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Towards Semi-supervised Universal Graph
Classification

Xiao Luo∗, Yusheng Zhao∗, Yifang Qin∗, Wei Ju†, and Ming Zhang†

Abstract— Graph neural networks have pushed state-of-the-arts in graph classifications recently. Typically, these methods are studied
within the context of supervised end-to-end training, which necessities copious task-specific labels. However, in real-world
circumstances, labeled data could be limited, and there could be a massive corpus of unlabeled data, even from unknown classes as a
complementary. Towards this end, we study the problem of semi-supervised universal graph classification, which not only identifies
graph samples which do not belong to known classes, but also classifies the remaining samples into their respective classes. This
problem is challenging due to a severe lack of labels and potential class shifts. In this paper, we propose a novel graph neural network
framework named UGNN, which makes the best of unlabeled data from the subgraph perspective. To tackle class shifts, we estimate
the certainty of unlabeled graphs using multiple subgraphs, which facilities the discovery of unlabeled data from unknown categories.
Moreover, we construct semantic prototypes in the embedding space for both known and unknown categories and utilize posterior
prototype assignments inferred from the Sinkhorn-Knopp algorithm to learn from abundant unlabeled graphs across different subgraph
views. Extensive experiments on six datasets verify the effectiveness of UGNN in different settings.

Index Terms—Graph Neural Network, Semi-supervised Learning, OOD Detection.

✦

1 INTRODUCTION

Graphs have garnered growing interest due to their capacity
of portraying structured and relational data in a large range
of domains. As one of the most prevalent graph machine
learning problems, graph classification aims to predict the
properties of whole graphs, which has widespread applica-
tions in visual and biological systems [1]–[4]. In recent years,
graph neural networks (GNNs) have exhibited promising
performance in graph classification [5]–[7], which usually
follow the paradigm of message passing [8]–[11]. In detail,
node representations are iteratively updated by aggregating
neighborhood information, followed by a readout operation
to generate graph representations. These graph represen-
tations can implicitly capture the structural topology in
an end-to-end fashion, therefore facilitating downstream
classification effectively.

Despite their exceptional performance, GNNs are heav-
ily reliant on copious task-specific labels while learning
graph representation. In various real-world settings, how-
ever, large-scale data annotations could need a significant
number of human resources [7]. To address this, semi-
supervised graph classification approaches have been pro-
posed [12]–[14], which use a huge corpus of unlabeled data
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to enhance the model performance in an efficient manner.
These approaches presume that unlabeled graphs have the
same distribution as labeled graphs, which would not be
true in practice, particularly when labeled graphs make up
a tiny portion of the whole dataset. For example, as in
Fig. 1, samples from classes ’8’ and ’9’ are unavailable in
labeled data. To tackle this, in this research we investigate
a more realistic problem named semi-supervised universal
graph classification, where unlabeled data could belong to
unknown classes. Here, two tasks must be carried out: (1)
identifying graph samples that do not belong to known
classes; and (2) categorizing the remaining samples into
their respective classes. These out-of-distribution (OOD)
graph samples (i.e., data from unknown classes) could be
provided to experts, which increases the efficiency of data
annotations.

In reality, this realistic graph classification would face
the following essential difficulties: (1) How can these OOD
graph examples be detected in unlabeled data? The essence
of this topic is to identify various samples that belong to
unknown classes without adequate prior information. Typ-
ically, the bulk of conventional OOD contexts in computer
vision assume that OOD samples are only engaged during
assessment [15]–[17], but our problem focuses on their in-
volvement during training. Even worse, this problem needs
to deal with heterogeneous information in a large number of
networks, i.e., node characteristics and structural topology,
which makes discriminating between in-distribution (ID)
and out-of-distribution (OOD) samples more challenging.
(2) How to overcome the label scarcity in the training data?
In reality, labeled data is scarce owing to the prohibitive
expense of data annotation, but unlabeled data is abundant.
Existing semi-supervised approaches often produce pseudo-
labels to help optimize GNNs [13], [14]. Nevertheless, these
pseudo-labels could be biased and imbalanced, particularly
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Fig. 1: An illustration of our problem setting. We are given
both labeled graphs and unlabeled graphs which could
contain samples from unknown classes.

when OOD graph samples exist. Note that resolving these
obstacles might be mutually beneficial. On the one hand,
the precise identification of OOD graph samples enables the
best use of unlabeled ID graphs. On the other hand, explor-
ing sufficient semantics from unlabeled data can assist in the
discovery of OOD graph examples.

In this study, we present a novel framework Universal
Graph Neural Network (UGNN) that overcomes the afore-
mentioned difficulties from the subgraph perspective. In
particular, to produce graph-level representations, we first
warmed up the message passing neural network with la-
beled graph samples. To combat class shift, we adopt a
simple yet effective selection strategy, which samples nu-
merous subgraphs to capture both prediction confidence
and individual output uncertainty based on the calibration
of GNNs. Our strategy computes both the average and the
variance of prediction confidence scores among various sub-
graphs, and then sets an adaptive threshold to distinguish
OOD samples from easy to hard. In addition, to make the
most of unlabeled data, we construct graph prototypes in
the embedding space for both known and unknown classes.
Then, a semi-supervised prototype representation learning
paradigm is developed, which utilizes the posterior pro-
totype assignments from one subgraph view to supervise
the semantics of unlabeled data from another view. The
Sinkhorn-Knopp algorithm [18]–[20] is involved to promise
balanced and soft posterior distributions. Our OOD sample
selection technique and prototype-aware semi-supervised
learning paradigm could mutually strengthen each other,
enabling optimal use of unlabeled data. To demonstrate the
efficacy of our UGNN, we conduct extensive experiments
on six benchmark graph classification datasets. The results
demonstrate that UGNN outperforms a number of state-of-
the-art models in a range of settings. The contributions of
our work are summarized as follows:

• Problem Formalization: We investigate the problem of
semi-supervised universal graph classification, which
facilities data annotation efficiency in real-world appli-
cations.

• Novel Methodologies: We propose a simple yet effec-
tive method named UGNN to solve the problem. On
the one hand, it captures individual output uncertain-

ties by sampling multiple subgraphs to detect OOD
graph samples. On the other hand, a semi-supervised
prototype representation learning paradigm employs
the posterior prototype assignments to supervise the
semantics of unlabeled graphs across two subgraph
views.

• Multifaceted Experiments: Extensive experiments on
six graph classification datasets to validate the efficacy
of the proposed UGNN in different settings.

The related works are introduced in Section 2. In Section
3 and Section 4, we describe the prior knowledge and the
details of our UGNN, respectively. Section 5 offers extensive
experimental results including quantitative comparisons,
ablation studies, parameter sensitivity and visualization. In
the end, we give a conclusion in Section 6.

2 RELATED WORK

2.1 Graph Neural Networks
Graph neural networks (GNNs) have shown outstanding
performance in relational data representation learning [21],
which has been extensively adopted in a number of ap-
plications, including node classification [22]–[24], link pre-
diction [25]–[27], and anomaly detection [28]–[30]. Early
efforts [31]–[33] usually utilize spectral GNNs based on the
spectral graph theory, which begin with transferring graph
signals into the embedding space, followed by spectral
filters deduced from the graph Laplacian. Recent spatial
methods have become the mainstream due to their lower
computational complexity [8], [34], [35]. Typically, they ad-
here to the message passing paradigm, in which each node
receives data from its neighbors, followed by an aggregation
process that continually updates the node representations.
GNNs have also been used regularly for graph classification.
Typically, these methods use graph pooling functions to
summarize node representations into graph-level represen-
tations [3], [4]. For example, SAG Pooling [36] utilizes the
attention technique to preserve important nodes in a hierar-
chical fashion. Despite their promising performance, these
methods are data-hungry whereas real-world applications
often consist of limited labeled data and massive unlabeled
data containing OOD graph samples. Towards this end,
we investigate the semi-supervised universal graph classi-
fication problem, which not only identifies graph samples
that do not belong to known classes but also classifies the
remaining samples into their respective classes.

2.2 Semi-supervised Graph Classification
Semi-supervised learning has received increasing attention
in recent years. Pseudo-labeling is a popular technique
which predicts the label distribution of unlabeled examples
and selects confident samples for further guidance. For
example, FlexMatch [37] introduces class-specific adaptive
thresholds to decide confident samples inspired by curricu-
lum learning. Ada-CM [38] further utilizes contrastive learn-
ing to explore unconfident samples in the unlabeled set. An-
other line towards semi-supervised learning is consistency
learning. FixMatch [39] is a simple method which combines
semi-supervised learning and consistency learning, achiev-
ing superior performance in this field. The objective of semi-
supervised graph classification is to predict graph properties
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using both labeled data and unlabeled data, which accounts
for real-world label scarcity [12]–[14], [40], [41]. Typically,
previous approaches incorporate graph neural networks
into semi-supervised learning techniques. Early attempts
often use pseudo-labeling approaches [12], which annotate
unlabeled graphs using the classification model itself, and
then add samples along with highly confident predictions
to the training set. Unfortunately, these approaches may
produce overconfident and skewed pseudo-labels, which
could lead to an accumulation of errors during subsequent
optimization. Considering the complexity of learning graph-
level representations, recent approaches often use the multi-
task learning framework where the teacher model attempts
to learn discriminative graph representations, whereas the
student model concentrates on the classification task [13],
[14]. However, these methods do not consider the realistic
problem of potential OOD graph samples, which brings
challenges in the sufficient exploration of unlabeled data. To
tackle this, our UGNN employs a sample selection strategy,
which captures prediction confidence as well as individual
output uncertainty from the subgraph perspective.

2.3 Out-of-distribution Detection

Out-of-distribution (OOD) detection has been widely uti-
lized in a variety of real-world applications [42]. Typically,
this problem is addressed in two contexts, resulting in su-
pervised methods and unsupervised methods. With access
to identified OOD samples during optimization, supervised
algorithms [15]–[17] typically not only reduce the cross-
entropy loss for ID samples, but also enforce the uniformity
of the prediction distributions for OOD samples. In practical
applications, it is difficult to locate OOD samples in ad-
vance. To circumvent this issue, unsupervised approaches
do not use OOD samples during training [43]–[45]. They
deploy post-hoc detectors based on distance measurements
such as Mahalanobis distance [46] after training classifi-
cation models using ID samples. Despite the impressive
performance of OOD detection in computer vision, its ap-
plication to graphs remains underexplored. In contrast, we
offer a novel graph neural network named UGNN that
thoroughly both explores subgraphs to find OOD graph
samples and learns from unlabeled graphs.

3 PRELIMINARY KNOWLEDGE

3.1 Problem Formalization

To begin with, we formally introduce the notations and
the problem definition. Here a graph containing n nodes
is denoted as G = (A,X), where A ∈ Rn×n represents
the adjacent matrix, X ∈ Rn×d represents the node at-
tribute matrix and d is the attribute dimension. In the
problem of semi-supervised universal graph classification,
we are given a training dataset D containing labeled graphs
Dl = {Gl

1, G
l
2, · · · , Gl

N l} and unlabeled graphs Du =
{Gu

1 , G
u
2 , · · · , Gu

Nu}, where Gl
i and Gu

j represents the i-th
labeled sample and the j-th unlabeled sample, respectively.
The label set of the labeled data and the whole training data
are denoted as Cl and C , respectively. yli ∈ Cl denotes
the label of Gl

i. Due to the potential label shifts, we have
Cl ⊆ C .

Our aim is to (1) identify graph samples which do not
belong to known classes, i.e., S = {Gu

j |yuj ∈ C/Cl} and
(2) classify the remaining samples, i.e., Du/S into their
corresponding classes in Cl.

3.2 Message Passing Neural Networks
We briefly introduce message passing neural networks,
which are widely utilized to generate graph-level represen-
tations [8], [34], [35]. They usually utilize the neighborhood
aggregation mechanism to explore topological information
in an implicit fashion. The updating formulation at the k-th
layer in a given graph G is written as:

v
(k)
N(vi)

= AGGREGATE(k)
({

v
(k−1)
i : j ∈ N (i)

})
v
(k)
i = COMBINE(k)

(
v
(k−1)
i ,v

(k)
N(vi)

) (1)

where v
(k)
i is the representation of node vi at the k-th

layer. AGGREGATE(k)(·) and COMBINE(k)(·) represent
the aggregation and combination operators at the k-th layer,
respectively. Finally, a global pooling operator is utilized to
summarize all these node representations at the last layer,
resulting in a graph-level representation:

z = GP
({

v
(K)
i

}n

i=1

)
, (2)

where GP(·) represents a global pooling function.

4 METHODOLOGY

This paper proposes a novel graph neural network frame-
work named UGNN for semi-supervised universal graph
classification. The core of our UGNN is to utilize subgraphs
to sufficiently explore the semantics in unlabeled graphs. We
first warm up our GNN-based encoder using labeled data to
generate graph representations. To overcome label shift, we
employ a sample selection strategy, which calculates con-
fidence scores from the distribution viewpoint by sampling
multiple subgraphs. To make the most of unlabeled data, we
measure graph prototypes for both known and unknown
classes, which can yield balanced and reliable prototype
assignments by solving an optimization problem. Then, a
semi-supervised graph prototype representation learning
paradigm is presented, which utilizes the posterior proto-
type assignments from one subgraph view to supervise the
semantics of unlabeled data from another view. More details
can be illustrated in Fig. 2.

4.1 Graph Representation Learning
Our model needs to extract topological information from
both labeled and unlabeled graphs for the classification
task with potential label shifts. Therefore, learning effective
graph representations is crucial for our problem. Towards
this end, we leverage a message passing neural network
to encode graphs into low-dimensional embeddings. In
addition, a hierarchical graph pooling structure is adopted
to explore local substructures in the graph.

In detail, given a graph sample G = (A,X), we first
utilize the message passing neural network in Equation 1
to extract topological information, resulting in discrimina-
tive node representations, i.e., {v(K)

i }. Then, we follow the
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Fig. 2: Illustration of the proposed framework UGNN. Our UGNN is first warmed up using labeled data and then identifies
OOD samples based on multiple subgraphs from each graph. Besides, UGNN constructs graph prototypes and compares
the posterior prototype assignments with online prediction across different views.

paradigm of TopK-based pooling by utilizing the attention
mechanism to identify crucial nodes which will be kept.
Here, we utilize a different encoder to produce an impor-
tance score vector S ∈ Rn×1 for nodes in the graph. The
top ⌈ρn⌉ nodes will be kept by comparing the values in
S. Let idx denote the index of kept nodes, and we derive
pooled graph with the adjacent matrix Ã and the hidden
embedding matrix H̃ as follows:

Ṽ = Vidx,: ⊙ Sidx, Ã = Aidx,idx, (3)

where Vidx,: denotes stacked node representation matrix
and ⊙ represents the broadcasted Hadamard product [36],
[47]. Aidx,idx represents the row-wise and column-wise
indexed matrix of A. Then, the pooled graph is fed to
the message passing neural network again, followed by
the readout function as in Equation 2, producing a graph-
level representation Φ(G). In this way, we summarize node
semantics embedded in a hierarchical fashion, maximizing
the model capacity for graph representation learning.

Finally, we add an MLP classifier ψ(·) on top of the repre-
sentations, which produces label distribution for each graph
sample. Here the graph classification network is warmed up
by merely labeled graph samples. Given a batch of labeled
graphs Bl ⊂ Dl, the cross-entropy loss is employed for
graph classification as follows:

Ll =
1

|Bl|
∑

Gl
i∈Bl

− log(yl
i)

Tψ(Φ(Gl
i)) (4)

where yl
i denotes the one-hot vector of yli.

4.2 Subgraph-based OOD detection
The first aim of our problem is to detect OOD samples
in unlabeled data. Intuitively, graph samples with shaped
predicted label distributions are more likely to be ID sam-
ples. However, the serious label scarcity of labeled graph
data could bring in biased and overconfident predictions.
To tackle this, we incorporate multiple subgraphs sampled
from the graph input into our OOD detection from the view
of both confidence and model calibration.

In particular, we first introduce two perturbation strate-
gies to generate subgraphs [40], [48] as: (1) Edge deletion: we
remove part of edges from a graph obeying an i.i.d uniform
distribution. (2) Node deletion: several nodes are removed
at random, along with their connected edges. Then, a sub-
graph set S = {G̃1, G̃2, · · · , G̃I} can be generated for each
graph G, where I represents the number of subgraphs. We
can derive the confidence score for each subgraph which
is defined as the largest probability among the prediction
distribution:

sr = ϕ(f(G̃r)), (5)

where ϕ : Rd → N return the index of the maximum
value. Here we measure the distribution of confidence score
using a normal distribution, i.e., N(µ, σ2). The mean and
the variance among the subgraph set are measured, i.e.,
µ̂ = 1

I

∑I
i=1 si and σ̂2 = 1

I

∑I
i=1(si − µ)2. In this part,

we adopt a hybrid strategy to determine the OOD samples
based on both the mean and variance of the confidence
distributions.

To begin with, samples with high confidence are more
likely to belong to ID samples. Here we utilize the mean
of the confidence scores to release the sample biases.
Intuitively, high variances for augmented views imply the
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prediction is not stable. In other words, their augmented
views could be dissimilar to samples in the predicted class
to generate a contradiction. Therefore, these samples could
come from unseen classes, and we cannot identify them as
ID samples. From a different view, compared with OOD
samples, ID samples can be more resistant to the noise
attack since they are correctly classified. Therefore, we turn
to model calibration. In particular, the expected calibration
error is directly related to the variance of the prediction
empirically [49]. Therefore, we get more emphasis on the
samples with low-variance confidence, which are resistant
to the potential noise attack. Taking both factors into con-
sideration, the final score for OOD detection is formulated
as:

s̃ = µ̂− σ̂. (6)

A higher score indicates a small probability of being OOD
samples. Therefore, the set of ID samples is inferred as
follows:

Du,id = {G|s̃(G) > δ} (7)

where δ is a threshold to decide the portion of ID samples.
Inspired by curriculum learning, we gradually raise the
threshold to identify the OOD samples from easy to hard.
For the t-th iteration, we have δt = t

T δ, where T is the total
number of iterations.

4.3 Prototype-aware Semi-supervised Learning
In addition, to overcome the label scarcity in the train-
ing data, we introduce a novel prototype-aware semi-
supervised learning framework, which combines learning
discriminative graph representations with semi-supervised
learning.
Prototype Initialization. To begin with, we initialize proto-
types for both ID samples and OOD samples. On the one
hand, we take the average of graph representations from
every known category in the embedding space. On the other
hand, we cluster the graph representations of OOD samples
selected before.

In detail, the prototype representation for the c-th cate-
gory is defined as:

hc =

∑N l

i=1 1yl
i=czi∑N l

i=1 1yl
i=c

, (8)

Then, the graph representations of OOD samples are clus-
tered into R parts, and the clustering center is denoted
as hC+1, · · · ,hC+R. These prototypes from ID and OOD
samples jointly enhance semi-supervised learning for dis-
criminative graph representations.
Semi-supervised Learning. To learn from unlabeled data,
we first generate their posterior prototype assignments
to provide additional knowledge. To prevent generating
overconfident distributions, prototype assignments are also
inferred from the view of subgraphs, which would guide
the semantic learning for unlabeled data.

In detail, given a batch of unlabeled graphs {Gu
j }B

u

j=1,

we define matrix Q ∈ RE×Bu

= Eq
(
y = c | Gu

j

)
where

E = C + R. We first stack the prototype representations
and a batch of subgraph representations into the matrices
H ∈ RD×E and Z̃ ∈ RD×Bu

. To obtain accurate and

balanced posterior prototype assignments, we maximize the
following objective as follows:

E =
〈
HT Z̃,Q

〉
+ ϵH (Q)+ < f ,Q1Bu − 1

E
1E >

+

〈
g,Q⊤1E −

1

Bu
1Bu

〉 (9)

where < HT Z̃,Q > returns the trace of Z̃THQ and
H(Q) = −∑i,j Qi,j logQi,j denotes the entropy of the
matrix. f ∈ RBu×1 and g ∈ RE×1 are two adaptive La-
grange multipliers. In Equation 9, the first term maximizes
the similarity between Q and HT Z̃, which denotes the
expected similarity scores between graph representations
are their representations. The second term is a regularization
term to maximize the entropy of Q, which encourages
the diversity of the posterior prototype assignment. ϵ is
a temperature parameter to control the diversity. The last
two terms are Lagrange constraints, which aim to produce
Q with both row and column normalization to produce
balanced posterior distributions [18], [19].

To maximize Equation 9, we first calculate its gradient
with respect to every element Qij as follows:

∂E
∂ (Qij)

= 2[HT Z̃]ij − ϵ log (Q)ij + fi + gj (10)

Therefore, the closed solution is written as:

Q∗ = Diag(u) exp

(
2HT Z̃

ϵ

)
Diag(v) (11)

where u = diag
(
exp

(
f
ϵ

))
and v = diag

(
exp

(g
ϵ

))
. In

practice, we recall the constraints embedded in Equation 9,
i.e., Q1Bu − 1

E1E = 0 and Q⊤1E − 1
Bu1Bu = 0 and utilize

the iterative Sinkhorn-Knopp algorithm [18]–[20] to solve
this, which repeatedly conducts row normalization and
column normalization to exp

(
2HT Z̃

ϵ

)
. Preliminary studies

indicate that using three iterations would achieve incredible
performance with less computational expense, and that soft
target assignments have a higher performance than one-hot
ones.

Then, these prototype assignments are viewed as guid-
ance to learn from unlabeled data. In particular, the cross-
entropy loss objective is written as:

Lu = − 1

Bu

Bu∑
j=1

E∑
c=1

q
(
y = c | Gu

j

)
log p

(
y = c | Gu

j

)
(12)

where online predictions are calculated by

p
(
y = c | Gu

j

)
=

exp (˜̃zu
j

⊤
hc/τ)∑E

c′=1 exp (
˜̃zu
j

⊤
hc/τ)

(13)

Here ˜̃zu
j is the other subgraph representations of Gu

j and τ
is the temperature parameter. In this section, two different
perturbations are involved for posterior prototype assign-
ments and online predictions, which helps to capture the
invariant semantics in unlabeled graphs with less bias.
Prototype Update. Here, we update the prototype represen-
tations as the training process of semi-supervised learning.
In particular, we aggregate all the graph representations
which are close to each prototype using momentum update.
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TABLE 1: Statistics of the datasets used in the experiments.

Dataset # Graphs # Classes Avg. # Nodes Avg. # Edges # Known # Unknown Node feature Low Ratio High Ratio

COIL-DEL 3900 100 21.54 54.24 80 20 Coordinates 50% 80%

Letter-High 2250 15 4.67 4.50 10 5 Coordinates 20% 40%

MNIST 55,000 10 70.6 564.5 7 3 Pixel (Gray) + Coordinates 1% 3%

CIFAR10 45,000 10 117.6 941.2 7 3 Pixel (RGB) + Coordinates 30% 70%

REDDIT-MULTI-12K 11929 11 391.41 456.89 7 4 - 30% 70%

COLORS-3 10500 11 61.31 91.03 7 4 Colors 30% 80%

Algorithm 1 Training Algorithm of UGNN

Require: Labeled graphs Dl; Unlabeled graphs Du;
Ensure: Identify OOD graph samples S and generate the

prediction for Du/S ;
1: Warm up the network using Dl;
2: for t = 1, 2, · · · , T do
3: Generate Du,id using Equation 7;
4: Initialize graph prototype representations using Equa-

tion 8;
5: repeat
6: Construct a mini-batch by sampling graphs fromDl

and Du;
7: Generate the posterior distribution using the

Sinkhorn-Knopp algorithm;
8: Calculate the final loss using Equation 15;
9: Update the network parameters through back prop-

agation;
10: Update the prototype representations using Equa-

tion 14;
11: until convergence
12: end for

Formally, we first generate the pseudo-labels for each un-
labeled graph, i.e., pj = argmaxc{hT

j zc} and the updated
prototypes are derived as:

hc ← ηhc + (1− η)
∑Nu

j=1 1pj=cz
u
j∑Nu

j=1 1pj=c

(14)

where η is a momentum coefficient.

4.4 Optimization

In a nutshell, the overall training loss of our UGNN is
summarized into:

L = Ll + Lu (15)

We optimize the whole framework using mini-batch
stochastic gradient descent. For every cycle, we update the
set of ID unlabeled samples using curriculum learning and
the number of total cycles is T . The detailed algorithm is
summarized in Algorithm 1.

5 EXPERIMENTS

In this section, exhaustive experiments are conducted on
several datasets to demonstrate the effectiveness of the
proposed UGNN. Particularly, we are interested in several
research questions (RQs):

• RQ 1: What is the overall performance of UGNN com-
pared to baseline methods?

• RQ 2: What is the influence of Subgraph-based OOD
Detection and Prototype-aware Semi-supervised Learn-
ing in the proposed task?

• RQ 3: Do the proposed model sensitive to hyperparam-
eters like the number of clusters, the presumed number
of OOD samples and the temperature in prototype-
aware semi-supervised learning?

• RQ 4: Are there any visualization of classification re-
sults and learned representations to show the effective-
ness of UGNN?

5.1 Experimental Setup

5.1.1 Datasets

In the experiments, we use six public graph datasets: COIL-
DEL, Letter-high, MNIST, CIFAR10, REDDIT-MULTI-12K
and COLORS-3. The detailed statistics of the datasets are
listed in Table 1.

COIL-DEL. COIL-DEL dataset [50] is constructed by ap-
plying Harris corner detection and Delaunay Triangulation
on images. The result of triangulation is converted to a
graph, where nodes and edges represent ending points and
lines.

Letter-high. Letter-high dataset [50] involves graph rep-
resentations of 15 capital letters (i.e. A, E, F, H, I, K, L, M,
N, T, V, W, X, Y, Z). In the graph, nodes represent the end-
points of the drawing and (undirected) edges correspond to
lines. The letters are highly distorted, which makes the task
challenging.

MNIST. MNIST dataset [51] is constructed by extracting
super-pixels (i.e., small regions of homogeneous intensity in
every image) of the image. After the super-pixel extraction,
a k-nearest-neighbor graph is then constructed to represent
the image.

CIFAR10. CIFAR10 dataset [51] is constructed in the same
way as MNIST. The difference between the two datasets is
that CIFAR10 contains larger graphs with richer semantic
meanings, which makes the classification task more chal-
lenging.

REDDIT-MULTI-12K. REDDIT-MULTI-12K dataset [33]
contains graphs where nodes denote users and edges de-
note comments. The aim is to classify graphs into different
communities.

COLORS-3. COLORS-3 dataset [52] contains random
graphs where each node shows one color from red, green
and blue and we aim to capture the number of green nodes
in each graph.
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5.1.2 Evaluation Setting

We split the classes into known classes and unknown
classes, and the number of each is shown in Table 1. In the
semi-supervised universal graph classification task, we only
use some of the labels in the known classes. All instances
in the unknown classes are unlabeled. In order to measure
the models’ performance in different application scenarios,
we adopt two settings with different labeling ratios (i.e.

High Ratio and Low Ratio) and high labeling ratio/low
labeling ratio is between 1.6 and 3. For example, on the
MNIST dataset, we use 1% of the labels and 3% of the labels
as high labeling ratio and low labeling ratio, respectively.
More details can be found in Table 1.

As for the evaluation metric, we use the classification
accuracy as the default. In the proposed semi-supervised
universal graph classification setting, a graph is classified
correctly if and only if (i) the graph belongs to the source
classes and the model predicts the correct label, or (ii) the
graph belongs to the novel classes and the model detects it
as the novel instance.

5.1.3 Baseline Methods

We compare the proposed UGNN with a wealth of base-
lines, ranging from kernel-based approaches to graph neural
networks and semi-supervised graph classification meth-
ods. The detailed baseline methods are described as follows:

Graph Kernel Methods. In the experiments, we take three
graph kernels for comparison, including:

• Weisfeiler-Lehman (WL) Kernel [53] that utilizes the
Weisfeiler-Lehman algorithm to generate features of
nodes that are compared across graphs.

• Shortest-Path (SP) Kernel [54] that decomposes graph
samples into shortest paths and contrasts pairs of the
shortest paths based on the lengths.

• Graphlet Kernel [55] that counts the graphlets in the
input graphs and generates features according to their
occurrence.

We use labeled data to fit a Support Vector Machine (SVM)
with graph kernels and then make predictions with this
SVM classifier.

Graph Convolutional Neural Networks. We also adopt a
variety of graph convolutional layers, including Graph Con-
volutional Network (GCN) [56], GraphSAGE [57], Graph
Isomorphic Network (GIN) [58]. When applying different
graph convolutions, we use TopK Pooling [59] as the default
graph pooling method.

Graph Pooling Methods. As for graph pooling methods,
we select three graph pooling methods as baselines. Specifi-
cally, we use:

• TopK Pooling [59] that is described in Sec 4.1.
• Self-Attention Graph Pooling (SAG Pooling) [36] that is

on basis of self-attention to jointly consider both node
features and graph topology.

• Adaptive Structure Aware Pooling (ASAP) [60] that uti-
lizes self-attention and learns soft cluster assignments
for each node to pool the graph.

When comparing different graph pooling methods, we keep
graph convolution method as the default GIN.

Semi-supervised Graph Classification Methods. Contrastive
learning is widely used in graph classification in semi-
supervised settings. Therefore, we select three graph con-
trastive learning methods and one knowledge distillation
method as our baselines.

• InfoGraph [61] that incorporates a teacher encoder
and a student encoder trained in supervised and self-
supervised manners, respectively. Their knowledge is
transferred by maximizing the mutual information.

• GraphCL [62] that adopts graph augmentations and
normalized temperature-scaled cross entropy loss (NT-
xent) to learn generalizable, transferable and robust
representations using contrastive learning.

• GLA [63] that designs label-invariant augmentations
in the representation space, and achieves promising
results in semi-supervised graph classification task.

• RGCL [64] that utilizes invariant rationale discovery
to separate the graph into two parts. These two part
would be fed into the contrastive learning framework
to learn effective graph representations.

5.1.4 Implementation Details

For graph representation learning, we use GIN convolu-
tion [58] as default. In subgraph-based OOD detection, we
obtain the subgraphs by randomly deleting 20% of the
nodes and their corresponding edges. We extract a total of 3
subgraphs from the original graph (i.e. I = 3) to empirically
compute the mean and variance. For prototype-aware semi-
supervised learning, the OOD samples are clustered into
3 parts (i.e. R = 3). We set ϵ in Eq. 9 to 0.05 and the
softmax temperature τ in Eq. 13 to 0.1 following [18]. The
momentum coefficient η is set to 0.99 as in [65]. During op-
timization, we also use an additional supervised contrastive
loss function in [66] to help the training. The proposed
UGNN is implemented with PyTorch and can be trained on
an NVIDIA RTX GPU. We train the model for 100 epochs in
which the first 50 epochs are used to warm-up the model
with labeled data. We use Adam optimizer [67] with a
learning rate of 0.001 and the batch size is set to 256.

5.2 Main Results (RQ 1)

The classification accuracy and F1 score of UGNN in com-
parison with various baseline methods are shown in Table 2
and Table 3. From the results, we have several observations.

Firstly, the proposed UGNN achieves a consistent im-
provement compared to all baseline methods in both low
labeling ratio (Low Ratio columns in the table) and high
labeling ratio (High Ratio columns in the table) scenarios
on all four datasets. The significant improvement shows
that the effectiveness of the proposed Subgraph-based OOD
Detection and Prototype-aware Semi-supervised Learning.
More specifically, we attribute the performance gain to the
following aspects: (i) UGNN is better at detecting OOD
samples. While baseline methods use prediction confidence
as the metric for classifying known and unknown cate-
gories, our model tackles this problem from a subgraph
perspective, which yields more robust OOD detection. (ii)
The proposed method provides consistent classification ben-
efiting from learning both known and unknown prototypes,
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TABLE 2: Classification accuracy of different labeling ratios on six datasets. Our UGNN achieves the best performance
significantly.

Model COIL-DEL Letter-High MNIST CIFAR10 REDDIT-MULTI-12K COLORS-3

Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio

WL Kernel 0.068±0.000 0.087±0.001 0.444±0.001 0.511±0.000 0.142±0.001 0.178±0.002 0.133±0.001 0.139±0.002 0.159±0.000 0.164±0.001 0.104±0.001 0.106±0.000
SP Kernel 0.039±0.004 0.053±0.002 0.131±0.002 0.142±0.004 0.142±0.001 0.144±0.006 0.139±0.003 0.133±0.004 0.156±0.006 0.165±0.005 0.097±0.003 0.102±0.007

Graphlet Kernel 0.035±0.002 0.049±0.001 0.129±0.002 0.156±0.004 0.118±0.001 0.139±0.001 0.101±0.000 0.110±0.000 0.114±0.002 0.129±0.003 0.090±0.001 0.095±0.004

GCN 0.226±0.025 0.335±0.012 0.329±0.039 0.504±0.018 0.200±0.004 0.370±0.005 0.309±0.010 0.365±0.008 0.312±0.006 0.334±0.005 0.319±0.007 0.383±0.008
GraphSAGE 0.377±0.032 0.397±0.015 0.409±0.007 0.582±0.004 0.196±0.002 0.420±0.019 0.329±0.006 0.351±0.002 0.244±0.004 0.262±0.004 0.313±0.016 0.340±0.019

GIN 0.412±0.016 0.445±0.013 0.489±0.006 0.571±0.005 0.297±0.008 0.626±0.002 0.272±0.019 0.333±0.007 0.347±0.003 0.3583±0.004 0.311±0.006 0.335±0.008

ASAP 0.553±0.006 0.601±0.023 0.567±0.017 0.609±0.006 0.482±0.006 0.541±0.004 0.386±0.009 0.395±0.004 0.335±0.008 0.367±0.012 0.321±0.003 0.343±0.009
SAG Pooling 0.410±0.008 0.485±0.040 0.462±0.058 0.522±0.003 0.425±0.001 0.632±0.003 0.364±0.015 0.388±0.021 0.328±0.006 0.347±0.008 0.391±0.005 0.402±0.010

InfoGraph 0.524±0.006 0.547±0.019 0.514±0.012 0.550±0.011 0.519±0.015 0.632±0.008 0.362±0.004 0.404±0.007 0.320±0.011 0.335±0.021 0.379±0.007 0.390±0.009
GraphCL 0.563±0.013 0.606±0.024 0.562±0.006 0.635±0.005 0.498±0.015 0.700±0.013 0.373±0.006 0.410±0.008 0.327±0.004 0.360±0.005 0.382±0.007 0.399±0.004

GLA 0.565±0.005 0.610±0.013 0.602±0.016 0.631±0.016 0.483±0.015 0.705±0.014 0.383±0.004 0.412±0.009 0.341±0.009 0.368±0.002 0.365±0.008 0.378±0.005
RGCL 0.572±0.004 0.608±0.012 0.587±0.008 0.697±0.012 0.475±0.013 0.714±0.011 0.356±0.009 0.406±0.005 0.345±0.012 0.366±0.007 0.390±0.008 0.409±0.004

UGNN (ours) 0.594±0.021 0.630±0.007 0.640±0.010 0.660±0.007 0.585±0.004 0.730±0.012 0.397±0.004 0.420±0.003 0.377±0.006 0.383±0.008 0.415±0.003 0.434±0.005

TABLE 3: F1 score of OOD detection on six datasets. Our UGNN achieves the best performance significantly.

Model COIL-DEL Letter-High MNIST CIFAR10 REDDIT-MULTI-12K COLORS-3

Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio Low Ratio High Ratio

GCN 0.190±0.047 0.214±0.011 0.301±0.054 0.342±0.021 0.241±0.004 0.379±0.014 0.216±0.005 0.238±0.007 0.322±0.004 0.358±0.010 0.429±0.008 0.559±0.005
GraphSAGE 0.207±0.052 0.216±0.054 0.389±0.011 0.342±0.032 0.185±0.012 0.194±0.006 0.273±0.012 0.289±0.009 0.300±0.002 0.322±0.006 0.497±0.017 0.620±0.013

GIN 0.255±0.011 0.274±0.005 0.424±0.011 0.417±0.009 0.213±0.005 0.404±0.004 0.237±0.009 0.255±0.011 0.341±0.002 0.361±0.004 0.542±0.004 0.562±0.014

ASAP 0.270±0.013 0.317±0.024 0.462±0.016 0.518±0.008 0.427±0.006 0.462±0.003 0.251±0.004 0.265±0.006 0.310±0.006 0.321±0.010 0.387±0.005 0.416±0.011
SAG Pooling 0.222±0.016 0.250±0.012 0.516±0.027 0.404±0.008 0.401±0.002 0.412±0.002 0.245±0.012 0.286±0.024 0.352±0.012 0.364±0.015 0.597±0.009 0.633±0.005

InfoGraph 0.232±0.014 0.250±0.016 0.459±0.006 0.511±0.007 0.443±0.019 0.506±0.015 0.264±0.004 0.265±0.006 0.317±0.012 0.365±0.015 0.547±0.016 0.562±0.019
GraphCL 0.257±0.013 0.314±0.016 0.524±0.008 0.517±0.017 0.446±0.016 0.498±0.022 0.260±0.002 0.288±0.006 0.320±0.011 0.377±0.007 0.541±0.016 0.632±0.009

GLA 0.281±0.012 0.296±0.041 0.520±0.029 0.526±0.005 0.440±0.008 0.509±0.073 0.291±0.009 0.294±0.004 0.356±0.003 0.383±0.004 0.570±0.009 0.577±0.012
RGCL 0.282±0.003 0.305±0.018 0.502±0.033 0.520±0.015 0.439±0.011 0.510±0.007 0.285±0.014 0.237±0.009 0.326±0.008 0.365±0.010 0.562±0.013 0.603±0.004

UGNN (ours) 0.319±0.088 0.352±0.025 0.567±0.015 0.563±0.004 0.458±0.005 0.535±0.006 0.313±0.006 0.297±0.007 0.428±0.014 0.443±0.008 0.608±0.007 0.654±0.004

whereas baseline methods focus mainly on known cate-
gories. (iii) The two components benefit each other. Better
out-of-distribution detection provides more accurate infor-
mation for semi-supervised learning with prototypes. Con-
versely, more consistent and robust representations helps
with finding OOD samples.

Secondly, the proposed UGNN experiences more sig-
nificant improvements in the low labeling ratio cases (e.g.
8.96% absolute improvement on MNIST with low labeling
ratio, compared to 2.59% absolute improvement with high
labeling ratio). This shows that our UGNN is more helpful
in the face of label scarcity, which is more common in real-
world scenarios.

Thirdly, traditional graph kernel based methods [53]–
[55] generally perform worse than graph neural network
methods. One exception can be found in the Letter-high
dataset, in which Weisfeiler-Lehman kernel achieves com-
parable accuracy with GNN-based methods. A possible
explanation is that the Letter-high dataset contains smaller
graphs (4.67 nodes in a graph on average) and relatively
simple structures. Graph Neural Networks (GNNs) [36],
[56]–[60] boost the performance in graph classification via
learning deep representations of graphs as well as utilizing
node attributes. Despite their performance gain, they lack
the ability to utilize unlabeled data and fall short in de-
tecting OOD samples. Semi-supervised graph classification
methods [13], [62]–[64] make use of unlabeled data and
thus improve the accuracy. However, they are still weak
when dealing with graphs in unknown classes. In contrast,
our model detects OOD samples based on subgraphs and
learns the prototypes for both known and unknown classes
in the semi-supervised setting, which further boosts the
performance.

Finally, the overall performance, as well as the model’s
improvement, of MNIST is higher than CIFAR10, given
that we use less data in MNIST than in CIFAR10. The

reason is two-fold. Firstly, even for their counterparts in the
computer vision domain, CIFAR10 is harder than MNIST.
More importantly, the two graph datasets are constructed
using super-pixels, which inevitably causes information loss
with regard to the detail in the original image. Since the
recognition of hand-written digits relies more on the global
shape (which is less affected), it is reasonable that graph
neural networks perform better on the MNIST dataset.

5.3 Ablation Studies (RQ 2)

In this subsection, we perform ablation studies to verify
the effectiveness of Subgraph-based OOD Detection and
Prototype-aware Semi-supervised Learning in UGNN. The
ablated results are listed in Table 4, where we compare the
prediction accuracy of our model and several variants in
both low labeling ratio (Low Ratio) and high labeling ratio
(High Ratio) scenarios on all the datasets. Moreover, in order
to understand the effects of these components in the face of
OOD samples, we also report the classification accuracy of
unknown classes. Specifically, we compare UGNN to the
model (i) without Subgraph-based OOD Detection (w/o
S), (ii) without Prototype-aware Semi-supervised Learning
(w/o P), (iii) without prototypes of known classes (w/o KP),
and (iv) without prototypes of unknown classes (w/o UP).

As can be seen from the results, removing each compo-
nent results in performance drop in both low labeling ratio
and high labeling ratio cases for both overall performance
and OOD detection. This demonstrates the effectiveness of
Subgraph-based OOD Detection and Prototype-aware Semi-
supervised Learning. Concretely, we have several observa-
tions listed as follows:

• Without effective OOD detection, the model fails to
achieve satisfactory accuracy. As we can see from the
second line of Table 4, removing subgraph-based OOD
detection causes catastrophic deterioration in classifica-
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TABLE 4: Ablation studies on all the datasets. Our full model achieves the best performance consistently.

Experiment MNIST-low MNIST-high COIL-DEL-low COIL-DEL-high CIFAR10-low CIFAR10-high

Overall Unknown Overall Unknown Overall Unknown Overall Unknown Overall Unknown Overall Unknown

UGNN 0.585 0.485 0.730 0.585 0.594 0.313 0.630 0.337 0.397 0.278 0.420 0.290

w/o S 0.525 0.381 0.646 0.500 0.507 0.216 0.572 0.356 0.383 0.261 0.377 0.293

w/o P 0.488 0.407 0.694 0.554 0.424 0.252 0.503 0.255 0.367 0.266 0.353 0.286

w/o KP 0.490 0.472 0.723 0.561 0.467 0.268 0.525 0.313 0.349 0.247 0.359 0.251

w/o UP 0.530 0.455 0.713 0.567 0.475 0.262 0.549 0.342 0.340 0.238 0.371 0.247
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Fig. 3: The parameter sensitivity experiments of UGNN in both low labeling ratio and high labeling ratio cases on two
datasets (i.e. COIL-DEL and Letter-high). The first column studies the number of novel clusters in Prototype-aware Semi-
supervised Learning (i.e. the number of prototypes of unknown classes R). The middle column shows the influence of the
presumed number of OOD samples. The last column focuses on the temperature in Eq. 13.

tion accuracy of unknown classes (i.e. 48.47%→38.13%
and 58.53%→49.97% on MNIST).

• Without prototype-aware semi-supervised learning
(w/o P, third line), the prediction accuracy falls.
Furthermore, it is worth noting that this component
is more important when the label is scarce, which is
demonstrated by a more significant decline in the low
labeling ratio case (e.g. 9.68% overall accuracy decline
in the low ratio case compared to 3.64% in high ratio
case on MNIST). This result is reasonable in that semi-
supervised learning aims to utilize unlabeled data,
which plays a more important role when labels are
scarce.

• Removing either prototypes of known classes (w/o KP,
fourth line) or prototypes of unknown classes (w/o
UP, fifth line) also hinders the performance, but to a
less extent compared to removing all the components
(w/o P, third line). This is especially true when the
model is provided with more labels. The mitigated
performance drop suggests that the prototypes under
the semi-supervised learning framework have enough
representation power to partially supplant each other.

5.4 Parameter Sensitivity (RQ 3)

In this subsection, we explore the model’s sensitivity to
hyperparameters. Specifically, we focus on three hyperpa-

rameters: (i) the number of clusters (prototypes of unknown
classesR) in Prototype-aware Semi-supervised Learning, (ii)
the number of presumed OOD samples, and (iii) the tem-
perature in Eq. 13. Note that in the previous experiments,
we use the ground truth number of OOD samples and the
goal of the experiment (ii) is to show that our UGNN is
not sensitive to the presumed number of OOD samples.
For mathematical convenience, we introduce a coefficient α
called OOD sample multiplier, and instead of choosing top
K samples, we select top αK samples. The experimental
results are shown in Fig. 3.

As can be seen from the results, although the perfor-
mance fluctuates around R ∈ [4, 5] in some cases, fixing the
number of clusters R to 3 achieves the best performance.

In particular, too few clusters (R < 3) would weaken
the benefit of prototype learning on OOD samples while
too many clusters (R > 3) would make the model over-
fitting after saturation. Moreover, while the actual number
of unknown classes varies (i.e. 20 unknown classes for the
COIL-DEL dataset and 5 unknown classes for the Letter-
High dataset), assuming a moderate number of unknown
prototypes (clusters) is generally beneficial for the model.
One explanation is that the model uses K-means algorithm
to initialize the unknown prototypes, which often yield
balanced results with three clusters. Another possible reason
for this phenomenon relates to the nature of OOD discov-
ery. The model has little knowledge of out-of-distribution
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Ground  Truth: 5 (Known Class)
Our Prediction: 5 (Correct)

Baseline Prediction: 1 (Incorrect)
(E)

Ground  Truth: 9 (Unknown Class)
Our Prediction: OOD (Correct)
Baseline Prediction: 1 (Incorrect)

(F)

Ground  Truth: 7 (Unknown Class)
Our Prediction: OOD (Correct)
Baseline Prediction: 1 (Incorrect)

(G)

Ground  Truth: 9 (Unknown Class)
Our Prediction: 4 (Incorrect)

Baseline Prediction: 4 (Incorrect)
(H)

Ground  Truth: 5 (Known Class)
Our Prediction: 5 (Correct)

Baseline Prediction: 5 (Correct)
(A)

Ground  Truth: 8 (Unknown Class)
Our Prediction: OOD (Correct)
Baseline Prediction: 3 (Incorrect)

(D)

Ground  Truth: 9 (Unknown Class)
Our Prediction: OOD (Correct)
Baseline Prediction: 1 (Incorrect)

(C)

Ground  Truth: 7 (Unknown Class)
Our Prediction: OOD (Correct)
Baseline Prediction: 3 (Incorrect)

(B)

Fig. 4: Visualization of classification results. We visualize several graphs in the MNIST dataset with their corresponding
ground truth classes, our prediction results and the prediction results of the baseline model using GIN and TopK pooling.
The results show that in many cases, the proposed UGNN correctly detects OOD samples.

samples (since they are all unlabeled) and can only resort
to the internal structures and attributes of the graphs to
calculate the feature of each sample. This leads to coarse
representations of OOD samples, and clustering them into
too many prototypes becomes very challenging.

As for the number of OOD samples, the experiments
demonstrate that an accurate estimation is not required to
achieve competitive results. As can be seen from the middle
column of Fig. 3, perturbing the presumed number of OOD
samples in the range of 80% to 140% has little influence
on the results. An interesting finding from the experiments
is that the overestimation of the number has less influence
compared to underestimation. One possible reason for this
is that in the semi-supervised setting, there could be some
samples belonging to the known classes but very different
from labeled data. For example, there could be several sub-
classes for a known class, but one sub-class does not appear
in the labeled data. To some extent, this sub-class plays the
role of an unknown class, and it is beneficial for the model
to identify this fact.

For the temperature parameter, we can observe that our
UGNN achieves the best accuracy when the temperature is
set to 0.1, providing the correct “softness” for the softmax
function in Eq. 13. An interesting phenomenon is that in
the low labeling ratio case, the model is more sensitive to
changes in the temperature parameter. The possible reason
is that with less labels as supervision, the model relies rela-

tively more on semi-supervised learning, and the influences
of hyperparameters in Prototype-aware Semi-supervised
Learning get amplified.

5.5 Visualization (RQ 4)
5.5.1 Visualization of Classification Results
In this subsection, we visualize eight graphs and our pre-
dictions in comparison with the prediction of the baseline
model. Specifically, the experiments are conducted on the
MNIST dataset, and we use GIN convolution [58] with TopK
pooling [59] as the baseline. The result is shown in Fig. 4,
and from the results, we have several observations:

• The task is generally more challenging than hand-
written digits recognition in images, and GNN can per-
form relatively well. For example, in case (A), although
the structure of the digit ‘5’ is not very clear, both
baseline model and the proposed UGNN classify this
graph correctly.

• The baseline model is weak in detecting OOD samples,
while the proposed UGNN is better at finding OOD
samples. For example, in case (B), (C), (D), (F) and (G),
the graphs belong to the unknown classes and the mod-
els are not provided with corresponding labels during
training. In these more challenging cases, the proposed
UGNN detects OOD samples correctly, whereas the
baseline model yields seemingly reasonable but incor-
rect predictions.
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Ours Baseline

Fig. 5: Visualization of learned graph features using t-SNE.
The experiments are performed on the MNIST dataset with
high labeling ratio, comparing the learned representations
of our model (left) and a baseline model using GIN con-
volution and TopK pooling (right). Our model achieves the
overall accuracy of 73.04%, while the baseline model reaches
62.55% overall accuracy. The results show that UGNN yields
better representations.

• The proposed model is also better at classifying known
classes. For example, in case (E), the graph belongs to
the known class and while the baseline model fails
to classify it correctly, our UGNN yields the right an-
swer. This suggests that the proposed Subgraph-based
OOD Detection and Prototype-aware Semi-supervised
Learning not only help with finding out-of-distribution
samples but also improve the representations of in-
distribution samples.

• There are some very hard cases where both the pro-
posed UGNN and the baseline model fail. For example,
in case (H), the ground truth is ‘9’, but the models do
not see graphs with label ‘9’ during training. To make
things worse, it resembles the digit ‘4’, which is often
seen during training with labels. To some extent, it is
reasonable for the model to make such mistakes.

5.5.2 Visualization of Learned Representations
We use t-SNE [68] to visualize the results of learned rep-
resentations, which is shown in Fig. 5. More specifically,
the experiments are conducted in the high labeling ratio
case of the MNIST dataset, and we compare the results of
UGNN in comparison with a GNN baseline that uses GIN
convolution [58] and TopK pooling [59]. As can be seen from
the results, our learned representations are more condensed.
For example, for the class of digit 3 (red dots), our model
yields more condensed features that are less confused with
class Unk (unknown classes, gray dots). Another example
is the class of digit 5 (brown dots), which is cut into two
clusters (one cluster in the middle of the graph close to the
red dots, the other lower in the graph between the purple
dots and the orange dots) in the results of the baseline
model. In comparison, our learned representations are better
in that most brown dots are clustered into one group.

For the unknown classes, we find it challenging to dis-
tinguish their features with other learned representations of
known classes clearly. However, our results are better than
the baseline’s. As can be seen in Fig. 5, the proposed UGNN
not only provides a more condensed representation distri-
bution of OOD samples, but also sets clearer boundaries.

For example, our model better separates the OOD samples
with the class of digit 2 (green dots).

We attribute the more condensed representations and
clearer boundaries among classes to the Subgraph-based
OOD detection and the following Prototype-aware Graph
Semi-supervised Learning. Compared to the baseline model
that uses only cross entropy loss, our method can better
capture the internal structure of the graphs that tend to
distinguish themselves from other samples.

6 CONCLUSION

This research studies the topic of semi-supervised univer-
sal graph classification, which attempts not only to detect
graph samples that do not correspond to known classes but
also to classify the remaining samples into their respective
classes. From a subgraph prospective, we offer a novel
approach dubbed UGNN that overcomes both class shifts
and label scarcity in this problem. On the one hand, to
achieve reliable OOD sample detection, UGNN samples
several subgraphs for each sample and then measures both
prediction confidence and individual output uncertainty
comprehensively. On the other hand, UGNN builds graph
prototype representations and then use the posterior pro-
totype assignments inferred from one subgraph view to
monitor the semantics of unlabeled input from another
view. Extensive experiments on four benchmark graph clas-
sification datasets demonstrates the efficacy of our UGNN.
In future work, we will apply our UGNN to more realistic
graph classification scenarios, including domain adaptation
and domain generalization.
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