
Semi-Supervised Variational User Identity Linkage
via Noise-Aware Self-Learning

Chaozhuo Li∗, Senzhang Wang†, Zheng Liu∗, Xing Xie∗, Lei Chen‡, Philip S. Yu§
∗Microsoft Research Asia, †Central South University, ‡Hong Kong University of Science and Technology,

§University of Illinois at Chicago
{cli, zheng.liu, xingx}@microsoft.com, szwang@csu.edu.cn, leichen@cse.ust.hk, psyu@uic.edu

Abstract—User identity linkage, which aims to link identities of
a natural person across different social platforms, has attracted
increasing research interest recently. Existing approaches usually
first embed the identities as deterministic vectors in a shared
latent space, and then learn a classifier based on the available
annotations. However, the formation and characteristics of real-
world social platforms are full of uncertainties, which makes
these deterministic embedding based methods sub-optimal. In
addition, it is intractable to collect sufficient linkage annotations
due to the tremendous gaps between different platforms. Semi-
supervised models utilize the unlabeled data to help capture the
intrinsic data distribution, which are more promising in practical
usage. However, the existing semi-supervised linkage methods
heavily rely on the heuristically defined similarity measurements
to incorporate the innate closeness between labeled and unlabeled
samples. Such manually designed assumptions may not be con-
sistent with the actual linkage signals and further introduce the
noises. To address the mentioned limitations, in this paper we
propose a novel Noise-aware Semi-supervised Variational User
Identity Linkage (NSVUIL) model. Specifically, we first propose
a novel supervised linkage module to incorporate the available
annotations. Each social identity is represented by a Gaussian
distribution in the Wasserstein space to simultaneously preserve
the fine-grained social profiles and model the uncertainty of
identities. Then, a noise-aware self-learning module is designed
to faithfully augment the few available annotations, which is
capable of filtering noises from the pseudo-labels generated by
the supervised module. The filtered reliable candidates are added
into the labeled set to provide enhanced training guidance for
the next training iteration. Empirically, we evaluate the NSVUIL
model over multiple real-world datasets, and the experimental
results demonstrate its superiority.

Index Terms—user identity linkage, deep learning, social net-
work analysis

I. INTRODUCTION

Nowadays, users tend to simultaneously join a variety of
social platforms to enjoy different types of services (e.g.,
LinkedIn for job seeking and Twitter for opinion sharing).
When a user registers on a social platform, an identity is
created to represent her unique personal figure including
the demographic information, social relations and published
tweets. Fusing data from different social platforms contributes
to accurately depicting the user figure from multiple perspec-
tives. As an indispensable step in cross-platform social mining,
user identity linkage (UIL), which aims to link identities of a
same natural person across different social networks, has at-
tracted enormous attention considering its significant research
challenges and tremendous practical values. A myriad of real-

life applications can take advantage of successful UIL, such
as social recommendation [1], information diffusing prediction
[2], [3], [4] and network dynamics analysis [5], [6].

Most existing UIL approaches are supervised models, which
need a large number of annotations to train a classifier or
ranker to separate linked identity pairs from unlinked ones
[7], [8], [9], [10], [11], [12], [13], [14], [15]. Considering
the boundaries between different platforms, it is extremely
expensive and time-consuming to manually collect sufficient
annotations. In order to eliminate the dependence on annota-
tions, unsupervised approaches are proposed to link identities
according to some pre-defined discriminative features (e.g.,
screen name) [16], [17], [18], [19] or the distribution sim-
ilarities of social spaces [20]. However, unsupervised meth-
ods often suffer from high false rate as no annotation is
incorporated as the learning guidance [21]. Semi-supervised
learning can utilize both labeled and unlabeled data to help
capture the shape of the intrinsic data distribution, which
is more promising in practice. Existing semi-supervised UIL
approaches usually first capture the inherent similarities be-
tween the labeled identities and unlabeled ones, and then
incorporate these unsupervised information as complementary
to facilitate the identity linkage. Various types of similarity
measurements (e.g., topological connection [22], [14], text
similarity [23], [24] and distribution closeness [21], [25]) have
been extensively studied by previous works.

However, such heuristically defined similarities may be
inconsistent with the actual linkage annotations. For exam-
ple, a same natural person may publish work-related news
in LinkedIn while sharing the daily life in Twitter, leading
to the textual dissimilar. Generally, annotations can provide
more reliable and task-relevant learning signals compared
with unsupervised information. If such supervised signals
can be automatically and accurately augmented, the linkage
performance is expected to be further boosted. Although this
self-learning strategy seems to be a promising solution, only
a few UIL works focus on this topic [26]. The major reason
lies in that linking social identities across different platforms
is quite challenging due to the enormous search space (the
size of m × n given two social networks with m and n
identities respectively). The candidates with high confidence
generated by supervised linkage models may still have a large
chance to be incorrect. As shown in Table I, we select top 50
unlabeled pairs with the highest confidence scores (i.e., linkage
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TABLE I
AN EXAMPLE OF THE ACCURACY SCORES OF THE TOP
CONFIDENT PAIRS LEARNED BY DIFFERENT LINKAGE

MODELS OVER TWO DATASETS.

Methods Twitter-Flickr Weibo-Douban

CoLink 0.46 0.48
SNNAo 0.56 0.52

NSVUILsup 0.66 0.69
NSVUILsl 0.88 0.87

probabilities) and evaluate whether they are correctly matched.
From the results of two SOTA methods (CoLink and SNNAo),
one can clearly see that nearly half of these top samples
are bad cases. Vanilla self-learning models directly add these
untrustworthy pseudo-labels into the ground truth set, which
may introduce and enlarge noises because early mistakes could
reinforce themselves in the iteratively learning process [27].
Hence, a noise-aware self-learning mechanism designed to
filter noises from the confident candidates is indispensable.

In addition, high-quality user representations also contribute
to improving the quality of pseudo-labels. The motivation is
that in the latent representation space, social identities with
similar profiles (e.g., relations and posted microblogs) as well
as the linkage labels should be closely distributed and can
be easily clustered into the same group. Then it would be
much easier to learn a desirable linkage model to generate
reliable pseudo-labels. Existing approaches usually learn user
representations by simple and naive models (e.g., bag-of-
words vectors for the textual data [20], [21] and matrix fac-
torization for the social relation encoding [12]), which cannot
comprehensively reflect the user characteristics in terms of
social relations and posted texts. Another limitation of existing
methods is that each user is embedded as a deterministic point
in the representation space, which ignores the uncertainties in
social networks. Human behavior in the social platforms is
multi-faceted which makes the generation of social relations
uncertain [28]. It is widely recognized that for the identities
with few social relations, their representations bear more
uncertainties than others due to the sparse user generated
data [28], [29]. Without considering the uncertainty of social
networks, the learned user embeddings will be less effective
in the UIL task. Thus, we also focus on how to learn desirable
user embeddings to improve the linkage performance.

In this paper, we propose a deep learning based framework
NSVUIL for Noise-aware Semi-supervised Variational User
Identity Linkage task. Our motivation lies in jointly learn-
ing high quality user representations for supervised identity
linkage, and identifying noisy pairs in the pseudo-labels for
unsupervised self-learning. Specifically, we first propose a
novel supervised identity linkage module, which consists of
the hierarchical attention-based identity modeling component
and the variational identity linkage component. Hierarchical
identity modeling introduces the attention mechanism to fuse
the fine-grained semantic information with social relations,
which is able to learn desirable user representations by
capturing the task-relevant representative user information.

Variational identity linkage component transforms the user
representation to a Gaussian distribution N (µ,Σ), where the
mean vector µ implies the representative features of the users,
and the variance vector Σ innately represents the uncertainty.
Compared with the deterministic embeddings used in the
existing works, Gaussian distribution based representations
are capable of simultaneously preserving the informative user
features and capturing the uncertainties of social networks.
After that, different from the vanilla self-learning strategies,
a generative noise-aware unsupervised module is introduced
to filter the noise from pseudo-labels generated by the su-
pervised linkage module. Then, the rest reliable samples are
added into the ground truth set to provide enhanced training
guidance. These two modules are iteratively trained under a
unified learning framework. The proposed NSVUIL model is
thoroughly evaluated on five pairs of real-life datasets, and the
experimental results demonstrate its superiority.

We summarize our main contributions as follows:
• To the best of our knowledge, we are the first to study

the task of noise-aware variational social identity linkage.
The proposed NSVUIL model is capable of effectively
filtering noises and learning a desirable linkage model
simultaneously.

• We propose a hierarchical-attention based variational
linkage module to capture the cross-platform supervised
signals, and a novel latent variable based generative mod-
ule to perform unsupervised noise-aware self-learning.

• Extensively, we evaluate NSVUIL on five groups of
datasets. Experimental results demonstrate the superior
performance of the proposed approach.

II. RELATED WORK

In this section, we will summarize and introduce the re-
lated works. Existing user identity linkage approaches can
be roughly categorized into supervised, semi-supervised and
unsupervised methods. Most existing methods are supervised,
which view the studied task as a ranking or classification
problem to locate the candidates (identity pairs) with the
highest linkage probabilities [8], [7], [9], [10], [11], [12],
[13], [14], [15]. Man et al. [14] keep major structural reg-
ularities of networks by leveraging the observed anchor links
as supervised information. After that, a stable cross-network
mapping is learned to link identical identities. Mu et al.
[13] optimize objective function jointly with matching/non-
matching pairs and intra-platform relation constraints across
different platforms. Liu et al. [30] propose to model hetero-
geneous behavior by long-term behavior distribution analysis
and multi-resolution temporal information matching. Zhang et
al. [31] introduce the ego graphs to model the influence of
neighbors and further propose the linkage model on the ego-
graph level. Zhang et al. [12] utilize the domain-specific prior
knowledge as guidance and a probabilistic classifier is applied
on a set of extensive profiles extracted for social network
profile linkage. Zhang et al. [32] introduce the popular graph
convolutional network and jointly capture local and global
information for UIL.
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Fig. 1. Framework of the proposed NSVUIL model.

Considering the tremendous information gaps between dif-
ferent social networks, it is labor costing and time-consuming
to achieve sufficient annotations. Thus, several unsupervised
approaches are proposed to automatically locate the linked
identity pairs [16], [17], [18], [19], [20]. Liu et al. [17] propose
to first automatically generate a set of training samples accord-
ing to the rareness of the user names in two social networks,
and then use these samples to train a binary classifier. Lacoste-
Julien et al. [18] propose a greedy approach to align the
attributes of users according to the heuristic text similarities.
POIS [19] uses the trajectory-based attribute features to link
user identities. Li et al. [20] consider all the users in a social
network as a whole and perform user identity linkage from the
level of user space distribution. Earth mover’s distance (EMD)
is introduced as the measure of distribution closeness to learn
the projection function. Although unsupervised approaches
eliminate the reliance on the annotations, they often suffer
from low performance as no annotation is incorporated to
provide the learning guidance.

Recently several semi-supervised methods are proposed to
incorporate unlabeled data to capture the inner data distri-
bution, which are more promising to perform user identity
linkage task. Korula et al. [22] design a simple, local, and
efficient algorithm with provable guarantees and utilize a small
fraction of account linkage to identify a very large fraction of
the network. By considering both local and global consistency,
Zhang et al. [23] propose an energy-based model to link user
identities and develop an efficient subgradient algorithm to
convert the original energy-based objective function into its
dual form. Zhong et al. [24] propose one attribute-based model
and one relationship-based model and make them reinforce
each other iteratively in a co-training framework for identity
linkage. Li et al. [21] incorporate the isomorphism across
social networks as complementary to link identities from the
distribution level. Three adversarial learning based models
are proposed to minimize the Wasserstein distance between
two social distributions. They further propose a multi-platform
based social identity linkage model with partially shared
generators and discriminators, which is also defined under the
adversarial learning framework [25]. Different from existing
approaches, in this paper we aim to link identities in the
self-learning manner. Existing self-learning methods usually

directly add the pseudo-labels into the training labels, which
may introduce and enlarge noises [33]. Our motivation lies in
jointly learning desirable user representations for supervised
identity linkage, and identifying noisy samples in the selected
confident unlabeled pairs for unsupervised self-learning.

III. PROBLEM DEFINITION

A social network is formally defined as N = {U,E}, in
which U = {u1, u2, · · · , un} denotes the user identities in the
social network. Matrix E ∈ {0, 1}n×n is the adjacency matrix
of the undirected social relation graph. Each user is associated
with a set of posted microblogs and user-defined demographic
information (e.g., age, gender, etc.). The studied problem is
formally defined as follows:

Definition 1. Semi-supervised User Identity Linkage. The
input two social networks are formally defined as the source
network S = {US,ES} and the target one T = {UT,ET}.
In addition, a few available linked identity pairs are defined as
A = {(us, ut)|us ∈ US, ut ∈ UT}, in which two identities
us and ut belong to the same person. We aim to learn a
matching function f to locate the rest aligned identity pairs
Y = {(us, ut)|us ∈ US, ut ∈ UT, (us, ut) /∈ A}.

Following previous works [13], [32], two input networks are
partially aligned, which means a set of identities in one social
network do not have the matching ones in the other network.

IV. METHODOLOGY

A. Framework

The framework of NSVUIL is shown in Fig. 1. NSVUIL
includes two major modules: the supervised identity linkage
module to capture the cross-platform linkage signals and the
unsupervised self-learning module to augment the annotations.
Two social networks S and T first go through the supervised
identity linkage module as shown in the center part of Fig.
1. The hierarchical user modeling is proposed to capture
the fine-grained social information in terms of sentences,
microblogs and social relations. The attention mechanism is
introduced to select the task-relevant informative data. Then in
the variational identity linkage part, considering the Gaussian
distribution innately represents the uncertainty property [34], it
is promising to represent an identity by Gaussian distributions,
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i.e. the mean and the variance, rather than a point vector
to incorporate the uncertainty. The user representations are
transformed into the Gaussian distributions, and a Wasserstein
distance based loss is proposed to minimize the distribution
distances between linked identities in the ground truth set.
After fully training the supervised model, we select the most
confident unlabeled samples (i.e., pseudo-labels), and feed
them into a noise-aware self-learning module to further filter
noises as shown in the right part of Fig. 1. Finally, the filtered
reliable annotations are added into the ground truth set for the
next iteration training.

B. Supervised User Identity Linkage

In this subsection, the details of two major components
(hierarchical user modeling and variational identity linkage)
in the supervised identity linkage module are presented.

1) Hierarchical User Modeling: Existing approaches usu-
ally focus on how to design an effective linkage function but
ignore the significance of user modeling part. For example,
[20], [25] employ the bag-of-words method to represent the
posted microblogs, which assumes all words are independent
of each other but ignores the latent semantic correlations
among different words. Some methods [35], [36] only in-
corporate the user attributes but discard the important social
relations. Meanwhile, the microblogs and user attributes in the
social networks are usually missing, fake or meaningless. It is
intractable to select crucial and task-relevant information from
such chaos data. Here we propose a hierarchical attention-
based user modeling component to effectively capture the fine-
grained and complete social user information.
Sentence Modeling Existing approaches usually view a posted
microblog as a single sentence [35], [36]. However, the

maximum length of the users can post in a single microblog is
expanded from 140 characters to 280 characters in the Twitter
platform, which means a single microblog may consist of
several sentences. Hence, we aim to learn the desirable social
user representations starting from the fine-grained sentence
level. As shown in Figure 2, given a sentence si containing T
words [wi1, wi2, · · · , wiT ], it is converted into a sequence of
d-dimensional vectors [ei1, ei2, · · · , eiT] with a pre-learned
word embedding matrix. Then, a bidirectional GRU [37] is
introduced to learn contextual word representations hit, which
contains a forward GRU reading the sentence from wi1 to wiT
and a backward GRU reading words in the opposite direction.
The contextual representation hit of word wit is obtained
by concatenating the forward hidden state and the backward
state of wit learned from two GRUs. After that, the attention
mechanism is employed to learn the semantic importance
of words. The insight is that different words in the same
sentence may have different informativeness. For example, in
the sentence “The apple I bought today is yummy”, the word
“yummy” is more representative than the word “today” on the
depiction of the entity “apple”. The attention score of the t-th
word in the sentence si is formalized as follows:

a
(w)
it = σ(ww · hit + bw),

α
(w)
it =

exp(a
(w)
it )∑T

j=1 exp(a
(w)
ij )

(1)

in which ww ∈ Rdw and bw ∈ R are the parameters in the
attention network. σ is the activation function. αit denotes
the normalized importance of the t-th word compared with
other words. The final representation of the sentence si is the
weighted sum of the word representations based on the learned
attention weights:

si =

T∑
t=1

α
(w)
it hit (2)

Microblog Modeling Microblog modeling aims to aggregate
the learned sentence representations into a final representation
of the belonged microblog. As shown in Figure 2, a microblog
mi consists of K sentences [si1, si2, · · · , siK ]. Considering
the number of sentences in a microblog is comparatively
small, here we directly employ attention strategy without the
contextual representation learning part (GRUs). Similar to
Formula (1), we use a sentence-level attention network to help
our model select and attend to important sentences:

a
(s)
ik = σ(ws · sik + bs),

α
(s)
ik =

exp(a
(s)
ik )∑K

j=1 exp(a
(s)
ij )

,

mi =

K∑
k=1

α
(s)
ik sik

(3)

in which ws and bs are the parameters in the sentence-level
attention network. α(s)

ik indicates the relative importance of the
k-th sentence. The final representation of the microblog mi is



the summation of the sentence representations weighted by the
learned attention scores.
Single User Modeling Assuming user ui has published O
microblogs [mi1,mi2, · · · ,miO], here we aim to learn the
user representation by weighted aggregating these microblogs.
For example, the microblog “Knicks Rules!” reflects more
user preferences than “It’s raining outside”. Thus, we further
employ a microblog-level attention network to distinguish in-
formative microblogs from less informative ones. Considering
the microblog-level attention network is similar to the ones
used in the sentence and microblog modeling, here we skip
the detailed calculations. We denote the learned user repre-
sentation from the posted microblogs as u

(t)
i . Users also have

some demographic information such as interest tags, gender
and locations, which also help depict user figures. In order to
highlight these demographic information, we view them as the
categorical features and represent them with the embedding
matrix Pd ∈ RVd×dd , where Vd is the demographic feature
set and dd is the embedding size. Pd is randomly initialized
and is trainable during the learning process. Considering users
may have different numbers of demographic features, here we
employ max-pooling to learn a single demographic embedding
u
(d)
i . The final user representation ui is the concatenation

of user representation u
(t)
i learned from microblogs and the

demographic embedding u
(d)
i .

Contextual User Modeling Social relations have been proven
to be pivotal in the identity linkage task [20], [38]. Following
the popular graph neural networks [39], here we propose
to encode the social relationships into the contextual user
representations by weighted aggregating the social neigh-
bors. Fusing complementary information from neighbors also
contributes to alleviating the data sparsity issue as the user
attributes are self-defined and can be missing or sparse.

Given a center user uc and her neighbors
[uc1, uc2, · · · , ucN ], we also employ attention strategy
to learn the neighbor weights properly and then weighted
aggregate the contextual semantic information. The attention
score between the center user uc and her neighbor ucn is
calculated as follows:

αcn =
exp(σ(as · [uc||ucn]))∑N
i=1 exp(σ(as · [uc||uci]))

(4)

in which || is the concatenation operation and as is the local-
level attention vector for the neighbors. Learned attention score
αcn denotes how important neighbor ucn will be for the center
node uc. Then the relation-enhanced embedding z

(r)
c can be

aggregated by the neighbor’s features with the corresponding
coefficients as follows:

z(r)c = σ(

N∑
i=1

αci · uci) (5)

Finally, the single user representation uc and the contextual
embedding zc are concatenated as the final user embedding:

z = [z(r)c ,uc] (6)
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2) Variational Identity Linkage: Given the learned user
representation z, most existing UIL methods directly leverage
these deterministic vectors to learn a classifier or ranker as
the linkage model. However, as discussed in the introduction
section, the formation and evolution of the social networks
are full of uncertainties. Meanwhile, Gaussian distributions
innately represent the uncertainty property. Therefore, we
propose to represent users by Gaussian distributions, i.e., the
means and the variances, rather than the point vectors to
incorporate the uncertainty. Each user ui is represented by a
lower-dimensional Gaussian distribution N (µi,Σi), in which
µi denotes the position of user in the embedding space and Σi

investigates the uncertainty of the user. Following the popular
variational autoencoder [40], the variational identity linkage
module includes the following three components as shown in
Figure 3.
Encoder Encoder aims to project the user representations from
different social networks into a shared latent space. The user
representation z learned by the hierarchical user modeling is
fed into the encoder to provide comprehensive user profiles.
Here we take the source identity as an example. Encoder is
implemented as a two-layer multi-layer perceptron:

gs
(1) = σ(W(1) × zs + b(1))

gs = σ(W(2) × gs
(1) + b(2))

(7)

in which W(i) and b(i) are trainable parameters.
Variational Layer The variational layer projects the latent
deterministic embeddings to the Gaussian space to preserve
the uncertainties and informative user features. Two one-layer
perceptron networks are introduced to learn the Gaussian
embeddings by estimating the mean and variance vectors,
respectively:

µs = σ(Wmu × zs + bmu)

Σs = σ(Wvar × zs + bvar)
(8)

in which Wmu, Wvar, bmu and bvar are trainable param-
eters. Each user is represented by a Gaussian distribution, in
which the mean vector µs finds an approximate position of
the identity and the variance term Σs captures the uncertainty.



Decoder Decoder aims to recover the original user representa-
tions from the latent Gaussian distributions, which guarantees
the informative features of social users are properly preserved.
One inherent challenge is that we need to sample the latent
user embedding from her associated Gaussian distribution.
However, this sampling process is a non-continuous operation
and has no gradient, leading to the failure of the back-
propagation. Inspired by the variational autoencoders [40],
we introduce the “reparameterization trick” to tackle this
challenge. A noise vector εs is sampled from a standard
Gaussian distribution. Then the sampled user embedding can
be achieved by the combination of the noise vector and the
corresponding Gaussian distribution:

ĝs = µs + (Σs)1/2 ◦ εs (9)

in which ◦ denotes the element-wise multiplication. In this
way, the gradients can be back-propagated through the entire
model. Decoder also contains a two-layer multi-layer percep-
tron to map the sampled embeddings back to the input space,
which is the same to the one used in the encoder.

3) Objective Function: The objective function of the su-
pervised user identity linkage includes two types of losses:
the identity linkage loss and the reconstruction loss. In this
subsection, we will present the details of these losses.
Identity Linkage Loss Intuitively, the identity linkage loss
ensures the matched identities should be closer than the
unmatched ones. Recall that two Gaussian distributions of
source identity and target identity, N (µs,Σs) andN (µt,Σt),
are estimated by the corresponding variational user modeling
parts. An appropriate statistical measurement is required to
measure the distance between these two Gaussian distribu-
tions. Kullback-Leibler (KL) divergence and the p-th Wasser-
stein distance are two popular distribution distances, in which
Wasserstein distance is more promising as KL divergence is
not symmetric and does not satisfy the triangle inequality
[41]. Moreover, if two distributions are non-overlapping, the
Wasserstein distance can still measure the distance between
them, while KL-divergence fails and leads to vanishing gra-
dients. Thus, we adopt the p-th Wasserstein distance as the
measurement. The calculation of the general-formed Wasser-
stein distance is limited by the heavy computational cost.
Considering the identities are represented by Gaussian dis-
tributions, we explore the 2-th Wasserstein distance as it has
closed form solution to speed-up the calculation and reduce
the computational costs.

Given the input source identity us, we first achieve its
matched target identity ut and one unmatched target iden-
tity ût by negative sampling. The Wasserstein-based identity
linkage loss is proposed as:

Ll =−
∑

(us,ut,ût)

lnσ{W2(N (µs,Σs),N (µt̂,Σt̂))

−W2(N (µs,Σs),N (µt,Σt))}+ λ(‖ Ωs ‖22 + ‖ Ωt ‖22)
(10)

in which σ denotes the sigmoid function. Ωs and Ωt are the
trainable parameters. Hyper-parameter λ represents the weight

Algorithm 1 Training process of the supervised linkage part
Require: source network S, target network T and the
annotation set A

1: Initialize parameters in Ωt and Ωs
2: while L does not converage do
3: Sample a batch of linked pairs ba from set A
4: Sample a batch of unlinked pairs bu from US × UT
5: Combine ba and bu as the training batch
6: In-batch negative sampling for Formula (10)
7: Calculate loss following Formula (13) and update pa-

rameters
8: end while

on the regularization terms. The W2 Wasserstein distance has
a closed solution as follows [42]:

W2(N (µs,Σs),N (µt,Σt)) = ‖ µs − µt ‖22
+Tr(Σs + Σt−2 ∗ (Σ1/2

s ΣtΣ
1/2
s )1/2)

(11)

Loss (10) seeks to maximize the Wasserstein distance of a
negative pair (us, ût) and minimize the distance of a positive
pair (us, ut).
Reconstruction Loss In order to ensure the informative
features of social users are appropriately preserved in the
Gaussian distributions, the user representation zs from the
source network is expected to be reconstructed from the
distribution N (µs,Σs). The reconstruction loss is defined as:

L(s)
r =

∑
s∈Us

‖ zs − ẑs ‖2 +
1

2
(− log Σs + (µs)2 + Σs − 1)

(12)
in which Us is the identity set in the source network. The
first term models the reconstruction capacity. However, only
the first term will force the variables to be stable during the
training process, i.e., the variance of each variable embedding
will tend to be zero. Therefore, following previous works, the
regularization term is added to force the posterior distribution
to be close to the prior one.

The final objective function of the supervised identity link-
age module is the weighted combination of linkage loss and
the reconstruction losses:

L = Ll + β(L(s)
r + L(t)

r ) (13)

in which β is a hyper-parameter to balance the importance
of these two losses. The training procedure of the supervised
identity linkage module is shown in Algorithm 1. Ωs and Ωt

are parameter sets of user modeling modules in social network
and target network, respectively. The unlinked pairs are also
incorporated into the training batches as shown in line 5, which
strengthens the power of reconstruction loss and enlarges the
candidate space of negative sampling. Parameters are updated
until the model converges.

C. Noise-Aware Self-Learning Module

The learned supervised linkage module can locate confident
unlabeled identity pairs with the highest linkage probabilities



as pseudo-labels. Following the identity linkage loss as shown
in Formula (10), the unlabeled identity pairs with the shortest
Wasserstein distances are selected as pseudo-labels. Existing
self-learning methods directly add these pairs into the training
set to start the next training iteration. Considering the search
space is quite huge (|US|×|UT|), the high confident pairs may
not be completely reliable and contain many noises as shown
in Table I. Directly adding these noisy pseudo-labels into the
labeled training set may introduce and enlarge noises because
early mistakes could reinforce themselves in the iteratively
learning process, leading to undesirable performance [33].

Here we introduce a generative latent variable-based com-
ponent to filter noisy pairs [43]. Recall that each user ui is
represented by a Gaussian distribution. In this subsection, we
focus on identifying noises from the pseudo-labels, in which
the representative user features are more important than the
uncertainty. Hence, we only use the informative mean vectors
µi to represent the identities. Given the mean vector µs

of a source identity, the mean vector of its matched target
identity µt is generated by two steps. Considering the pseudo-
labels are either correct samples or noises, a latent distribution
taking one of two possible values should be defined, on which
the Bernoulli distribution thrives. We first sample a random
variable q from a Bernoulli distribution with probability γ:

q ∼ Bernoulli(γ) (14)

in which γ is a trainable parameter. q = 1 means the sampled
µt and µs are matched, and then µt should be sampled from
the following distribution:

µt ∼ N (µs,σ
2
pI), q = 1 (‘matched’) (15)

Otherwise µt is sampled from:

µt ∼ N (µ̂, σ̂2I), q = 0 (‘noise’) (16)

in which N is the Gaussian distribution, µ̂ and σ̂ are the
mean and variance vectors of the noise distribution, and σp

denotes the variance of the positive distribution. All means
and variances are trainable parameters. Then, the conditional
probability of µt is formatted as the combination of two
Gaussian distributions:

f(µt|µs) = (1−γ)N (µ̂, σ̂2I) + γN (µs,σ
2
pI).

The objective is to maximize the likelihood function:

Lsl(γ,σp, µ̂, σ̂) =
∑

log f(µt|µs) (17)

We apply the EM algorithm [44] to maximize the objective
in the presence of latent variables. It is crucial to properly
initialize the EM algorithm to avoid convergence to a local
optima. The supervised identity linkage model is fully trained
based on the ground truth set A. The variance of positive
samples (σp) is initialized by σ2

p = 1
|A|·d

∑|A|
i=1 ‖µsi−µti‖2,

in which d is the embedding dimension. Parameters µ̂ and σ̂
are initialized by calculating the mean and variance of the
entire target platform. γ is set to 0.5. Algorithm 2 shows
the training procedure. In E-step, we select a subset from

Algorithm 2 Noise-aware self-learning part
Require: source network S, target network T , the annotation
set A, the number of confident pairs kc and threshold ε

1: Train a supervised linkage model based on Algorithm 1
2: Select top kc unlabeled identity pairs with the high-

est linkage probabilities along with their mean vectors
{(µsi, µti)}

3: Parameters γ, σp, µ̂, σ̂ initialization
4: γc = 0.5, γp = 0
5: while |γc − γp| > ε do
6: // E-step:
7: gi = p(qi=1|µti, µsi) =

γcN (µsi,σ
2
pI)

f(µti|µsi)

8: kt =
∑
i 1(gi > 0.5)

9: // M-step:
10: Ac = {i|gi > 0.5}
11: Use A and Ac to fine-tune the supervised link model.
12: σ2

p = 1
d·kt

∑
i|gi>0.5 ‖µsi − µti‖2

13: µ̂ = 1
(kc−kt)

∑
i|gi≤0.5 µti

σ̂2 = 1
d(kc−kt)

∑
i|gi≤0.5 ‖µ̂− µti‖

2

14: γp = γc
15: γc = kt

kc
16: end while
17: Output Ac as the filtered reliable samples.

the confident samples which are more likely to be generated
from the positive distributions. Then in the M -step, we use the
selected subset to fine-tune the supervised linkage model and
update the parameters in the two distributions. Through the
iteratively training between E-step and M -step, we can learn
better positive/noisy distributions and select more reliable
candidates. From the results in Table I , with the noise filtering
component (i.e., NSVUILsl), the accuracy of the confident
pairs is significantly improved compared with NSVUILsup,
which will facilitate the training in next iterations.

V. EXPERIMENTS

In this section, we evaluate the proposed NSVUIL model
on multiple real-world social network datasets.

A. Datasets and Preprocessing

Our proposal is evaluated over five publicly available
datasets [21], including two pairs of social networks and three
pairs of academic co-author networks.

Detailed statistics of the datasets are shown in Table II.
• Twitter-Flickr: Twitter and Flickr are two popular social

platforms. In addition, about.me1 website provides an
intermediate platform for users to link and present their
identities on different social websites, which can be
viewed as the ground truth.

• Weibo-Douban: Sina Weibo and Douban are two popular
social platforms in China. Douban users can present their

1https://about.me

https://about.me


TABLE II
STATISTICS OF THE DATASETS.

Dataset Source Network Target Network #Matched

Twi.-Fli. Twitter (3,259) Flickr (4,308) 2,773
Wei.-Dou. Weibo (4,119) Douban (4,554) 3,235

DBLP15-16 DBLP15 (3,881) DBLP16 (5,989) 1,852
DBLP16-17 DBLP16 (5,989) DBLP17 (7,073) 2,570
DBLP15-17 DBLP15 (3,881) DBLP17 (7,073) 1,492

Sina Webo accounts on the homepage, and thus this
linkage information can be crawled as the ground truth.

• DBLP: DBLP2 is a computer science bibliography web-
site. The dataset of DBLP is publicly available. The
published papers along with the authors in three years
(2015, 2016, and 2017) are selected to form three co-
author networks. For each year, Yoshua Bengio is selected
as the center node, and then a co-author subnetwork
is constructed by locating the co-authors who can be
reached within three steps from the center node. The
published papers of one author in this year are viewed
as his/her attributes. Keywords in the papers published
by a researcher are viewed as her demographic data. The
author identities from the DBLP dataset are considered
as the ground truth.

These datasets include social relations, demographic infor-
mation and the posted microblogs. For the social network
dataset, we randomly select 50 microblogs for each user. For
the academic networks, the titles and abstracts of the published
papers are viewed as microblogs. We utilize NTLK3 stemmer
to process the crawled microblogs.

B. Baseline Methods

We select several state-of-the-art baselines including the
semi-supervised and supervised models.
• MAH [45] is a semi-supervised model that incorporates

the network structure information and uses hypergraph to
model the high-order relations.

• COSNET [23] is an energy-based model considering
both local and global consistencies, which proposes an
energy-based model to link user identities and develops
an efficient subgradient algorithm to convert the original
energy-based objective function into its dual form.

• IONE [38] adopts the representation learning approach
to align users across multiple social networks, which
solves both the network embedding problem and the user
identity linkage problem under a unified optimization
framework.

• CoLink [24] is a weakly-supervised model employing
a co-training algorithm to manipulate the attribute-based
and relationship-based models, which reinforce each
other iteratively in a co-training framework.

• ULink [13] introduces a new concept of “Latent User
Space” and optimizes objective function jointly with

2http://dblp.uni-trier.de/
3https://www.nltk.org/

matched/unmatched pairs and intra-platform relation con-
straints across different platforms to conduct user identity
linkage.

• SNNAu [21] aims to learn a projection function which
can not only minimize the Wasserstein distance between
the distributions of user identities in two social networks,
but also incorporate the annotations as the learning guid-
ance. SNNAu is the unidirectional adversarial learning
based alignment model.

• SNNAo [13] is the extension of SNNAu with orthogonal
restriction.

C. Parameter Setup

For the proposed NSVUIL model, we use the GLOVE word
embeddings4 pretrained from Twitter for English texts and use
the word embeddings5 for Chinese texts. The dimension of
trainable vectors in the hierarchical user modeling part is set
to 64. In the variational identity linkage module, the numbers
of neural cells in the layers of encoder are {64, 32}, the weight
λ is set to 0.3, β is set to 0.4. In the self-learning module,
the number of high confident samples kc is set to 50 and the
threshold ε is set to 0.1. The iteration times of self-training
is set to 3. For the CoLink model, we employ SVM as the
attribute-based model and randomly select the training seeds
from the matched identity pairs. The ULink model is trained
by the constrained concave convex procedure optimization. For
the SNNA models, the number of discriminator training times
in an iteration nd is set to 5, the clipping parameter c is set
to 0.01, the annotation weigh λc is set to 0.2 and the back-
projection weight λr is set to 0.3. Parameters in other baselines
are set according to the original papers.
Evaluation Metric Following the previous work [13], Hit-
Precision is selected as the evaluation metric:

h(x) =
k − (hit(x)− 1)

k
(18)

where hit(x) is the rank position of the matched target user
in the returned top-k candidate target identities. The Hit-
Precision is calculated by averaging scores of the matched
identity pairs:

∑i=m
i=0 h(xi)

m , in which m is the number of source
identities in the matched pairs.

D. Quantitative Evaluation

For each dataset, Ttr portion of aligned identity pairs are
randomly selected as the training annotations, and Nte linked
pairs are randomly selected as the test samples. Here Ttr is
fixed to 10% and Nte is set to 300. We repeat this process 5
times and report the average Hit-Precision scores.

Table III shows the experimental results with different
settings of k. From the results, one can see that all models
perform better on the co-author networks than the social net-
works, which may be due to the denser topological connections
and comparatively formatted node attributes in the academic
networks. CoLink model achieves the best performance among

4https://nlp.stanford.edu/projects/glove/
5https://github.com/Embedding/Chinese-Word-Vectors

http://dblp.uni-trier.de/
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors


TABLE III
USER IDENTITY LINKAGE PERFORMANCE WITH DIFFERENT k (Hit-Precision SCORE).

Twitter-Flickr Weibo-Douban DBLP15-16 DBLP16-17 DBLP15-17

k k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10

MAH 0.132 0.153 0.192 0.125 0.142 0.191 0.277 0.309 0.354 0.275 0.305 0.356 0.267 0.311 0.363
COSNET 0.144 0.187 0.236 0.132 0.161 0.194 0.292 0.330 0.373 0.288 0.332 0.386 0.289 0.338 0.375

IONE 0.161 0.196 0.242 0.150 0.189 0.232 0.302 0.347 0.397 0.308 0.345 0.396 0.310 0.352 0.377
CoLink 0.193 0.225 0.267 0.171 0.193 0.244 0.322 0.379 0.414 0.310 0.345 0.400 0.317 0.366 0.395
ULink 0.141 0.162 0.199 0.113 0.142 0.198 0.283 0.318 0.359 0.304 0.317 0.375 0.278 0.325 0.366

SNNAu 0.228 0.244 0.295 0.215 0.246 0.282 0.342 0.388 0.437 0.323 0.353 0.427 0.331 0.376 0.423
SNNAo 0.263 0.283 0.321 0.251 0.282 0.311 0.383 0.420 0.461 0.350 0.399 0.457 0.373 0.417 0.469
NSVUIL 0.302 0.329 0.354 0.289 0.331 0.348 0.419 0.462 0.507 0.391 0.433 0.478 0.404 0.445 0.497

TABLE IV
USER IDENTITY LINKAGE PERFORMANCE WITH DIFFERENT TRAINING RATIO Tr (Hit-Precision SCORE).

Twitter-Flickr Weibo-Douban DBLP15-16 DBLP16-17 DBLP15-17

Ttr Ttr=0.1 Ttr=0.3 Ttr=0.5 Ttr=0.1 Ttr=0.3 Ttr=0.5 Ttr=0.1 Ttr=0.3 Ttr=0.5 Ttr=0.1 Ttr=0.3 Ttr=0.5 Ttr=0.1 Ttr=0.3 Ttr=0.5

MAH 0.132 0.141 0.163 0.125 0.136 0.156 0.277 0.285 0.316 0.275 0.287 0.301 0.267 0.287 0.318
COSNET 0.144 0.155 0.179 0.132 0.143 0.166 0.292 0.325 0.344 0.288 0.297 0.314 0.289 0.306 0.328

IONE 0.161 0.174 0.197 0.150 0.168 0.183 0.302 0.324 0.351 0.308 0.323 0.369 0.310 0.346 0.363
CoLink 0.193 0.207 0.223 0.171 0.186 0.212 0.322 0.341 0.377 0.310 0.323 0.356 0.317 0.338 0.355
ULink 0.141 0.156 0.174 0.113 0.127 0.133 0.283 0.302 0.331 0.304 0.327 0.344 0.278 0.293 0.328

SNNAu 0.228 0.233 0.256 0.215 0.231 0.247 0.344 0.366 0.390 0.323 0.341 0.375 0.331 0.344 0.371
SNNAo 0.263 0.275 0.292 0.251 0.278 0.296 0.383 0.407 0.433 0.350 0.367 0.389 0.373 0.395 0.434
NSVUIL 0.302 0.319 0.347 0.289 0.303 0.339 0.419 0.455 0.471 0.391 0.418 0.443 0.404 0.428 0.451

all sample-level based approaches (MAH, COSNET, IONE,
CoLink and ULink) as it effectively captures the highly non-
linear correlations between the node attributes and network
topology. The adversarial learning-based methods (SNNAu
and SNNAo) achieve the best performance among all the
baselines, which verifies the incorporation of distribution-level
isomorphism contributes to better identity alignment. SNNAo
outperforms SNNAu by around 4%, which proves the effec-
tiveness of orthogonal restriction. Our proposal consistently
achieves the best performance on all datasets with different
settings, and beats the best baseline SNNAo by more than 2%.
The improvement over the best performing baseline methods
(i.e., SNNAo) is statistically significant (sign test, p-value
≤ 0.01). Overall, the experimental results demonstrate the
superiority of our proposal.

We also conduct another experiment to study the perfor-
mance of user identity linkage models given different training
ratios Ttr. Parameter k is fixed to 3. Training ratio Ttr is
increased from 0.1 to 0.5. Table IV presents Hit-Precision
scores on five datasets. From the experimental results, one
can clearly see that with the increase of training ratio, all
models achieve better performance. It proves that annotations
can provide task-relevant guidance, which is also the limitation
of unsupervised approaches. The proposed NSVUIL model
consistently outperforms baseline methods given different
training ratios. The performance gap between NSVUIL and
other models significantly increases given more annotations,
which indicates the upper bound of NSVUIL is much higher.

E. Ablation Study

Here we perform ablation study on the proposed NSVUIL
model from different perspectives. Parameter k in the Hit-
Precision measurement is fixed to 3, and the training ratio is

TABLE V
ABLATION STUDY ON ATTENTION MECHANISM IN THE HIERARCHICAL

USER MODELING PART.

Method Twi.-Fli. Wei.-Dou. DBLP15-16 DBLP16-17

BOW 0.183 0.178 0.223 0.205
Node2Vec 0.164 0.162 0.204 0.195

LSTM 0.203 0.207 0.257 0.240
TADW 0.224 0.237 0.284 0.269

NSVUILw/o sa 0.284 0.272 0.361 0.364
NSVUILw/o ma 0.284 0.274 0.369 0.353
NSVUILw/o ua 0.275 0.266 0.355 0.375
NSVUILw/o ca 0.278 0.267 0.352 0.378

NSVUIL 0.302 0.289 0.419 0.391

set to 0.1. As the DBLP datasets share similar characteristics,
here we only perform ablation studies over four datasets to
save the spaces.
Hierarchical user modeling Here we investigate the effec-
tiveness of the hierarchical social user modeling part. Firstly,
we aim to prove the usefulness of the attention mechanism at
different levels. Comparison methods are defined as follows:
• BOW is the bag-of-words model. The posted microblogs

are represented as the bag of their words, disregarding
grammar and word order but keeping multiplicity.

• Node2Vec [46] is a network embedding approach to en-
code the topology into the low-dimensional embeddings.

• LSTM [47] is a sequence encoding model. Here a two-
layer LSTM model is employed to encode the semantic
information.

• TADW [48] is a text-associated network embedding
model to capture the text and graph topology.

• NSVUILw/o is the variation of our proposal without the
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Fig. 4. Ablation study on the categories of input data in the hierarchical user
modeling part.

attention mechanism in a specific layer (sa, ma, ua and
ca denote the sentence modeling, microblog modeling,
single user modeling and contextual user modeling layers,
respectively). We use max-pooling instead of attention.

Table V presents the experimental results. The text-based
modeling approaches (BOW and LSTM) outperform the pure
topology method (Node2Vec), which demonstrates that se-
mantic information plays a more significant role in linking
identities than social relations. Without the attention strat-
egy, the performance of NSVUIL drops remarkably. It ver-
ifies that attention strategy is critical to learn desirable user
representations by selecting task-relevant informative entities
(e.g., words, sentences and microblogs) from the noisy social
network data. In addition, NSVUILw/o ua and NSVUILw/o ca
perform worse than other variants, which means the high-level
attentions are more important than the ones in low-levels.

Table V proves the importance of attention schema, while
the effectiveness of different types of input data is still obscure.
Furthermore, we investigate the importance of social relations
and demographic features. Two ablation models are proposed:
• NSVUILw/o d is the variation of our proposal without

the demographic features.
• NSVUILw/o s is the variation of our proposal without

the social relations. Contextual user modeling layer is
removed from Figure 2.

Fig. 4 reports the experimental results. One can clearly see
that the model performance consistently drops without social
relations or the demographic features, which demonstrates
these two types of data both contribute to capturing the
cross-platform linkage signals. On the social network datasets,
model performance presents a larger decline after removing
the demographic features. This may be because demographic
features denote the inherent properties of a natural person
and are more likely to be shared across different platforms,
while social relations are usually full of uncertainties and
noises. Meanwhile, in the co-author networks, NSVUILw/o d
outperforms NSVUILw/o d, which shows that the co-author
relations are more important than the demographic features.
It is reasonable as the collaboration relationships among
researchers are stronger and more trustable compared with the

TABLE VI
ABLATION STUDY ON THE VARIATIONAL IDENTITY LINKAGE MODULE.

Method Twi.-Fli. Wei.-Dou. DBLP15-16 DBLP16-17

SNNAo 0.263 0.251 0.383 0.350
NSVUILd 0.284 0.271 0.396 0.378
NSVUILkl 0.286 0.276 0.403 0.387
NSVUIL 0.302 0.289 0.419 0.391

1 2 3 4 5
Training iterations

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Hi
t-P

re
cis

io
n

ULinkv
ULinkn
NSVUILv
NSVUILn

Fig. 5. Training procedure of the self-learning module.

noisy social relations.
Variational identity linkage Here we study the importance of
the variational identity linkage module. Two ablation models
are designed to evaluate the effectiveness of the proposed
Wasserstein-based linkage loss:

• NSVUILd represents users as deterministic vectors (i.e.,
vector z in Figure 2) instead of Gaussian distributions.
Following previous works [21], the L2-distance between
the source embedding and target embedding is viewed as
the linkage signal. The training objective function is also
a negative-sample based loss similar to Formula (10).

• NSVUILkl utilizes the KL-divergence as the distribution
measurement. We simply replace the W2 function in
Formula (10) by the KL-divergence calculation.

Table VI presents the experimental results of different abla-
tion models. The strongest baseline SNNAo is also reported
for comparison. One can see that the simplified version of
our proposal NSVUILd consistently outperforms SNNAo by
nearly 4%, which proves the effectiveness of hierarchical
user modeling and noise-aware self-learning modules. After
representing users as Gaussian distributions, NSVUILkl fur-
ther improves the performance by a small margin. The im-
provements demonstrate the usefulness of Gaussian-based user
representations, while the model performance is hindered by
the inherent limitations of KL-divergence as KL-divergence is
not symmetric and does not satisfy the triangle inequality [41].
NSVUIL outperforms NSVUILkl by nearly 2% by enjoying
the merits of W2 Wasserstein distance.
Noise-aware self-learning module In order to evaluate the
effectiveness of the noise-aware learning module, we design
the following four variations:

• ULinkv: ULink is the strongest supervised learning base-
line. Here we combine ULink and vanilla self-learning
strategy together as the ULinkv model.
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Fig. 6. Identity linkage performance w.r.t the proportion of removed social relations and microblogs.

• ULinkn is the combination of ULink and noise-aware
self-learning.

• NSVUILv replaces the noise-ware learning part in
NSVUIL model with the vanilla self-learning module.

• NSVUILn is the proposed NSVUIL model.
Evaluation is conducted on the DBLP15-16 dataset, k is set to
3 and Ttr = 0.1. We process the self-learning module 5 times.
After each self-learning process is finished, we record the Hit-
Precision scores of the corresponding checkpoint. Results are
shown in Fig. 5. One can see that noise-aware self-learning
outperforms vanilla self-learning with both supervised learning
models, which proves our proposal can effectively remove
the noises from the confident pairs and thus contribute to
improving the linkage performance. Given the same self-
learning settings, the proposed NSVUIL model consistently
outperforms ULink model, which further demonstrates the
proposed attention-based modeling part can learn high quality
and task-relevant user representations. Another interesting
observation is the performance increasing trend of the vanilla
self-learning module slows down from the second iteration,
while the noise-aware one keeps an almost similar growth
trend. This may be because early mistakes affect the learning
of supervised linkage model in the following iterations and
further lead to the failure of the self-learning.

F. Quantitative Evaluation with Sparse Data

As discussed in the introduction section, social data tend to
be sparse and uncertain. Thus, we will evaluate the robustness
of NSVUIL in the scenario of sparse data in this subsection.
Evaluation with sparse social relations. We randomly re-
move Rr percentage of social relations from the original social
networks and then perform social identity linkage. Parameter
k is set to 3 and Ttr = 0.1. We increase Rr from 10% to
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Fig. 7. Parameter sensitivity analysis.

50% to evaluate the performance of various methods under
different proportions of the removed relations.

Figure 6(a) presents the results. One can see that with the
increase of the removed social relations, the performance of
all methods drops. It demonstrates that social relations are
important to the successful linkage. The proposed NSVUIL
model consistently outperforms other methods and it presents
the least performance decline on all datasets. By representing
the users as Gaussian distributions instead of deterministic
vectors, NSVUIL owns powerful expressive capacity and tends
to be more robust, which ensures its stable performance. Fur-
thermore, the noise-aware self-learning mechanism precisely
augments the linkage signals in the unsupervised learning
manner, which also contributes to alleviating the reliance of
model performance on the quality of the input data. The
performance drop on co-author networks is more significant
than the ones on social networks, which demonstrates that the
co-author relations are more stable and trustable compared
with the social relationships.
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                going to bed in an hour and a halfish
                still got four more sociology books to read

                the beach girl5 are performing at Chicago
                thank u to everyone who voted 

                fill in some form things for college 
                watch this while I'm gone

                listening beach girl5 on itunes

sentence-levelmicroblog-level word-level

Fig. 8. The visualization of attention scores in different layers.

Evaluation with sparse tweets. Similarly as above, we
randomly remove Rt (from 10% to 50%) percentage of
microblogs from the original posted texts, and report the
performance of different methods on the remained sparse
data. Figure 6(b) reports the results. One can see that the
removed microblogs have a much larger impact on the linkage
performance than the social relations, which demonstrates
the text information contributes more to the identity linkage
than the social relationships. Although NSVUIL presents a
performance drop trend, it still consistently outperforms other
baselines. With the increase of Rt, the performance gap be-
tween the proposed NSVUIL model and the strongest baseline
SNNAo is enlarged from 4% to 7%, which verifies NSVUIL
is robust to the sparse data.

G. Parameter Sensitivity Study

Here we study the performance sensitivity of NSVUIL
model on two core parameters: the reconstruction weight
β and the number of confident samples kc. Training ratio
Ttr is set to 10% and k is fixed as 3. β varies from 0.1
to 0.5, and kc is set from 10 to 70. Hit-Precision scores
under different settings on five datasets are recorded. Fig. 7
presents the experimental results. From the left sub-figure,
one can see that with the increase of β, the performance
over all the datasets first increases and then decreases, which
demonstrates appropriate reconstruction constraint may benefit
the alignment performance. However, a larger β will lead the
training procedure to focus on the reconstruction task, which
may interrupt and slow down the optimization to reach the
supervised linkage objective. From the right sub-figure, one
can see that with the increase of kc, the performance over all
the datasets first increases and then keeps steady or slightly
increases. It means that the enlarging of kc contributes to
better alignment performance at the beginning as more quality
candidates are provided. A larger kc also leads to more time
consumption, and thus an appropriate kc needs to be carefully
chosen to balance the model efficiency and effectiveness.

H. Efficiency Analysis

In this subsection we analyze the efficiency of the pro-
posed NSVUIL model. The strongest baselines (SNNAu and
SNNAo) are selected as the comparison methods. The iteration

TABLE VII
TRAINING TIME (MINUTES) OF DIFFERENT METHODS.

Method Twi.-Fli. Wei.-Dou. DBLP15-16 DBLP16-17

SNNAu 17.72 19.75 19.13 21.32
SNNAo 19.63 21.24 20.38 23.57
NSVUIL 11.34 14.13 12.56 16.87

times of self-training is set to 3. Running time reported in this
subsection is performed on a Ubuntu 64-Bit Linux workstation
with 4-core Intel Core(TM) i7-6700 2.40 GHz, 128 GB
memory and two NVIDIA Tesla P100 GPUs. Two social
network pairs and two academic network pairs are selected
as the evaluation datasets. Table VII shows the running time
of different models. There is a explicit linear relationship
between the running time and the size of dataset. SNNAo
is slower that SNNAu model as it adds extra computations
to ensure the learned projection matrix to be orthogonal.
One can see that the NSVUIL is faster than the SNNA
models. This is reasonable as SNNAs are adversarial learning
based models, which are time-consuming to seek a Nash
equilibrium through the competition between the generator and
discriminator. Overall, NSVUIL model outperforms strongest
baselines with less training time, which proves its superiority.

I. Visualization

In this subsection, we conduct a case study to further explore
whether our approach can select important words, sentences
and microblogs to learn informative user representations for
social identity linkage. The visualization of the attention
weights in the word-, sentence- and microblog-level attention
networks are shown in Fig. 8. Each line indicates one sentence
and the text inside a dotted box forms a microblog. Four
microblogs are published by the same Twitter user. Darker
color represents higher attention weights. One can see that
the attention networks can effectively select and attend to
important entities at different levels. Based on the highlight
areas, we can infer that the user is a college student who is
fond of Beach Girl5 and sociology. With this explicit user
figure, the linkage model can easily match her to the correct
Flickr user.

VI. CONCLUSION

In this paper, we study the task of semi-supervised user
identity linkage. In order to alleviate the challenge of annota-
tion scarcity, a novel self-learning based approach is proposed
to leverage the unlabeled data and few annotations. Specifi-
cally, a hierarchical attention-based user modeling module is
proposed to effectively capture the semantic and social relation
information. Then, a variational linkage model is designed to
match identities according to the ground truth. Each social
identity is represented by a Gaussian distribution to capture the
uncertainty in the social networks. Finally, we employ a noise-
aware self-learning strategy to improve the quality of pseudo
annotations in the manner of generative latent variable based
learning. Our proposal is extensively evaluated over five real-



life datasets. Experimental results demonstrate that NSVUIL
model consistently achieves the best linkage performance.
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