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on New Affinity Filtering and Membership
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Abstract—Fuzzy C-Means (FCM) is a widely used clustering method. However, FCM and its many accelerated variants have low
efficiency in the mid-to-late stage of the clustering process. In this stage, all samples are involved in the update of their non-affinity
centers, and the fuzzy membership grades of the most of samples, whose assignment is unchanged, are still updated by calculating
the samples-centers distances. All those lead to the algorithms converging slowly. In this paper, a new affinity filtering technique is
developed to recognize a complete set of the non-affinity centers for each sample with low computations. Then, a new membership
scaling technique is suggested to set the membership grades between each sample and its non-affinity centers to 0 and maintain the
fuzzy membership grades for others. By integrating those two techniques, FCM based on new affinity filtering and membership scaling
(AMFCM) is proposed to accelerate the whole convergence process of FCM. Many experimental results performed on synthetic and
real-world data sets have shown the feasibility and efficiency of the proposed algorithm. Compared with the state-of-the-art algorithms,
AMFCM is significantly faster and more effective. For example, AMFCM reduces the number of the iteration of FCM by 80% on
average.

Index Terms—Fuzzy C-Means, affinity filtering, triangle inequality, non-affinity center, non-affinity sample, membership scaling.
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1 INTRODUCTION

C LUSTERING analysis is one of the important topics in
machine learning [1], which has been widely applied in

many fields, including data mining [2], pattern recognition
[3], image processing [4], etc. The clustering algorithm,
which is an unsupervised learning approach, aims to divide
the data sets into multiple clusters by similarity measure,
among which the data points in the same cluster are similar.

In general, the clustering methods are divided into the
hard and soft clustering schemes [5], [6]. The representative
clustering algorithms are C-Means [7] and Fuzzy C-Means
(FCM) [8]. The hard clustering scheme, in which a sample
only belongs to a single cluster, assigns the membership
grades between the samples and the clusters as 0 or 1.
The hard clustering scheme is very simple and efficient.
Inevitably, the hard clustering scheme lacks other distance
information except for the closest distance information in
the update of the cluster centers, which makes the algo-
rithm more likely to fall into bad local minimum. The soft
clustering scheme, in which a sample does not exclusively
belong to a single cluster, allows the membership grades to
vary between 0 and 1. The soft clustering scheme has better
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clustering quality because of its flexibility and robustness
[9].

The C-Means algorithm (Lloyd algorithm) [7] is the most
representative method in the hard clustering scheme. How-
ever, the computational complexity of all samples-centers
distances is very high in C-Means. Thus, many improved
methods have been proposed. Both of these algorithms [10],
[11] were proposed to speed up C-Means by applying a tri-
angle inequality, which are effectively to avoid unnecessary
distance calculations, and achieve higher efficiency. Another
trick to deal with this challenge is region division of clusters
in clustering. Some related research has been done [12], [13],
[14], [15]. In recent, ball C-Means [16] has been proposed to
focus on the efficiency of C-Means by reducing the samples-
centers distance computations. Significantly, the concept
of the neighbor clusters and the partition of cluster are
designed to attain the same performance in less time by the
multiple novel schemes.

As one of the most typical soft clustering methods, Fuzzy
C-Means (FCM) [8] is to divide n samples into c clusters by
membership grade matrix U, in which uij represents the
grade jth sample belongs to ith cluster. FCM is success-
ful in finding and describing overlapped clusters that are
ubiquitous in the complex real-world data (see [2], [4], [17]
and the references therein). However, all samples-centers
distance computations also leads to high computing cost.
Meanwhile, all samples are involved in the update of all
centers by the memberships, which leads to low efficiency
of FCM in the clustering process (see [18], [19])

In theory, the convergence rate theorem for FCM [20] is
proved, which is that FCM converges linearly to the local
minima. Meanwhile, based on the analysis of C-Means [21],
[22], [23], it can be found that when C-Means is close to
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the local minima, the convergence rate of C-Mean drops
from an exponential rate to a linear rate. Since both C-
Means and FCM are alternating optimization algorithm
(AO), Therefore, likewise, the convergence rate of FCM also
drops, when FCM is close to a local minima. Meanwhile, the
convergence rate of FCM is slower than that of C-Means in
the clustering process.

Many researchers have managed to tackle this issue
based on the new update of the centers. Mitra et al. [24]
have designed a Rough-Fuzzy C-Means (RFCM) clustering
algorithm, which absorbs the advantages of fuzzy set and
rough set and enhances the robustness and efficiency of
the fuzzy clustering. Roy and Maji [25] proposed a spa-
tially constrained Rough-Fuzzy C-Means (sRFCM), which
wisely applies the advantages of rough-fuzzy clustering
and local neighborhood information together. Furthermore,
each cluster was divided into the prossibilistic core region
and probabilistic boundary region by sRFCM, which im-
proves the performance of the algorithm. Shadowed sets
in the characterization of rough-fuzzy clustering (SRFCM)
[26] was introduced to improve the clustering quality and
efficiency by optimizing the threshold parameters based on
the concept of shadowed set that affect the lower bound
and boundary region of each cluster automatically. Similar
research can be seen [27], [28], [29], [30], [31], [32] and
the references therein. Unfortunately, unreasonable parti-
tion thresholds will result in undesired clustering results.
Therefore, the partition parameters need to be optimized per
iteration. Inevitably, the computational cost of the selection
of the parameters is very high for the region partition.

To solve it, many research improve the performance of
FCM by constraining the update of the memberships so that
the centers can be updated to their target position more
efficiently [33], [34], [35], [36], [37]. Recently, membership
scaling Fuzzy C-Means clustering algorithm (MSFCM) [19]
has been presented to accelerate the convergence of FCM
and maintain high clustering quality, where the in-cluster
and out-of-cluster samples are identified by a triangle in-
equality. Then, the membership grades are scaled to boost
the effect of the in-cluster samples and weaken the effect of
the out-of-cluster samples in the clustering process.

Although the above-mentioned FCM variants usually
improve the efficiency and effectiveness of the algorithms,
they ignore the low efficiency in the mid-to-late stage of the
clustering process. There are three reasons: 1) the conver-
gence rate of the alternating optimization algorithm (AO)
drops, when the algorithms are in the mid-to-late stage [22];
2) the FCM variants still need to do a full inverse-distance
weighting [18]; 3) all samples are still involved in the update
of all centers [19]. (see detail analysis in Subsection 3.2).

In this study, we first delve into the relationship between
the samples and the centers, and further investigate the
characteristic of the clustering process by dividing it into the
early stage and the mid-to-late stage. Stemming from those
findings, we propose a new accelerated FCM clustering al-
gorithm called AMFCM (affinity filtering and membership
scaling based FCM). In the proposed algorithm, a new affin-
ity filtering technique is put forward to precisely identify the
complete set of the non-affinity centers of each sample (see
Definition 1 in Section 3), and a new membership scaling
method is suggested to accelerate the whole convergence

process of the algorithm.
The main contributions of this paper are as follows:

1) We design a new affinity filtering scheme, which is com-
posed of c triangle inequalities, to discover all samples-
centers affinities. Compared with the previous methods
by the triangle inequality in [11] and [19], the designed
scheme can identify the complete set of the non-affinity
center set of each sample more precisely with very low
computational complexity. Compared with the works
in [12], [24], [26], [32], the new affinity filtering scheme
is parameter-free.

2) We propose a new membership scaling scheme to ac-
celerate FCM convergence, especially in the mid-to-
late stage. The new membership scaling scheme sets
the membership grades to 0 in the update of the non-
affinity centers, which eliminates the effect of the sam-
ple on the update of its non-affinity centers and reduces
the burden of the fuzzy clusterings in efficiency, and
maintains the original update of the remaining centers
for each sample.

3) By integrating those schemes with FCM clustering, we
propose a new accelerated clustering algorithm called
AMFCM, which is the first work that focuses on accel-
erating the whole convergence process of the FCM-type
clusterings.

4) Several experimental results on synthetic and real-
world data sets illustrate that the proposed AMFCM
outperforms the state-of-the-art algorithms in efficiency.
For example, AMFCM reduces the number of the itera-
tion of FCM by 80% on average.

The paper is organized as follows. Section 2 presents
some preliminaries including notations, C-Means, FCM, and
the related clustering algorithm. The research motivation is
described in Section 3 and a new algorithm is presented
in Section 4. The experimental results with discussion are
reported in Section 6 and Section 5 concludes the paper.

2 PRELIMINARIES

In this section, some related clusterings are briefly
relisted for the convenience of the following discussion.

2.1 Notations

Let a data set be X = {x1,x2, · · · ,xn} with xj ∈ Rp,
and the cluster centers be V = [v1,v2, · · · ,vc], where
vi ∈ Rp is the centroid of the cluster Ci for i = 1, 2, ..., c.
t is the number of iterations. The distances between xj and
the cluster centers V are dij = ‖xj − vi‖(i = 1, · · · , c)
and they are rearranged in ascending order as D

(1)
j ≤

D
(2)
j ≤ · · · ≤ D

(c)
j . Displacement of the center vi after one

update is denoted by δ(t)
i = d(v

(t+1)
i ,v

(t)
i ). The membership

grade matrix is denoted by U = [uij ] ∈ Rc×n, where uij
represents the grade of jth sample belonging to ith cluster.

2.2 C-Means

C-Means clustering [7], as the most representative algo-
rithm in the hard clustering, aims to find the c partitions
of X by minimizing the within-cluster sum of the distance
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from each sample to its nearest center. The underlying
objective function is expressed as follows:

min
U,V

JHard(U,V) =
c∑
i=1

n∑
j=1

uij‖xj − vi‖2,

s.t.
c∑
i=1

uij = 1, uij = 0 or 1,

(1)

To solve problem (1), which is NP-hard, C-Means [7]
consists of two steps: the assignment step assigns each
sample to its closest cluster and the update step renews
each of the c cluster centers with the centroid of the samples
assigned to that cluster. The algorithm repeats those two
steps until convergence.

2.3 Fuzzy C-Means

FCM clustering [8], which is a soft clustering, allows a
sample to have membership grades in all clusters instead
of exclusively belonging to one single cluster. FCM parti-
tions X into c clusters by the cluster centers. The objective
function is expressed as follows:

min
U,V

JFuzzy(U,V) =
c∑
i=1

n∑
j=1

umij‖xj − vi‖2,

s.t.
c∑
i=1

uij = 1, uij ≥ 0,

(2)

with the fuzziness weighting exponent m > 1.
To optimize problem (2), FCM usually initializes U(0),

which is a randomly initialized partition matrix, and up-
dates V and U iteratively by

v
(t+1)
i =

n∑
j=1

(
u

(t)
ij

)m
xj

n∑
j=1

(
u

(t)
ij

)m , (3)

u
(t+1)
ij =

 c∑
k=1

(
‖xj − v

(t+1)
i ‖

‖xj − v
(t+1)
k ‖

) 2
m−1

−1

, (4)

until convergence.

2.4 Membership Scaling Fuzzy C-Means

Membership scaling Fuzzy C-Means clustering algo-
rithm (MSFCM) [19] accelerates the clustering convergence
and maintains high clustering quality by using a triangle
inequality and membership scaling. Specifically, the triangle
inequality [10], [11], which is a tool for mining the samples-
centers affinities, is as follows:

Lemma 1. A sample xj cannot change its nearest cluster after
one update, if

D
(2)
j − max

1≤i≤c
δi ≥ D(1)

j + δI∗j , (5)

where I∗j = arg min
1≤i≤c

{dij}.

The samples whose closeness relationships do not
change after one update are filtered out by using the triangle
inequality (5) and Q is taken as the index set of the filtered

samples. The membership grades of the filtered samples are
scaled to accelerate the convergence of FCM. Therefore, the
new update scheme for U(t+1) is as follows:

u
(t+1)
i,j =


M

(t)
j , j ∈ Q(t), i = I∗j

(t),

β
(t)
j u

(t)
i,j , j ∈ Q(t), i 6= I∗j

(t),

u
(t)
i,j , j /∈ Q(t), 1 ≤ i ≤ c,

(6)

where M
(t)
j =

[
1 + (c− 1)

(
D

(1)
j /D

(c)
j

) 2
m−1

]−1

, β(t)
j =

1−M(t)
j

1−u(t)

I∗
j
,j

. Then the update of V in MSFCM is also Eq. (3). In

[19], MSFCM also reduces the participation of the filtered
samples in the update of their non-affinity centers and
increases the participation of the filtered samples in the
update of the remaining centers by scaling the member-
ships. Therefore, MSFCM has good properties, such as fewer
number of iterations, lower time consumption, and higher
clustering quality.

3 MOTIVATION

In this section, the relationship between the samples
and the centers is first described by the following new
Definition 1 and 2.

Definition 1. A cluster center vi is the non-affinity center
of a sample xj , if vi cannot be the nearest center of xj in next
iteration. Let Pj be the set of the non-affinity centers of xj , j =
1, 2, ..., n.

Definition 2. A sample xj is the non-affinity sample of a
cluster center vi, if xj cannot belong to vi in next iteration. Let
Ci− be the set of the non-affinity samples of vi, and Ci− be the set
of the remaining samples, i = 1, 2, ..., c.

Note that if a sample xj is the non-affinity sample of vi
, vi is the non-affinity center of xj , (i ∈ Pj , if j ∈ Ci−), and
vice versa. The current nearest center of xj can not be the
non-affinity center of xj after one iteration. That is, |Pj | ≤
c− 1. Similarly, xj can not be the non-affinity sample of the
current nearest center of xj .

For improving the convergence speed and clustering
quality, the hierarchy of information granules [38], [39]
guides the algorithms to reduce the contributions of the
samples in the update of their non-affinity centers and
increase the contributions of the samples in the update of
the remaining centers. However, two problems need to be
solved. One is how to get the set of the non-affinity centers
of each sample efficiently. The other is how to formulate
the modification benchmarks for the contributions of the
samples in in the update of centers. These two problems
motivate the proposal of two new schemes.

3.1 Searching Non-Affinity Centers by A New Affinity
Filtering

In MSFCM, the affinity filtering scheme (5) can produce
the non-affinity centers of the samples with low computa-
tions. For any sample xj , (5) can identify the complete non-
affinity centers of xj if |Pj | = 0 or c − 1. However, a set
of the non-affinity centers of the sample identified by (5) is
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Fig. 1. Geometric explanation of identifying the non-affinity centers
of xj by the affinity filtering scheme (5). For xj , centers v1, v2, v3

are its nearest, second-nearest, and third-nearest centers, respectively.
The brown star points are the possible position of vi in next iteration.
The radius of the black and gray dot-circles are δi and max1≤i≤c δi,
respectively. In case (1a), v2 and v3 are identified as the complete non-
affinity centers of xj by (5), where |Pj | = 2. In case (1b) and (1c), the
set of the non-affinity centers of xj is considered empty by (5). Actually,
the complete set of the non-affinity centers of xj cannot be accurately
identified by (5) when |Pj | 6= 0, 2. For example, v2 is the non-affinity
center of xj in case (1b), and v3 is the non-affinity center of xj in case
(1c). In case (1d), the set of the non-affinity centers of xj identified by
(5) is complete because |Pj | = 0.

incomplete when |Pj | 6= 0, c − 1. In order to illustrate this
situation, a geometric interpretation is shown in Fig. 1.

In Fig. 1, centers v1, v2, v3 are its nearest, second-nearest,
and third-nearest centers for xj , respectively. Here, c = 3.
The radius of red dot-arcs is the upper bound of v1, d1,j +
δ1, the radius of green dot-arcs is the lower bound of v2,
d2,j − max1≤i≤3 δi, and the radius of blue dot-arcs is the
lower bound of v3, d3,j −max1≤i≤3 δi, for xj . Fig. 1a shows
the situation, where |Pj | = 2 for xj . At this time, (5) ensures
that v2 and v3 are the complete non-affinity centers of xj .
In Fig. 1b and 1c, the set of the non-affinity centers of xj is
considered empty by (5). Actually, the complete set of the
non-affinity centers of xj cannot be accurately identified by
(5) when |Pj | 6= 0, 2. For example, v2 is the non-affinity
center of xj in case (1b), and v3 is the non-affinity center of
xj in case (1c). In Fig. 1d, the set of the non-affinity centers
of xj identified by (5) is complete because |Pj | = 0.

For c ≥ 3, the affinity filtering scheme (5) always recog-
nizes the incomplete set of non-affinity centers of the sample
xj when |Pj | 6= 0, c− 1, because (5) only employs the lower
bound of the second closest center of xj ,D

(2)
j −max1≤i≤c δi,

to screen all samples-centers affinities. More specifically, the
lower bound of its second closest center is used to determine
the affinity between xj and its second closest center, which
is also inaccurate. For example, in the case of the same lower

bound of v2, the affinity between xj and v2 is different
according to Definition 1 in Fig. 1b and Fig. 1c. Therefore,
the precise identification of all samples-centers affinities
should involve the c new lower bounds formed by replacing
max1≤i≤c δi with δi for i = 1, 2, ..., c.

In this paper, a new affinity filtering scheme is proposed,
which is composed of c new triangle inequalities. The lower
bound of ith triangle inequality is dij−δi for i = 1, 2, ..., c, as
shown in Lemma 2. In conclusion, the new affinity filtering
scheme is manipulated to search the complete set of the
non-affinity centers of each sample xj more precisely in
any situation, where 0 ≤ |Pj | ≤ c − 1. To the best of
our knowledge, there is no other effort that contributes to
discussing the capture of the complete set of the non-affinity
centers of each sample in this novel way.

3.2 Refining the Convergence of FCM

In this part, six real-world data sets are clustered by FCM
with random initializations. The details of the data sets are
shown in Section 6. The iterative fuzzy objective value is
applied to analyze the convergence of FCM. The curves of
the convergence of FCM with the iteration t are shown in
Fig. 2, where the y-axis is the ratio of objectives to the initial
value.

Fuzzy Objective Value
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[A]

[B]

[B][A] [A] [B]

[B]
[B]

Fig. 2. Plots of JFuzzy(U
(t),V(t))

JFuzzy(U(0),V(0))
for the iteration t on six real-world data

sets with FCM. The initializations is selected randomly for each data
set. The plots clearly show that the clustering process of FCM can be
divided into stages [A] and [B], where [A] represents the early stage and
[B] represents the mid-to-late stage.

In Fig. 2, it can be observed that the curves of the fuzzy
objectives can be divided into stages [A] and [B], where [A]
represents the early stage and [B] represents the mid-to-late
stage. At the beginning of the iteration, with random initial-
izations, the belongings of the samples are temporary and
uncertain. Therefore, the membership grades are modified
for good clustering results, which enlarges the displacement
length of the cluster centers to reduce the objective value, as
shown in stage [A]. However, the samples in other clusters
always continuously interfere with the update of the centers
given Eq. (3). Once FCM enters stage [B], the convergence
efficiency of FCM drops rapidly [22], which can also be
observed that the curves of the fuzzy objectives of FCM are
quite stable and long in Fig. 2. According to this observation,
it can be inferred that the cluster centers near those target
positions and move in a small step in stage [B], where the
assignment of most samples will not change, except for the
boundary samples between clusters.
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To take this question a step further, the update of vi is
rewritten as vi = (

∑
j u

m
ij )
−1(
∑
j∈Ci u

m
ijxj +

∑
j /∈Ci u

m
ijxj)

in FCM. Clearly, (
∑
j u

m
ij )
−1
∑
j∈Ci u

m
ijxj promotes vi to

approach its final position, and (
∑
j u

m
ij )
−1
∑
j /∈Ci u

m
ijxj pre-

vents vi from approaching its final position, which causes
the cluster centers still keep fluctuating slightly around
the final targets in stage [B]. In this case, although FCM
has not converged, the assignment of most samples has
been determined. Actually, the fuzzy membership grades
are redundant to assess uncertainty for the samples with
the unchanging assignment in the current situation. Those
membership grades are not only expensive to calculate, but
more seriously, the update of those membership grades does
not improve clustering quality. To illustrate this problem,
a geometric explanation of stage [B] of the convergence
process of FCM is presented, as shown in Fig.3.

Data
Centers of the t iteration
Centers of the t+1 iteration

Fig. 3. Geometric explanation of stage [B] of the convergence process
of FCM. The thin red and blue dotted lines are the bisectors between
the clusters in these two iterations, respectively. After one iteration in
[B] stage, centers still have slight changes around the final targets. Note
that the fluctuation of the centers, which hardly affects the convergence
result, will occur many times in stage [B]. In this case, the assignment
of most samples remains unchanged, and the assignment of some
boundary samples, near the thin red and blue dotted lines, is vulnerable
to the slight changes of the centers.

In Fig. 3, the assignment of most samples remains un-
changed in stage [B]. However, centers always have slight
changes around the final targets after one iteration in stage
[B] because of the contributions of the samples in other clus-
ters in the update of the centers. Note that the fluctuation
of the centers, which hardly affects the convergence result,
will occur many times in stage [B], resulting in the slow
convergence of stage [B]. In this case, the assignment of
some boundary samples, near the thin red and blue dotted
lines, is vulnerable to the slight changes of the centers.
Therefore, this is the main reason for the slow convergence
of stage [B].

Regardless of the defects of the alternating optimization
algorithm (AO), the reasons for the slow convergence of
FCM can be summarized as the following two points:

• The contributions of the samples in other clusters in
the update of the cluster centers continuously delay
the whole stages of the convergence process of FCM;

• The fuzzy membership grades are redundant to as-
sess uncertainty for the samples with the unchanging
assignment in stage [B].

As analyzed above, the early stopping in stage [B] can
improve the efficiency of the algorithm. An ideal way to
do this is to pick an appropriate FCM convergence thresh-
old, ‖V(t+1) − V(t)‖. In fact, the selection of convergence
threshold for the early stopping in stage [B] is an extremely
difficult task in unsupervised learning. To illustrate this
problem, ‖V(t+1) − V(t)‖ for the iteration t on six real-
world data sets with FCM are shown in Fig. 4, where
the green point is the beginning of stage [B] of FCM. It
is found that for any data, the appropriate convergence
threshold for the early stopping in stage [B] is difficult to
determine without prior information. Therefore, this paper
adopts a new feasible approach to effectively accelerate the
convergence process of FCM.

 

Fig. 4. Plots of ‖V(t+1) − V(t)‖ for the iteration t on six real-world
data sets with FCM. The plots show that the appropriate convergence
threshold for the early stopping in stage [B] is difficult to determine
without prior information.

This paper hopes to design a FCM-type clustering al-
gorithm that is a good trade-off between clustering effi-
ciency and quality. According to Definition 1 and 2, the
update of vi can be equivalently written in a novel way as
vi = (

∑
j u

m
ij )
−1(
∑
j∈Ci− u

m
ijxj+

∑
j∈Ci− u

m
ijxj). Obviously,

in the whole convergence stages of FCM, the contribution
of the samples in Ci−, (

∑
j u

m
ij )
−1(
∑
j∈Ci− u

m
ijxj), should

be eliminated in the update of vi for the efficiency and
quality of the algorithm. This behavior is very significant
in improving the efficiency of the algorithm, especially
in stage [B], where

∑
j∈Ci− u

m
ijxj has a large proportion

because the assignment of most samples in other clusters
does not change. While the contributions of the samples in
Ci−, (

∑
j u

m
ij )
−1(
∑
j∈Ci− u

m
ijxj), should be preserved in the

update of vi, which promotes algorithm convergence and
ensures clustering quality. Reasonably, fuzzy membership
grades are still meaningful for the samples in Ci− in the
update of vi. The details are presented in Section 4.

4 ACCELERATED FCM BASED ON NEW AFFINITY
FILTERING AND MEMBERSHIP SCALING

In this section, FCM based on new affinity filtering and
membership scaling (AMFCM) is proposed to accelerate the
whole convergence process of FCM and improve cluster-
ing performance. In the proposed AMFCM, a new affinity
filtering method is designed to obtain the complete set of
the non-affinity information more precisely by a new set
of triangle inequalities. Then, a new membership scaling
scheme improves the efficiency of FCM convergence in
stages [A] and [B]. The operation of the new membership
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scaling update is two-fold, including the elimination of
the contributions of the samples in the update of their
non-affinity centers and enhancing the contributions of the
samples in the update of the remaining centers.

4.1 New Affinity Filtering Scheme

In the modified C-Means algorithms [10], [11], the trian-
gle inequality that appears in the affinity filtering scheme (5)
is applied to identify all samples-centers affinities. However,
the triangle inequality is insufficient for FCM according to
the analysis in Section 3.1. Therefore, a new lemma, which
is better applicable to FCM, is presented as follows:

Lemma 2. A cluster center vi is the non-affinity center of a
sample xj after one update, if

d
(t)
ij − δ

(t)
i ≥ D

(1)
j

(t)
+ δ

(t)
I∗j
, i ∈ {1, 2, ..., c}, (7)

where I∗j = arg min
1≤i≤c

{d(t)
ij }.

Proof. In virtue of the triangle inequality for i ∈ {1, 2, ..., c},
there is that

d
(t)
ij − δ

(t)
i = ‖xj − v

(t)
i ‖ − ‖v

(t+1)
i − v

(t)
i ‖ ≤ d(t+1)

ij .

Similarly, there is that

D
(1)
j

(t)
+ δ

(t)
I∗j

= ‖xj − v
(t)
I∗j
‖+ ‖v(t)

I∗j
− v

(t+1)
I∗j

‖ ≥ d(t+1)
I∗j j

.

If d(t)
ij − δ

(t)
i ≥ D

(1)
j

(t)
+ δ

(t)
I∗j

holds, we have d(t+1)
ij ≥

d
(t+1)
I∗j j

. Therefore, vi cannot be the nearest center of xj after
one update. According to Definition 1, we can conclude that
vi is the non-affinity center of xj .

Compared with the previous Lemma 1, which can filter
the complete set of the non-affinity centers only when |Pj | =
0 or c − 1 for each sample xj , Lemma 2 provides a more
efficient and precise affinity filtering scheme for exploring
any situation, where 0 ≤ |Pj | ≤ c− 1.

According to Lemma 2, a new affinity filtering scheme,
which consists of c new triangular inequalities that are
the same as (7), is proposed to more precisely search the
complete set of the non-affinity centers of each sample xj by
employing the lower bounds of all centers in any situation,
where 0 ≤ |Pj | ≤ c − 1. Furthermore, the new affinity
filtering scheme is parameter-free, which does not need
to seek extra thresholds, which determine the non-affinity
centers of the samples. A geometric interpretation for the
new affinity filtering scheme (7) is given in Appendix A.

In this part, Lemma 2 provides a new affinity filtering
scheme, which can search the complete non-affinity centers
of each sample in any situation, where 0 ≤ |Pj | ≤ c− 1. As
analyzed above, the computational cost of the new affinity
filtering condition is very low, because the additional calcu-
lations concern only the displacements of the centers. Next,
a new membership scaling scheme is proposed to accelerate
the whole convergence stages of FCM in Subsection 4.2.

4.2 New Membership Scaling Scheme
As mentioned above in Subsection 3.2, the update of

vi is written as (
∑
j u

m
ij )
−1(
∑
j∈Ci− u

m
ijxj +

∑
j∈Ci− u

m
ijxj).

Based on the new affinity filtering scheme (7), which can
autonomously identify the complete set of the non-affinity
center of each sample xj , Pj , per iteration without much
computational cost and extra thresholds, it can be concluded
that xj ∈ Ci−, if i ∈ Pj ; otherwise, xj ∈ Ci−, i = 1, 2, ..., c.

In this paper, the contributions of the samples in the
update of their non-affinity centers should be eliminated
and the contributions of the samples in the update of the
remaining centers should be increased by the membership
grades for the clustering efficiency and quality of the al-
gorithms. Therefore, a new membership scaling technique
is cleverly designed to better integrate all samples-centers
affinities. In the new membership scaling scheme, the mem-
bership grades are set to 0 to eliminate the contributions
of the samples in the update of their non-affinity centers,
which reduces the burden of the fuzzy clusterings in effi-
ciency. And the fuzzy membership grades still be applied for
the remaining centers. Here, the new membership scaling
scheme for Ũ(t) is

ũ
(t)
ij =



[∑
k/∈P(t)

j

(
d
(t)
ij

d
(t)
kj

) 2
m−1

]−1

, i /∈ P(t)
j ,

0, i ∈ P(t)
j .

(8)

Note that the update of ũij is equivalent to the normal-
ization of the membership grades, ũ(t)

ij = u
(t)
ij /

∑
k/∈P(t)

j
u

(t)
kj ,

for i /∈ Pj . The update of V is the same way as FCM
(Eq. (3)). Obviously, this scheme is simple and efficient.
The required distances between the samples and the current
centers, d(t)

ij , have been calculated. Therefore, the additional
calculations concern only the displacements of the centers in
the determination of Pj based on Lemma 2. The complexity
analysis will be shown in Subsection 4.3.

4.3 The Proposed Algorithm
Accelerated FCM based on new affinity filtering and

membership scaling (AMFCM) integrating with traditional
one is herein proposed. In this new algorithm, after a tradi-
tional FCM iteration, the current U is adjusted by using the
new affinity filtering and membership scaling scheme. The
proposed algorithm is presented as follows in Algorithm 1.

For simplicity, the flowchart of AMFCM is as follows:

V(t)
(4)−→U(t) (3)−→V̄(t+1),δ

(t)
i =‖v̄(t+1)

i −v(t)
i ‖−−−−−−−−−−−−−−−−−−−−−−−−−→

(7), (8)
Ũ(t) (3)−→ V(t+1).

There are the following comments for AMFCM.

• As shown above, the difference between AMFCM
and FCM is the calculation of Ũ(t), which is the nov-
elty of AMFCM. This inserted part can improve the
efficiency and quality of the clustering algorithms.

• The extra cost of AMFCM over FCM is Step 4-9.
The cost in Step 4 is O(ncp), the cost of computing
δi, (1 ≤ i ≤ c) in Step 5 is only O(cp), and the
new cluster filtering technique (7) needsO(n(c−1)),
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Algorithm 1 AMFCM
Input: Date set X = {x1,x2, · · · ,xn}, cluster number c,

fuzzy exponent m, and convergence threshold ε;
Output: Cluster center V.
1: Initialize cluster centers V(0) and set t := 0;
2: Compute d(t)

ij = ‖xj − v
(t)
i ‖, i = 1, ..., c, j = 1, ..., n;

3: Compute U(t) with u(t)
ij =

[∑c
k=1

(
d

(t)
ij /d

(t)
kj

) 2
m−1

]−1

;

4: Compute V̄(t+1) with v̄
(t+1)
i =

∑n
j=1

(
u
(t)
ij

)m
xj∑n

j=1

(
u
(t)
ij

)m ;

5: Compute δ(t)
i = ‖v̄(t+1)

i − v
(t)
i ‖ for i = 1, 2, ..., c;

6: for j = 1 to n do

7: P(t)
j = {1 ≤ i ≤ c | d(t)

ij − δ
(t)
i ≥ D

(1)
j

(t)
+ δ

(t)
I∗j
};

8: Compute ũ(t)
ij according to Eq. (8);

9: end for

10: Compute V(t+1) with v
(t+1)
i =

∑n
j=1

(
ũ
(t)
ij

)m
xj∑n

j=1

(
ũ
(t)
ij

)m ;

11: if ‖V(t+1) −V(t)‖ ≥ ε then
12: Set t := t+ 1;
13: Goto Step 2;
14: else
15: return V = V(t+1);
16: end if

where d(t)
ij in (7) and (8) has been calculated in Step

2. Therefore, the cost of AMFCM is O(3ncp) per
iteration (the cost of FCM is O(2ncp) per iteration).

• The time complexity of FCM is O(nc2ptFCM) [40],
[41], where tFCM is the iteration of FCM. For the
time complexity of AMFCM, the update of the cen-
ters VAMFCM requires O((

∑n
j=1 |Pj |)p) per iteration,

where 1 ≤ |Pj | ≤ c for j = 1, 2, ..., n. With the
update of the membership grade matrix Ũ, the time
complexity of AMFCM is O(nc2ptAMFCM), where
tAMFCM is the iteration of AMFCM. Based on The-
orem 1, tAMFCM < tFCM. Aa a result, AMFCM can
save the running time.

• For any membership grade of AMFCM, ũij ∈ [0, 1]
for i = 1, 2, ..., c and j = 1, 2, ..., n, based on Eq.
(8). Obviously, AMFCM is a combination of the hard
and soft clustering algorithms, which sets the mem-
bership grades to 0 for eliminating the contributions
of the samples in the update of their non-affinity
centers. Meanwhile, the fuzzy-type update way is
performed for the remaining centers. In particular,
AMFCM is a parameter-free and adaptive clustering
algorithm, which can autonomously determine all
samples-centers affinities and the update method.

5 THEORETICAL ANALYSIS

In this section, the convergence properties of AMFCM
are provided. First, the flowchart of FCM and AMFCM in t
iteration are as follows:

FCM : V(t) (4)−→ U
(t)
FCM

(3)−→ V
(t+1)
FCM .

AMFCM : V(t)
(4)−→U

(t)
FCM

(3)−→V
(t+1)
FCM−−−−−−−−−−−−−−−−−−→

δ
(t)
i =‖vFCM

(t+1)
i −v(t)

i ‖,(7), (8)
Ũ(t) (3)−→ V

(t+1)
AMFCM.

Theorem 1. The number of the iteration of AMFCM is smaller
than that of FCM in the clustering process.

Proof. The proof is given in Appendix B.

Theorem 2. AMFCM does not converge precociously in the mid
stage of the clustering process.

Proof. The proof is given in Appendix C.

Theorem 3. For the samples xj with |P(t)
j | = 1, the correspond-

ing hard objective value of AMFCM is smaller than that of FCM
in t iteration.

Proof. The proof is given in Appendix D.

In the next section, several experiments are performed to
illustrate the efficiency of the proposed algorithm.

6 EXPERIMENTAL RESULTS

To verify the effectiveness and efficiency of the proposed
algorithm, experimental studies are carried out on synthetic
and real-world data sets, respectively. AMFCM is compared
with another seven clustering algorithms, including:

1) Fuzzy C-Means (FCM) [8],
2) Rough Fuzzy C-Means (RFCM) [24],
3) Shadowed Set-based Rough C-Means (SRCM), Shad-

owed Set-based Rough Fuzzy C-Means I (SRFCM I),
and Shadowed Set-based Rough Fuzzy C-Means II
(SRFCM II) [26],

4) Rough-Fuzzy Clustering based on Two-stage Three-
way Approximations (ARFCM) [32],

5) Membership Scaling Fuzzy C-Means (MSFCM) [19].
These algorithms are chosen because they use different

techniques to reduce the contributions of the samples in
the update of their non-affinity centers and increase the
contributions of the samples in the update of the remaining
centers for good clustering quality and fast convergence.

All experiments are run on a computer with an Intel
Core i7-6700 processor and a maximum memory of 8GB for
all processes; the computer runs Windows 7 with MATLAB
R2017a. The experimental setup and the evaluation metrics
used for clustering performance are first described. The
fuzziness weighting exponent m = 2 and the termination
parameter ε = 10−6 for all algorithms. In addition, the
weight exponent of the core regionwl = 0.95 and the weight
exponent of the boundary region wb = 1−wl for RFCM [24],
SRCM, SRFCM I and SRFCM II [26], ARFCM [32].

6.1 Evaluation Metrics

In order to evaluate the performances of the newly
proposed clustering algorithms, three external metrics, in-
cluding the overall F-measure for the entire data set (F∗),
Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI) [42], [43], [44], are used. All three metrics are
used to measure the agreement of the ground truth and the
clustering results produced by an algorithm. The metrics
that do not require the labels of data are also used for
performance evaluation, called the internal metrics. The
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Fig. 5. The convergence trajectories of FCM, MSFCM and AMFCM with same initializations on data sets D1 and D2. The convergence trajectories
of the three algorithms on D1 are put together, as shown in Fig. 5a. The convergence trajectories of the three algorithms on D2 are as shown in Fig.
5b, 5c and 5d, respectively. On D1, FCM, MSFCM and AMFCM are converged with 12 (tA=2; tB=10), 10 (tA=2; tB=8), and 8 (tA=2; tB=6) iterations
and take 0.1294, 0.0781, and 0.054 seconds, respectively. On D2, FCM, MSFCM and AMFCM are converged with 30 (tA=8; tB=22), 18 (tA=6;
tB=12), and 10 (tA=3; tB=7) iterations and take 0.2830, 0.1094, and 0.066 seconds, respectively.

three internal validity metrics are selected, including PC
[45], DBI [46], and XB [47].

PC =
1

n

c∑
i=1

n∑
j=1

u2
ij , (9)

DBI =
1

c

c∑
k=1

max
i6=k

1
|Ci|

∑
xj∈Ci

d2
ij + 1

|Ck|
∑

xj∈Ck

d2
kj

‖vi − vk‖2
, (10)

XB =

∑c
i=1

∑n
j=1 u

m
ijd

2
ij

nmini 6=k ‖vk − vi‖2
. (11)

Note that Time and Iteration are the remaining two evalua-
tion metrics for expressing the efficiency of the algorithms.

6.2 Experiments on Synthetic Data Sets
In the first set of experiments, to test the efficiency of

AMFCM in the whole convergence stages, two synthetic
data sets in R2 are implemented to observe the convergence
path. The first synthetic data set contains three clusters,
which are generalized by the two-dimensional Gaussian
distribution with mean vector µi and covariance matrix Σi,
i = 1, 2, 3. The number of data in each cluster is 200, and
the corresponding parameters µi and Σi are µ1 = [10, 10],
Σ1 =

[
0.3 0
0 0.3

]
, µ2 = [13, 10], Σ2 =

[
0.8 0
0 0.8

]
, and µ3 = [11, 4],

Σ3 =
[
1.2 0
0 1.2

]
, respectively. To further reflect the effect of

the contributions of the samples in other clusters on the
convergence of the algorithms, the second synthetic data set
is designed, in which some samples are added to the first
synthetic data set. These two synthetic data sets are called
D1 and D2, respectively.

To illustrate intuitively, the visualized figures of the
convergence trajectories of FCM, MSFCM, and AMFCM
on D1 and D2 for comparison in this part, where same
initializations are selected, are shown as Fig. 5. Time and
Iterations are selected to characterize the performance of
the algorithms. Here, tA and tB are defined as the number of
iteration of the algorithm in stages [A] and [B], respectively.

First of all, the convergence trajectories of FCM, MSFCM,
and AMFCM on D1 are similar, where the total contri-
butions of the samples in the update of their non-affinity

centers are small and not enough to observe. Therefore, the
convergence trajectories of the three algorithms on D1 are
put together, as shown in Fig. 5a. The experimental results
on D1 show that AMFCM performs best, as shown in Fig.
5. From the convergence trajectories on D1, it is observed
that although tA=2 for FCM, MSFCM and AMFCM, tB of
AMFCM is the least with only 6 iterations. On D2, the
contributions of the new added samples in the update of
their non-affinity centers mislead the displacement direction
of the centers by the membership grades for FCM and
MSFCM. Therefore, stages [A] and [B] of FCM and MSFCM
have been extended, where tA=8 and tB=22 for FCM; tA=6
and tB=12 for MSFCM. However, AMFCM completely elim-
inates the misleading of the total contributions of the newly
added samples in the update of their non-affinity centers,
which achieves better performance. From the convergence
trajectory of AMFCM on D2, tA=3 and tB=7 for AMFCM.

Secondly, it is observed that the efficiency of MSFCM is
higher than that of FCM. But the performance of MSFCM
is limited. As analyzed in Section 3.1, the previous affinity
filtering (5) of MSFCM fails to obtain the complete set of
the non-affinity centers of each sample on D1 and D2,
where |P| = 1 for some samples in this stage. Therefore,
MSFCM does not always maintain high efficiency, because
the membership scaling (5) is invalid. However, AMFCM
makes up for this shortcoming.

AMFCM accelerates the whole convergence process of
FCM under same initializations. Both stages [A] and [B]
have been accelerated. Especially, AMFCM can save 67%
of the number of the iteration of FCM on D2. As the
previous complexity analysis, the running time of AMFCM
is decreased. Thus, it can be concluded that the new affinity
filtering scheme (7) is implemented with high efficiency, and
the new membership scaling scheme (8) is outstanding in
terms of efficiency and clustering quality.

6.3 Experiments on Real-World Data Sets

In this subsection, some experiments are done to verify
the clustering efficiency and performance of AMFCM on
real-world data sets.
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6.3.1 Acceleration and Performance of AMFCM

To verify the acceleration of AMFCM in stages [A] and
[B] on real-world data sets, the experiments in Fig. 2 are
redone by AMFCM with the same settings, and the cor-
responding hard-objective of AMFCM are also displayed,
which is to illustrate the clustering characteristics of AM-
FCM, as shown in Fig. 6.
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Fig. 6. Plots of JFuzzy(U
(t),V(t))
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for iteration t on

six real-world data sets with AMFCM. The initializations is selected
randomly for each data set. The plots clearly show that the clustering
process of AMFCM can be divided into stages [A] and [B], where [A]
represents the early stage and [B] represents the mid-to-late stage.

Similar to FCM, the fuzzy-objective and the correspond-
ing hard-objective of AMFCM also can be divided into
stages [A] and [B]. However, compared with Fig. 2, the
number of the iteration of AMFCM is much lower than that
of FCM, which saves at least 76% of the total rounds of
the iteration on these six real-world data sets. Meanwhile,
stages [A] and [B] of the convergence process of AMFCM
are terminated earlier than the corresponding FCM, which
is attributed to the new affinity filtering and membership
scaling schemes, as shown in Fig. 6.

Recently, Nie et al. [48] mentioned that bad local min-
imum makes the objective value not small enough, which
limits the performance of the algorithms. According to this,
the comparison results of the fuzzy and corresponding hard
objective value of FCM and AMFCM on these six real-world
data sets are displayed in TABLE 1.

TABLE 1
Comparison for the fuzzy and hard objective value with FCM and

AMFCM. The values are averaged over 10 trials with random
initializations. The best results are shown in boldface.

Data sets Fuzzy Objective Value Hard Objective Value

FCM AMFCM FCM AMFCM

Arcene 4.297E+04 4.439E+04 6.635E+04 6.261E+04
DrivFace 6.079E+04 6.362E+04 1.315E+05 1.101E+05

Led7 4.302E+02 3.709E+02 3.468E+03 1.468E+03
Satimage 5.988E+02 6.474E+02 1.764E+03 1.389E+03

Shuttle 1.383E+02 1.326E+02 2.925E+02 2.588E+02
Sensorless 1.869E+03 1.919E+03 6.243E+03 4.558E+03

In TABLE 1, the fuzzy objective value cannot achieve a
small value because some values derived by the ordinary
optimization theory are modified by AMFCM. The fuzzy
objective is sacrificed for the efficiency of the algorithm.
However, AMFCM can increase the membership of each

sample to its nearest center through Eq. 8, so that the cor-
responding hard objective of AMFCM is continuously opti-
mized. Therefore, the corresponding hard objective value of
AMFCM is better than that of FCM. Furthermore, AMFCM
not only greatly improves the efficiency of FCM, but also
maintains better clustering performance.

In order to display the performance of AMFCM more
comprehensively, AMFCM is compared with the seven cho-
sen clustering algorithms on the above eight evaluation met-
rics. Moreover, all real-world data sets, which are selected
from UCI Machine Learning Repository1, are clustered by
the chosen clustering algorithms. The detailed information
on the data sets is given in each table title, where n is
the number of training size, p is the dimensionality of
samples, and c is the given number of clusters. The values
are averaged over 10 trials with random initializations and
the standard deviations are given after the means (linked
with ±), and the best results are shown in boldface. In addi-
tion, the corresponding Iteration and Time of the different
algorithms on ten real-world data sets are shown in Fig. 7.

From the experimental results in TABLE 2 and Fig. 7, the
following conclusions are obtained.

• Comparing the first and last columns of each data
set, AMFCM has better performance than FCM on
all data sets in terms of the above six evaluation
metrics in TABLE 2. Moreover, it is worth mentioning
that the efficiency of AMFCM has been improved
in the whole stages, which reduces the number of
the iteration of FCM by 80% on average without
significant computational cost in Fig. 7. Therefore,
AMFCM has also achieved significant savings in
running time. As shown in Fig. 7, the total Iteration
and Time of AMFCM is much lower than that of
other algorithms.

• According to [19], it is found that the cost of AMFCM
and MSFCM are both O(3ncp) per iteration. For the
experimental results of MSFCM in the penultimate
column of each table, the acceleration of MSFCM
on the two data sets failed because the affinity
filtering(5) fails to obtain the complete non-affinity
information as analyzed in Section 3.1, and the low
efficiency of the membership scaling (6), which will
be explained in the next Subsection 6.3.2. In the
remaining eight data sets, although MSFCM is ef-
fective, the acceleration performance of AMFCM in
the whole stages is better than that of MSFCM. Thus,
AMFCM is a successful generalization to MSFCM.

• The remaining five algorithms sometimes have bet-
ter clustering quality than AMFCM, which is due
to the good parameters for the division of each
cluster. In this case, the clustering efficiency of the
algorithms is reduced, as shown in Fig. 7. However,
searching the complete set of the non-affinity cen-
ters is a parameter-free and autonomous process for
AMFCM. In summary, AMFCM is a good trade-off
between efficiency and quality.

According to the summary above, AMFCM can greatly
improve clustering efficiency and quality on real-world data

1. https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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TABLE 2
Experimental results on ten real-world data sets for different algorithms. The values are averaged over 10 trials with random initializations. The

standard deviations are given after the means (linked with ±), and the best results are shown in boldface.

Data sets Metrics 1 FCM RFCM SRCM SRFCM I SRFCM II ARFCM MSFCM AMFCM

PC ↑ 0.655±0.001 0.671±0.001 0.663±0.023 0.698±0.001 0.652±0.001 0.710±0.001 0.655±0.001 0.658±0.001
Arcene DBI ↓ 1.015±0.001 1.031±0.001 1.042±0.167 0.857±0.001 1.124±0.002 1.000±0.001 1.015±0.001 0.831±0.001
n=200 XB ↓ 0.379±0.001 0.357±0.001 0.386±0.001 0.337±0.001 0.405±0.001 0.335±0.001 0.379±0.001 0.316±0.001
p=10000 F ∗ ↑ 0.583±0.001 0.641±0.001 0.633±0.004 0.586±0.001 0.643±0.001 0.649±0.001 0.583±0.001 0.654±0.001
c=2 ARI ↑ 0.027±0.001 0.089±0.001 0.074±0.003 0.030±0.001 0.090±0.001 0.091±0.001 0.027±0.001 0.091±0.001

NMI ↑ 0.018±0.001 0.091±0.001 0.066±0.001 0.020±0.001 0.086±0.001 0.085±0.001 0.018±0.001 0.087±0.001

PC ↑ 0.420±0.001 0.489±0.001 0.479±0.010 0.487±0.006 0.477±0.009 0.445±0.001 0.461±0.001 0.490±0.001
DrivFace DBI ↓ 15.7±0.1 2.641±0.011 3.638±1.375 2.258±.0461 4.964±1.809 2.666±0.810 2.677±0.001 1.644±0.001
n=606 XB ↓ 5.354±0.001 0.897±0.004 1.685±0.425 1.187±0.267 1.732±0.601 0.936±0.072 0.902±0.001 0.567±0.001
p=6400 F ∗ ↑ 0.558±0.001 0.576±0.005 0.541±0.001 0.576±0.004 0.571±0.003 0.566±0.001 0.587±0.001 0.597±0.001
c=3 ARI ↑ 0.016±0.001 0.021±0.001 0.008±0.001 0.006±0.001 0.020±0.003 0.019±0.001 0.019±0.001 0.024±0.001

NMI ↑ 0.053±0.001 0.054±0.001 0.030±0.002 0.035±0.007 0.045±0.002 0.054±0.001 0.053±0.001 0.057±0.001

PC ↑ 0.007±0.001 0.007±0.001 0.006±0.003 0.007±0.001 0.007±0.002 0.005±0.001 0.007±0.001 0.007±0.001
Feret DBI ↓ 2.729±0.106 2.630±0.186 2.832±0.389 2.311±0.834 7.267±3.920 1.963±0.345 1.729±0.259 0.927±0.122
n=1400 XB ↓ 0.127±0.001 0.292±0.001 0.156±0.041 0.062±0.010 5.984±4.184 0.056±0.001 0.088±0.001 0.053±0.009
p=1600 F ∗ ↑ 0.133±0.005 0.119±0.005 0.144±0.026 0.146±0.012 0.143±0.022 0.150±0.025 0.119±0.030 0.153±0.002
c=200 ARI ↑ 0.016±0.034 0.016±0.020 0.022±0.009 0.024±0.011 0.019±0.005 0.021±0.006 0.021±0.003 0.025±0.003

NMI ↑ 0.415±0.009 0.382±0.015 0.415±0.028 0.419±0.021 0.402±0.019 0.425±0.017 0.419±0.058 0.478±0.034

PC ↑ 0.055±0.001 0.056±0.006 0.091±0.009 0.097±0.009 0.102±0.009 0.055±0.001 0.058±0.005 0.108±0.018
COIL20 DBI ↓ 1.776±0.225 2.961±0.154 42.3±21.2 42.3±1.7 37.9±15.6 1.276±0.074 1.787±0.001 0.847±0.012
n=1440 XB ↓ 1.077±0.001 1.099±0.014 9.7±3.7 10.1±3.0 14.2±6.2 0.297±0.001 0.970±0.003 0.127±0.005
p=1024 F ∗ ↑ 0.242±0.028 0.228±0.001 0.282±0.041 0.401±0.032 0.397±0.010 0.271±0.001 0.260±0.015 0.443±0.060
c=20 ARI ↑ 0.110±0.036 0.133±0.001 0.248±0.058 0.237±0.026 0.254±0.017 0.279±0.002 0.110±0.023 0.286±0.068

NMI ↑ 0.299±0.042 0.372±0.001 0.339±0.045 0.385±0.020 0.317±0.004 0.301±0.003 0.374±0.017 0.574±0.059

PC ↑ 0.229±0.027 0.521±0.021 0.281±0.043 0.421±0.064 0.371±0.070 0.593±0.026 0.351±0.221 0.509±0.051
Led7 DBI ↓ 0.986±0.131 1.145±0.100 2.852±0.575 1.454±0.229 1.807±0.229 1.160±0.206 0.983±0.117 0.857±0.105
n=3200 XB ↓ 0.178±0.011 0.132±0.008 0.191±0.015 0.165±0.022 0.223±0.042 0.144±0.027 0.164±0.032 0.122±0.002
p=7 F ∗ ↑ 0.424±0.001 0.614±0.049 0.591±0.055 0.618±0.111 0.586±0.018 0.694±0.025 0.487±0.165 0.731±0.007
c=10 ARI ↑ 0.232±0.001 0.415±0.043 0.376±0.063 0.405±0.101 0.356±0.034 0.438±0.021 0.436±0.152 0.497±0.007

NMI ↑ 0.366±0.001 0.498±0.038 0.465±0.052 0.494±0.077 0.466±0.033 0.510±0.016 0.473±0.104 0.563±0.019

PC ↑ 0.390±0.001 0.432±0.029 0.315±0.045 0.351±0.010 0.341±0.038 0.408±0.019 0.448±0.028 0.476±0.001
Satimage DBI ↓ 4.880±0.001 2.464±0.862 39.4±12.4 8.906±3.432 28.8±10.9 3.681±1.310 2.261±1.048 0.908±0.001
n=6435 XB ↓ 3.478±0.001 1.112±0.023 25.2±3.1 1.612±0.419 8.032±2.187 1.180±0.186 0.493±0.036 0.455±0.001
p=36 F ∗ ↑ 0.553±0.001 0.593±0.029 0.631±0.049 0.638±0.062 0.612±0.080 0.635±0.009 0.638±0.013 0.659±0.001
c=6 ARI ↑ 0.292±0.001 0.317±0.027 0.348±0.051 0.358±0.071 0.337±0.018 0.389±0.005 0.406±0.019 0.443±0.001

NMI ↑ 0.450±0.001 0.461±0.023 0.457±0.029 0.457±0.034 0.446±0.062 0.471±0.007 0.493±0.006 0.515±0.001

PC ↑ 0.656±0.001 0.720±0.001 0.733±0.001 0.717±0.001 0.702±0.001 0.679±0.036 0.656±0.001 0.729±0.001
Magic DBI ↓ 1.886±0.001 1.549±0.001 1.542±0.001 1.539±0.001 1.539±0.001 1.490±0.005 1.886±0.001 1.050±0.001
n=19020 XB ↓ 0.545±0.001 0.390±0.001 0.373±0.001 0.381±0.001 0.372±0.001 0.438±0.010 0.545±0.001 0.266±0.001
p=10 F ∗ ↑ 0.582±0.001 0.627±0.001 0.622±0.001 0.633±0.001 0.612±0.001 0.591±0.003 0.582±0.001 0.641±0.001
c=2 ARI ↑ 0.007±0.001 0.013±0.001 0.018±0.001 0.014±0.001 0.018±0.001 0.008±0.001 0.007±0.001 0.020±0.001

NMI ↑ 0.020±0.001 0.043±0.001 0.051±0.001 0.046±0.001 0.053±0.001 0.053±0.001 0.020±0.001 0.057±0.001

PC ↑ 0.362±0.001 0.447±0.035 0.353±0.006 0.398±0.017 0.349±0.032 0.330±0.032 0.409±0.006 0.513±0.049
Shuttle DBI ↓ 290.5±0.8 157.8±27.4 307.7±124.3 230.4±30.2 244.6±27.1 287.9±63.9 153.6±19.4 52.2±33.7
n=58000 XB ↓ 98.7±1.6 9.7±0.4 13.5±1.3 13.0±3.9 12.2±0.4 65.1±8.41 15.4±0.1 7.8±3.6
p=9 F ∗ ↑ 0.504±0.001 0.593±0.010 0.546±0.061 0.578±0.062 0.571±0.010 0.460±0.056 0.512±0.043 0.667±0.071
c=7 ARI ↑ 0.114±0.001 0.157±0.026 0.117±0.054 0.157±0.073 0.149±0.007 0.085±0.022 0.153±0.052 0.190±0.062

NMI ↑ 0.218±0.001 0.257±0.027 0.201±0.066 0.226±0.023 0.206±0.030 0.212±0.036 0.218±0.060 0.260±0.016

PC ↑ 0.263±0.016 0.251±0.023 0.202±0.026 0.191±0.024 0.112±0.004 0.241±0.016 0.295±0.023 0.309±0.004
Sensorless DBI ↓ 3.206±0.091 5.304±0.951 156.7±32.4 31.1±28.6 21.6±9.4 5.968±3.370 1.869±0.507 0.814±0.054
n=58509 XB ↓ 1.494±0.067 3.051±0.667 35.5±14.7 25.2±14.5 15.9±8.6 3.906±1.513 1.195±0.635 0.326±0.052
p=48 F ∗ ↑ 0.307±0.014 0.282±0.021 0.281±0.017 0.271±0.020 0.288±0.023 0.275±0.028 0.311±0.023 0.325±0.005
c=11 ARI ↑ 0.142±0.007 0.122±0.014 0.106±0.013 0.009±0.001 0.103±0.018 0.100±0.018 0.143±0.023 0.147±0.001

NMI ↑ 0.306±0.006 0.278±0.031 0.265±0.012 0.243±0.025 0.276±0.039 0.238±0.027 0.325±0.020 0.339±0.006

PC ↑ 0.420±0.001 0.521±0.001 0.522±0.033 0.512±0.053 0.514±0.028 0.544±0.001 0.447±0.001 0.503±0.001
Seismic DBI ↓ 10.9±0.1 2.834±0.001 3.055±1.179 2.569±0.490 3.186±1.057 2.008±0.001 7.034±0.001 3.364±0.005
n=78823 XB ↓ 2.220±0.001 0.566±0.001 0.724±0.356 0.474±0.027 0.734±0.336 0.428±0.001 1.412±0.001 0.680±0.001
p=30 F ∗ ↑ 0.448±0.001 0.460±0.001 0.493±0.006 0.492±0.011 0.503±0.006 0.491±0.001 0.451±0.001 0.471±0.001
c=3 ARI ↑ 0.038±0.001 0.040±0.001 0.069±0.001 0.046±0.004 0.055±0.022 0.063±0.001 0.038±0.001 0.045±0.001

NMI ↑ 0.043±0.001 0.045±0.001 0.066±0.003 0.065±0.005 0.081±0.024 0.058±0.001 0.043±0.001 0.049±0.001
1 The superscript ’↑’ sign of evaluation metrics represents that the larger evaluation metrics, the better the clustering performance. The superscript

’↓’ sign of evaluation metrics represents that the smaller evaluation metrics, the better the clustering performance.
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Fig. 7. Plot of the corresponding Iteration and Time of the different algorithms on ten real-world data sets.

sets, which is based on the new affinity filtering (7) and
membership scaling (8) schemes. The acquisition and elimi-
nation of the redundant contributions of the samples in the
update of the centers is the key to the success of AMFCM.

6.3.2 Statistical Comparisons by Friedman Test
In order to compare the multiple algorithms systemati-

cally, the Friedman test [49] is applied to compare the clus-
tering efficiency (Time and Iteration) and quality (F∗ and
ARI) of the eight algorithms on the selected ten data sets.
In detail, Friedman test at significance level α = 0.05 rejects
the null hypothesis of equal performance, which leads to
the use of post-hoc tests to find out which algorithms are
actually different. Next, Nemenyi test is used to where
the performance of two algorithms is significantly different
if their average ranks over all datasets differ by at least
one critical difference. The critical difference is defined as
CD = qα

√
K(K+1)

6N , where critical values qα are based on the
Studentized range statistic divided by

√
2, K is the number

of the comparison algorithms, and N is the number of the
data sets. In this part, F∗ and ARI are selected to evaluate
the clustering quality, and the remaining metric have the
similar results. The critical difference (CD) diagrams, as
shown in Fig. 8, are presented to analyze the significance
between AMFCM and the comparison algorithms on the
ten data sets with F∗, ARI, Iteration and Time, where the
average rank of each algorithm is marked on the line and
the axis. The axis is turned so that the lowest (best) ranks are
to the right. Groups of algorithms that are not significantly
different according to Nemenyi test are connected with a red
line. The critical difference (CD = 3.3203 at 0.05 significance
level) is also shown above the axis in each subfigure.

According to the CD diagrams, first, in the clustering
efficiency and quality, AMFCM achieves the statistically
superior performance than that of FCM on the ten data sets.
Second, from the Fig. 8a and 8b, AMFCM presents statis-
tically comparable clustering quality with ARFCM on the
ten data sets. However, AMFCM statistically outperforms
ARFCM in the clustering efficiency, as shown in Fig. 8c and
8d. Finally, it can be found that none of the algorithms can
present statistically comparable performance with AMFCM
in both efficiency and quality. Therefore, AMFCM statisti-
cally achieves a good trade-off between the clustering of
quality and efficiency.

(a) F∗

(b) ARI

(c) Iteration

(d) Time

Fig. 8. CD diagrams of the eight comparison algorithms on the ten
data sets with F∗, ARI, Iteration, and Time. It is clear that AMFCM
statistically achieves a good trade-off between the clustering quality and
efficiency.

6.3.3 Efficiency of the New Affinity Filtering Scheme

This set of experiments, carried out on the same data
sets, is presented to test the filtering rate of the new affinity
filtering (7), which is the key factor that determines the
acceleration of AMFCM. The previous affinity filtering (5)
and the new affinity filtering (7) are chosen with the same
settings for comparison. Let n̂t = |{1 ≤ j ≤ n | |P(t)

j | 6= 0}|
denote the number of the samples that satisfy the affinity
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Fig. 9. Plots of n̂t
n

in relation to iteration on ten data sets. The log-scale of the x-axis clearly shows the differences of the sample filtering efficiency
in [A] stage of the convergence process of the algorithms.

filtering in t iteration. For ten data sets, the curves of n̂t

n are
plotted in relation to iteration t in Fig. 9, where the blue and
red lines represent MSFCM and AMFCM, respectively. And
the log-scale of the x-axis clearly shows the differences of the
sample filtering efficiency in stage [A] of the convergence
process of the algorithms.

Firstly, the filtering efficiency of the new affinity filtering
(7) is higher than that of the previous affinity filtering
(5) in stage [A]. Moreover, the new affinity filtering (7)
has reached the highest filtering rate before 10 iterations,
except for Magic and Seismic. Thus, the new affinity filtering
(7) overcomes the inherent shortcomings of the previous
affinity filtering (5) that is easy to be invalid in stage [A],
as shown in Fig. 9.

Secondly, for data sets Magic and Seismic, the efficiency
of the previous affinity filtering (5) is higher than that of
AMFCM in stage [B] of the convergence process of the
algorithms. However, the previous membership scaling (6)
is not very effective in accelerating the algorithm in stage
[B], which is because β(t)

j is very close to 1 in stage [B]. The
redundant contributions of the samples in the update of the
centers have not been reduced in MSFCM, resulting in a
decrease in its clustering efficiency.

AMFCM always maintains a high-efficiency level for
all data sets, which can be observed from the number of
iteration on the x-axis. According to the above analysis, it
can be seen that the new affinity filtering (7) and member-
ship scaling (8) schemes are complementary to each other.
Therefore, AMFCM is very efficient in stages [A] and [B] of
the convergence process of the algorithms.

7 CONCLUSION

In this paper, FCM based on new affinity filtering and
membership scaling (AMFCM) is proposed to accelerate the
whole convergence stages of the traditional FCM clustering.
In the proposed algorithm, a new affinity filtering is de-
signed to obtain the complete non-affinity centers for each
sample by a new set of triangle inequalities, which is more
compatible with fuzzy clustering. Then, a new membership
scaling is suggested to eliminate the contributions of the
samples in the update of their non-affinity centers by setting
the membership grades to 0 and promote the contributions

of the samples in the update of the remaining centers by the
fuzzy membership grades, which improves the performance
and efficiency of the algorithm. Many experimental results
have verified its effectiveness and efficiency on synthetic
and real-world data sets. Therefore, AMFCM is a well-
balanced FCM-type algorithm in clustering efficiency and
quality. For future work, AMFCM could be explored to
enhance the performance of the FCM-type clustering algo-
rithms on high-dimensional data sets. Another interesting
possibility is to generalize the concept to nonlinear fuzzy
clustering according to information granules.
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APPENDIX A
A GEOMETRIC INTERPRETATION FOR THE NEW
AFFINITY FILTERING SCHEME (7)

v3

v4

v5

v1

v2

O
xj

δI∗j

δ2

δ3

δ4

δ5

2
Fig. 10. The affinities between sample xj and all centers are identified
by the new affinity filtering scheme (7). Let v1 be the nearest center of
xj . The radius of the green circle and orange arc are the drift of vi and
the lower bound of vi after one update, respectively. The radius of the
black circle is the upper bound of v1 after one update. Here, the blue
and red centers are the non-affinity and the remaining centers of xj ,
respectively.

Here, a geometric interpretation is given for the new
affinity filtering scheme (7), as illustrated in Fig. 10. In
Fig. 10, there is any sample xj and the cluster centers are
V = [v1,v2,v3,v4,v5]. Let v1 be the nearest center of xj .
The radius of green circle represent δi, the radius of orange
arc represent the lower bound of vi, dij − δi, and the radius
of black circle is the upper bound of v1, d1,j + δ1. In Fig.
10, as long as the orange arc of vi is outside the black circle,
it means that vi cannot be the nearest center of xj . Thus,
vi is identified as the non-affinity center of xj according
to Lemma 2. For example, v4 and v5 are the non-affinity
centers of xj , which are marked in blue. The red centers
are the remaining centers of xj . In this case, the set of the
non-affinity centers of xj obtained by (7) is complete.

APPENDIX B
PROOF OF THEOREM 1

As analyzed in Subsection 3.2, in the stage [B] of the
convergence process, the assignment of most samples
remains unchanged with the slight changes of the centers,
where X̃(t) is defined as the set of the samples whose
the assignment does not change in t and t + 1 iteration.
Therefore, we have: ũ(t)

·j = ũ
(t+1)
·j for xj ∈ X̃(t) based on the

Eq. (7) and (8). However, in FCM, we have: u(t)
·j 6= u

(t+1)
·j

for xj ∈ X̃(t) based on the Eq. (4). According to the
membership grade matrix U and Ũ of FCM and AMFCM,
we have:

‖Ũ(t+1) − Ũ(t)‖ < ‖U(t+1) −U(t)‖. (12)

Therefore, given the same termination parameter ε, the
number of the iteration of AMFCM, tAMFCM, is smaller than
that of FCM, tFCM.

APPENDIX C
PROOF OF THEOREM 2

First, we list the objective function of FCM and AMFCM
with the same initialization V(t) from the t iteration to the
t+ 1 iteration:

J
(t)
FCM =

n∑
j=1

c∑
i=1

(uFCM
(t)
ij )m‖xj − v

(t)
i ‖2,

J
(t+1)
FCM =

n∑
j=1

c∑
i=1

(uFCM
(t)
ij )m‖xj − vFCM

(t+1)
i ‖2,

J
(t)
AMFCM =

n∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − v

(t)
i ‖2,

J
(t+1)
AMFCM =

n∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − vAMFCM

(t+1)
i ‖2.

(13)

We assume that there must exist an iteration threshold
T , when t < T , P(t)

j = ∅ for j = 1, 2, ..., n. Obviously, when
t < T , JFCM = JAMFCM. When t ≥ T , ∃j ∈ {1, 2, ..., n},
satisfying P(t)

j 6= ∅. Then, we derive lower and upper
bounds of JAMFCM.

For the lower bound of J (t)
AMFCM, based on the Lagrangian

multiplier method, we have: J (t)
FCM < J

(t)
AMFCM. For the upper

bound of J (t)
AMFCM, we have:

J
(t)
AMFCM =

n∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − v

(t)
i ‖2,

=
n∑
j=1

[α
(t)
j ]m · [

∑
i/∈P(t)

j

(uFCM
(t)
ij )m‖xj − v

(t)
i ‖2],

< [ max
1≤j≤n

{α(t)
j }]m · [

n∑
j=1

c∑
i=1

(uFCM
(t)
ij )m‖xj − v

(t)
i ‖2],

= [ max
1≤j≤n

{α(t)
j }]m · J

(t)
FCM,

(14)
where Ũ(t) can be rewritten as α(t)

j · uFCM
(t)
ij for i /∈ P(t)

j ,
and 0 for i ∈ P(t)

j . Based on the Eq. (7) and (8), 1 < α
(t)
j =

1

1−
∑

i∈P(t)
j

uFCM
(t)
ij

< 2. Therefore, we have:

J
(t)
FCM < J

(t)
AMFCM < [ max

1≤j≤n
{α(t)

j }]m · J
(t)
FCM. (15)

For the upper bound of J
(t+1)
AMFCM, based on the La-

grangian multiplier method, we have:

J
(t+1)
AMFCM =

n∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − vAMFCM

(t+1)
i ‖2,

<
n∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − vFCM

(t+1)
i ‖2.

(16)

Based on a similar derivation from the Eq. (14), we have:

J
(t+1)
AMFCM < [ max

1≤j≤n
{α(t)

j }]m · J
(t+1)
FCM . (17)

Finally, based on the Eq. (15) and (17), we have:

J
(t)
AMFCM

J
(t+1)
AMFCM

>
J

(t)
FCM

[max1≤j≤n{α(t)
j }]m · J

(t+1)
FCM

. (18)
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Here, we set the decline ratio of the objective function of

FCM as λ(t) =
J

(t)
FCM

J
(t+1)
FCM

. As analyzed in [22], the convergence

rate of the alternating optimization algorithm (AO) drops
with the iteration. Therefore, λ(t) is monotonically decreas-
ing with the iteration, i.e., λ(t) ≥ 1 and lim

t→+∞
λ(t) = 1. Ob-

viously, in the mid stage, when λ(t) > [max1≤j≤n{α(t)
j }]m,

we have:
J

(t)
AMFCM

J
(t+1)
AMFCM

> 1. (19)

In conclusion, AMFCM does not converge precociously
in the mid stage of the clustering process.

APPENDIX D
PROOF OF THEOREM 3

First, let X̂(t) be the set of samples xj with
|P(t)
j | = 1 in t iteration, where j = 1, 2, ..., |X̂(t)|.

Given the same initialization V(t) on X̂(t), obviously,
JAMFCM

Hard
(t+1)

= JFCM
Hard

(t+1). Next, after one iteration of
centers V(t) through FCM and AMFCM respectively, based
on the Lagrangian multiplier method, we have:

J
(t+1)
AMFCM =

|X̂(t)|∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − vAMFCM

(t+1)
i ‖2

<

|X̂(t)|∑
j=1

c∑
i=1

(ũ
(t)
ij )m‖xj − vFCM

(t+1)
i ‖2.

(20)

Because |P(t)
j | = 1 for any xj ∈ X̂(t), we have that

ũ
(t)
I∗j j

= 1, and ũ(t)
ij = 0 for i 6= I∗j . Therefore, we have:

JAMFCM
Hard

(t+1)
= J

(t+1)
AMFCM < JFCM

Hard
(t+1)

. (21)

In conclusion, for the samples xj with |P(t)
j | = 1, the

corresponding hard objective value of AMFCM is smaller
than that of FCM in t iteration.
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