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Abstract—Travel time estimation from GPS trips is of great importance to order duration, ridesharing, taxi dispatching, etc. However,
the dense trajectory is not always available due to the limitation of data privacy and acquisition, while the origin-destination (OD) type
of data, such as NYC taxi data, NYC bike data, and Capital Bikeshare data, is more accessible. To address this issue, this paper starts
to estimate the OD trips travel time combined with the road network. Subsequently, a Multi-task Weakly Supervised Learning
Framework for Travel Time Estimation (MWSL-TTE) has been proposed to infer transition probability between roads segments, and the
travel time on road segments and intersection simultaneously. Technically, given an OD pair, the transition probability intends to recover
the most possible route. And then, the output of travel time is equal to the summation of all segments’ and intersections’ travel time in
this route. A novel route recovery function has been proposed to iteratively maximize the current routes’ co-occurrence probability, and
minimize the discrepancy between routes’ probability distribution and the inverse distribution of routes’ estimation loss. Moreover, the
expected log-likelihood function based on a weakly-supervised framework has been deployed in optimizing the travel time from road
segments and intersections concurrently. We conduct experiments on a wide range of real-world taxi datasets in Xi’an and Chengdu

and demonstrate our method’s effectiveness on route recovery and travel time estimation.

Index Terms—Travel Time Estimation, Urban Computing, Weakly Supervised Learning

1 INTRODUCTION

With the emergence of newly-developed applications, es-
timating travel time has become one of the hottest top-
ics, which is of great importance to route planning, taxi
dispatching, and ride-sharing in recent years. In the early
phase, the data of real traffic state is mainly collected from
loop sensors, which can only provide the individual travel
time in a certain road segment and usually face the sparse
issue. Recently, an alternative solution is to use floating
car data. The floating cars equipped with GPS receivers,
including taxis, buses, private cars, and online ride-hailing,
record time stamps, longitude, latitude, speed, and other in-
formation at regular intervals, which can reflect the vehicle’s
operation status.

As a result, a good deal of travel time estimation tech-
niques based on floating car data have been proposed in
different scenes, such as dense trajectory [1], [2], [3], low-
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sampling-rate trajectory [4], [5], [6]. However, due to the
privacy concern and data acquisition problems, extensive
works focus on inferring the travel time from OD data,
which only gives the origin-destination location, such as
finding nearby neighbors [7], such as distance-based [8] or
representation-based [9] neighbors. In general, the OD type
of data is more available than the dense type, and multiple
sources of OD data have been released, for example, the
NYC taxi data’, NYC bike data’ and Capital Bikeshare
Data®. However, as far as we know, previous literature omits
the factor of the road network, which often leads to a high
estimating error. Since the total travel time of the trajectory
is equal to the sum of the travel time of all road segments
and intersections (e.g., waiting traffic signal). Each traffic
condition in road segment change will affect the total travel
time. With the road network introduced, here we face three
intractable problems:

1) How to recover the route when only OD pairs are given.

2) How to effectively estimate the travel time when the route
has been obtained.

3) How to learn features from complex road network.

At first glance, given a pair of origin-destination, the short-
est path algorithm (e.g., Dijkstra’s algorithm) is a natural
choice for problem 1) because people usually choose paths
that are similar to the shortest path with less number of
turns. However, the shortest path in the geometry aspect
may not always match the definition of the 'shortest path’
in the driver’s route choice. For example, some resident or

1. https:/ /www1l.nyc.gov/site/tlc/about/ tlc-trip-record-data.page

2. https:/ /data.cityofnewyork.us/Transportation /Bike-Data/374u-
5ie7

3. https:/ /www.capitalbikeshare.com/system-data
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tertiary types of road are shorter than primary and trunk
types of road, but they are more vulnerable to congestion,
since the complex traffic state (many pedestrians), or nar-
rowness of road width. How to encode the road features
into the road search procedure? One way can be done by
learning the transition probability between road segments
and inferring the route via the search for the maximum
route probability, where the superiority of this approach is
that the character of the road will be considered in every
search process. Inspired by [10], this article employs the
graph neural network (GCN) to learn the features, such
as road type, road length, road sign, and road lanes, of
each road segment. Consequently, the problem of ignoring
natural road networks in the shortest-path algorithm can be
alleviated. Fig. 1 shows an example of searching candidate
path through transition probability. Based on the Markov
assumption, the routing probability can be obtained by
multiplying the probabilities and equal to the sum of the
log probabilities. The candidate paths 1, r2, 73 are acquired
by Depth First Searching (DFS) algorithm with pruning
operation.

As we mentioned, this paper infers the overall travel
time of a given route by summing up the travel time of
all the road segments and intersections on that route. This
raises the question of how to estimate the travel time of road
segments and intersections reasonably. One concern is how
to model the differences in individual driving behaviors,
since given a specific OD pair, the travel time in the same
time interval is varied. To address this problem, we here
model the travel time with uncertainty, which means that
each road/intersection travel time follows certain distribu-
tion (e.g., Lognormal). Those roads/intersections tend to
be provided a large variance o, for example, with large
crowd flow. In conclusion, the uncertain travel time of
route generated by route searching has been obtained. To
effectively optimize the distribution, this paper formulates
it as the inexact supervision learning problem [11]. One of
the most well-known examples of inexact supervision is the
drug activity prediction problem [12], which predicts if a
molecule induces a given effect. Inexact supervision deals
with training data arranged in sets called bags, and the labels
are only annotated on bags. For modeling the uncertainty,
given a pair of origin and destination, we consider the
travel time label annotated on the unobserved routes (bags)
and use the normal distribution [13], [14], [15] to model
the uncertainty for each road segment and the interaction
travel time in bags. We drive the objective function (Eq.
(2)) based on the assumption of aggregated observation and
Markov chain, and solve it with a general inexact learning
probabilistic framework [16] and an iterative route recovery
algorithm.

After solution 1) and 2) has been discussed, we finally
introduce how to learn the meaningful features from a
complicated road network, since multiple factors will affect
the traffic condition, such as road types, road lanes, speed
limitations, and traffic signals. To learn the intricate relation
of road networks, many existing works modeling the prob-
lem of estimating travel time from either road segments [1],
[3] or intersections [17], but do not assemble those features
simultaneously. However, we argue that this will cause error
accumulation with the road segments increasing. To fill this
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Fig. 1. The motivation in this paper is illustrated above. Given any OD
pair, we want to recover the path by searching the maximum route
probability learned by the model, and construct a dual graph from road-
based and intersection-based aspects to estimate the travel time of road
segment and intersection respectively.

gap, in this work, we construct a dual graph comprised of
the road-based graph and the intersection-based graph, and
estimate the travel time by summing up all road segments
and intersections on one route. In the meanwhile, we also
take the connected relation* into consideration from one
road segment to one road segment, such as primary —
secondary, or trunk — residential, and one intersection to one
intersection, such as tertiary and residential. We introduce the
Relational Graph Convolutional Networks (R-GCNs) [18] to
learn the complex connected relation of the road network.
Moreover, to solve the problem of losing local patterns
when expanding the receptive neighborhood in GCN, we
combine the Relational Graph Convolutional Networks, and
gated recurrent unit (GRU) [19] together as the stacked
architecture to capture both global and local features [20].
Fig. 1 represents the procedure to construct the dual graph
(gray box) of the road network and to recover the route
from the candidate set that is searched from the transition
probability.

The main contributions of this paper can be summarized
as follows.

e We propose a multi-task framework to estimate the
travel time of road segments and intersection, and
transition probability simultaneously. To the best of
our knowledge, it is the first attempt to recover the
route and jointly model the factor of intersection and
road segments in the general OD travel time estimation
problem.

e For the first time, we consider the estimation of the OD
travel time as the weakly supervised learning problem,
since the observation of the OD travel time is annotated
with a bag of unobserved routes. This paper aims to
infer each road segment and the intersection travel time
distribution from the aggregation observation.

e We validate the effectiveness of travel time estimation
and route recovery using large-scale datasets from the
real world in Chengdu and Xi’an, respectively, which
significantly outperform current methods.

Here, we list the organization in this paper: Sec. 2 gives
the related works, including weakly supervised learning,
travel time estimation, as well as route estimation. Sec. 3
introduces the preliminary knowledge, such as the road net-

4. https:/ /wiki.openstreetmap.org/wiki/Key:highway
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work, the origin-destination. Sec. 4 provides the definition of
our formulation, assumptions, and objective function. Sec.
5 gives the methodology of our MWSL-TTE. Sec. 6 and
Sec. 7 conduct the qualitative and quantitative experiments
respectively to demonstrate the superiority of MWSL-TTE.
Sec. 8 gives a summary of this paper and future work.

2 RELATED WORK

In this section, we will discuss several relevant topics about
weakly supervised learning, travel time estimation, as well
as route estimation.

2.1 Weakly Supervised Learning

Since the general supervised learning method requires each
data in the training set to be labeled, this expensive la-
beling consumes a lot of manpower and time. Therefore,
learning under the condition of weakly supervised infor-
mation has become a hot research topic in the field of
machine learning in recent years [21], [22], [23]. The weakly
supervised learning methods focus on addressing the low-
quality labels scenarios 1) incomplete supervision [24] : only
part of data can be labeled. 2) inexact supervision [12]:
only have coarse-grained labels . 3) inaccurate supervision
[25] : only part of the data owns true labels. The task of
estimating travel time from OD can be considered as the
inexact supervision belonging to the category of Weakly
Supervised Learning, where the only observations are the
total travel time and OD locations, but the accurate routes
are unknown. Different from traditional approaches [7],
[26] searching similar historical trajectories from data but
ignoring the city road network structure, in this paper, we
aim to infer the potential route from OD by using transition
probability between road segments, where a set of potential
routes can be seen as a bag, and the OD travel time can be
obtained by summing up the estimated times of the road
segments in bag. To the best of our knowledge, we are the
first to introduce the problem of travel time estimation into
the inexact supervision framework.

2.2 Travel Time Estimation

Various TTE implementations were classified into three
groups, traditional approaches, deep learning-based ap-
proaches and graph neural network-based approaches. Tra-
ditional approaches for TTE include the road-segment-
based and path-based methods. The road segment-based
methods [27], [28] coarsely forecast the route travel time
by summing up all estimated times of roads by using the
data collected from sensors like magnetometer detectors or
highway cameras, which omitted the necessary factor of
intersection and relationship among road segments. And the
path-based methods address the above challenges mainly by
nearest neighbors search [7], [26] and trajectory regression
[28], [29], [30]. Nearest neighbors search (NNS) finds nearby
historical trajectories according to the assumption that the
routes with similar origins and destinations own close travel
time. Trajectory regression methods predict the whole route
travel time based on the given historical trajectories.
Recently, deep learning-based approaches have become
especially important in the task of TTE. These approaches

3

can be divided into two groups, classical deep learning-
based methods and graph deep learning-based methods.
Some classical methods such as deep neural networks
(DNNs) [1] and convolutional neural networks (CNNSs)
[2], [31] have been successfully applied in TTE. For exam-
ple, Deep-TTE [1] proposed a CNN-based framework to
integrate various types of attribute information (such as
weather, time ID and driver ID) for TTE. However, most
of these methods model the road network as a grid-based
map, but they ignore the graphical structure of real-world
road network.

To fully utilize spatial information, GNN is an emerging
tool to analyze the topological relations of graph-structured
traffic data. Especially, Spatial-Temporal Graph Neural Net-
work (STGNN) [32] is a framework that integrates GNN
and temporal processing modules, which can handle spa-
tial relations and temporal trends simultaneously. Due to
the spatio-temporal characteristics of the real-world road
network, STGNN are widely adopted in TTE. For example,
diffusion convolutional recurrent neural network (DCRNN)
[33] modeled the graph-structured traffic data as a diffu-
sion process on a directed graph and transformed spatio-
temporal features into a seq2seq framework. ASTGNN [34]
proposes a trend-aware multi-head attention mechanism to
capture multiple potential correlations in traffic forecasting.
However, these works only consider the spatio-temporal at-
tributes of road segments but ignore the interactive correla-
tions between intersections and road segments. Meanwhile,
both the real route of OD pairs and road condition also have
an important influence on TTE.

2.3 Route Estimation

Another bunch of research in travel time estimation is to
solve the issue of sparse trajectory due to the privacy, busi-
ness competition [4], [5], [6], and limitation of GPS devices,
or in the scene of ETC [35], [36] and surveillance cameras
[37]. A common strategy for solving the sparse trajectory is
to infer the potential route based on the information of the
road network. Reference [4] applies the inverse reinforce-
ment learning to learn the latent cost (reward) of a road
through historical data, and proposed Exact Route Search
approach to find the maximum probabilistic route based on
dynamic programming. However, route search-based algo-
rithms are only adapted in low-sampling rate trajectories,
but not OD problem, due to the heavy computational cost.
Because of the large distance between a pair of toll stations
or surveillance cameras, a frequently used path inferring
algorithm is based on the Depth First Searching algorithm
to find all possible simple paths that the one road segment can
only appear at most once. However, those methods omitting
the real traffic condition tend to generate the unreal route
in the path inferring procedure. To this end, in this paper,
we combine the transition probability and route search
approach together to find the optimal route based on the
real travel time and road network structure.

3 PRELIMINARIES

We start with giving the definition about the road network,
Origin-Destination, simple path as well as route.
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Fig. 2. The graphical model of the data generating process.

Definition 3.1. Road Network. A road network is a directed
graph G = (V, €, ), where V denotes the set of nodes, £ C VxV
is the set of directed edges, and T is a node’s feature set. This paper
uses G, and G. to denote the node-wise and link-wise graphs
respectively. For the 7 in G,, the features of V can be such as,
junction types, and traffic signals. For the 7 in G, the features of
v can be such as, road types, road lanes, and speed limits.

Definition 3.2. Origin-Destination (OD). In this paper, a OD
pair represents a tuple with {e;, e;, t'"}, where e; and e; denote
the start and end road segment, respectively, and tth is the start
time interval of a day (e.g., 8:00am-9:00am). Note that we assume
the traffic conditions for all road segments and intersections are
invariable within the same time slot.

Definition 3.3. Simple Path. A simple path t,. can be presented
as a series of time-ordered links. We have t, : e; — ez — -+ —
€t where each link satisfied e; # e;.

Definition 3.4. Route. A route r in this paper is a sequence
alternating with links and intersections. We have r : e1 — vy —
es = ---ex_1 — Vi, where v; is the intersection of edges pair
(ei—1,€;), and K is the length of r.

4 PROBLEM FORMULATION

To overcome the previous issue with ignoring the road
network in the OD-TTE problem, we here intend to give
a formulation under the weakly supervised learning. This
solution is motivated by the advance in weakly supervised
learning and GCN path inference.

Given a pair of origin and destination, estimating the
travel time is to infer the total time cost. Traditionally,
the formulation of TTE can be divided into two parts: 1)
inferring the future traffic through historical state [3], [38],
2) online infer traffic through real-time trajectories [39]. The
previous one is mainly related to the robust traffic state,
which is calculated on either dense trajectories [3] or loop
detectors [32]. Another one intends to resolve the sparse
issue by estimating (imputation) citywide-level traffic state
from fewer real-time trajectories. Since this paper is under
the OD scenario and hard to give a valid historical traffic
state, we here follow the online TTE formulation. Formally,
this paper follows the assumption that the traffic state at
one road segment in a specific time interval At = 60mins,
e.g., 10:00 am-11:00 am, under the same distribution, such
as, Gaussian distribution NV (1, o) with 4 = 60s and o = 1.
Subsequently, suppose the current time is t, we train the
real-time OD pairs in time slot [t, t + At;), the online traffic
state will be completed and evaluated with the OD pairs in
[t + Aty t + At).

4
TABLE 1
Partial Symbols Description.
Notation | Description
A Links inner transition probability matrix
Q Aggregate function
Qop Set of candidate paths from O to D
f Multi-task function
X Features of links and nodes
Z Unobservable travel time of links and nodes
G, and G. | Node-wise and link-wise graph respectively
Tand T | Ground truth and estimated of travel time
T Time embedding vector
w Learnable parameters

About the training procedure of MWSL-TTE, Fig. 2 il-
lustrates the data generating process with graphical repre-
sentation. OD are the features of origin-destination loca-
tions. X;.x° stands for the features vectors of unobserved
K nodes and links in route » : e; — vy — e3 —

-exg_1 — vk, and Zq.x is the unobservable travel time
of nodes and links. We assume that r is conditioned on OD
and transition matrix A, where A; ; indicates the transition
probability from e; to e;. Therefore, we have p(r|A; OD) =
p(X1:x|A; OD), where A is generated by multi-task func-
tion f with A = f(Wa;Ge), G is the link graph, and
W is the learnable parameters. Meanwhile, Z also under
a parametric distribution p(Z1.x10, = f(X1.x;Wz;)) =
p(Z1.x|(p,0) = f(X1.x;Wz;)) on the factors of X;.x and
Wz, where p and o are the mean and variance of Gaussian
distribution. For the relation between Z;.x and aggregate
observation of travel time 7', we have the following defini-
tion:

Definition 4.1. Given a route r; : e1 — V1 — €3 —

Vg =1 —> €|y, under a pair of OD, and it's unobserved
travel time Zy.;¢ = {te, s tuystess  tog_ystey }- The aggregate
functions Q) can be defined as

Q(Z) = fel +£v1 +E€2 e (1)

where an aggregate function () : Z — T is a mapping
function from unobserved variable Z to observation T. Since
we assume Z follows a Gaussian distribution, we can writ-
ten T = Q(2) St > Wi according to the na-
ture of additivity: X +Y ~ N (u1 + po, 0% + 03), where
X~N (/LLO'%) Y~N (//42,0-%).

oy Uk,

Subsequently, we summarize our assumptions below.
Assumption 1(Aggregate observation assumption) p(7T" |
XI:K7 ZI:K) = p(T | Zl:K)

We here assume that the observation T is conditionally
independent X;.x when given Z.i (Def. 4.1). Intuitively,
given Z, in fact, the travel time T can be obtained by
summing up all components in Z.

Assumption 2 (Markov chain assumption) p(Z;.x |
Xix) = p(Z1 | X)) 1ia p(Zi | X Z0)

We assume that the road travel times Z;; are mutually

independent except for Z;, which is consistently under the

5. The subscript for example X;.x denotes an abbreviation for the
set {X1,X2,---, XK}
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Fig. 3. Framework design of MWSL-TTE. The overview of our proposed model is depicted in (a), which includes the route search layer, road
attributes embedding layer, spatial GCN module, and multi-task learning module. (b) is the architecture of the stacked R-GCNs layer, which attempt
to capture both global and local relation by modeling the GRU and R-GCNs together. (c) is our multi-task learning layer, which will estimate the
travel time of links, intersections, and transition probability simultaneously. The transition probability will be updated when the multi-task learning
layer is output, and then, the path search algorithm will work to find the candidate paths.

assumption of Markov chain and extensive applications in
trajectory data mining [40], [41]. Furthermore, since 7' can
be determined by function @), the conditional probability for
p(T | Z1.x) = 6Q(z,.,)(T), where §(-) represents the Dirac
delta function.

To sum up, the objective function in this paper can be
defined as

max p(T; X1.x | 4;0D)
= [ P Zuxc | Xv)dz, i (X1xc|4:0D)

- 0Q(z1.5) (D) Z1:K | X1:1)d 7,5 P(X1:K|A;0D)

_Zin(Zi‘;E(:i—UZi—l) [6Q(Z1K)(T)] p(X1K|A7 OD) (2)
Therefore, according to Eq. (2), our training procedure
could be split into two stages: 1) maximizes the posterior
probability p(Xi.x|A4; OD). 2) maximizes the conditional
probability p(Z1.x | X1.x) to estimate each road segments
and intersection travel time, which can be optimized by
expected log-likelihood [16]:

(W) =E[logp (T | X1.x;W)] ®3)

For ease of reference, some important notations are summa-
rized in Table 1.

We here give a brief summarization of our problem for-
mulation. In this paper, we aim to solve the two challenges
in OD travel time estimation, which are uncertain routes and
uncertain travel time. We intend to infer the potential route
r between source and destination by transition probability
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Fig. 4. In the speed distributions of neighbor road segments during
the 7 days of National Day, we observe that the speed distribution is
highly consistent with the connected type. The color indicate the road
correspondingly.

A. Subsequently, we optimize the travel time distribution
1.k = {fel,fw,fes,~~t~vK_1,t~eK} at r via weakly su-
pervised learning (Eq. (3)). We assume ¢ under Gaussian
distribution NV (u, o). Therefore, transition probability A and
parameter at Gaussian distribution can be generated by
(A u,0) = f(W;Gy;Ge), where p,o are the mean and
variance in Gaussian distribution, respectively.

5 METHODOLOGY

In this section, the MWSL-TTE will be detailedly introduced.
Specifically, the overview of MWSL-TTE has been depicted
in Fig. 3 (a) including with four components included road
attributes embedding layer, spatial GCN module, route
search layer, and multi-task learning module. Fig. 3 (b)
shows the inner structure of the stacked R-GCNs layer, and
Fig. 3 (c) represents the multi-task learning module.
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5.1 Road Attributes Embedding layer

Let each latent variable #; € Z belong to Gaussian dis-
tribution N (;, 0;), which is a common assumption and
widely be used in modeling the travel time distribution
[13], [14], [15]. Given a pair of OD, we have the conditional
probability p(Z1.x|0, = f(X1.x;W2)) = p(Z1.x|(1,0) =
f(X1.x;Wz)). Therefore, one of the tasks for neural net-
work f is to estimate the distribution parameters p, o for
each road segment and intersection. Since the road features
X1.x could affect the travel time estimation Z, we consider
the follow statistical spatial factors as the important matters
for road segments:

e Road types: e.g., primary, primary link, secondary, sec-
ondary link, tertiary, residential, service road, etc.;

o Number of lanes: how many traffic lines in the road;

o Otherwise features: e.g., road length, whether it is a one
way or not, limiting velocity, unique ID;

and intersections, such as

o Node tags: e.g., speed camera, traffic signal, crossing sign,
turn circle, stop sign;

e Node street count: e.g., T-juction X-junction, and 5-way
junction:

o Otherwise features: e.g., unique ID, GPS coordinate.

To obtain the feature representations of both links and
nodes, we use the embedding method [42] to transform each
categorical attribute into a low-dimensional feature vec-
tor by multi;)lying the spatial feature embedding matrices
E € R"” >4 Here, n(*) represents the number of possible
values of the categorical features, and d(*) represents the
embedding dimension. This allows us to share efficient
information among different road segments or intersections,
so that rarely traveled segments could be learned from
those frequently traveled with similar semantic meaning.
Besides the categorical road attributes, we concatenate the
obtained embedded feature vectors together with other road
attributes (e.g., road length and GPS coordinate). Based on
the above feature representations of the dual graph (link-
wise and node-wise), we can obtain the corresponding input
for the subsequent spatial GCN module.

5.2 Spatial GCN Module

After the embedding characteristics of the road attributes
have been obtained, we next introduce the spatial GCN
module serving as modeling the complex spatial relations
from the dual graph. The motivation for introducing R-
GCN:s in the travel-time estimation problem has been rep-
resented in Fig. 4. We can observe that the travel speed is
highly similar with the connected types. For specifically,
even though the Second Section of JianShe North road is
the neighbor of Xiuyuan East and Guoguang road, its speed
distributions are more related to JianShe road, where their
road types are the same. Therefore, we are concerned that
the features of road types, the connected types, for example,
resident — secondary (link level), and secondary (node level),
are also important. To this end, here we introduce the Re-
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lational Graph Convolutional Networks [18] in our model,
which can be defined as

A =0 |3 Y Ciw,@@” +w'n ) @
reRjENT VT

where h{" € R?" is the hidden state of road ; in the I
layer of model with dimensionality dV. N7 denotes the set
of neighboring road segment/intersection indices under the
relation r. W;l), O(l) are the learnable parameters, c; , is the
normalization constant, and o () is the activation function.
In this paper, we set ¢; , = |N/|.

Next, we will introduce the stacking operation based on
R-GCNs. The stacking operation has recently been demon-
strated to prevent local information loss [20], [43]. Thus, we
model the temporal trends in the stacked GCN architecture
combined with the spatial feature representations of both
nodes and links. In this paper, we use a gated recurrent unit
(GRU) [19] as a temporal processing module to incremen-
tally concatenate multi-scale features, which can be written
as

¢® = GRU (h(0>, c<—1>) ,

RO = o (Z S L wOn +w§0>h<0>) ,
.

reRjeENT T

0o (5 5 Lt g 0]

reR jeNy b7

W [l =D RO] 4w [0, p 0]

oo (g 5

C
rERjE/\/,L-T T

®)

where c(!) is the hidden state of the output of GRU, and
¢~ is initialized with 0. h(!) is the latent state of the link
and node at [*" hop. The detailed architecture of the stacked
R-GCNs has been shown in Fig. 3 (b), and the formula of
GRU can be expressed as

0=0 (W, h(t) + O c(t —1) + by, ),
q=0(Wyh(t)+ O4c(t—1) + by,),

c'(t) = tanh (Wj, h(t) + Op, (¢ © c(t — 1)) + by, ) ,
ct)=00h(t—1)+(1—-0)®(t) (6)

where W, , O,,, W,,,04,, W}, , Oy, are the learnable pa-
rameters, and by, , by, , by, are biases.

5.3 Multi-task Learning Module

In this section, we will introduce the productions of MWSL-
TTE and the route recovery algorithm together.

5.3.1 Generating nodes and links travel time

As we mentioned in Sec. 4, the task of TTE can be formu-
lated as given the real-time OD pairs and the corresponding
observation T in [t, t + At;), we aim to complete the travel
time for all links and nodes, and evaluate them using the OD
pairs in [t + Aty, t + At). To address the data sparse issue,
this paper formulates it as the problem of tensor completion
[44] by tensor decomposition technique, a popular method
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for traffic missing value imputation method. Since urban
travel time has typical temporal and spatial distribution
characteristics, it can frequently be divided into two levels:
one is the modeling of road segments or intersections in
space, and the other is temporal embedding in time (such
as Weather ID and Holiday ID). Based on the above spatio-
temporal embedding, we finally employ the 1st order CP
decomposition to reconstruct the travel time distribution as

pe = (RTIW, +b,,)®Ti, 0c = (RO W,, +b,) @ T
My = (th)W#v + buu) & 7; Oy = (ha(JHl)Wov + bav) & 7;»

where (i.,0, € RI€I=1 and Ly Oy € RIVIX! are the mean
and variance in Gaussian distribution for link and node
respectively. W, , W, W, W, € R xd Y bu.,bs, €
RI€!, and b,,,b,, € RIVI are the parameters in the fully
connected layer (FC). 7 € RIV %1 s the embedding tensor
of time, and 7; € R ™" *1 denotes the embedding vectors
in real-time interval. We discretize the day of time into [
time slots (e.g., At=15 minutes). According to expected log-
likelihood in Eq. (3), since the normal distribution is closed
with addition, the loss function can be derived as

1K) — 1: ? 1 2vi
- R GO
= 7—<T — QQ((TI;LK)) — %log (27r02) , (7)

where @) is the aggregation function defined in Def. 4.1, and
K denotes the number of samples in bag. In this paper, bag
is equal to route (Def. 3.4) between origin-destination.

5.3.2 Transition Probability Generative Layer

We thereafter introduce the detailed structure of the transi-
tion probability generative layer to generate the link tran-
sition probability by using edges features h(!*1) (Eq. (5)).
Technically, for the last two layers, we use the multi-layer
perceptron (MLP) to produce the weights of links

s = MLP (1% |4

where || is the operator of features-wise concatenation, and
then apply the softmax layer over outgoing links

exp(a;—;)
vnEV; exp(a;—n)
After that, the transition probability in Eq. (8) will be em-
ployed in the Route Search Layer. For simplicity, we use

the transition matrix A € RIV*IVI to represent all links’
possibilities; for example, we have A[i, j] = P(e; | e;).

plej | ei) = > ®)

5.3.3 Route Search Layer

As aforementioned, the shortest route algorithms omit the
condition of the road in practice. To solve this problem, we
intend to construct the transition probability between road
segments and combine the transition probability to infer the
route. However, considering the complex highway graph,
there are a tremendous number of routes for any OD pair.
It would be reasonable to prune the routes through some
thresholds. Therefore, in this paper, we prune the route from
two aspects: 1) The lengths of the simple route r from origin

7

o to destination d should satisfy r.length < rsport + Olens,
where 7450t is the shortest simple route and 6jeps is the
distance threshold. 2) the co-occurrence probability of a
simple route P(r|OD;A) should also meet the criteria
P(r|OD; A) > Oprobs, Where 015 is the probability thresh-
old. Next, we will introduce the definition of probability
P(r|OD; A). According to Assumption 2 and Eq. (8), the
co-occurrence route probability

K
p(r) = Pler,ea,---ex) = pleo) [ [ plei | eizr),

i=1

)

where e is the origin location, and we have p(eg) = 1.

After the strategy of pruning has been introduced, the
candidate routes can be obtained by the Depth First Search
(DFS) algorithm. Specifically, we generate the candidate
route set Qop via posterior probability p(r|OD; A) and
choose the route with maximum probability as the optimal
solution. Formally, given an OD pair and observation 7', the
optimal route r* can be written as

r* =arg max p(r; | OD; A;T; Z)
r€Q0D

=argmin|T — Y ul) — > wll)|, ¥rj € Qop. (10)

e;Er; ViET

Eq. 10 selects the most suitable route r* regarding current
travel time .

5.3.4 Model Training

Next, we will introduce the optimizing procedure of MWSL-
TTE. As we discussed in Sec. 5.3.3, the top m maximum
routes have been obtained, and we chose the most satisfied
one by Eq. (10). However, such a choice may fall into a local
solution, and other candidate routes might never be picked.
To address this problem, we here introduce the e-greedy
algorithm, which means that the route satisfied Eq. (10) will
be chosen in 1 — € probability. Otherwise, randomly select
the routes with top m maximum probability in € probability.
Moreover, we wish that the transition probability could help
us infer the most possible route based on the ground truth
(observation travel time). So, we here adopt the Kullback-
Leibler (KL) divergence to measure the coherence, which
can be written as

D (PIQ) =~ Y P(i) ng?), a1

i)
where P is the probability distribution of each route in the
candidate set, and Q is the inverse estimation loss distri-
bution between Q(u) and ground truth. In other words,
the optimization direction is towards both higher route
probability and more accurate travel time estimation. For
the route picked up through Eq. (10), the Negative Log
Likelihood (NLL) loss has been employed to minimize the
negative log likelihood function, which can be defined as

[tr|

Lip = — Zlog(p(ei | ei-1,0)), 12)
i=2

where 6§ is the model’s trainable parameters to represent
the posterior probability. By fusing all objective functions
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together, our model is trained to minimize the weighted
combination of three loss terms

L=aLly,q,+ BLy+ (1—-a—p8)Dku(P|Q)

where o and f3 are the const parameter to balance three loss
terms L, o, Lyy and Dkr,(P||Q). The training pseudocode
of MWSL-TTE has been depicted in Algorithm 1.

(13)

Algorithm 1: Training Procedure of MWSL-TTE

Input: OD datasets D, node-wise graph §,,, link-wise
graph G., and number of candidates routes N

Output: OD TTE estimation function f

while not convergence do

2 | (p,0,4) = f(W:Gu;Ge)

3 for OD € D do

1. Generating Top IV candidates route set Qop

2. Select the route r; from Qop through e-greedy

3. Calculate the loss by Eq. (13) and update the

parameters through back-propagation.

[

4 end
5 end
return f

(=2

6 EXPERIMENTS

In this section, various experiments will be conducted based
on a wide range of public real-world taxi dataset in Xi’an,
and Chengdu to evaluate the superiority of MWSL-TTE in
TTE and route recovery aspects.

6.1 Datasets

Road Networks. We use two road networks: Chengdu
Road Network and Xi’an Road Network. Both of them are
extracted from OpenStreetMap [45], and include nine road
types (trunk, trunk link, freeway link, primary, primary
link, secondary, secondary link, tertiary, tertiary link). Here,
Chengdu road network contains 8221 edges and 5182 nodes,
which ranges from 30.63° to 30.69° in latitude and 104°
to 104.07° in longitude. And Xi’an road network contains
4780 edges and 3782 nodes, ranging from 34.20° to 34.29° in
latitude and 108.90° to 108.99° in longitude.

Taxi OD Orders. We use two public taxi trajectory datasets
come from the Didi Express platform to generate the OD
orders. Each generated order corresponds to a trip record
that consists of the time-stamps and locations of an OD.
Here, we implement Xi’an dataset that is from 10/10/2016
- 10/22/2016, and Chengdu Dataset is from 08/18/2014 -
08/24/2014 (a whole week from Monday to Sunday). The
GPS points of both two datasets have been tied to the road
and the interval of sample trajectory points is 2-4s, ensuring
that the vehicle trajectory can correspond to the actual road
information. Especially, we generate the ground truth route
of the original vehicle trajectories for the route recovery task
via a map-matching tool FMM [46].

6.2 Baseline Methods and Metrics

We first compare our models with six baseline methods for
the task of OD travel time estimation:
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o TEMP: Temporally weighted neighbors [7] is a nearest-
neighbor-based approach that estimates the OD travel
time by averaging the travel time of all historical trajec-
tories falling in the same time slot with a similar origin
and destination.

¢ GBDT: Gradient boosting decision tree [47] is used for the
regression of OD travel time estimation.

¢ STNN: Spatio-temporal deep neural network [8] is a deep
neural network-based approach that first predicts the
travel distance given an OD pair, and then combines this
prediction with the departure time to estimate the travel
time.

o MURAT: Multi-task representation learning [9] is a deep
neural network-based approach that jointly predicts the
travel distance and the travel time for taxi orders by
learning representations of road segments and the origin-
destination information.

« DCRNN: It exploits GCN to capture spatial dependency,
and then uses recurrent neural networks to model tempo-
ral dependency [33]. We implemented this model based
on OD estimation prediction of road network. The hidden
vector size of GCN and GRU are set as 20 and 128,
respectively.

¢ ConSTGAT: This model adopts a graph attention mech-
anism to explore the joint relations of spatio-temporal
information [48]. The parameter setting is basically same
with the original model. In the integration module, we
also use two-layer MLP.

o ASTGNN: This model consider multiple factors in traffic
forecasting, such as, periodicity, spatial heterogeneity by
leveraging a trend-aware multi-head attention mechanism
[34]. The number of layers for both encoder and decoder
is set to 3. And the kernel size of convolution is set to 5.

Moreover, for the task of OD route recovery, we compare
with two representative baselines of route recovery from
sparse trajectories. Both of them are based on inverse rein-
forcement learning to capture the spatial transition proba-
bilities, and the difference between these two models is that
the temporal components:

o STRS: Spatio-temporal-based route recovery system [4]
seeks to recover the route from sparse trajectories.
The temporal components of STRS comprise a matrix
factorization-based method.

e DeepGTT-STRS: Li et al. [3] proposes a deep genera-
tive travel time estimation model named DeepGTT that
replaces the temporal component of STRS.

Evaluation Metrics. For the OD travel time estimation

of our MWSL, we evaluate the performance with RMSE

(Root Mean Square Error), MAE (Mean Absolute Error), and

MAPE (Mean Absolute Percentage Error). Then we adopt

the accuracy of route recovery as the main performance

metric for the route recovery task. It is defined as the ratio
of the length of a correctly inferred route to the length of the

ground truth route Rg or the inferred route R; whichever
(RcNRy).len
maz{Rg.len,Rr.len}"

is longer, i.e., accuracy =

6.3 Experimental Settings

The experiments are implemented with PyTorch 1.6.0 and
Python 3.6, and trained with a RTX2080 GPU. The platform
ran on Ubuntu 16.04 OS. We trained the models using Adam
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TABLE 2

Performance of MWSL and its variants for OD travel time estimation, compared with other baseline methods.
Models Xi'an Chengdu

RMSE (sec) MAE (sec) MAPE ‘ RMSE (sec) MAE (sec) MAPE
TEMP 398.95 277.56 34.24% 446.98 327.99 32.00%
GBDT 365.72 250.63 31.27% 435.88 303.83 30.35%
STNN 353.06 241.19 30.43% 425.53 293.10 28.25%
MURAT 538.23 512.65 127.87% 519.20 503.36 118.62%
DCRNN 282.54 191.41 24.94% 392.45 263.91 25.95%
ConSTGAT 283.89 195.31 25.32% 403.31 280.90 28.16%
ASTGNN 259.46 179.08 23.86% 362.48 244.03 23.52%
N-Node 253.62 173.71 23.04% 367.04 236.18 23.69%
N-GRU 259.52 181.37 24.25% 371.34 240.45 24.03%
N-R-GCN 263.46 184.73 24.60% 364.58 234.37 23.46%
N-PathUpdate 257.62 178.25 23.59% 358.09 229.56 23.15%
MWSL-TTE 238.86 162.37 21.33% 341.02 215.03 22.27%

TABLE 3 TABLE 4

Inference time cost comparison for GCN-based travel time estimation
models. The time unit is second.

Xi'an Chengdu
Models Time (sec) | Time (sec)
DCRNN 0.15 0.16
ConSTGAT 0.41 0.45
ASTGNN 0.34 0.37
MWSL-TTE 0.23 0.25

optimizer with an initial learning rate of 0.001 on both
Chengdu and Xi’an datasets, and early stopping is used on
the validation dataset. Especially, we run each experiment
for three times.

The main hyper-parameter settings of our proposed
method are described as follows:

e In the generation of a candidate route set Q,; m
candidate routes are selected between the OD pairs.
Here, m = 6 is used for Xi'an, and m = 8 for
Chengdu, respectively. Both two hyper-parameters can
ensure that over 90 percents of ground truth route can
be acquired from Qop.

e The number of stacked R-GCN:s is set to 3.

e In the road attributes embedding layer, the embedding
sizes of link feature representation (road ID, road types,
number of lanes and one way or not) are set to 128, 8,
4 and 2, respectively. And the embedding size of node
feature representation (node ID, node type and node
street count) are set to 96, 2 and 2, respectively.

e In the temporal embedding component, we embed
Weather ID and Holiday ID in R® and R*, respectively.

6.4 Experimental Results

We compare our MWSL-TTE with other baseline methods
under two datasets.

Performance on Travel Time Estimation. Table 2 shows
the overall performance of estimating the travel times of
Taxi OD orders. From the performance comparison, we find
that our MWSL-TTE achieves the best performance than

Performance of MWSL and STRS-based baseline methods for route
recovery. The column T.time refers to the training time of the model and
its unit is hour.

Xi'an Chengdu
Models Acc T. time ‘ Acc T. time
STRS 82.71% 3.18 |71.64% 4.74
DeepGTT-STRS 79.39%  3.37 | 68.72%  5.02
MWSL-TTE 86.25% 0.52 | 77.03% 0.69

Unblocked Congested

(a) 9:00 AM, Monday

(b) 22:00 PM, Monday

Hi_ii crossing (ﬂ) traffic signal = bus stop

Fig. 5. The time-consuming ratio for some nodes in the Xi'an road
network. Here, we select three types of nodes including “crossing”,
“traffic signal” and "bus stop”.

other methods in terms of all three metrics. The better
prediction results can be explained in two aspects. First,
our model implements an effective graphical structure to
capture the prior information of road network. Although
all DCRNN, ConSTGAT and ASTGNN model the link-
wise adjacency of road segments, the node-wise features
especially traffic signal junctions are ignored. Thus, these
three models without considering the node-wise adjacency
cannot achieve higher accuracy. Second, given an OD pair,
our weak supervision-based method can study the travel
time distributions of the links and nodes. Compared with
Taxi OD estimation baselines such as STNN and MURAT,
in-process information of OD pairs improves our estimation
results.

Ablation Study. In Table 2, except for the comparison
experiment with the six baseline methods, we also con-
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TABLE 5
Performance of MWSL under different combinations of oo and 3 based on Xi'an and Chengdu dataset for both OD travel time estimation and route
recovery.
Datasets Xi'an/Chengdu
Parameters TTE Route recovery
RMSE (sec) MAE (sec) MAPE (%) | Acc (%)
(a=1, 5=0) 240.62/354.36 161.12/233.27 21.62/23.17 \
(a=0.8, 5=0.2) 243.63/347.48 164.15/221.19 20.86/22.64 85.94/73.36
(a=0.8, 5=0.1) 238.86/341.02 162.37/215.03 21.33/22.27 | 86.25/77.03
(a=0.6, 5=0.2) 248.41/352.29 167.56/232.34 22.06/22.83 86.92/78.14
(a=0.6, f=0.3) 247.46/358.75 166.55/239.49 22.12/23.39 84.17/73.22
(a=0.6, f=0.1) 249.00/365.27 166.59/237.92 21.84/23.78 80.83/67.50

X Computed distribution
40 7\ Learned distribution

30 /\ : _

20 , \/\/\/\/\/v\/\/\/

10 . . . . . .

07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

(a) Xiaozhai east road (type: “primary”)

80 Computed distribution

Learned distribution

60 \_\
\ AN

40 N \/\/\ //\

20 \ 7/

07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00
(b) East part of second ring south road (type: “trunk™)

Fig. 6. Learned speed distributions of two sample links by MWSL,
compared with the speed distributions computed by the original taxi
trajectories.

duct the ablation study by replacing our MWSL-TTE with
four variations, namely N-Node, N-GRU, N-R-GCN and
N-PathUpdate, to evaluate the effectiveness of different
modules in MWSL-TTE (see Fig. 3). In N-Node, we remove
the node-wise estimation. In N-GRU, we remove the stacked
GRU and only use the same number of layers of R-GCN.
In N-R-GCN, we remove the R-GCN and replace it with
the same number of layers of normal GCN [49]. In N-
PathUpdate, we only implement the initial path as the in-
process trajectories of OD orders and do not update the path
based on the learned travel time and transition probability.
The result comparison, it shows that R-GCN and node-
wise estimation are the most critical parts. Regardless of the
node-wise aspect, the performance becomes worse, and it
proves the importance of modeling the complex adjacency
for both the links and nodes. Furthermore, stacked R-GCNs
with GRU integrate the multiscale information to capture
both global and local features, and path update is also
important in improving the travel time estimation. To sum

up, the key designs of MWSL-TTE are effective.

Time Cost Analysis. Due to the online travel time esti-
mation of our proposed MWSL-TTE, we further compare
the inference time with main GNN-based baselines. As
Table 2 shows, GNN-based travel time estimation mod-
els have significantly better performance than common
deep learning-based methods, with a batch size 32 using a
RTX2080 GPU card. Table 3 provides the inference time cost
comparison for main GNN-based models. Although our
proposed model is slower than DCRNN, the inference time
of our model can acquire a faster inference time comapred
with other relatively complex models. And this inference
time result also proves that our model can process an online
travel time estimation.

Performance on Route Recovery. Table 4 shows the per-
formance of the route recovery task by given OD pairs.
We can find that our path recovery of MWSL has better
recovery accuracy and shorter model training time. STRS-
based methods are very time-consuming due to the long
iterations of inverse reinforcement learning to acquire the
transition probability among road segments. Observe that
the accuracy of Deep-STRS is always worse than that of
STRS. The reason is that a larger sampling time interval be-
tween OD pairs leads to a more inaccurate grid-based traffic
tensor which is the input of DeepGTT to model the traffic
representation. In particular, a more complex Chengdu road
network leads that the recovery accuracy of three methods
dropping as expected.

Hyper-parameter Analysis. To further show the effective-
ness of multi-task components of our model, we conduct
experiments under different combinations of parameters «
and [ based on both of the two datasets. As observed in
Table 5, on one hand, we find that in terms of the TTE task,
the overall TTE performance improves as o changes from
0.6 to 0.8 under the datasets of two cities. However, a = 1
doesn’t achieve the best TTE performance. This is because
that the 3 that controls the loss terms of route recovery also
has some impacts on TTE prediction. More accurate path
updates can bring the improvement of TTE prediction. On
the other hand, the route recovery performance achieves the
best accuracy when a = 0.8 and 3 = 0.1. This indicates
that the Dkr,(P||Q) also plays its part in obtaining a higher
accuracy for route recovery. Furthermore, we compare the
route recovery performance when o = 0.6. The optimal
hyper-parameter is the combination of L, and Dkr,(P||Q)
as well, but excessive loss weight of Dxy,(P|Q) would
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Fig. 7. Comparison between ground truth traffic state and estimated traffic state from MWSL-TTE. Here we use four kinds of colors to represent the
different road states, which can be defined as 1) red - very congested, 2) orange - congested, 3) yellow - slow, and 4) green - unblocked.

cause the poor prediction performance. To sum up, we
conclude that the experimental results demonstrated the
superiority and generality of the multi-task components of
our proposed MWSL.

7 CASE STUDY

Our MWSI-TTE not only can conduct path travel time
estimation and route recovery for OD GPS trips, but also
learn the travel time distributions of the links and nodes
based on weakly supervised learning. Thus, in addition to
the quantified evaluations described in Section 6.4, we also
conduct a real-world case study in Xi’an, which visualizes
the learned distributions of the links and nodes from the
road network. Especially, we conducted the comparison
with road condition computed by original taxi trajectories.

7.1 Learned Distributions for Nodes and Links

On one hand, we first provide the estimation results for
different types of nodes, which are depicted in Fig. 5. We
select three types of nodes in a road network and use the

—e— OurMWSL —e— STRS DeepGTT —e— OurMWSL —e— STRS

DeepGTT

0AM 0AM

21PM 3aM

18PM

128N 1288

(a) Xi'an. (b) Chengdu.

Fig. 8. The 24-h divergence between generated road conditions and
ground truth under datasets of both Xi’an and Chengdu, compared with
the temporal components of two baseline methods.

time-consuming ratio to represent congestion status. The
time-consuming ratio is calculated by dividing the corre-
sponding mean value of learned travel time distributions
by the maximum mean value among all nodes (Noted that
we filter out top 1% largest node travel time). From Fig.
5, we can find that nodes with the “traffic signal” type are
more time-consuming than the other two types of nodes,
and most nodes in the morning peak are easy to become
congested. These indicate that our node travel time estima-
tion is reasonable in both spatial and temporal aspects.

On the other hand, we transform the travel time dis-
tribution into speed distributions in terms of links, and
this transformation process is based on [41]. The reason
for this transformation is that most users drive cars with
a normal speed range (e.g., 10 kmph to 120 kmph), and
thus we can easily analyze the rationality of learned speed
distribution compared with link travel time. Two links’
speed distributions were generated by the proposed MWSL,
as is shown in Fig. 6, and we compared them with the
speed distribution that is computed by the original taxi
trajectories. To test the generalization of our model, we
select two types of links, where the Xiaozhai east road is
a busy link (type: "primary”), and we can find that the
morning and evening peaks are obvious in both learned
speed distribution and computed distribution. Another link
is a highway link, and the commuting pattern only appears
in the evening for both distributions. Based on the above
analysis, it is concluded that the learned distributions of
links can effectively represent different functional types of
links. Furthermore, the mean values p of learned speed
distributions are closer to the ground truth.

7.2 A Demo of the Generated Road Conditions

We generate the road conditions by our MWSL based on taxi
OD trips, and we compare with the ground truth computed
by the original taxi trajectories. Especially, we mark it with
the unblocked state for the road segments without taxi
trajectories. Since the speed limit for each road is varied,
which is primarily defined by road type or road length,
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we use four kinds of colors to represent the different road
states (very congested, congested, slow and unblocked). We
divide the limiting-velocity for each road type equally, for
example, the rate-limiting of primary road is 60kph, so
the interval between very congested is [0,15), congested
is [15,30) ,slow is [30,45) ,unblocked is [45,60). The com-
pared result is shown in Fig. 7. From the comparison of
the generated road condition and ground truth at several
time slots, we can acquire the following insights: 1) similar
traffic state. The road condition generated by our model is
similar to the ground truth. Most road segments have the
same road states, and those road segments with different
road states frequently have a consistent tendency; 2) rational
adjacency correlation. We can find that the road segments
with neighbor segments often have the similar road state
for the generated road condition map. This indicates that
our model can learn adjacency correlation of road network.

To better illustrate the model performance for generated
road conditions, we also conduct quantitative analysis un-
der Xi'an and Chengdu datasets. As is shown in Fig. 8,
we computes the 24-h divergence between generated road
conditions and ground truth. The prediction accuracy is
relatively worse among these three methods from 22:00 PM
to 2AM. This is because that a very small number of OD
pairs in these time slots can not provide efficient model
training for better prediction performance. However, the
plots show that the generated conditions achieve the accu-
racy of around 80% and 70% at ordinary time slots under the
datasets of both Xi’an and Chengdu, respectively. Compared
with ground truth, our weak supervision learning method
can provide believable road conditions only relying on the
OD pairs.

8 CONCLUSION

For the first time, we consider the OD travel time estimation
as an inexact supervision problem and propose a multi-task
framework to infer the optimal route based on transition
probability and learn the travel time distribution for each
road segment and intersection through expect MLE frame-
work [16]. The stacked R-GCN architecture has been em-
ployed to learn the complex relations of the road network,
and we generate the travel time distribution for both road
segments and intersections by 1st-order CP decomposition.
Finally, we produce the transition probability between road
segments by multi-layer perception. Moreover, an iterative
update strategy has been proposed to update the transition
probability and candidate paths during the training process.
We evaluate our model on two real-world public datasets
and verify the effectiveness of our proposed algorithm.
Future work can be concluded in four parts. Firstly, more
potential superior distribution can be developed under the
assumptions of weakly supervised learning, since in this
paper, only log-normal distribution has been employed.
Secondly, more advanced route search algorithms could
be designed based on, for example, transition probability,
travel time, or route probability. Thirdly, more urban sce-
narios, such as buses, subways, and people, can be tried to
extend the applications of weakly supervised learning or
travel time distribution. Lastly, a federated learning-based
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method can be designed, since the OD types of data save
abundant storage costs on the client’s mobile phone.
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