
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Comprehensive Privacy Analysis on Federated
Recommender System against Attribute

Inference Attacks
Shijie Zhang, Wei Yuan and Hongzhi Yin, Senior Member, IEEE

Abstract—In recent years, recommender systems are crucially important for the delivery of personalized services that satisfy users’
preferences. With personalized recommendation services, users can enjoy a variety of recommendations such as movies, books, ads,
restaurants, and more. Despite the great benefits, personalized recommendations typically require the collection of personal data for
user modelling and analysis, which can make users susceptible to attribute inference attacks. Specifically, the vulnerability of existing
centralized recommenders under attribute inference attacks leaves malicious attackers a backdoor to infer users’ private attributes, as
the systems remember information of their training data (i.e., interaction data and side information). An emerging practice is to
implement recommender systems in the federated setting, which enables all user devices to collaboratively learn a shared global
recommender while keeping all the training data on device. However, the privacy issues in federated recommender systems have been
rarely explored. In this paper, we first design a novel attribute inference attacker to perform a comprehensive privacy analysis of the
GCN-based federated recommender models. The experimental results show that the vulnerability of each model component against
attribute inference attack is varied, highlighting the need for new defense approaches. Therefore, we propose a novel adaptive
privacy-preserving approach to protect users’ sensitive data in the presence of attribute inference attacks and meanwhile maximize the
recommendation accuracy. Extensive experimental results on two real-world datasets validate the superior performance of our model
on both recommendation effectiveness and resistance to inference attacks.

Index Terms—Recommender System, Federated Learning, Local Differential Privacy, Attribute Inference Attack
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1 INTRODUCTION

In online services, the demand for recommender systems
has increased more than ever before, due to their success in
alleviating the problem of information overload by filtering
vital information out of a large volume of data to efficiently
deliver personalized contents and services for users [1], [2],
[3]. It is no wonder, these recommenders, if set up and
configured properly, can significantly contribute to revenues
as well as user experience. In recent years, various recom-
mendation algorithms have been proposed and achieved
immense success in practical applications. Collaborative
filtering (CF) based recommender systems, which make
recommendations by utilizing users’ historical interaction
data, are widely deployed in the online platforms, for the
fact that they are effective and efficient. More recently, deep
learning-based recommender systems have demonstrated
advantageous effectiveness by advancing the representation
learning capability and producing high-quality recommen-
dations [4], [5], [6], [7].

Despite the promising effectiveness, tremendous privacy
concerns on recommender systems are raised in recent
years. On one hand, to boost the recommendation per-
formance, especially for fresh (i.e., cold-start) customers,
these systems hungrily collect various side information data
(a.k.a. user attributes or contexts) to better infer users’
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Fig. 1: Architecture of a typical Federated Recommender
System.

preferences [8], [9]. When registering accounts, users are
required to complete questionnaires about their personal
demographics (i.e., age and gender) to facilitate user pro-
filing. Once intercepted by malicious third parties, the leak-
age of users’ sensitive information can be catastrophic. On
the other hand, recent research indicates that even users’
unpublished private information can be inferred via their
interaction history with high confidence [10], [11], [12]. Such
personal information includes but not limited to age, gen-
der, political orientation, health, financial status etc. Much
worse, the attackers can utilize the inferred attributes to
link user accounts across multiple platforms and break
anonymity [13], [14]. Such attack is termed as attribute
inference attack [15], where the malicious attackers can be
data brokers, cyber criminals, advertisers, etc. An example
is that [16] successfully deanonymizes Netflix users by
utilization of the publicly accessible IMDb user profiles.
Accordingly, the personalized recommendation results can
also cause privacy leakage since they imply users’ interests
and even their sensitive attributes [17], [18]. In previous
work [17], a novel differentially private graph convolutional
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network named GERAI is proposed to address aforemen-
tioned privacy issues. Specifically, the graph convolutional
networks (GCNs) [19], [20] is adopted as the main building
block, since it is capable of jointly exploiting the user-item
interactions and the rich side information of users. Then,
to provide a privacy guarantee, the authors design a novel
dual-stage perturbation paradigm with differential privacy,
which makes the recommendations less dependent on users’
sensitive data, avoiding privacy leakage in recommendation
results. Unfortunately, despite its success, this centralized
recommendation paradigm still inevitably leads to increas-
ing risks to user privacy, since user data stored on the central
server might be accidentally leaked or misused.

In light of privacy issues in centralized recommender
systems, there has been a recent surge in decentralized rec-
ommender systems, where federated learning (FL) [21], [22],
[23] becomes one of the most representative frameworks
in the development of privacy-preserving systems. Specif-
ically, a federated recommender shown in Figure 1 allows
users’ data safely hosted on their personal devices, and
the shared global recommender is collaboratively trained
in a multi-round fashion by collecting a batch of locally
updated models to the central server for parameters update.
To avoid privacy concerns, the server is designed to have no
access of each client’s local data and training process. As a
result, such federated recommenders seem to be regarded as
‘safe’ towards attribute inference attacks. Though federated
learning framework can achieve comparable recommenda-
tion results without sharing users’ sensitive data, recent
works show that it is yet to provide a privacy guarantee of
training data [24]. Specifically, model parameters uploaded
during the training process provide a chance for inference
attacks, since the well-trained parameters can remember
local data information. [25], [26], [27] have studied that deep
learning models in the federated setting are susceptible to
membership inference attacks, where the attacker is able to
infer the samples used to train the model.

Although membership inference attacks have been stud-
ied in the federated setting [25], [26], [27], the vulnerability
of federated recommender against attribute inference at-
tacks (i.e., users’ attributes) remains unexplored. To validate
whether federated recommender paradigm is susceptible
to attribute inference attacks, we make the first attempt
to infer users’ private attributes through the uploaded pa-
rameters in the federated setting. Figure 2 demonstrates
the F1 Score achieved by the attribute inference attacker
(refer to details in Section 3.3) on three well-trained fed-
erated recommenders (MF [28], NCF [29] and GCN [20]).
To show the significance of attribute inference from local
model parameters, we build a random guessing classifier
named Random Attack as a null model. From the results
shown in Figure 2, we observe significant differences be-
tween the random attack and the inference attack based on
local model parameters. It can be concluded that the shared
model parameters in the federated learning process signifi-
cantly reveal users’ attribute information, demonstrating the
demand for advanced defenses against attribute inference
attacks to federated recommender systems. Recently, local
differential privacy (LDP) has become a gold standard for
providing protection guarantee of local model parameters
in the federated setting. [21], [30], [31], [32] successfully

apply LDP mechanism in federated deep learning tasks to
transform the local model parameters into a noisy version at
each user device before being uploaded to the central server.
Despite its success in many applications against member-
ship attacks, it has been rarely studied to protect users’
attribute information in the federated recommendation.

These aforementioned limitations motivate us to propose
a novel privacy-aware federated recommender system that
significantly improve both recommendation effectiveness
and robustness against attribute inference attacks. However,
how to apply LDP technique in the federated recommender
systems faces tremendous challenges. Setting an appropri-
ate value for the privacy budget is crucial for the utility of
the attack-resistance recommender system in the federated
setting. A low budget value (i.e., noise factor) can result
in a high success rate of attribute inference attack since
the noise added into model parameters are negligible and
ineffective, while a high value will inevitably destroy model
utility. For simplicity, existing works [21], [30] just fix a
constant DP budget for all model parameters. However, de-
signed for modelling nonlinear relations between users and
items, federated deep recommender models have multiple
components and layers, and their model parameters exhibit
large variance, thus the vulnerability of each component or
even each layer to the attribute inference attacks is different.
Therefore, treating all components/layers under the same
privacy protection mechanism results in unavoidable exces-
sive utility loss.

In this paper, we perform a comprehensive privacy anal-
ysis of each component of the GCN-based federated recom-
mender model, and the results show varied vulnerabilities
of these components against attribute inference attacks.
Specifically, we divide model parameters into three main
parts based on functionality, namely User Component, Item
Component and MLP. To achieve optimal privacy strength
without sacrificing much recommendation accuracy, we de-
sign a novel adaptive LDP mechanism named APM that
can automatically adjust the utility loss of each component
when defending attribute inference attacks. To conclude, we
highlight our main contributions as follows:

• To the best of our knowledge, we are the first to present
a comprehensive privacy analysis of federated recom-
mender systems under attribute inference attacks. Our
study reveals that well-trained recommenders are sig-
nificantly susceptible to attribute inference attacks even
in a decentralized environment.

• In order to address growing privacy concerns in the
federated recommendation context, we design a novel
adaptive privacy-aware mechanism to guard users’ sen-
sitive data against attribute inference attacks without
sacrificing high-quality recommendation results. Our
model innovatively takes advantage of the inherent in-
formative bias to reduce overall utility loss in defending
attribute inference attacks.

• Extensive experiments are conducted on two real-world
datasets, and the results demonstrate the superior per-
formance of our solution. Furthermore, compared with
all baselines, the results show that our model provides
a strong privacy guarantee with less compromise on the
recommendation accuracy.
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Fig. 2: Attribute inference attack results of popular
federated recommenders on ML-100K and ML-1M.

2 PRELIMINARIES
In this section, we first revisit the key definitions that
are frequently used in this paper and then formulate our
problem. Note that we use bold lowercase (e.g., a) to denote
vectors, and use bold uppercase (e.g., A) to denote matrices.
All sets are written in squiggle uppercase letters (e.g., A).

Differential Privacy. Differential privacy (DP) can pro-
vide a rigorously mathematical guarantee in the machine
learning tasks. The notion of differential privacy was first
introduced by [33] and it can be utilized to defend against
malicious attackers that infer useful information from a
target model (e.g., outputs and structure of the model).
Given a privacy parameter ε > 0, the ε−differential privacy
(ε−DP) is defined as follows:

Definition 2.1. (ε−Differential Privacy) A randomized
mechanism f : D → R with domain D and range R, and it
satisfies ε−DP if:

Pr[f(D) ∈ O] ≤ exp(ε)Pr[f(D′) ∈ O], (1)

where Pr[·] represents probability, D and D′ are two ad-
jacent datasets differing on only one data instance, and
O ⊆ R denotes any subsets of possible output values. Eq.(1)
implies that the probability of output distribution f(D) is
at most exp(ε) times smaller than that of f(D′). On this
basis, f(·) is not overly dependent on any individual data
record, providing each instance roughly the same privacy.
In the federated setting, the central server updates global
model by aggregating the collected model parameters from
a group of local devices. To defend against malicious attacks
that infer user’s private attributes via its device’s updates,
each local device should first perturb model parameters
Θ by directly adding noise, and then the noised version
of Θ∗ is updated to the central server instead of original
parameters. Hence, the model parameter generated by each
local device is treated as a singleton dataset, and we require
the random perturbation mechanism f(·) to perform by
the local devices, not by the central server. Specifically, we
introduce ε−local differential privacy (ε−LDP) which is a
special case of differential privacy:

Definition 2.1. (ε−Local Differential Privacy) A random-
ized mechanism f(·) satisfies ε−LDP if and only if for any
two input data Θ and Θ′, we have:

Pr[f(Θ) = Θ∗] ≤ exp(ε) · Pr[f(Θ′) = Θ∗] (2)

where Θ∗ denotes the output of f(·). The lower ε provides
stronger privacy but may result in severe performance drop
of a federated model as each local model is heavily per-
turbed. Hence, ε determines privacy budget that controls the

trade-off between privacy and model utility. With the pri-
vacy guarantee from LDP, an external attacker who collects
Θ∗ (e.g., perturbed model parameters) cannot accurately
estimate the true data is Θ or Θ′, and thus the sensitive
information is obfuscated.

Federated Recommender Systems. Let V and U de-
note the sets of N items and M users, respectively. Each
device used by an individual user u ∈ U has a local
training dataset Du that consists of implicit feedback tuples
(u, v, ruv), where ruv = 1 if u has interacted with item v ∈ V
(i.e., a positive instance), otherwise, we set ruv to 0 (i.e., a
negative instance). Due to the large number of unobserved
interactions, we use a sample ratio of 1 : q to downsample
the negative instances for each user u. We use N (u) to
denote the set of items visited by u. Additionally, each user u
privately preserves a dense input vector xu ∈ Rd

1

in which
each element represents either u’s private attribute s ∈ S or
a extracted statistical feature s ∈ S ′ based on Du. Not that
each categorical feature (i.e., age and gender in our case)
is represented by one-hot encoding in xu. The federated
recommender system aims to train a global recommender
across multiple decentralized user devices that hold local
private data (i.e., xu and Du), without direct access to them:

argmin
Θu

∑
u∈U
Lrec(Du,Θu) (3)

where Lrec(·) is a loss function and Θu represents all the
trainable parameters of u’s local recommender. For notation
convenience, we use Θ to represent the recommender sys-
tem.

Task 1. For each user u ∈ U , given its local dataset
Du and user feature vector xu, we aim to learn a privacy-
preserving federated recommender system, in which mali-
cious attackers are unable to infer user’s private attributes
(i.e., gender and age in our case) via u’s uploaded model
parameters with high confidence.

3 ATTRIBUTE INFERENCE ATTACKS
3.1 Base Recommender
Federated learning appears to be compatible with various
latent factor models. The advantage of FL that users’ data
host on their local devices makes it attractive for developing
privacy-preserving models. In this paper, we extend the
DSSM [34] that is a widely used backbone for centralized
recommendation to a federated one named FedRec. The
local FedRec framework is shown in Figure 3, which con-
sists of three key components to generate recommenda-
tions, namely user component, item component and MLP.
Notably, almost all federated recommendation systems de-
signed for top-k recommendations follow this architecture,
such as [21], [22], [23], [27], [29], [30], [35], [36], [37], since it
is generic and can be easily extended to most advanced rec-
ommenders by simply adopting different feature modeling
layers in user or item components. We employ a GCN [19]
layer as the key building block to learn user embeddings in
FedRec, since it is advantageous in capturing local structure
information of the user-item interaction data and user’s side
information in a unified way. To guarantee user privacy,
the neighbor set N (v) of item v is highly sensitive and
restricted, and thus GCN layer cannot be applied to item
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Fig. 3: Overview of Local model in each device.

embeddings. In what follows, we will introduce the design
details of each component in FedRec.

In user u’s local device, given local dataset Du and
we assume that a feature vector xu associated with u is
available. Note that we use zu and zv to denote the latent
representations of users and items in the same latent space,
respectively. Specifically, zu, zv can be initialized as follows:

zu = EUxu, zv = EVxv, (4)

where xu ∈ Rd
1

is user u’s raw feature vector and EU ∈
Rd×d

1

is the user feature transformation matrix. xv ∈ Rd
2

and EV ∈ Rd×d
2

represent item feature vector and item
feature transformation matrix. To ensure our model’s gen-
eralizability, each item feature vector xv is initialized using
randomized values as we do not assume the availability of
item features.

In each forward iteration, to learn the embedding of
user u, GCN firstly computes its embedding by iteratively
aggregating information from its first-order neighbors, i.e.,
items interacted with u:

zNu = Agg({W1zv,∀v ∈ N (u)}), (5)

where W1 is trainable weight matrix and Agg(·) is the
aggregation function which aggregates the neighborhood
information zv into a unified vector representation. In the
experiment, we adopt the average aggregation function for
simplicity.

Then, the user’s current representation zu is added to
the aggregated neighborhood vector zNu , and then being fed
through a fully connected layer to form an updated user
embedding z∗u:

z∗u = ReLU(W2 · (zu + zNu ) + b), (6)

where ReLU(·) denotes the rectified linear unit for nonlin-
earity, and W2 and b are weight matrix and bias vector.

On the item side, as the neighbor set of each item (i.e.,
the set of users who interact with the item) is unavailable
in the federated setting, we do not perform convolution
operation when learning item representations. Therefore,

the parameters in user component and item component can
be represented as ΘU = {EU ,W1,W2,b} and ΘV = {EV}.

Afterwards, in user u’s local device, the ranking score
r̂uv for an arbitrary item v ∈ N (u) can be predicted by u’s
local recommender. To achieve this, local recommender first
concatenate u’s and target item v’s current embeddings, and
then adopt a L-layer perceptron network (MLP) MLP (·) to
model the user-level interactions and estimate r̂uv :

r̂uv = σ(MLP (z∗u ⊕ zv)), (7)

where z∗u, zv ∈ Rd are user and item embeddings respec-
tively,⊕ is the concatenation operation, and σ is the sigmoid
function that rectifies the ranking score to the range [0, 1].

3.2 Federated Learning Protocol.

As shown in Algorithm 1, FedRec aims to train a shared rec-
ommender with a central server by coordinating individual
user devices to train local models based on private dataset
Du and user features xu. To train FedRec, each user’s model
is optimized locally with a distance-based loss function:

Lrec = −
∑

(u,v,ruv)∈Du ruv log r̂uv + (1− ruv) log(1− r̂uv), (8)

where r̂uv ∈ [0, 1] is obtained via Eq (7). Notably, we
adopt cross-entropy loss to minimize the difference between
r̂uv and the ground truth ruv . With the user-specific loss
Lrec computed, we can obtain updated parameters Θt

u

of u’s local model. Specifically, at each epoch t, a subset
of users U t are randomly drawn, and each selected local
device should download the latest global recommender Θt

and then update its local recommender on Du. Then, each
device uploads its updated local model parameters to the
central server. Once the central server receives all local
model parameters submitted by |Ut| users, it aggregates
the collected parameters to facilitate global recommender
update. Specifically, FedRec follows the commonly used
FedAvg protocol [38] to update global recommender Θt+1:

Θt+1 =
∑
u∈Ut

Θt
u. (9)
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Algorithm 1: Procedures for Training FedRec
Input: The number of global rounds Tg and local

Epochs Tl, sampled clients U t at each time t,
initialized model parameters Θ and local
learning rates µ1;

for t ≤ Tg do
Local Training Process for u ∈ U t:
Initialization: Θt

u ← Θ ;
for t2 ≤ Tl do

Draw a minibatch B ;
for Bi ∈ B do

Θt
u ← Θt

u − µ1
∂Lrec(Bi,Θtu)

∂Θtu
;

end
t2 ← t2 + 1;

end
Send Θt

u to Server;
Model Aggregating process:
Update the global parameters Θ as:
Θt+1 = 1

|Ut|
∑
u∈Ut Θt

u;
Θ← Θt+1;
t← t+ 1;

end

The training continues iteratively until the global recom-
mender achieves convergence criteria. Unlike centralized
recommenders, FedRec collects only each user’s local model
parameters instead of personal data (i.e., Du and demo-
graphics xu), and local model parameters are not directly
shared across users.

3.3 Attribute Inference Attack

Generally, federated recommender system assumes that the
central server is trusted and works under non-adversarial
setting. In real-life scenarios, the server is honest-but-
curious, which means server is curious in inferring the
information of individuals via received updates but honest
in processing the updates, leaving a backdoor to estimate
users’ private attributes. To perform attribute inference at-
tacks on FedeRec, traditional attack approaches designed
for centralized recommenders have limited success to attack
federated models. The main reason is that the prior knowl-
edge (e.g., all user-item interactions and recommendation
results) that is requisite for the malicious attackers [17],
[18], cannot be obtained in the federated setting as such
information is kept privately at the user side. Furthermore,
the federated setting substantially restricts the knowledge
acquisition of an attribute inference attack model, and we
summarized the accessible prior knowledge as follows:

I. The adversary can access user u’s local model parameters
Θt
u at any iteration t.

II. The adversary knows sensitive attributes of a small group
of users Uadv who may cooperate with the untrusted
server due to financial incentives, or general registers who
are willingness to share their information with the online
platforms.

With the updated model weights Θt, we can obtain ∆Θ =
Θt−1−Θt

µ1
, which can be regarded as the gradient of model

parameters over one epoch of SGD optimization method.

∆Θt reflects how much each parameter has to change and
contains sufficient information of the training dataset. As a
result, the adversary has a dataset Dadv = {(∆Θt

u, yu)|∀u ∈
Uadv}. To construct an attribute inference attack model, the
adversary needs to find the meaningful mapping between
the model’s updated parameters and user attributes. Given
the dataset Dadv , the most straightforward way of learning
such relationship is to train the attack model in a supervised
way, and use it to attack the rest users whose attributes
are unshared. Then, suppose there are C classes of target
attribute, the attribute inference attacker (AIA) fadv(·) is a
three-layer deep neural network that inputs a model update
gradient ∆Θu, and outputs a C-dimensional vector ŷ in
which each element ŷ[c] ∈ ŷ (c = 1, 2, ..., C) denotes the
probability that user u is classified to label c. We train fadv(·)
with cross-entropy loss on all training dataset Dadv :

Ladv = −
∑

∀u∈Uadv

C∑
c=1

y[c] log ŷ[c], (10)

where y = {0, 1}C is the one-hot label and the hidden
dimension is set to 100 and 30. To evaluate FedRec’s ro-
bustness against the proposed attack model, we randomly
choose ζ of users in U t as Uadv to train our attacker, and the
remainder is utilized to evaluate the inference accuracy. To
quantify target recommender’s resistance ability, we lever-
age a widely-used classification metric F1 Score to measure
the performance of the attacker and show results in Figure 4.
Note that we set user/item dimension d to 64 and use a 2-
layer MLP in Eq (7), and report inference accuracy when
train-test split ratio ζ is 10% and 20% respectively. Corre-
spondingly, lower F1 Score demonstrates higher resistance
to this attribute inference attack.

Firstly, we take the whole ∆Θ (i.e., Full Version) as the
input of the proposed attacker model by simply flattening
all parameters from different components of a well-trained
FedRec. In Figure 4, we can see that the FedRec that is based
on the GCN-based recommender are significantly vulnera-
ble to our proposed attribute inference attack. Specifically,
the inference attack accuracy achieves 0.528 on age attribute
and 0.677 on gender attribute on ML-100K, while 0.522
on age attribute and 0.684 on gender attribute on ML-
1M, though a small group of users (i.e., ζ = 10%) are
compromised. It confirms that even a fully trained deep
recommender in the federated setting can leak significant
amount of information about users’ sensitive attributes.

Then, to understand and demonstrate the impact of
model parameters derived from different components, we
compare the inference accuracy of the attacker on each
component of the local RedRec separately. As introduced
in Section 3.1, the local FedRec is mainly composed of
three components, namely user component, item compo-
nent and MLP. From Figure 4 (a), it is clear that these
three components exhibit various degrees of information
leakage. User component leaks more attribute information
about each user on both two dataset, compared to the
other two components. The reason behind this is twofold.
By directly processing the user features, the parameters in
the user embedding layer inevitably remember much more
information of the original user feature, thus leaking more
information. Additionally, the GCN layer aggregates the
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Fig. 4: Vulnerability of each component in FedRec defending against attribute inference attack w.r.t. ζ .

embeddings of the user’s interacted items that contain other
similar users’ attribute information. Furthermore, though
MLP does not directly contain user features, it still leaks
much user information.

Due to that the recommender accuracy mainly depends
on the generalization ability of the MLP, we further perform
attacks with individual layers in MLP to study the vulnera-
bility of each layer in the MLP. The results from Figure 4 (b)
show that combining all parameters from multiple layers
of MLP does not obtain significant accuracy gain. This is
because of the information overlap among various layers
and high dimension problem that is common in classifi-
cation task. Notably, the first layer leaks more attribute
information, compared to the last layer. One possible reason
is that the first layer directly interacts with the concatenated
embeddings of user and item. Based on the results, we
propose a resistance function l(·) that maps each parameter
to a resistance degree against attribute inference attacks.

l(θi) =


0, θi ∈ ΘU

1, θi ∈ ΘV

2, θi ∈ ΘMLP1

3, θi ∈ ΘMLP2

(11)

Therefore, the traditional assumption that the parameters
from different components have the same attack vulnera-
bility does not hold in the federated recommender, which
motivates us to design an adaptive privacy-preserving fed-
erated recommender system to minimize utility loss.

4 ADAPTIVE PRIVACY-PRESERVING MECHANISM

In this section, we present the design of our privacy-
preserving mechanism named APM that can defend against
attribute inference attacks via an adaptive local differential
privacy constraint where each component has a different
privacy budget (i.e., noise factor λi). Algorithm 2 depicts the
workflow of our adaptive privacy-preserving local training
in FedRec. As the local model is trained based on a set

of user-item interactions and user features, a traditional
private training approach works by perturbing the model
updates based on LDP techniques with fixed privacy budget
for all model components before being submitted to the cen-
tral server. However, assuming each component exhibits the
same vulnerability against attribute inference attack would
lead to suboptimal performance in both recommendation
accuracy and privacy protection. To this end, we propose
an adaptive privacy-preserving training mechanism. Specif-
ically, we allocate a larger share of the privacy budget
(larger noise factor) to model parameters with low attack
resistances and a smaller share (smaller noise factor) to
model parameters with high resistances. Thus, the privacy-
preserving FedRec is able to defend against attribute infer-
ence attacks with little loss of recommendation accuracy.
Despite the success of many DP- and LDP- based ap-
proaches [32], [39], [40], [41] on classification task in the fed-
erated setting, most of them are not applicable in federated
recommender scenarios or result in significant performance
drop. Specifically, designed for modelling nonlinear rela-
tions between users and items, federated recommenders are
optimized towards completely different learning objectives
with much more complicated model structures where model
parameters exhibit large variance. Particularly, applying
strict clipping function applied to high-dimensional model
parameters would lead to a large variance of the resulted
model parameters and lose information contained in the
original parameters. Following [21], [30] that successfully
applied Laplace Noise-based LDP approach to federated
recommender system, we design the following adaptive
privacy-preserving mechanism based on Laplace Noise to
achieve optimal privacy protection:

M(Θ) = clip(Θ, δ) + n,

n ∼ Lap(0, λi),
(12)

where n is Laplace Noise with 0 mean. The noise fac-

tor λi =
maxθi,θ′i

|M(θi)−M(θ′i)|
p(θi)

that controls the strength
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Algorithm 2: Adaptive Privacy Protection Local
Training for FedRec

Input: The number of local Epochs Tl, local learning
rate µ1, global model parameters Θ, clipping
bond δ, privacy parameters εmin, εmax.

Output: Perturbed Θt
u

Local Training Process:
Initialization: Θt

u ← Θ ;
for t2 ≤ Tl do

Draw a minibatch B ;
for Bi ∈ B do

Θt
u ← Θt

u − µ1
∂Lrec(Bi,Θtu)

∂Θtu
;

end
Add noise:
Θt
u ← clip(Θt

u, δ);
for θti ∈ Θt

u do
λi ← 2δ

p(θti)
, p(θti) = εmin + εmax−εmin

3 · l(θti);
θti ← θti + Lap(0, λi);

end
t2 ← t2 + 1;

end

of Laplace Noise is determined by the adaptive privacy
parameters εi, and a larger λi can bring better privacy
protection. Specifically, given privacy parameters εmin, εmax
of each parameter and resistance function l(·) in Eq (11),
p(θi) = εmin + b · l(θi), where b = εmax−εmin

3 controls
the privacy budget scoop. The function clip(·) is used to
limit the value of each parameter with the scale of δ , and
thus noise factor λi is limited to [ 2δ

εmax
, 2δ
εmin

]. After clip and
randomization operation, it is more difficult to infer the raw
user side information from the model parameters. Then each
user device uploads its randomized local model parameters
to the server without privacy leakage.

5 EXPERIMENTS
In this section, we conduct experiments to verify the ef-
fectiveness of our solution on two tasks, namely privacy
protection strength and recommendation effectiveness. In
particular, we aim to answer the following research ques-
tions (RQs):
• RQ1: Can our model effectively protect personal at-

tributes in the presence of attribute inference attacks?
• RQ2: How does our method perform in the recommen-

dation task?
• RQ3: What is the contribution of the novel adaptive

privacy-protection mechanism?
• RQ4: Can our model resist attribute inference attacks

that utilize different kinds of attack models?
• RQ5: what is the impact of key hyperparameters in

privacy-preserving strength and recommendation ef-
fectiveness of our method?

• RQ6: How does APM perform w.r.t. different base
recommenders?

5.1 Datasets

We use two publicly available datasets for evaluation,
namely ML-100K and ML-1M [42]. ML-100k contains
10, 000 ratings from 943 users on 1, 682 movies collected

TABLE 1: Features extracted from the dataset.

- Number of interacted products
- Number and percentage of each rating level (i.e., 1-5) given
by a user
- Ratio of positive and negative ratings: The percentage of low
ratings (1 and 2) and high ratings (4 and 5) of a user.
- Entropy of ratings: It is calculated as −

∑
∀r Perr logPerr ,

where Perr is the percentage that a user gives the rating of r.
- Median, min, max, and average of ratings
- Gender: It is either male or female.
- Occupation: A total of 21 possible occupations are contained.
- Age: Age attribute is divided into 3 groups: under 45, over 35,
and between 35 and 45.

from the MovieLens website, while ML-1M is a larger
dataset that contains 1 million ratings involving 6,039 users
and 3,705 movies. Additionally, in each dataset, all users
are associated with three private attributes, i.e., gender, age
and occupation. In previous work [17], the experimental
results show that the occupation attribute cannot be cor-
rectly inferred via the attribute inference attacks, compared
to gender and age attributes. One possible reason is that
occupation attribute is divided into 21 classes, which is
hard for simple classification models to achieve acceptable
accuracy. Therefore, we mainly focus on Gender and Age
attributes in this work, and transfer the age and gender
attributes into a 3- and 2-dimensional one-hot encoding
vectors, following [17]. Table 1 provides a summary of all
the user features we have used.

5.2 Evaluation Metrics

Recommendation Effectiveness. To evaluate the recom-
mendation accuracy, we use the leave-one-out approach [43]
to split datasets for evaluation. Specifically, one item is
preserved as ground truth for each user to construct a test
set. We leverage hit ratio at rank K (Hit@K) to measure
the ratio of the ground-truth items that appear in the top-K
recommendation lists. Note that we use the entire negative
item sets rather than the sampled subsets to compute Hit@K.

Attribute Inference Attack Resistance. To quantify a
model’s resistance ability against attribute inference attacks,
we employ a widely used classification metric F1 score to
evaluate the inference accuracy of the attacker.

5.3 Baseline Methods

We compare our model with the following SOTA baselines.
Pure FedRec: This is a pure GCN-based federated recom-
mender system described in Section 3.1 without any privacy
protection mechanism. F-GERAI: For the fair comparison,
we extend the centralized recommender GERAI proposed
in [17] to a federated version that uses the information per-
turbation mechanism in DP to protect user attribute infor-
mation. F-GERAI-NL. It is a variant of F-GERAI, which only
enforces ε-differential privacy by perturbing the objective
function. F-DPMF: We extend DPMF (Differentially Private
Matrix Factorization) proposed in [44] to a federated version
F-DPMF. In its local recommender, objective perturbation is
applied to make sure that the updated item embeddings
satisfy differential privacy. FedNews [30]: Fednews is the
first work that adopts Laplace Noise-based LDP method
in federated news recommender system. In order to fit our
recommendation setting where there is not textual content
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TABLE 2: Performance of attribute-inference attack.

Attribute Method ML-100k ML-1M
ζ = 0.1 ζ = 0.2 ζ = 0.1 ζ = 0.2

Age

Pure FedRec 0.528 0.560 0.522 0.570
F-DPMF 0.584 0.599 0.579 0.590
F-GERAI 0.503 0.507 0.501 0.531

F-GERAI-NL 0.509 0.559 0.505 0.539
FedRec-GN 0.455 0.496 0.449 0.461
FedNews 0.446 0.480 0.439 0.479

ours 0.429 0.470 0.414 0.434

Gender

Pure FedRec 0.677 0.708 0.684 0.682
F-DPMF 0.703 0.694 0.709 0.717
F-GERAI 0.639 0.648 0.627 0.640

F-GERAI-NL 0.657 0.658 0.634 0.665
FedRec-GN 0.575 0.642 0.627 0.634
FedNews 0.568 0.592 0.597 0.619

ours 0.559 0.581 0.574 0.603

for items, the base recommender is replaced by our GCN-
based recommender (refer to details in Section 3.1). FedRec-
GN: Based on Pure FedRec, we add Gaussian Noise [33] into
the uploaded parameters of each client, which can mask the
original information.

5.4 Parameters Settings
In FedRec, we set the latent dimension d, local learning rate,
local batch size, local epoch to 64, 0.001, 32 and 5, respec-
tively. Each device is assumed to contain an individual user,
and 50% and 10% of users are randomly selected on ML-
100K and ML-1M at each round. Model parameters in Fe-
dRec are randomly initialized using Gaussian distribution,
which has 0 mean and a standard deviation of 1. In our
proposed adaptive privacy-preserving mechanism, we set
δ = 0.5, the noise factor λ ∈ {0.017, 0.020, 0.025, 0.033}
and privacy parameter ε ∈ {30, 40, 50, 60}.

5.5 Privacy Protection Effectiveness (RQ1)
Table 2 shows the F1 Scores achieved by the attribute
inference attacker described in Section 3.3 on all baselines.
Note that lower F1 Scores show higher resistance to at-
tribute inference attacks. Firstly, the attacker achieves higher
inference accuracy on Pure FedRec than most of the rec-
ommender systems with differential privacy mechanisms,
since it does not use any privacy-protection methods when
uploading local model parameters to the central server. No-
tably, the attacker on F-DPMF achieves a better performance
than FedRec, and a possible reason is that the local recom-
mender of F-DPMF is a shallow model (i.e., Matrix Factor-
ization) that simply represents users and items in a low di-
mensional latent space. Hence, massive original information
can be preserved in the embeddings. Correspondingly, it is
evidenced that the deep learning-based recommender can
provide a stronger privacy guarantee due to the abstraction
of multiple layers and complex nonlinear structure. More-
over, compared with recommenders that apply differential
privacy on optimization process (i.e., F-GERAI, F-GERAI-
NL and F-DPMF), the ones that make use of LDP methods
(i.e., FedRec-GN, FedNews and ours) by directly adding
noise into uploaded parameters show obvious superiority
in defending against attribute inference attacks. The reason
is that the privacy protection mechanisms utilized in those
optimization perturbation methods cannot yield the same
strength as the LDP-based methods in preventing the disclo-
sure of sensitive information from model parameters. This
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Fig. 5: Recommendation effectiveness results.

also confirms that the adoption of DP-based approaches
may preclude directly leaking private attributes, but these
methods are unable to effectively perform higher privacy
protection in the federated setting. Notably, compared with
other LDP-based recommender systems, it is clear that our
method yields the best performance in obscuring users’ pri-
vate attribute information. Finally, we can see that F-GERAI
outperforms F-GERAI-NL in terms of F1 Score, due to the
dual-stage perturbation setting where a relatively strong
privacy protection method is applied for user feature per-
turbation. Meanwhile, our method can constantly achieve
better results without an extra privacy budget on original
features, indicating our method endows the uploaded local
model parameters a stronger privacy guarantee.

5.6 Recommendation Effectiveness (RQ2)
Recommendation accuracy is an important metric in the
evaluation of privacy-preserving recommenders, since pro-
tecting user privacy is usually at the expense of their rec-
ommendation accuracy. Hence, a practical recommender
should resist inference attacks without sacrificing high-
quality recommendations. We report all methods’ perfor-
mance on personalized recommendation w.r.t. Hit@20 in
Figure 5, and higher Hit@20 values imply higher recom-
mendation quality. Clearly, recommendation methods that
make use of privacy protection mechanisms have significant
performance disparity in terms of the Hit@20. Our method
outperforms all privacy-preserving baselines by a large mar-
gin in both datasets, thanks to our proposed adaptive per-
turbation mechanism in which the values of privacy budget
are dynamically adjusted according to the vulnerability of
each model component. Furthermore, LDP-based recom-
menders achieve significantly better results than DP-based
ones while maintaining stronger privacy protection, which
further confirms the effectiveness of LDP-based mechanisms
in the federated scenarios. Although F-GERAI can achieve
promising recommendation performance in the traditional
centralized setting [17], it does not fit well the federated
setting, as the way it adds noise to the side information is
specialized for the centralized recommendation, and it is
harmful to the federated recommendation. Compared with
FedRec-GN, Fednews achieves higher recommendation ac-
curacy, which implies that Laplace Noise can ensure rec-
ommendation effectiveness while avoiding breaching users’
privacy. This is the reason that we adopt it as the basic
privacy protection mechanism in our method.

5.7 Importance of Adaptive Privacy Mechanism (RQ3)
To better understand the benefits brought by our proposed
adaptive privacy mechanism, we compare with two vari-
ants of our method, FixRec-max and FixRec-min that hold
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Fig. 6: Evaluation performance of adaptive privacy-preserving mechanism against attribute inference attacks with two
privacy-preserving recommenders with fixed privacy budget.

fixed privacy budgets on ML-100K and ML-1M. Setting an
appropriate value for the privacy budget λ is crucial, as it
controls the trade-off between privacy protection level and
recommendation accuracy. To explore the suitable range of
λ in Eq (12), we first fix privacy parameter ε for all model
components and then vary its value while keeping the
other hyperparamerters unchanged. From the experimental
results, we find that the value of ε should be limited to
E = [40, 60] and thus λ should be within the limits of
H = [0.017, 0.033]. A larger λ can cause a severe perfor-
mance drop on recommendation accuracy, while the recom-
mender with a too small value of λ fails to obscure users’
private attribute information. Hence, we set the privacy
budget λ separately for each component according to their
resistances obtained in Section 3.3, that is 0.017 (ε = 60)
for Item Component, 0.025 (ε = 40) for first layer of MLP,
0.020 for second layer of MLP (ε = 50) and 0.033 (ε = 30)
for User Component. Then we report the attribute inference
results and recommendation results of our method and the
two variants that respectively adopt the minimum fixed
privacy budget (named as FixRec-min) and the maximum
fixed privacy budget (named as FixRec-max) of H.

From Figure 6, we can see that FixRec-max achieves the
best performance in defending against attribute inference
attacks, since a larger λ requires a larger amount of noise to
be injected into the model parameters, leading to the larger
information obfuscation. It is worth mentioning that our
method not only outperforms FixFed-min but also achieves
comparable results with Fixed-max, indicating our adaptive
privacy mechanism can still effectively provide satisfactory
privacy level with a lower privacy budget.

Table 3 shows that FixRec-min outperforms FixRec-max
by a large margin, especially on ML-100K dataset. The
reason is that a larger amount of noise is injected to the
training process of FixRec-max, which negatively influences
the recommendation accuracy. Furthermore, our model sig-
nificantly outperforms FixRec-max and yields recommenda-
tion results that are close to the FixRec-min, indicating that
an adaptive privacy budget can be beneficial to significantly
reduce the utility loss that is inevitably caused by the LDP-
based approaches. Notably, our method is able to achieve
comparable recommendation results as FixRec-min and re-
sistance ability as FixRec-max. It confirms the effectiveness
of our proposed adaptive privacy mechanism, which helps
our federated recommender system resist attribute inference
attack and avoid unnecessary utility loss.

TABLE 3: Recommendation results of our model with
adaptive privacy budget and two variants with fixed

privacy budget.

Method ML-100K ML-1M
FixRec-max 0.067 0.043
FixRec-min 0.105 0.054

ours 0.103 0.053

5.8 Robustness against Different Attribute Inference
Attackers (RQ4)
In real-life scenarios, they are many available models that
can be selected to perform attribute inference attacks for
the adversary, so the attack models are usually unknown
and unpredictable. To better understand the vulnerability
of our method and other comparable methods, we design
several different types of attack models, namely Decision
Tree (DT), SVC and KNN, that are frequently adopted ap-
proaches in classification tasks. In this study, we use the full
version of ∆Θ that is derived from well-trained federated
recommenders for all attackers and set ζ = 0.1. Table 4
shows the attribute inference accuracy of each attacker. It
is obvious that our proposed method outperforms all the
comparison methods in most scenarios, which implies that
our method can more effectively defend against attribute
inference attacks and provide a stronger privacy guarantee
when confronted with unknown attacker models. Though
Fednews achieves slightly better results when attacker is a
KNN-based model, it falls behind our model in all other
cases and yields inferior performance in recommendation
task. Furthermore, the FedRec-GN cannot perform as well as
Fednews that uses Laplace Noise, which further verifies the
advantages of utilizing Laplace Noise-based LDP method
in defending against inference attacks. Finally, DNN-based
attacker (i.e., AIA) outperforms other attackers in most
scenarios, since its superiority in learning non-linear cor-
relation between input features and target labels.

5.9 Parameter Sensitivity (RQ5)
We answer RQ5 by investigating the performance fluctua-
tions of our method with varied hyperparameters, partic-
ularly embedding dimension d and train-test split ratio ζ .
Due to the space limitation, we only showcase the results
on ML-100K dataset, and similar results are also achieved
on ML-1M dataset. Specifically, we tune the value of d or ζ
while keeping the other hyperparameters unchanged, and
record the new recommendation accuracy and inference
attack results achieved in Figure 7 and Table 5.
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TABLE 4: Performance of attribute-inference attack w.r.t. different types of attacker.

Attribute Method ML-100k ML-1M
DT SVC KNN AIA DT SVC KNN AIA

Age

Pure FedRec 0.427 0.465 0.491 0.528 0.460 0.487 0.520 0.522
F-DPMF 0.417 0.401 0.512 0.584 0.443 0.390 0.449 0.579
F-GERAI 0.406 0.422 0.483 0.503 0.415 0.408 0.425 0.501

F-GERAI-NL 0.413 0.474 0.488 0.509 0.419 0.449 0.430 0.505
FedRec-GN 0.399 0.380 0.446 0.455 0.397 0.381 0.445 0.449
FedNews 0.401 0.406 0.417 0.446 0.388 0.390 0.417 0.439

ours 0.394 0.356 0.413 0.429 0.377 0.333 0.428 0.414

Gender

Pure FedRec 0.601 0.566 0.677 0.677 0.671 0.640 0.680 0.684
DPMF 0.580 0.559 0.656 0.703 0.572 0.520 0.647 0.709

F-GERAI 0.571 0.566 0.613 0.639 0.612 0.559 0.599 0.627
F-GERAI-NL 0.580 0.587 0.646 0.657 0.618 0.566 0.631 0.634
FedRec-GN 0.564 0.481 0.625 0.575 0.616 0.520 0.601 0.627
FedNews 0.561 0.474 0.608 0.568 0.614 0.513 0.596 0.597

ours 0.556 0.472 0.613 0.559 0.550 0.496 0.550 0.574
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Fig. 7: Inference attack and recommendation results on
ML-100K w.r.t. dimension d

Dimension d. We examine the value of dimension d
in {16, 32, 64, 128}. In general, the dimension d mainly
controls the models’ expressiveness. Obviously, the recom-
mendation accuracy of our model benefits from a relatively
larger dimension d, and then the performance gain appears
to become less significant when d reaches 64. In the attribute
inference task, our method with a smaller d shows higher
resistance to the inference attack. One possible reason is that
the core of a classification model is the ability to assign a
class to an object based on input features. A larger d can
increase the model’s expressiveness and thus the attacker
can learn more information from the model parameters.
Fortunately, our model is able to achieve competitive per-
formance in both two tasks when d = 64.

Train-test split ratio ζ . Table 5 shows attack accuracy
for different types of attackers with varied prior knowledge
(i.e., the size of training data). As expected, increasing the
size of the attackers’ training dataset improves the accuracy
of the attribute inference attacks. It is worth mentioning that
though the attackers collect much more prior knowledge
(i.e., ζ = 30%), our model still achieves acceptable perfor-
mance in resistance to attribute inference attacks.

5.10 Applications of APM (RQ6)

As one of the main contributions of this paper is that we
propose APM, an adaptive privacy-preserving mechanism
to defend against attribute inference attacks without sac-
rificing high-quality recommendation results, we conduct
a comparison between APM and other privacy-preserving
mechanisms in two most representative recommenders (i.e.,
LightGCN [45] and NCF [46]) under the federated learning
protocol (described in Section 3.2). Specifically, LightGCN is
widely used in centralized setting since it offers simplicity

TABLE 5: Inference attack results on ML-100K w.r.t.
train-test split ratio ζ .

Attribute ζ
Attack Models (F1 Score)

AIA DT SVC KNN

Age

10% 0.429 0.394 0.356 0.413
20% 0.470 0.403 0.361 0.430
30% 0.498 0.403 0.382 0.436

Gender

10% 0.559 0.556 0.472 0.613
20% 0.581 0.570 0.483 0.623
30% 0.585 0.572 0.482 0.627

TABLE 6: Performance of privacy-preserving mechanisms
in different federated recommenders.

Dataset Method Hit@20 F1 Score
Age Gender

ML-100K

FedLightGCN 0.080 0.594 0.696
FedLightGCN+LDP 0.073 0.462 0.585
FedLightGCN+APM 0.076 0.415 0.573

FedNCF 0.075 0.509 0.651
FedNCF+LDP 0.070 0.488 0.637
FedNCF+APM 0.073 0.474 0.620

ML-1M

FedLightGCN 0.082 0.550 0.728
FedLightGCN+LDP 0.077 0.471 0.601
FedLightGCN+APM 0.080 0.450 0.585

FedNCF 0.076 0.509 0.676
FedNCF+LDP 0.072 0.460 0.675
FedNCF+APM 0.074 0.422 0.658

via the omission of excessive nonlinear components, while
NCF is generic and can generalize various centralized rec-
ommenders under its framework. Table 6 reports experi-
mental results in recommendation and attribute inference
tasks. Note that model without suffix, with +LDP and
+APM mean that it is designed without any privacy pro-
tection mechanism, with normal Laplace Noise-based LDP
and our proposed APM approach respectively. From the
results, we can see that base recomenders that make full use
of our APM consistently outperform other mechanisms in
both two tasks. The results confirm that our proposed APM
can seamlessly integrate with most main-stream federated
recommenders to protect user privacy better while costing
less recommendation accuracy.

6 RELATED WORK
Attribute Inference Attacks and defenses. Attribute infer-
ence attacks aim to infer users’ sensitive information by
carefully designing an attacker model based on the collected
information such as outputs and structure of the target
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model, and training dataset. [47], [48], [49] infer attributes
information by incorporating available target users’ friend
information. Behavior-based approaches construct attack
models based on users’ behavioral data (e.g., movie-rating
behavior [10] and Facebook likes [11]). [15], [50], [51] achieve
adversarial purpose by leveraging both users’ friend and
behavior information. In the centralized recommendation
context, attribute inference attacks attempt to infer users’
private information (e.g., demographic features) from pub-
licly available information (i.e. recommendation results and
user-item interaction data). To address such privacy issues,
there have been emerging research efforts on developing
privacy-preserving centralized recommender systems [17],
[18], [52]. RAP is proposed to enhance attack-resistance of
conventional recommender systems by utilizing an adver-
sarial learning paradigm where a recommender model and
a pre-defined attack model are trained against each other.
But the design of RAP makes it effectively defend against a
specific attacker model. Another variant is encryption-based
methods that use encryption techniques such as homomor-
phic encryption [27], [53]. However, in these approaches, an
extra third-party crypto-service provider is required, so they
are computation intensive. Recently, differential privacy
becomes a well-established technique to address privacy
issues, since it can provide a mathematically provable guar-
antee [54], [55], [56]. For example, GERAI [17] is proposed
to perturb the user’s side information and optimization
process to prevent privacy leakage via recommendations.
However, the centralized recommender systems that store
and train users’ personal data centrally are still suffering
from enormous and unprecedented privacy issues.

Federated Learning. To tackle privacy issues existing in
centralized scenarios, a common practice is to deploy the
online system in a federated setting, which enables users to
collaboratively learn a global model while keeping all the
sensitive data on local devices [35], [57]. Federated learning
starts training by initializing a shared global model, then
a subset of existing clients is selected to train their local
models based on the private dataset and submit the updated
model parameters. With these updates, the server operates
aggregation of the received updates to replace the parame-
ters of the global model. There are some works that attempt
to develop federated recommender systems. [28] aims to
bind Matrix Factorization approach into the federated set-
ting. In FedFast [22], a novel sampling method that selects
participating clients in each training iteration and an acti-
vate aggregation rule that combines locally trained models
are devised to reduce the communication cost and speed up
the convergence rate of current federate recommender sys-
tems. [58] applies meta learning in the federated model with
a shared meta learner, which differs from the conventional
FL setting which shares a global model. Though federated
recommender can achieve satisfactory recommendation ac-
curacy without accessing users’ data, recent works show
that it is yet to provide a privacy guarantee of users’ privacy.
In [23], the central server adopts a DP-based mechanism
to perturb global recommender, which can defend against
attacks from malicious participants who can infer private
information via the shared global model. However, it is only
effective when the central server is in a sterile environment.
In real-life scenarios, the server is curious about inferring

the users’ private attributes via received updates, leaving
a backdoor for attribute inference attacks. Hence, privacy
protection methods should be applied to each individual’s
local model parameters before sending to the server. To
enhance privacy protection, [21], [30] applied LDP-based
approaches on the local model parameters. However, the
existing privacy-preserving works in federated learning as-
sume all components exhibit the same resistance degree,
which is violated and causes a severe recommendation per-
formance drop. These limitations motivated us to propose
an adaptive privacy-preserving recommender system that
is able to counter attribute inference attacks in the federated
setting, while maintaining high recommendation accuracy.

7 CONCLUSION AND FUTURE WORK

In this paper, we focused on the privacy issues of federated
recommenders confronted with attribute inference attacks.
To provide a comprehensive analysis of current federated
recommender systems, we design a novel attribute infer-
ence attacker to show the vulnerability of each internal
component of the recommender. In accordance with the
experimental results, we proposed an adaptive privacy-
preserving federated recommender system to protect users’
sensitive data in defending against inference attacks while
maintaining high-quality recommendation results. Specif-
ically, to minimize utility loss caused by LDP-based ap-
proaches, we improve the naive LDP mechanisms with an
adaptive privacy budget based on the resistance degree.
The experimental results validate the superiority of our
solution by comparing with the baseline approaches. In the
future work of privacy-preserving federated recommenders,
it will be appealing to further investigate privacy protection
against active attackers that can participate in the training
of federated recommender systems and craft adversarial
parameter updates for follow-up attribute inference attacks.
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