing link prediction in heterogene-

ous social networks is that the types of missing links are 

uncertain, and each missing link may belong to a histor-

ical type or a new type. The deep learning models based 

on discriminable representations have not enough gen-

eralization ability to achieve a general performance pro-

motion on different link types. Especially, without 

enough generalization ability, these models are difficult 

to achieve a good prediction performance on the new 

link types that are not covered in the training set. To im-

prove the prediction performance of missing links, we 

are inspired to learn transferable feature representa-

tions to generalize well among both historical types and 

new types. Therefore, we need to enable the generative 

predictor to learn more general feature representations 

that can be transferable from one link type to other link 

types. Such feature representations should capture the 

shared features among link types and remove their 

type-specific features. To achieve this, we require the 

following discriminative classifier to help the genera-

tive predictor judge whether the learned feature repre-

sentations in 𝑅𝐹 fit the criteria of transferable ones. With 

the help of the discriminative classifier, we can train the 

generative predictor with a certified 𝑅𝐹, further obtain-

ing the generalization ability to predict missing links. 

4.3 Discriminative Classifier 

The discriminative classifier is a neural network that 

consists of two fully connected layers with correspond-

ing activation functions. We use 𝐺𝑐(𝑅𝐹; 𝜃𝑟 , 𝜃𝑐)  to repre-

sent the discriminative classifier, where 𝜃𝑐  represents 

the parameters to be learned, and 𝑅𝐹  and 𝜃𝑟  are from 

the generative predictor. The task of the discriminative 

classifier is to judge whether the learned feature repre-

sentations in 𝑅𝐹  are transferable. To achieve this task, 

the discriminative classifier is designed to distinguish 

the link types and attempts to predict the accurate types 

of link samples based on the learned feature represen-

tations in 𝑅𝐹. 

We define the classification loss of the discriminative 

classifier by cross entropy as follows. 

 𝐿𝑐(𝜃𝑟 , 𝜃𝑐) =                                                                 (6) 

− ∑ ∑ 𝑛𝑒 𝑙𝑜𝑔 (𝐺𝑐
〈𝑎1,𝑎2〉

({𝑟(𝑒)}; 𝜃𝑟 , 𝜃𝑐))〈𝑎1,𝑎2〉∈𝑇𝑝
ℎ𝑒∈𝑆                                                                       

Here, 𝑇𝑝
ℎ contains the types of the link samples in 𝑆, 

and 𝐺𝑐
〈𝑎1,𝑎2〉

({𝑟(𝑒)}; 𝜃𝑟 , 𝜃𝑐) represents the probability that 

classifies the link type of the link sample 𝑒 as 〈𝑎1, 𝑎2〉 in 

𝑇𝑝
ℎ. If the correct link type of 𝑒 is 〈𝑎1, 𝑎2〉, 𝑛𝑒 = 1; other-

wise, 𝑛𝑒 = 0. When the 𝐿𝑐(𝜃𝑟 , 𝜃𝑐) value is smaller, the 

discriminative classifier obtains a better performance to 

classify the link samples in 𝑆 into correct types. The pa-

rameter of the discriminative classifier after minimizing 

this loss 𝐿𝑐(𝜃𝑟 , 𝜃𝑐) is expressed as follows. 

𝜃̂𝑐 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃𝑐

𝐿𝑐(𝜃𝑟 , 𝜃𝑐)                       (7) 

The classification loss 𝐿𝑐(𝜃𝑟 , 𝜃̂𝑐) can indirectly evalu-

ate the extent to which the learned feature representa-

tions in 𝑅𝐹 can fit the criteria of transferable ones. When 

the 𝐿𝑐(𝜃𝑟 , 𝜃̂𝑐) value is larger with a worse classification 

performance, the learned feature representations in 𝑅𝐹 

can better fit the criteria of transferable ones. Therefore, 

we need to maximize the 𝐿𝑐(𝜃𝑟 , 𝜃̂𝑐) by seeking the opti-

mal parameters 𝜃𝑟  during the training stage, which 

helps the feature representations in 𝑅𝐹 fit the criteria of 

transferable ones. Therefore, we are inspired to con-

struct the minimax two-player game between the gen-

erative predictor and discriminative classifier. The gen-

erative predictor 𝐺𝑝(𝑆 ; 𝜃𝑟 , 𝜃𝑝) tries to learn the transfer-

able feature representations to deceive the discrimina-

tive classifier 𝐺𝑐(𝑅𝐹; 𝜃𝑟 , 𝜃𝑐) by capturing shared features 

and removing type-specific features for 𝑅𝐹, and the dis-

criminative classifier 𝐺𝑐(𝑅𝐹; 𝜃𝑟 , 𝜃𝑐)  attempts not to be 

deceived by discovering the type-specific features in 𝑅𝐹 

to recognize the link type. Based on the minimax two-

player game, the comprehensive loss function is defined 

as follows. 

𝐿𝑓𝑖𝑛𝑎𝑙(𝜃𝑟 , 𝜃𝑝, 𝜃𝑐) = 𝐿𝑝(𝜃𝑟 , 𝜃𝑝) − 𝜆𝐿𝑐(𝜃𝑟 , 𝜃𝑐)           (8) 

Here, 𝜆 is introduced to control the trade-off between 

the prediction loss and the classification loss. The pa-

rameter set we seek is the saddle point of the compre-

hensive loss function. 

 (𝜃𝑟, 𝜃𝑝) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃𝑟,𝜃𝑝

𝐿𝑓𝑖𝑛𝑎𝑙(𝜃𝑟, 𝜃𝑝, 𝜃𝑐) (9) 

 𝜃𝑐 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃𝑐

𝐿𝑓𝑖𝑛𝑎𝑙(𝜃𝑟, 𝜃𝑐) (10) 

As shown in Fig. 1, the gradient reversal layer (GRL) 

[33] is added between the generative predictor and dis-

criminative classifier. Based on the GRL, the feature ex-

traction process in the generative predictor has an op-

posite goal with the discriminative classifier, namely re-

ducing the classification performance and confusing the 

types of links. The GRL multiplies gradient with −𝜆 and 

passes the results to the preceding layer during back-

prop stage. As recommended by [33], we introduce a 

learning rate 𝜂 and the update of 𝜃𝑟 can be expressed as 

follows. 

𝜃𝑟 ← 𝜃𝑟 − 𝜂(
𝜕𝐿𝑝

𝜕𝜃𝑝
− 𝜆

𝜕𝐿𝑐

𝜕𝜃𝑐
)                     (11) 

4.4 Method Integration   

Deploying deep learning models requires positive and 



  

 

negative link samples during the training stage. In the 

problem of missing link prediction, we consider the ob-

served links in 𝐸 as positive samples, and randomly se-

lect |𝐸| unobserved links with the same types from the 

unobserved link set 𝐸𝑈 as negative samples (|𝐸| ≪ |𝐸𝑈|). 

We combine these positive and negative samples to con-

struct the training sample set 𝑆𝑇, and obtain its corre-

sponding sample label set  𝑌𝑇   and type label set 𝑍𝑇 . 

Based on a minimax two-player game between 

𝐺𝑝(𝑆𝑇; 𝜃𝑟 , 𝜃𝑝) and 𝐺𝑐(𝑅𝐹; 𝜃𝑟 , 𝜃𝑐), the generative predic-

tor 𝐺𝑝(𝑆𝑇; 𝜃𝑟 , 𝜃𝑝)  is trained on {𝑆𝑇 , 𝑌𝑇 , 𝑍𝑇}  to learn the 

generalization prediction model during the training 

stage, which continuously optimizes the shared fea-

tures in 𝑅𝐹  to deceive the discriminative classifier 

𝐺𝑐(𝑅𝐹; 𝜃𝑟 , 𝜃𝑐) to confuse the types of link samples.   

Without the help of the discriminative classifier, we 

still can train the generative predictor to predict missing 

links based on the initial feature representations in 𝑅𝐹. 

However, to generalize well for different link types, the 

generative predictor is expected to predict missing links 

based on the transferable feature representations in 𝑅𝐹. 

To archives this, we require the discriminative classifier 

to help the generative predictor judge whether the 

learned feature representations in 𝑅𝐹  fit the criteria of  

transferable ones. Using this adversarial network, the 

minimax two-player game between the discriminative 

classifier and the generative predictor is the premise of 

the transition process from the initial feature represen-

tations in 𝑅𝐹 to the certified transferable feature repre-

sentations in 𝑅𝐹. Finally, the trained generative predic-

tor in 𝑀𝑇𝑇𝑀 is carried out to predict missing links in 𝐸𝑈 

during the prediction stage. Given a heterogeneous so-

cial network 𝐺 = (𝑉, 𝐸, 𝐴, 𝜑 ), 𝑀𝑇𝑇𝑀 quantifies the ex-

istent likelihoods of the unobserved link samples in 𝐸𝑈 

to obtain the matching set 𝑀𝑠. The process of  𝑀𝑇𝑇𝑀 is 

detailed as follows.    

Method:  𝑀𝑇𝑇𝑀 

INPUT:   𝐺 – Heterogeneous social network. 

                 𝑆𝑇 – Training set. 

                 𝑌𝑇 – Sample label set corresponding to 𝑆𝑇. 

                 𝑍𝑇 – Type label set corresponding to 𝑆𝑇. 

𝜂  – Learning rate. 

OUTPUT: 𝑀𝑠– Matching set    

1: 𝑀𝑠 = ∅ 

2: For each train iteration do 

3:     Update the parameters 𝜃𝑟: 

4:        𝜃𝑟 ← 𝜃𝑟 − 𝜂(
𝜕𝐿𝑝

𝜕𝜃𝑝
− 𝜆

𝜕𝐿𝑐

𝜕𝜃𝑐
) 

5:     Update the parameters 𝜃𝑝: 

6:         𝜃𝑝 ← 𝜃𝑝 − 𝜂
𝜕𝐿𝑝

𝜕𝜃𝑝
 

7:     Update the parameters 𝜃𝑐: 

8:         𝜃𝑐 ← 𝜃𝑐 − 𝜂
𝜕𝐿𝑐

𝜕𝜃𝑐
 

9: End for 

10: For each unobserved link sample 𝑒 in 𝐸𝑈 do 

11:      Calculate 𝑃(𝑒) by Equation (3). 

12:       𝑀𝑠 = 𝑀𝑠 + {(𝑒, 𝑃(𝑒))}. 

13: End for 

14: Output 𝑀𝑠. 

Considering the number of the nodes in 𝑉, the total 

number of node feature representations in the feature 

extraction process can be estimated as |𝑉| × 𝑑 and the 

corresponding cost will be 𝑂(|𝑉| × 𝑑), where 𝑑  repre-

sents the dimension of the feature representation. Sub-

sequently, the dot product is the main step for calculat-

ing the feature representations of all link samples, and 

its cost is quadratic to the number of nodes, denoted as 

𝑂(|𝑉|2 × 𝑑). Further, the generative predictor and dis-

criminative classifier are assumed to contain ℎ1 and ℎ2 

hidden layers, respectively. Since the adversarial train-

ing that involves the parameter calculation needs to 

provide us with a good approximation of the total edge 

number |𝐸| , we can approximate this cost as 𝑂(|𝐸| ×

(ℎ1 + ℎ2) × 𝑑). Finally, the overall time complexity of 

𝑀𝑇𝑇𝑀 is 𝑂((|𝑉|2 + |𝐸| × (ℎ1 + ℎ2)) × 𝑑), which is com-

parable to most of existing link prediction methods.  

5 EXPERIMENTAL ANALYSIS 

This section describes the extensive experimental eval-

uation conducted. In Section 5.1, we detail the experi-

mental setup, including datasets, comparison methods, 

and parameter settings. In Section 5.2, we verify the per-

formance of 𝑀𝑇𝑇𝑀  by comparing it with state-of-the-

art methods. In addition, 𝑀𝑇𝑇𝑀 is constructed on the 

assumption learning the transferable feature represen-

tations among link types is beneficial to improve the 

prediction performance of missing links in heterogene-

ous social networks. Therefore, we analyze the im-

portance of learning transferable feature representa-

tions among link types in 𝑀𝑇𝑇𝑀 in Section 5.3. As an 

important parameter for 𝑀𝑇𝑇𝑀, the sample ratio 𝑟 de-

cides the division of the test set and the training set. 

Thus, Section 5.4 discusses the effect of the setting of 𝑟 

on the prediction performance of 𝑀𝑇𝑇𝑀 . Further, the 

heterogeneity of heterogeneous social networks leads to 

the type uncertainty of missing links. To insight into 

𝑀𝑇𝑇𝑀, we design a case study to illustrate the influence 



  

 

of the type uncertainty of missing links in Section 5.5. 

5.1 Experimental Setup 

TABLE 2 

Basic Statistics of Four Datasets  

Dataset Facebook DBLP IMDB Yelp 

#Node 22470 14475 45,496 28,759 

#Node category 4 4 4 4 

#Link 171002 170794 136093 247698 

#Effective Link type 10 3 3 3 

TABLE 3 

Node Categories and Link Types of Four Datasets 

 #Node categories #Effective Link types 

Face-

book 

politician 

company 

government 

tvshow 

<politician, company> 

<government,tvshow> 

<government,political> 

<government,company> 

<tvshow,politician> 

<tvshow,company> 

<tvshow,tvshow> 

<politician,politician> 

<company,company> 

<government,government> 

DBLP 

paper 

venue 

term 

author 

<paper,venue> 

<paper, term> 

<paper, author> 

IMDB 

user 

movie 

actor 

  director 

<user, movie> 

<actor, movie> 

 <director, movie> 

Yelp 

user 

business 

location 

category 

<business, location> 

<business, user> 

 <business, category> 

Datasets. We consider the following two real-world da-

tasets drawn from disparate fields. (1) Facebook [34]. 

Facebook dataset is a page–page graph of verified Face-

book sites collected through the Facebook Graph API. 

The nodes represent official Facebook pages whereas 

the links are mutual likes between sites. The collected 

pages are divided into four categories: politicians, gov-

ernmental organizations, television shows, and compa-

nies. (2) DBLP [35]. DBLP is a bibliographic network da-

taset in computer science collected from four research 

areas: database, data mining, machine learning, and in-

formation retrieval. DBLP demonstrates how extensive 

literature references can lead to the emergence of vari-

ous structural properties. (3) IMDB [36]. IMDB is a link 

data set collected from the Internet Movie Data. The net-

work used in the experiment contains four types of ob-

jects. In the dataset, 1357 movies are labeled with at least 

one of the 23 labels. (4) Yelp [36]. The data set was ex-

tracted from a user review website in America, Yelp, 

containing four types of objects. Note that when the 

original heterogeneous social network is weighted or 

directed, we treat it as a simple network by ignoring its 

weights and directions. The basic statistics of these four 

datasets are summarized in Table 2, and their node cat-

egories and link types are presented in Table 3. 

Comparison methods. As mentioned in Section 2.2, the 

five state-of-the-art prediction methods, 𝑆𝐸𝐴𝐿 [21], 

𝐺𝐴𝑇𝑁𝐸 [22], 𝐻𝑒𝐺𝐴𝑁[23], 𝑆𝐿𝑖𝐶𝐸 [25], and  𝑃𝑀𝐸 [26] are 

considered as comparison methods. In addition, the 

missing link prediction problem can be considered as a 

binary classification that distinguishes between missing 

links and nonexistent links. Thus, we also develop three 

typical missing link prediction methods based on sup-

port vector machine (𝑆𝑉𝑀) [37], Logistic regression (𝐿𝑅) 

[38], and random forest (𝑅𝐹) [39].  

Parameter settings. The settings of 𝑆𝐸𝐴𝐿 , 𝐺𝐴𝑇𝑁𝐸 , 

𝐻𝑒𝐺𝐴𝑁, 𝑆𝐿𝑖𝐶𝐸, and 𝑃𝑀𝐸 are consistent with their orig-

inal settings [21-23, 25, 26]. Based on the preliminary 

feature representations of links in the generative predic-

tor, 𝑆𝑉𝑀, 𝐿𝑅, and 𝑅𝐹 are developed to distinguish pos-

itive samples from negative samples according to their 

recommended settings [37-39]. 𝑆𝑉𝑀  adopts the Linear 

kernel as its kernel function and sets the penalty coeffi-

cient as 50. The parameter of 𝑠𝑜𝑙𝑣𝑒𝑟 in 𝐿𝑅 selects the op-

timization algorithm 𝑙𝑏𝑓 . We set 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 50  in 

𝑅𝐹 and the learning rate 𝜂 = 0.001 in the stochastic gra-

dient descent. In addition, for each iteration of the gen-

erative predictor and discriminative classifier training, 

we use a batch size of 32. We run 29 iterations to train 

the generative predictor and discriminative classifier in 

each epoch. The number of embedding dimensions for 

all methods are set as 64. For random walk-based meth-

ods, we set the walk number of each node to 𝑤 = 10, the 

walk length to 𝑙 = 5, and the window size to 𝜏 = 10.  

We set 𝜆 as 1 without tuning the trade-off parameter. 

The corresponding code link of the GitHub page is 

https://github.com/xihairanfeng/A_Multi_type_Trans-

ferable_Method. 

5.2 Performance Comparison 

TABLE 4  

𝐴𝑈𝐶, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values obtained by 𝑀𝑇𝑇𝑀 and eight 

comparison methods 

Dataset Method 𝐴𝑈𝐶 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Facebook 

𝑀𝑇𝑇𝑀 0.9204 0.7191 0.8206 

𝑆𝐸𝐴𝐿 0.8261 0.7782 0.7546 

𝐺𝐴𝑇𝑁𝐸 0.4503 0.1731 0.7425 

𝐻𝑒𝐺𝐴𝑁 0.5118 0.1698 0.4146 

𝑆𝐿𝑖𝐶𝐸 0.5144 0.1456 0.7956 

𝑃𝑀𝐸 0.4981 0.1545 0.7335 

𝑆𝑉𝑀 0.7599 0.2931 0.6316 

𝑅𝐹 0.8197 0.4342 0.8020 

𝐿𝑅 0.5715 0.1795 0.2864 

https://github.com/xihairanfeng/A_Multi_type_Transferable_Method
https://github.com/xihairanfeng/A_Multi_type_Transferable_Method


  

 

DBLP 

𝑀𝑇𝑇𝑀 0.8439 0.8242 0.8285 

𝑆𝐸𝐴𝐿 0.80291 0.4667 0.4995 

𝐺𝐴𝑇𝑁𝐸 0.6152 0.6914 0.5651 

𝐻𝑒𝐺𝐴𝑁 0.4157 0.1940 0.3305 

𝑆𝐿𝑖𝐶𝐸 0.5437 0.5766 0.5670 

𝑃𝑀𝐸 0.4376 0.5217 0.4502 

𝑆𝑉𝑀 0.5572 0.6905 0.5172 

𝑅𝐹 0.5692 0.7914 0.5163 

𝐿𝑅 0.6396 0.6702 0.6686 

IMDB 

𝑀𝑇𝑇𝑀 0.9892  0.8524  0.8046  

𝑆𝐸𝐴𝐿 0.7341  0.6486  0.4615  

𝐺𝐴𝑇𝑁𝐸 0.5826  0.5369  0.5734  

𝐻𝑒𝐺𝐴𝑁 0.5771  0.5439  0.5730  

𝑆𝐿𝑖𝐶𝐸 0.5027  0.4894  0.5142  

𝑃𝑀𝐸 0.4820  0.4642  0.4826  

𝑆𝑉𝑀 0.5024  0.5112  0.5181  

𝑅𝐹 0.8275  0.8449  0.7300  

𝐿𝑅 0.7058  0.6155  0.6961  

Yelp 

𝑀𝑇𝑇𝑀 0.9136  0.7887  0.7453  

𝑆𝐸𝐴𝐿 0.7702  0.6928  0.5567  

𝐺𝐴𝑇𝑁𝐸 0.5376  0.5275  0.5301  

𝐻𝑒𝐺𝐴𝑁 0.5594  0.6224  0.5436  

𝑆𝐿𝑖𝐶𝐸 0.4902  0.4887  0.4852  

𝑃𝑀𝐸 0.4970  0.5002  0.5059  

𝑆𝑉𝑀 0.5897  0.7125  0.5875  

𝑅𝐹 0.6630  0.7034  0.6753  

𝐿𝑅 0.7937  0.7061  0.6928  

To verify the prediction performance of our proposed 

𝑀𝑇𝑇𝑀, we compare it with eight comparison methods. 

First, for each dataset, we use 𝑟 to denote the sample ra-

tio. We randomly select 𝑟 × |𝐸| links from the observed 

link set 𝐸 as positive samples in the training set, and the 

remaining observed links are considered as the positive 

samples in the test set. Secondly, we randomly select 

𝑟 × |𝐸| unobserved links from 𝐸𝑈  as negative samples 

in the training set, and randomly select (1 − 𝑟) × |𝐸| un-

observed links from the remaining unobserved links as 

negative samples in the test set. We set 𝑟 = 0.5 as an ex-

ample in this section. The positive samples and negative 

samples are considered as missing links and nonexist-

ent links, respectively. Based on the training set, the 

problem of missing link prediction requires 𝑀𝑇𝑇𝑀 and 

eight comparison methods to predict the positive link 

samples in the test set.  

To avoid the randomness influence in the selection 

process of positive and negative link samples, each pre-

diction method is repeated 40 independent times for 

each dataset. Three common evaluation indices are in-

troduced to verify the prediction performances of miss-

ing links: 𝐴𝑈𝐶  [40], 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [41], and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [42]. 

𝐴𝑈𝐶  focuses on the whole prediction performance, 

while 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 focuses on the prediction performance 

of top-ranked link samples. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  is commonly 

defined as the ratio  
𝑇𝑃+𝑇𝑁

𝑁
, where 𝑁 denotes the total 

number of link samples, and 𝑇𝑃 and 𝑇𝑁 denote the cor-

rect prediction times of positive samples and negative 

samples, respectively. The values of 𝐴𝑈𝐶 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 

and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  obtained by  𝑀𝑇𝑇𝑀  and the eight com-

parison methods are shown in Table 4. Their highest 

values are highlighted in bold. 

Among nine missing link prediction methods, 𝑀𝑇𝑇𝑀 

always exhibits the best prediction performances of 

missing links in heterogeneous social networks. As 

shown in Table 4, compared with 𝑆𝐸𝐴𝐿 , 𝐺𝐴𝑇𝑁𝐸 , 

𝐻𝑒𝐺𝐴𝑁, 𝑆𝐿𝑖𝐶𝐸 , 𝑃𝑀𝐸 , 𝑆𝑉𝑀, 𝐿𝑅, and 𝑅𝐹 , 𝑀𝑇𝑇𝑀  obtains 

the higher values of 𝐴𝑈𝐶 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 on 

four datasets. The missing links on the datasets of Face-

book, DBLP, IMDB, and Yelp can contain multiple link 

types. Ignoring the type uncertainty of missing links, 

the comparison methods focus on the direct minimiza-

tion of the prediction loss of missing links on known 

link types in the training set. They tend to capture type-

specific features that cannot generalize well among dif-

ferent link types. However, the types of missing links in 

the test set are uncertain and diversity, and each miss-

ing link may belong to a known link type in the training 

set or a new effective link type. The lack of the prior type 

information of missing links in the test set restricts the 

prediction performances of the comparison methods in 

heterogeneous social networks. In contrast, 𝑀𝑇𝑇𝑀  re-

sists the disturbance of the type uncertainty of missing 

links in the test set, which exploits adversarial networks 

to learn transferable feature representations among link 

types. Therefore, 𝑀𝑇𝑇𝑀  displays a substantial predic-

tion improvement in heterogeneous social networks.    

Furthermore, all methods are implemented in Python, 

and the experiments are executed using four threads of 

a 2.60GHz Intel(R) Xeon(R) Gold 6132 processor. We do 

not measure the common time to load datasets into 

memory. The average computing time of an independ-

ent run of 𝑀𝑇𝑇𝑀, 𝑆𝐸𝐴𝐿, 𝐺𝐴𝑇𝑁𝐸 , 𝐻𝑒𝐺𝐴𝑁, 𝑆𝐿𝑖𝐶𝐸 , 𝑃𝑀𝐸 , 

𝑆𝑉𝑀, 𝑅𝐹 and 𝐿𝑅 is 1.02, 1.24, 1.36, 1.82, 1.75, 1.23, 0.42, 

0.45 and 0.56 minutes, respectively. They can be speed 

up by parallel algorithms. Except for the machine learn-

ing based methods 𝑆𝑉𝑀 , 𝑅𝐹  and 𝐿𝑅 , the computing 

time of 𝑀𝑇𝑇𝑀 is less than that of 𝑆𝐸𝐴𝐿, 𝐺𝐴𝑇𝑁𝐸, 𝐻𝑒𝐺𝐴𝑁, 

𝑆𝐿𝑖𝐶𝐸, and 𝑃𝑀𝐸. 

5.3 Importance of Learning Transferable Feature 
Representations 

To demonstrate the importance of learning transferable 

feature representations during the training stage, we 

design a variant of the proposed 𝑀𝑇𝑇𝑀 for comparison. 

To enable our proposed 𝑀𝑇𝑇𝑀 to learn the transferable  



  

 

 

 

 

 

 

 

 

 
 

(a) Facebook                                  (b) DBLP                                       (c) IMDB                                        (d) Yelp 

Fig. 2. 𝐴𝑈𝐶, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values using 𝑀𝑇𝑇𝑀 and 𝑀𝑇𝑇𝑀1− on Facebook, DBLP, IMDB and Yelp. 

 

 

 

 

 

 

(a) Facebook                                      (b) DBLP                                       (c) IMDB                                        (d) YELP 

(a) Facebook                                  (b) DBLP                                       (c) IMDB                                        (d) Yelp 

Fig. 3. Changes  with 𝑟 in 𝐴𝑈𝐶, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values by 𝑀𝑇𝑇𝑀 on Facebook, DBLP, IMDB and Yelp. 

feature representations, we require the discriminative 

classifier to decide whether the extracted features fit the 

criteria of transferable feature representations through 

the maximization process of Equation (10). However, 

even without this maximization process, we still can 

predict missing links in heterogeneous social networks 

based on their preliminary feature representations. 

Thus, we design a variant of the proposed model, 

named  𝑀𝑇𝑇𝑀1− . The only difference between 𝑀𝑇𝑇𝑀 

and  𝑀𝑇𝑇𝑀1−  is that  𝑀𝑇𝑇𝑀1−  does not consider the 

maximization process of Equation (10) in the discrimi-

native classifier. We then conduct 𝑀𝑇𝑇𝑀 and  𝑀𝑇𝑇𝑀1− 

to predict missing links on Facebook and DBLP. Aver-

aged over 40 independent runs, the histograms of the 

performance comparisons between 𝑀𝑇𝑇𝑀  and 

 𝑀𝑇𝑇𝑀1− are shown in Fig. 2. 

Compared with  𝑀𝑇𝑇𝑀1−, 𝑀𝑇𝑇𝑀 exhibits an obvious 

performance improvement . This is a strong suggestion 

that learning transferable feature representations is im-

portant and beneficial to improve the prediction perfor-

mance of missing links in heterogeneous social net-

works. As shown in Fig. 2, on the datasets of Facebook, 

DBLP, IMDB, and Yelp, 𝑀𝑇𝑇𝑀  always obtains larger 

evaluation values than  𝑀𝑇𝑇𝑀1−  in terms of 𝐴𝑈𝐶 , 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 . Based on a minimax two-

player game between the generative predictor and dis-

criminative classifier, 𝑀𝑇𝑇𝑀 is capable of learning gen-

eral link representations that can be transferred from 

one link type to other link types. The generative predic-

tor attempts to capture the shared features among link 

types to deceive the discriminative classifier, while the 

discriminative classifier tries to distinguish link types to 

not be deceived. In contrast, without the maximization 

process of Equation (10), 𝑀𝑇𝑇𝑀1−  focuses on learning 

nontransferable type-specific features, which makes it 

lose the generalization to resist the type uncertainty of 

missing links in the prediction process. Therefore, ben-

efiting from the learning of transferable feature repre-

sentations, 𝑀𝑇𝑇𝑀 is reasonable to achieve a better pre-

diction performance than  𝑀𝑇𝑇𝑀1−. 

5.4 Parameter Analysis 

The division of the training set and the test set plays a 

crucial role in the performance evaluation of 𝑀𝑇𝑇𝑀 . 

This section discusses the effect of the setting of  𝑟 on 

the prediction performance of 𝑀𝑇𝑇𝑀. To achieve a con-

trollable division, we adjust the sample ratio 𝑟 to ana-

lyze the performance change of 𝑀𝑇𝑇𝑀. Along with the 

change in the 𝑟 value, the changes in the 𝐴𝑈𝐶, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 

and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  values obtained by 𝑀𝑇𝑇𝑀  on Facebook 

and DBLP are shown in Fig. 3. 

As shown in Fig. 3, the division of the training set and 

the test set is important and affects the prediction per-

formance of 𝑀𝑇𝑇𝑀. The two aspects underlying the ob-

servations can be summarized as follows. (1) As the 𝑟 

value increases, more positive samples and negative 

samples are added to enlarge the size of the training set, 



  

 

which effectively promotes the prediction performance 

of 𝑀𝑇𝑇𝑀 in the test set. Thus, the 𝐴𝑈𝐶, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values are always increasing on four datasets. 

(2) In most cases, the growth velocities of the 𝐴𝑈𝐶 , 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  values decrease with the in-

crease in 𝑟. When the 𝑟 value increases to a certain de-

gree, 𝑀𝑇𝑇𝑀 can obtain a sufficient number of labeled 

link samples during the training stage, and the addition 

of new labeled link samples cannot significantly im-

prove its performance.  

5.5 Case Study 

 

Fig. 4. Changes in 𝐴𝑈𝐶 values by different methods.   

In this section, to analyze the influence of the type un-

certainty of missing links, we design a case study to con-

duct comparison experiments as follows. To ensure the 

setting flexibility of link types, we use the dataset of Fa-

cebook with 10 effective link types as a case. The exper-

iment is designed as follows. First, we use 𝑇𝑣 to repre-

sent the set of effective link types. For each dataset, we 

randomly select ⌊
2

3
× |𝑇𝑣|⌋ link types in 𝑇𝑣  to construct 

the historical link-type set 𝑇𝑝
ℎ, and the other link types 

are used to construct the new link-type set 𝑇𝑝
𝑛. Next, we 

use the link samples on the link types in 𝑇𝑝
ℎ to construct 

the training set and the test set. Furthermore, to achieve 

a controllable type uncertainty in the test set, we control 

the addition of the link samples on new link types in 𝑇𝑝
𝑛. 

We construct the new sample set 𝑆′, where the observed 

links on the link types in 𝑇𝑝
𝑛 are considered as its posi-

tive samples and the equivalent unobserved links 

within same link types are randomly selected as its neg-

ative samples.  

Based on the steps above, the types of the link sam-

ples in 𝑆′ have not been existed in the training set and 

the test set. We set a ratio 𝜉 and randomly select 𝜉|𝑆′| 

link samples from 𝑆′ to add into the test set. Along with 

the increase in the  𝜉 value, the test set has more link 

samples on new types, and the type uncertainty of miss-

ing links in the test set increases. We adjust the ratio 𝜉 

and use 𝐴𝑈𝐶  to evaluate the overall performance of 

𝑀𝑇𝑇𝑀 and eight comparison methods. The changes in 

𝐴𝑈𝐶  values by 𝑀𝑇𝑇𝑀  and eight comparison methods 

are shown in Fig. 4. 

As shown in Fig. 4, with different 𝜉 values, the overall 

prediction performance of our proposed 𝑀𝑇𝑇𝑀  is al-

ways better than these of the eight comparison methods. 

This confirms that our proposed 𝑀𝑇𝑇𝑀 is robust to re-

sist the disturbance of the type uncertainty of missing 

links in the prediction process. Based on the limited 

number of verified link samples in the training set, the 

increase in the 𝜉 value results in the number increase of 

link samples on the test set, which degrades the overall 

prediction performance of all methods. Though the 

𝐴𝑈𝐶  values of 𝑀𝑇𝑇𝑀 and eight comparison methods 

gradually decrease with the gradual increase in the 𝜉 

value, the 𝐴𝑈𝐶 values of 𝑀𝑇𝑇𝑀 are consistently higher 

than these of the eight comparison methods. Different 

from comparison methods, 𝑀𝑇𝑇𝑀  tries to learn on 

transferable feature representations by capturing 

shared features and removing type-specific features, 

which enables its generalization to predict missing links 

on different types in a unified way.  

6 CONCLUSIONS AND FUTURE WORK 

In this study, we formally recognize the challenge of the 

type uncertainty of missing links, and propose a multi-

type transferable method to address it. Our proposed 

method is constructed on a minimax two-player game 

between a proposed generative predictor and a pro-

posed discriminative classifier. The generative predic-

tor aims to predict whether the unobserved link is a 

missing link or not based on learned link representa-

tions. It attempts to capture the shared features among 

link types to deceive the discriminative classifier, while 

the discriminative classifier attempts to distinguish dif-

ferent link types to not be deceived. As a result, 𝑀𝑇𝑇𝑀 

effectively learns transferable feature representations to 

improve the prediction performance of missing links in 

heterogeneous social networks. Extensive experimental 

investigation shows that our proposed method outper-

forms state-of-the-art comparison methods in missing 

link prediction. 

Based on our existing study, many additional meth-

ods can be explored to improve the prediction perfor-

mance of missing links in heterogeneous social net-

works. One possibility is to exploit the attribute infor-

mation of nodes and links, such as additional descrip-

tion of texts and images. Our proposed method is a 



  

 

general framework for missing link prediction. The ex-

traction of shared features among link types can be eas-

ily designed for multi-modal situations. Another possi-

bility is to explore the use of the type-specific infor-

mation in our method.  The simple removal of type-spe-

cific information may restrict the performance of our 

method in some cases. We can further discuss the bal-

ance between shared features and type-specific features. 
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