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Boosting Subspace Co-clustering via
Bilateral Graph Convolution

Chakib Fettal, Lazhar Labiod, and Mohamed Nadif

Abstract—Subspace clustering seeks to cluster high-dimensional data lying in a union of low-dimensional subspaces. It has achieved
state-of-the-art results in image clustering, but text clustering of document-term matrices, has proved more impervious to advances
with this approach, even though text data satisfies the assumptions of subspace clustering. We hypothesize that this is because such
matrices are generally sparser and higher-dimensional than images. This, combined with the complexity of subspace clustering, which
is generally cubic in the number of inputs, makes its use impractical in the context of text. Here we address these issues with a view to
leveraging subspace clustering for networked (or not) text data. We first extend the concept of subspace clustering to co-clustering,
which is suitable to deal with document-term matrices because of the interplay engendered between the document and word
representations. We then address the sparsity problem through bilateral graph convolution, which promotes the grouping effect that
has been credited for the effectiveness of some subspace clustering models. The proposed formulation results in an algorithm that is
computationally/spatially efficient. Experiments using real-world datasets demonstrate the superior performance, in terms of document
clustering, word clustering, and computational efficiency, of our proposed approach over the baselines and comparable methods.

Index Terms—Co-clustering, Subspace Clustering, Attributed Graphs

✦

1 INTRODUCTION

As the datasets become more and more larger and can be
in addition more sparse, adaptations to existing clustering
algorithms are required to maintain cluster quality. In fact,
this quality can greatly suffer in the high dimensional data
where many of dimensions are often irrelevant. This appears
in many applications including recommendation systems,
microarray or even textual data represented as document-
term matrices. In the text area, the task of text clustering
is always important and has many use cases including fake
news detection, sentiment analysis information retrieval and
so on; see for instance [1] for more applications. Thereby
subspace clustering [2] and biclustering/co-clustering [3], [4]
techniques have shown that can leveraged to uncover the
complex relationships found in such data.

Subspace clustering is an unsupervised learning method
in which points are to be grouped according to the sub-
spaces in which they lie. A variety of approaches have
been used to solve this problem, and a number of these ap-
proaches are based on a self-expressive formulation where
it is assumed that each element can be written as a linear
combination of the elements in the subspace. Based on a self-
expressive formulation, subspace clustering methods have
been widely used to cluster image datasets, given that image
datasets will often be drawn from multiple low-dimensional
subspaces, and state-of-the-art clustering results have in
many cases been obtained. Regarding text data, however, to
the best of our knowledge no self-expressive subspace clus-
tering approaches have been proposed that are specifically
tailored to text, although the assumption made in relation to
image data applies equally to text data. We argue that this
discrepancy between image and text stems from two causes:

• Complexity. Document-term datasets are usually very
large, much more so than images, which makes it pro-

hibitive to use subspace clustering algorithms whose
computational complexity is usually in O(n3), and
whose spatial complexity is in O(n2).

• Sparsity. Document-term datasets are sparser than im-
age datasets, and each individual data point may thus
potentially lie in a unique subspace, making it diffi-
cult for subspace clustering algorithms to group points
meaningfully.

In this paper we propose a subspace clustering model
tailored for networked (and non-networked) text data based
on the principle of co-clustering (or biclustering), that is to
say using the interplay between rows and columns [5]. In
the context of text, this consists in harnessing the interplay
between the set of documents and the set of terms to jointly
generate a partitioning for both of them. This leads to
reorganize the initial data matrix into a new one that is
reorganized into homogeneous co-clusters/biclusters. The
choice of the co-clustering approach is justified for at least
four reasons a) co-clustering overcomes the curse of di-
mensionality and sparsity; by alternatingly updating the
row partition given the column partition and vice versa
the clustering can be performed in lower dimensional space
and therefore more parsimonious than one-sided clustering
performed on the row or column sets separately [6] b) the
clusters/co-clusters tend to be more easily interpretable,
allowing the user to better direct further study [3], [7], [8]
c) fuzzy co-clustering can be easily deduced from many co-
clustering methods [5] allowing, for instance, to assign a
document/term to several classes, and finally d) in terms
of topic modelling, the obtained results from co-clustering
are in line with the human judgment, outperforming, in
general, the conventional LDA (Allocation Dirichlet Alloca-
tion) method [9]; see for instance [10]. In this regard, other
researchers emphasize that sparse datasets are not suitable
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for LDA [11].
In our approach, we address the two major issues that

are inherent to subspace clustering on text data: complexity
and sparsity. To this end, we use factorized representation
matrices and nonnegative kernel feature maps, as well
as a bilateral graph convolution that includes a weighted
Laplacian smoothing preprocessing step, having similarities
with a simple graph convolutional network [12], [13], [14].
Second, combining subspace and co-clustering, we propose
an efficient extension to [15] to co-clustering and expand
the proposal presented in [16]. This makes our model par-
ticularly well suited to clustering attributed graphs whose
nodes and/or edges have attributes or features. This leads
to tackle networked text data/text attributed graphs that are
used to model a wide variety of real-world networks such
as in recommender systems [17], citation networks [18] and
so on. We summarize our contributions as follows:

• We study how the Laplacian smoothing operation
boosts the grouping effect of subspace clustering ap-
proaches that possess this property.

• Unlike the iterative process generally adopted in co-
clustering, we show here that in our formulation of
the self-expressive subspace co-clustering problem the
optimal solution can be derived from a single truncated
singular value decomposition, which makes it efficient
(linear complexity in the number of nodes).

• We carry out extensive experimentation on text at-
tributed graphs where the graphs exist on the one hand
and when the graphs are generated from the node
features on the other using k-nearest neighbor graphs.
This allows to demonstrate the flexibility and value
of the proposed model, in terms of document /word
clustering capability and computational efficiency.

• Making the code available for download to ensure
reproducibility of the results 1.

The remainder of this paper is structured as follows.
Section 2 discusses related works. Section 3 develops our
proposed method SC3, and section 4 discusses the algorithm
and its complexity. Section 5 contains a detailed description
of our experiments. Finally, we give our conclusion in sec-
tion 6.

2 RELATED WORKS

Our contributions can be seen as being at the intersection
between subspace clustering, co-clustering, and attributed
graph clustering.

2.1 Self-expressive Subspace Clustering

Among the earliest approaches was Least Squares Re-
gression (LSR) subspace clustering [19], which leverages
a grouping effect based on the correlation of data. More
sophisticated approaches that represent today’s state of
the art were later proposed, such as Elastic-net Subspace
Clustering (EnSC) [20], subspace clustering by Orthogonal
Matching Pursuit (SSC-OMP) [21], the ℓ0-norm regularized
subspace clustering (ℓ0-SCC) [22] and its recent extension
that deals with noisy data (Noisy-DR-ℓ0-SCC-LR) [23]. Some

1. https://github.com/chakib401/sc3

recent works have proposed efficient methods such as K-
Factorization Subspace Clustering (K-FSC) [24] and others
were created to deal with multi-view data [25], [26], [27].
Some models like the GAN-Based Enhanced Deep Subspace
Clustering Networks [28] explicitly make the assumption
of dealing with image data. Note that deep self-expressive
subspace clustering models have received criticism over the
necessity of a neural network component [29].

2.2 Co-clustering
Co-clustering seeks to form co-clusters which are sets of
homogeneous sets of rows and columns. It harnesses the
inherent duality between the rows and columns of data
tables, which can lead to improvements in partitioning for
both dimensions. For example, in the case of document-term
matrices, co-clustering incorporates term space information
that is used in the document partitioning, and vice versa.
A popular method is by alternatingly finding a clustering
for the rows while taking into consideration the current
clustering of columns, and inversely. One of the first co-
clustering approaches was the spectral co-clustering algo-
rithm [3]. Directional Co-clustering with Constraints (DCC)
[30] is based on a regularized von Mises-Fisher mixture
model that makes it suitable for balanced text datasets.
Regularized Dual-PPMI Co-clustering (RDPCo) [31] extends
DCC to incorporate both word-word semantic relationships
and document-document similarities into the procedure (see
[5] for a review). Finally, Consensus Factorization for Co-
Clustering Networked Data (CFOND) [32] is a consen-
sus factorization model that factorizes information simul-
taneously from three sources: network topology structures,
instance-feature content relationships, and feature-feature
correlations.

2.3 Attributed Graph Clustering
Attributed Graph clustering involves grouping nodes into
clusters depending on the structure of the graph and node-
level features. In Graph-InfoClust (GIC) [33] clustering is
done by maximizing the mutual information between nodes
contained in the same cluster. Simple Spectral Graph Convo-
lution (S²GC) [34] is a method for the aggregation of K-hop
neighborhoods that is a trade-off between low- and high-
pass filter bands. Graph Convolutional Clustering (GCC)
[35] is a procedure that simultaneously clusters and learns
clustering-friendly representations of nodes. In addition,
CFOND, mentioned above in relation to co-clustering, is
also considered to be an attributed graph clustering model.

3 PRELIMINARIES AND BACKGROUND

Matrices are denoted using boldface uppercase, and vectors
using boldface lowercase letters. Given a matrix X, its i-
th row is denoted as xi and its j-th column as x′

j . In
is the identity matrix of size n. The Frobenius norm is
denoted as ∥.∥. rk gives the rank of a matrix. Function
[U,Σ,V] = SVD(X) gives the compact singular value
decomposition of matrix X ∈ Rn×d, where U ∈ Rn×rk(X)

and V ∈ Rd×rk(X) have the left and right singular vectors in
their columns and Σ ∈ Rrk(X)×rk(X) is the diagonal matrix
containing the singular values, sorted in decreasing order.

https://github.com/chakib401/sc3
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We also define function [U,Σ,V] = TruncatedSVD(X, k)
that returns the first (largest) k singular values, and the left
and right singular vectors. Function diag creates a diagonal
matrix from a vector input, while 1 denotes a vector of ones.

3.1 Self-Expressive Subspace Clustering
Given a X ∈ Rn×d a matrix of d-dimensional data points.
The self-expressive subspace clustering is typically formu-
lated as

min
R

∥X−RX ∥2 + Ω(R) such that R ∈ R (1)

where R ∈ Rn×n is known as the self-representation matrix,
Ω(R) serves as a regularization term designed to establish
certain properties for R so as to avoid trivial solutions (such
as R = I), and R is the feasible region. After an optimal
solution R∗ has been obtained, an affinity matrix is first
generated based on the magnitudes of the entries in R∗,
usually using |R∗ +R∗⊤|/2, and a partition of the points is
then generated using a graph clustering method such as the
spectral clustering algorithm [36].

3.2 Block seriation
Co-clustering can be posed as a block seriation problem
[37] whose objective is finding a block diagonal matrix
R ∈ Rn×d that identifies co-clusters.

The block seriation problem can be stated as this integer
program:

max
R

∑
ij

xijrij (2)

subject to:

∀ i, j rij ∈ {0, 1} Binarity

∀ i, j, i′, j′ rij + rij′ + ri′j′ − ri′j ≤ 2

ri′j′ + ri′j + rij − rij′ ≤ 2

ri′j + rij + rij′ − ri′j′ ≤ 2

rij′ + ri′j′ + ri′j − rij ≤ 2

 No triads

∀ j
∑

i
rij ≥ 1

∀ i
∑

j
rij ≥ 1

 Assignment

The solution R is always block diagonal up to a permuta-
tion of the rows and columns. An equivalent formulation
consists in factorizing R using two assignment matrices Z
and W:

max
Z,W

∑
ij

xijz
⊤
i wj ≡ trace(Z⊤XW) (3)

s.t. Z ∈ {0, 1}n×k, Z1 = 1 (4)

W ∈ {0, 1}d×k, W1 = 1 (5)

For example, a simple heuristic for solving this problem con-
sists in using block coordinate descent, to iteratively solve
for the row assignments while the column assignments, and
vice versa. This approach shows, how given a clustering of
the rows and columns, it is possible to obtain a diagonal
co-clustering of the data matrix [38].

3.3 Neighborhood Propagation & Graph Convolutional
Networks
let G = (A,X) be an input attributed graph, with A the
adjacency and X the node features. The graph convolutional
network (GCN) consists of the following step repeated for
each layer

H(l+1) ← σ
(
SH(l)W

)
such that H(0) ← X

where σ is some activation function, W are learnable
weights that depend on the task at hand, and S is a nor-
malized version of A with self-loops added. The simplified
version, on the other hand, uses a GCN with linear activa-
tions and no weights. For example, the simple equivalent of
a GCN with p-layers is

H← SpX

These representations can then be used for some down-
stream task.

4 PROPOSED METHOD

Here, we derive a model that combines the concepts of self-
expressive subspace clustering, co-clustering and neighbor-
hood propagation. The resulting model surpasses the per-
formance of state of the art methods for all three categories
on document-term matrices.

4.1 Self-Expressive Subspace Co-clustering
Based on the Block Seriation model for co-clustering, given
a document-term matrix X ∈ Rn×d

+ , the self-expressive
subspace co-clustering problem can be formulated as

min
R,C

∥X−RXC ∥2 + Ω(R,C)

such that R ∈ R, C ∈ C.
(6)

where R ∈ Rn×n and C ∈ Rd×d are respectively the
row and column self-representation matrices, Ω(R,C) is the
regularization term where the regularization of R and C can
be either independent (i.e., Ω(R,C) = ΩR(R) +ΩC(C)) or
dependent, and R and C are the feasible regions. Note that
unlike the Block Seriation model, the generic case of our
problem does not require k and g, the numbers of row and
column clusters respectively, to be equal.

4.2 Promoting the Grouping Effect Through a Bilateral
Graph Convolution
The performance of subspace clustering methods [19], [39],
[40] is due to the grouping effect. While the authors in
[19], [40] optimized this property implicitly, [39] sought to
enforce it explicitly through the regularization term Ω(R).
We use the definition of the grouping effect given in [39].

Definition 1. (Grouping Effect) Given a data matrix X, a self-
representation matrix R has a grouping effect if

∀i, j, ∥xi − xj∥ → 0 =⇒ ∥ri − rj∥ → 0. (7)

In the case of text, the grouping effect will not necessarily
be beneficial, because of its high dimensionality and spar-
sity. Data points may not be sufficiently “close” (as regards
the self-expressive property) to be grouped in a meaningful
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Fig. 1: Mean pairwise euclidean distance of the columns of
SpX as p increases on DBLP. The columns get mutually
closer as more information propagates over the rows.

way. This means that even if a subspace clustering approach
has the grouping effect, in practice ∥xi − xj∥ → 0 is not
likely, making the property useless. The implication is that
data points need some sort of smoothing to make some
of the points closer and consequently to help subspace
clustering algorithms find common subspaces.

Here, we propose to solve this problem through a bilat-
eral graph convolution preprocessing step, based on simple
graph convolution. This requires two similarity matrices
to act as graphs on the rows SR and columns SC. These
matrices can either be constructed through some similarity
measure on the data, e.g. using the k-nn approach using the
Euclidean or cosine distance, or be provided a priori such as
in the case of attributed graphs (on the rows at least).

The reasoning, intuitively, is that the rows and columns
of Sp

RXSq
C, as propagation orders p, q grow, become

smoother by being averaged up to their p-th and q-th
neighbors respectively, analogously to Laplacian smoothing.
The rows and columns therefore become more similar as
powers increase. An illustration of this is shown in figure 1.

Proposition 1. Given a row-normalized adjacency matrix S on
the rows of X, we have that S is a non-expansive mapping on the
columns of X

∀i ̸= j, ∥Sx′
i − Sx′

j∥ ≤ ∥x′
i − x′

j∥

The same holds for the rows of X for S an adjacency matrix over
the columns of X.

∀i ̸= j, ∥xiS− xjS∥ ≤ ∥xi − xj∥ (8)

Proof. Since S1 = 1 and sij ≥ 0, by the Gershgorin circle
theorem, the spectral radius of S is ρ(S) = 1. We therefore
have

∥Sx′
i − Sx′

j∥ = ∥S(x′
i − x′

j)∥
≤ ∥S∥2∥x′

i − x′
j∥

= ∥x′
i − x′

j∥
(9)

since ||S||2 = ρ(S) where ||.||2 is the spectral norm. The
proof is the same for the rows.

The grouping property also implies that in addition
to the features X, the self-representation vectors, i.e., the

(a) No propagation.

(b) 10-hop propagation with a k-nn graph.

(c) 1000-hop propagation with a k-nn graph.

Fig. 2: The resulting self-representation matrices using dif-
ferent levels of propagation over synthetic data with the LSR
subspace clustering algorithm.

rows (or, by symmetry, the columns) of R and C should
also be getting more similar, leading to a more meaningful
partitioning when applying spectral clustering on |R| and
|C| where the absolute value is applied element-wise. In
figure 2 we show how propagating the features using a row
k-nn graph generated from the data using the Euclidean dis-
tance impacts the learned self-representation matrix using
LSR subspace clustering. We see how the matrix obtained
after 10-hop propagation has more nonzero entries than
the matrix with no propagation, which indicates, if the
self-representation matrix is seen as a graph, that there
are more adjacent nodes. The difficulty is identifying the
appropriate propagation order, since large values can cause
over-smoothing. As we can see from figure 2, the self-
representation matrix after 1000-hop propagation is entirely
uniform, since node features have converged to uninforma-
tive representations.

Proposition 2. Given a row-normalized adjacency matrix with
added self-loops S, limp→∞ Sp exists and its rank is the same as
that of the number of connected components of A.

Proof. Since S is row-stochastic, we have that ρ(S) = 1.
Furthermore, since it has added self-loops it cannot be the
adjacency matrix of a bipartite graph, and consequently
−1 /∈ σ(S) the spectrum of S.
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lim
p→∞

Sp = lim
p→∞

UΣpU−1

= lim
p→∞

Udiag([1p, . . . , 1p, rp1 , ..., r
p
n−c])U

−1

= Udiag([1, . . . , 1, 0..., 0])U−1

(10)

It follows that rk(limp→∞ Sp) = c, where ∀i ri ∈ σ(S),
|ri| < 1 and c is the number of connected components.

Regarding the bilateral graph convolution of rows and
columns of order p and q respectively, we define the generic
self-expressive subspace co-clustering with bilateral graph
convolution problem as

min
R,C

∥Sp
RXSq

C −R (Sp
RXSq

C)C ∥
2
+ Ω(R,C)

such that R ∈ R, C ∈ C.
(11)

In what follows, we will refer to the row- and column-
smoothed matrix as

H = Sp
RXSq

C

since this operation can be considered as a sort of prepro-
cessing step, independent of the co-clustering model that we
are about to introduce.

4.3 Subspace Co-clustering through LSR

We propose an initial variant based on the LSR subspace
clustering model, where the regularization term is defined
as follows: Ω(R,C) = λR∥R∥2 + λC∥C∥2, where λR and
λC are parameters that regulate the trade-off between the
reconstruction term and the regularizer. We formulate the
LSR subspace co-clustering problem as

min
R,C

∥H−RHC∥2 + λR∥R∥2 + λC∥C∥2. (12)

Fixing R and solving for C and inversely, a closed form
solution can be obtained for both matrices, providing a clear
illustration of how our model uses information from the
columns for the row space partitioning, and vice versa

R = HC⊤H⊤
(
HCC⊤H⊤ + λRI

)−1

C =
(
H⊤R⊤RH+ λCI

)−1
H⊤R⊤H.

(13)

However, solving the problem requires an iterative process
where, in alternation, one of R and C is fixed and the other
updated, until convergence. The overall computational com-
plexity is roughly in O(n3 + d3 + tnd2 + tn2d) due to the
inversion and the necessary spectral clustering step, where
t is the number of iterations, and the spatial complexity
is O(n2 + d2), which is very often prohibitive for real-
world applications, especially those pertaining to text. We
therefore try to improve the efficiency of the solving scheme
by adding further constraints, as described below.

4.4 SC3: A More Efficient Formulation Through Orthog-
onality Constraints

To address the issue of complexity we introduce factor ma-
trices Z ∈ Rn×k and W ∈ Rd×g , which we constrain to be
semi-orthogonal, i.e., Z⊤Z = Ik and W⊤W = Ig , such that
R = ZZ⊤ and C = WW⊤. With these constraints the LSR
co-clustering problem becomes simpler, since ∥Z∥2 = rk(Z)

and ∥W∥2 = rk(W) are constant. The new formulation of
the problem, that we have termed SC3, is

min
Z,W

∥H− ZZ⊤HWW⊤∥

such that Z⊤Z = Ik W⊤W = Ig
(14)

At first glance this problem also requires an alternating
solving scheme using two update rules that we obtain by
fixing W and solving for Z, and vice versa :

Z = U such that [U,Σ,V] = TruncatedSVD(HW, k)

W = U such that [U,Σ,V] = TruncatedSVD(H⊤Z, g).

This entails that g = k, making this a block clustering prob-
lem reminiscent of the block seriation co-clustering model.
The detailed pseudo-code for this method is given in algo-
rithm 1, whose spatial complexity is the same as for LSR,
but the computational complexity is in O(n3 + d3 + tndk).
Although this method is faster, it remains inefficient owing
to bottlenecks, to the iterative nature of the algorithm and,
more importantly, because of the spectral clustering step.

Algorithm 1: Naive SC3

Input : X feature matrix, SR row propagation
matrix, SC column propagation matrix, k
number of co-clusters, p, q row and column
propagation orders, ϵ tolerance.

Output: Z, W row and column factors,
πR, πC row and columns partitions.

H← Sp
RXSq

C;
[ , ,V] = TruncatedSVD (H, k);
W(0) ← V;
while ∥Z(k) − Z(k−1)∥+ ∥W(k) −W(k−1)∥ > ϵ do

[Z(k), , ] = TruncatedSVD(HW(k−1), k);
[W(k), , ] = TruncatedSVD(H⊤Z(k), k);

end
R,C← ZZ⊤,WW⊤;
πR ← spectral_clustering(|R|);
πC ← spectral_clustering(|C|);
Optionally deduce a block diagonal bicluster matrix
from πZ and πW;

Efficiently Solving for Z∗ and W∗

The problem stated above can be solved efficiently using a
single truncated SVD. This is a consequence of the following
proposition:

Proposition 3. The alternating process defined in system of
equations 4.4 converges to Z and W containing the k left and
right singular vectors of H respectively corresponding to the
largest k singular values.

Proof. Suppose, without loss of generality, that k ≤ rk(H).
We have that k = rk(Z) = rk(W), implying that

rk
(
ZZ⊤HWW⊤

)
≤ min{rk(Z),rk(W),rk(H)}

= k.

This means that we are looking for the best k-rank approx-
imation of H for the Frobenius norm. Given [U,Σ,V] =
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SVD(H), and setting Z = Uk = [u′
1, . . . ,u

′
k] and W = Vk =

[v′
1, . . . ,v

′
k], we have

∥H− ZZ⊤HWW⊤∥2 = ∥H−UkU
⊤
k UΣV⊤VkV

⊤
k ∥2

= ∥H−Uk[Ik,0]Σ[Ik,0]
⊤V⊤

k ∥2

= ∥H− [Uk,0]Σ[Vk,0]
⊤∥2

= ∥H−UkΣkV
⊤
k ∥2.

(15)
From the Eckart–Young–Mirsky theorem we have that H̃ =
UkΣkV

⊤
k is the best rank-k approximation of H.

This leads to a more efficient algorithm because the
iterative step is circumvented. The interplay between the
rows and columns is still implicitly present, however, since
this solution is also the analytic solution to the alternating
optimization problem referred to above, in which the row-
column interaction is explicit.

The above result enables us to show that our approach
has a grouping effect.

Proposition 4. Given matrix H, the solutions R and C in SC3

display a grouping effect on the rows and columns respectively of
matrix H.

Proof. To this end, we show that R and C display a group-
ing effect on H. We give the proof for R only since it is
similar for C. Let the full singular value decomposition of
H be H = UΣkV

⊤. We have that

Z =

(
Ik 0
0 0

)
U

and that ui = Σ−1V⊤hi. Given these two equations, it is
possible to write

∥zi − zj∥ =
∥∥∥∥(Ik 0

0 0

)
ui −

(
Ik 0
0 0

)
uj

∥∥∥∥
=

∥∥∥∥(Ik 0
0 0

)
Σ−1V⊤hi −

(
Ik 0
0 0

)
Σ−1V⊤hj

∥∥∥∥
≤ ∥hi − hj ∥

∥∥∥∥(Ik 0
0 0

)
Σ−1V⊤

∥∥∥∥
= ∥hi − hj ∥ const.

(16)
We also have that since R = ZZ⊤, then ri = Zzi. Therefore,
it holds that

∥ri − rj∥ = ∥Z(zi − zj)∥ (17)

= ∥ zi − zj ∥ . since Z⊤Z = I

From equations 16 and 17, we have

∀i, j ∥hi − hj∥ → 0 =⇒ ∥ri − rj∥ → 0

implying that there is a grouping effect on the rows of H for
R.

This gives us an efficient way to obtain Z∗ and W∗,
together with theoretical guarantees regarding the quality of
these solutions. The main remaining complexity bottleneck
is the spectral clustering step with its cubic computational
complexity and its quartic space complexity in the number
of rows and columns. However, using the structure of our
R and C we may obtain a spectral clustering algorithm.

4.5 Efficient Spectral Clustering of the Kernel Self Rep-
resentation Matrices
Nonnegative feature map
The optimal self-representation matrix R∗ = Z∗Z∗⊤ is
symmetric by construction, but its entries are not necessarily
nonnegative. An element-wise absolute value would there-
fore be required in order for us to obtain a valid affinity
matrix. However, this would remove all the information
already held on the decomposition of R∗ into Z∗Z∗⊤, since
generally there is no relation between the spectrum of a
matrix and its spectrum after applying an entry-wise func-
tion. We circumvent this problem by instead considering
an affinity matrix constructed through some nonnegative
kernel, i.e.,

KR = ⟨φ(Z∗), φ(Z∗)⟩ such that kij ≥ 0

where φ is the feature map of the kernel applied row-wise
that we need to calculate explicitly. Two possible approaches
are available:
Exact feature maps. The kernel trick can provide a means

of operating in a high-dimensional, implicit feature
space without ever computing the coordinates of the
data in that space. Computing explicit feature maps is
challenging for most commonly used kernel functions,
which tend to increase the dimensionality of the orig-
inal inputs to such an extent that it becomes impos-
sible to use them in realistic scenarios. For instance,
in the case of the second degree polynomial kernel
k(zi, zj) = (z⊤i zj + c)2 where c is some constant that
we can see as a bias term. For example, when c = 1
then the feature map is

φ : Rk → R(
k+2
2 )

z 7→ ⟨z2k, . . . , z21 ,
√
2zkzk−1, . . . ,

√
2zkz1,√

2zk−1zk−2, . . . ,
√
2zk−1z1, . . . ,

√
2z2z1,√

2zk, . . . ,
√
2z1, 1⟩

More generally, for a polynomial kernel of degree d the
feature map is a function φ : Rk 7→ R(

k+d
k ). The other

possibility is that the explicit feature map is infinite-
dimensional and thus impossible to compute, such as
in the case of the Radial Basis Function (RBF) kernel.

Approximate feature maps A number of methods using
approximations of the feature maps of the desired ker-
nel have been proposed over the years. These include
the Nyström method [41], Tensor Sketch [42], and the
use of random features [43].

Efficient Spectral Clustering
Since the eigenvectors of KR are the same as the left
singular vectors of φ(Z∗), the process of spectral clustering
becomes much faster, since the affinity matrix does not need
to be computed explicitly. For our purposes we adapt the
spectral algorithm proposed in [44] as follows:

1) We efficiently compute the diagonal matrix D contain-
ing the sums of the rows of KR.

2) We construct matrix Ẑ = D−1/2φ(Z), on which we do
an SVD yielding the eigenvectors of D−1/2KRD−1/2,
referred to as U.
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3) We obtain the final assignments of the rows of H ac-
cording to the assignment of vectors [u1, ...un]

⊤ using
the k-means algorithm.

This is equivalent to doing the spectral clustering on the
normalized Laplacian of KR i.e. L = I −D−1/2KRD−1/2

rendering the complexity of the spectral clustering linear in
the number of samples instead of cubic. To obtain a spectral
clustering of the affinity matrix of C∗, the operations are the
same.

5 ALGORITHM AND COMPLEXITY

The pseudo-code for the efficient version of our algorithm
is given in algorithm 2. We now discuss the computational
complexity in detail.

Algorithm 2: Efficient SC3

Input : X feature matrix, SR row propagation
matrix, SC column propagation matrix, k
number of co-clusters, p, q row and column
propagation orders.

Output: Z, W row and column factors,
πR, πC row and columns partitions.

H← Sp
RXSq

C;
[Z, ,W] = TruncatedSVD (H, k);
Mφ ← φ(Z);
D← diag(Zφ(Z

⊤
φ1));

Ẑφ ← D− 1
2Zφ;

U← TruncatedSVD
(
Ẑφ, k

)
;

πZ ← k-means(U);
Mφ ← φ(W);
D← diag(Wφ(W

⊤
φ1));

Ŵφ ← D− 1
2Wφ;

U← TruncatedSVD
(
Ŵφ, k

)
;

Discard the column of U corresponding to the
largest singular value;
πW ← k-means(U);
Optionally deduce a block diagonal bicluster matrix
from πZ and πW;

Feature Propagation Step Assuming that the propagation
matrix is sparse, the complexity of this operation is in
O(p∥SR∥0 + q∥SC∥0), where ∥.∥0 is the 0-norm that
gives the number of non-zero entries of its input.

Truncated SVD on H The computational complexity of
this step using randomized SVD [45] is O(nd log(k)).

Truncated SVD on φ(Z) and φ(W) This depends on the
dimensionality of the feature map. Since we consider
the affine kernel feature map as the main choice,
the complexity using a randomized SVD on it is
O(nk log(k) + dk log(k)).

Efficient spectral clustering. This operation has a complex-
ity inO(tnk2+tdk2), where t is the number of iterations
of k-means.

Overall computational complexity The overall computa-
tional complexity of the proposed SC3 algorithm is thus
in O

(
p∥SR∥0 + q∥SC∥0 + nd log(k) + tnk2 + tdk2

)
.

Overall spatial complexity The space taken by the created
matrices is in O (nk + dk).

As seen in Algorithm 2, k-means is used to propose a
hard clustering. Instead of k-means the user can perform
any other clustering method including fuzzy clustering
method such as soft k-means. This implies that each data
point can belong to more than one cluster; for each of them
a set of coefficients gives the degree of being in each cluster.
It is also the case of the EM algorithm [46] where in E-step
posterior probabilities of each data point are computed.

6 EXPERIMENTS

In this section we present the experimental setup and re-
sults. We consider two tasks which are co-clustering and
document clustering. We start by introducing the models
used for comparison and the overall experimental settings.
Then, for each task we present the datasets and evalu-
ation metrics as well as the results that were obtained.
We follow with some comparisons between the different
possible nonnegative kernels, and finally present the results
for neighborhood propagation when a k-nn graph is used
instead of the ground truth graph.

6.1 Experimental Setup
Baselines
We compare our model against clustering and co-clustering
models that either use only the input node feature matrix
X or that use both A and X, that is to say attributed graph
clustering/co-clustering models.
Clustering models :

• Vanilla models: We take k-means as the simplest base-
line for our comparison.

• Subspace Clustering Models: We compare our model
against the subspace clustering models previously
mentioned: LSR, EnSC, ℓ0-SCC and Noisy-DR-ℓ0-SCC-
LR, SSC-OMP and the mini-batch version of K-FSC.

• Attributed graph clustering models: We use the GIC, S²GC
and GCC models.

Co-clustering models :
• Vanilla models: We compare our model against the

spectral co-clustering algorithm (SpecCo), DCC and
RDPCo.

• Attributed graph co-clustering Models: The only existing
model of this kind is CFOND.

Experimental Settings
For our method, we normalize the word count datasets
using tf-idf and unit-normalize across the the rows. We
use the official implementation (with the recommended or
default parameters) for each of them, apart from CFOND
(ρ = β = α = 1), LSR (λ = 1), and RDPCo (with Sr and Sc),
ℓ0-SCC and Noisy-DR-ℓ0-SCC-LR (see [22], [23] for param-
eter setting) which, to the best of our knowledge, have not
been made publicly available. We also use the recommended
parameters for each dataset whenever possible. For models
that use a parameter p like ours, we run their selection rule
until convergence with a maximum p of 100 for fairness. All
models were run on the same machine with 12GB memory
GPU and a RAM of 12GB. All experiments for the different
models were run on the same machine with 12GB of RAM
and a 2.3Ghz Xeon Processor. We perform 20 runs for each
model.
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(a) A. (b) B. (c) C. (d) D. (e) E.

Fig. 3: Synthetic datasets before and after rearrangement with respect to the true partitions.

Algorithm 3: Propagation Order Selection Rule
Input : X document-term matrix, SR row

propagation matrix, SC column
propagation matrix, q column propagation
order, k number of co-clusters.

Output: Propagation order p∗.
p← 1;
while p∗ not found do

Z, W, , ← SC3(X, SR, SC, p, q, k);
lossp ←

∥∥Sp
RX− ZZ⊤Sp

RXWW⊤∥∥;
if | lossp − lossp−1 | < d

n⌈
√
k⌉ or p = 100 then

p∗ ← p
end
p← p+ 1

end

Choice of Propagation Matrices
In our model, we use a k-nn graph generated from the rows
of matrix X using the euclidean distance with k = 3. We use
a propagation order of ten, p = 10. For the columns, we do
not use a k-nn graph, but rather a graph based on NNPMI,
which is nonnegative version of Pointwise Mutual Informa-
tion (PMI) traditionally used to quantify word-relatedness.
The column propagation order is set to q = 1. The column
NNPMI graph is defined as

SC =(sCij) =

(
max

{
log

(
y..

yi.y.j
yij

)
, 0

}
ij

)
(18)

where yij = x⊤
i xj . We use the nonnegative version so that

the resulting matrix after propagation can still be seen as a
document-term matrix. Both matrices are then normalized
using the normalization proposed in [35].

6.2 Co-clustering
Synthetic Datasets
Due to the absence of datasets with labels along both rows
and columns. We propose to use synthetic datasets for the
evaluation of the co-clustering performance of our model.
The five datasets are depicted in figure 3 before and after
rearrangement with respect to the ground truth partition.
The characteristics of these datasets are available in table 1.
These datasets have one of two possible types of structures,
checkerboard [47] and block diagonal [3].

TABLE 1: Synthetic datasets’ characteristics.

Dataset Rows Columns Biclusters Proportions Structure

A 500 500 10 equal Block diagonal
B 800 1000 6 unequal Block diagonal
C 800 800 8 equal Checkerboard
D 2000 1200 7 unequal Checkerboard
E 2500 2500 15 unequal Checkerboard

Evaluation Metrics
To compare our algorithms we rely on the clustering accuracy
that is computed by rearranging the rows of the confusion
matrix so as to obtain the greatest possible trace using the
Hungarian method. Clustering accuracy then corresponds
to this trace divided by the number of elements. However,
here we use a metric that simultaneously quantifies the
clustering accuracy over rows and columns which we call
co-clustering accuracy. Given c(πr), the accuracy over the
rows; and c(πc), the accuracy over the columns. The co-
clustering accuracy cca [6] is given by

cca(πr, πc) = c(πr) + c(πr)− c(πr)× c(πr)

TABLE 2: Co-clustering performance on the synthetic
datasets averaged over 20 runs of the different co-clustering
models. Our model finds the ground truth partition in
almost all cases and has the best performance (or is tied
for best) over all datasets.

Dataset A B C D E

SpecCo 89.53±1.39 99.54±0.0 94.32±0.0 99.95±0.02 78.43±1.5
DCC 98.61±1.0 99.96±0.1 45.0±15.0 72.06±14.1 98.87±1.0
RDpCo 85.1±6.3 86.74±6.7 28.18±0.0 64.19±14.9 22.5±0.0
CFOND 100.0±0.0 97.9±2.0 100.0±0.0 99.25±0.7 98.16±0.8

SC3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 99.87±0.2

Performance
Table 2 shows the co-clustering results of our algorithm
with respect to other co-clustering algorithms. We see that
the models that use a topological information generally
outperform the other models. Our model finds the ground
truth partition in four out of five cases and has the best
performance (or is tied for best) over the five datasets.

6.3 Document Clustering
Datasets
We use four attributed graph citation networks, which are
graphs characterized by an adjacency matrix A and a node
document-term matrix X. The summary statistics are given
in table 3. The nodes in ACM and Citeseer correspond to
word count vectors, and those in PubMed and Wiki to tf-
idf weighted word vectors. We use the ACM dataset, whose
graph is not very informative, to compare the robustness of
the models that use this information.

Evaluation Metrics
To assess the performance of different algorithms on the
document clustering task, we use three commonly used
clustering performance metrics: clustering accuracy (Acc),
Adjusted Rand Index (ARI) [51], and normalized mutual
information (NMI) [52].
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TABLE 3: Document datasets’ statistics.

Dataset #Nodes #Edges #Features #Classes

ACM [48] 3025 9150593 1870 3
CiteSeer [18] 3327 4732 3703 6
PubMed [18] 19717 44338 500 3

Wiki [49] 2405 17981 4973 17
Computers [50] 13381 259159 767 10

Choice of Propagation Matrices

Here, we set the row graph to be the adjacency matrix
provided in each attributed graph dataset SR = A, but
later we will test our model with a k-nn graph generated
from the rows of matrix X. The row propagation order p
is selected using the selection rule given in algorithm 3. The
column propagation matrix and normalizations used are the
same as for the synthetic data.

Performance

We consider three versions for our method correspond-
ing to three different nonnegative kernel functions, linear,
quadratic and radial basis (rbf) functions. Note that the
linear kernel does not really result in a proper affinity
matrix but is has a similar behaviour to the other valid
kernels when using a bias term, so it can be a more efficient
surrogate for them. Tables 4,5 show the row/document
clustering performance of the different models. We report
results for the power selected using rule 3. Overall, we
see that methods using both graph structure and features
outperform methods using features only; this is the case for
all datasets, with the exception of ACM, where the graph is
nearly strongly connected. We included the ACM dataset
to show the robustness of our model in the face of an
uninformative graph structure when compared with state-
of-the-art attributed graph clustering models. Our model is
seen to be competitive on all five datasets, and to have the
best performances on all five datasets. SC3 has either the
best or the second best performance with respect to most
metrics on each dataset, while having near-zero standard
deviation, which shows that the proposed approach is ro-
bust. The performance gap is most striking on Wiki, where
our model is seven points ahead of the closest model in
terms of accuracy. We also see that the performance of the
three variants of our model is similar.

For statistical significance, we perform a Nemenyi post-
hoc test [53] with a confidence level of 95% on the ranks of
each model in terms of Acc, NMI, and ARI, for each dataset
and for each run (20 runs for each dataset) to compare
our model with the other best performing models, namely
SGC, S²GC, GIC, GCC and CFOND. This allows us to group
models with similar performances. The results are shown
in figure 4. The best group consisting of the SC3 variants
is seen to have the best performances by a wide margin,
followed by the group containing only GCC.

Compared to co-clustering methods applied on X, note
that sometimes, with certain some methods we have zero
values for NMI and ARI. This is explained by the fact that
we are facing the recurrent problem of empty classes when
dealing with sparse and unbalanced data. The problem is,
however, overcome by SC3 as illustrated for ACM.

1 2 3 4 5 6 7 8

SC3_quad
SC3_linear

SC3_rbf
GCC SGC

S²GC
GIC
CFOND

CD

Fig. 4: Visualization of the results of the Nemenyi test with
a confidence level of 95%. We see that SC3 variants perform
similarly while being better than other models.

Efficiency

In figure 5 we plot the accuracy of the subspace clustering
models in relation to their training times, comparing their
performance on four datasets to that of linear SC3. The
results correspond to an average over 20 runs. The time
required by the propagation step is included in the overall
running time of our algorithm. The fastest model on all
datasets is linear SC3, it also achieves the best accuracy
score. Note that while the other models give a partition
for the rows exclusively, ours gives one for both rows and
columns while remaining significantly more efficient.

TABLE 6: The three topics found by SC3 characterized by
their top ten most frequent terms, their size and coherence.

Topic a b c

patient cell rat
insulin mice control
glucos islet activ

Most type iddm level
Frequent group gene increas
Terms subject diseas respons

lt develop signific
risk nod effect

associ children express
treatment betacel plasma

Coherence -403.4 -365.5 -387.5

Size 280 63 157

6.4 Term Clustering

Since co-clustering models additionally generate a cluster-
ing for the terms. We use the PubMed dataset which is
the only dataset for which we managed to find the actual
terms. Table 6 presents the most frequent terms for each
topic found by our model. The PubMed dataset contains
scientific papers concerning diabetes. We see that topic a
contains terms that are related to a presentation of diabetes,
e.g, insulin, glucos, type, etc. Topic b has terms that are related
to the microscopic effects of diabetes such as cell, islet, gene,
betacel, and so on. Finally, topic c seems to concern terms
that are associated with medical experimentation and anal-
ysis of results such as control, increas, signific, etc. We note
the coherence of these term clusters since they cluster the
PubMed paper contents according to three topics. This term
clustering can then be used to help characterize document
clusters to facilitate interpretation.

In order to quantitatively evaluate the semantic coher-
ence of topics, we use an internal metric [54] to measure the
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TABLE 4: Clustering results on ACM, Citeseer and Wiki.

Method Input Co- Subspace ACM CiteSeer Wiki
clustering clustering Acc NMI ARI Acc NMI ARI Acc NMI ARI

k-means X % % 62.8±4.8 37.2±9.2 34.5±10.4 62.5±1.6 36.7±1.9 35.5±2.5 47.3±6.0 46.3±6.9 26.4±8.1

LSR X % " 80.3±0.0 47.0±0.0 51.9±0.0 21.1±0.0 0.2±0.1 0.0±0.0 21.1±3.3 9.0±5.9 2.6±2.0
EnSC X % " 79.5±0.0 46.8±0.0 50.3±0.0 55.6±0.0 14.8±0.0 14.6±0.0 45.5±2.0 45.7±1.7 28.8±1.3
SSC-OMP X % " 78.8±0.1 43.4±0.1 48.3±0.1 24.0±1.1 3.5±0.4 1.8±0.1 52.7±4.4 48.1±2.3 33.3±1.5
ℓ0-SSC X % " 80.7±0.0 48.4±0.0 52.8±0.0 55.4±0.0 26.3±0.0 24.5±0.0 45.1±0.0 43.8±0.0 25.6±0.0
DR-ℓ0SCC-LR X % " 75.8±2.1 42.4±2.7 41.5±4.0 58.1±0.6 27.1±0.3 26.2±0.6 45.8±0.1 45.2±0.4 25.3±0.7
K-FSC X % " 56.2±7.5 17.1±6.3 18.0±5.7 35.3±6.9 12.4±3.5 10.6±4.0 38.2±5.1 35.6±3.9 17.7±4.4

SpecCo X " % 80.6±0.1 48.4±0.1 52.3±0.1 30.3±1.7 10.0±1.3 5.5±1.6 37.8±1.2 38.2±0.3 20.8±0.4
DCC X " % 40.5±3.3 7.8±5.1 2.1±2.2 35.1±3.8 11.5±2.4 8.9±2.9 48.3±3.6 47.5±2.6 30.6±3.0
RDPCo X " % 35.1±0.0 0.0±0.0 0.0±0.0 46.3±3.2 12.6±6.3 8.3±4.2 18.8±3.1 5.6±7.7 1.4±2.3

GIC A,X % % 34.3±0.4 0.1±0.1 0.0±0.0 68.8±0.8 43.8±1.0 44.6±1.0 46.5±1.4 48.2±0.5 30.2±1.4
SGC A,X % % 83.7±0.0 55.7±0.0 58.8±0.0 64.9±0.1 39.4±0.0 38.8±0.0 51.9±0.8 49.6±0.2 28.6±0.1
S²GC A,X % % 40.5±3.4 1.7±1.2 1.8±1.3 68.1±0.3 42.3±0.2 43.5±0.3 52.7±1.0 49.0±0.3 29.6±0.9
GCC A,X % % 35.4±0.0 0.3±0.0 0.0±0.0 69.4±0.1 45.0±0.2 45.4±0.1 54.1±0.8 55.0±0.2 33.3±0.5

CFOND A,X " % 71.8±0.6 37.2±0.5 38.2±0.7 63.0±1.1 36.6±1.3 36.2±1.2 47.8±3.0 49.5±2.1 30.3±2.5

SC3
linear A,X " " 88.4±0.1 62.0±0.2 68.6±0.1 69.3±3.8 43.7±2.7 43.9±3.8 59.7±1.9 53.9±1.5 31.2±3.1

SC3
quad A,X " " 88.4±0.0 62.0±0.1 68.6±0.1 70.7±1.3 44.7±1.0 45.5±2.0 58.2±3.2 53.4±1.8 30.5±4.2

SC3
rbf A,X " " 88.4±0.1 62.0±0.2 68.6±0.1 70.4±1.1 44.4±0.9 44.8±1.8 57.0±3.0 52.9±2.1 28.4±3.8

TABLE 5: Clustering results on PubMed and Amazon Computers.

Method Input Co- Subspace PubMed Computers
clustering clustering Acc NMI ARI Acc NMI ARI

k-means X % % 60.1±0.0 31.4±0.0 28.1±0.0 36.4±1.6 7.0±8.5 -0.2±1.4

LSR X % % OOM 31.6±0.5 22.3±0.5 11.0±0.2
EnSC X % % 55.6±0.0 14.8±0.0 14.7±0.0 32.5±1.0 32.7±2.6 15.9±1.1
SSC-OMP X % % 60.4±0.0 22.3±0.0 19.4±0.0 46.6±1.3 29.1±0.3 30.0±3.1
ℓ0-SCC X % % OOM 41.2±0.0 44.5±0.0 22.0±0.0
DR-ℓ0SCC-LR X % % OOM 38.4±0.4 38.1±0.2 20.3±0.2
K-FSC X % " 49.5±9.8 14.8±5.9 12.1±7.1 41.1±2.5 28.9±3.2 16.5±3.5

SpecCo X " " 61.2±0.0 24.7±0.0 21.8±0.0 31.2±1.2 29.9±1.5 10.6±1.8
DCC X " " 54.3±3.6 16.5±2.9 13.4±4.1 34.3±1.9 3.0±1.5 -2.2±1.4
RDPCo X " " 21.4±0.2 1.0±0.5 0.2±0.1 37.1±0.0 0.0±0.0 0.0±0.0

GIC A,X % % 64.3±0.4 26.0±0.5 23.6±0.5 46.8±2.2 47.5±0.9 31.3±3.5
SGC A,X % % 64.7±0.0 54.3±0.0 48.5±0.0 65.5±0.0 52.2±0.0 45.7±0.0
S²GC A,X % % 70.7±0.0 32.9±0.0 33.5±0.0 58.3±0.0 54.6±0.0 40.1±0.0
GCC A,X % % 70.8±0.0 32.3±0.0 33.2±0.0 67.6±0.0 56.0±0.0 46.5±0.0

CFOND A,X " % 60.1±0.0 31.4±0.0 28.1±0.0 23.6±0.8 13.3±1.3 7.0±0.8

SC3
linear A,X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

SC3
quad A,X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

SC3
rbf A,X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

TABLE 7: Performance of SC3 with a quadratic kernel using different column propagation matrices averaged over 20 runs.
Best results are highlighted in bold font.

Graph k ACM Citeseer Wiki Pubmed Computers
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

3 88.7 62.8 69.2 68.0 42.8 43.8 52.9 50.3 19.0 71.3 33.4 34.2 70.5 58.7 50.3
k-nn (euclidean) 5 88.7 63.1 69.3 68.3 43.6 44.3 56.7 51.4 24.5 71.2 33.2 34.1 70.8 59.2 48.9

10 88.8 63.3 69.5 68.6 44.2 44.8 58.4 52.7 26.4 71.2 33.3 34.2 72.6 60.5 52.6

3 88.0 61.1 67.7 67.3 42.3 42.7 54.7 51.7 24.0 71.2 33.0 34.0 71.3 60.2 49.7
k-nn (cosine) 5 87.9 61.0 67.3 67.2 42.8 42.8 55.7 52.0 23.8 71.1 32.9 33.9 72.4 60.5 52.2

10 87.9 60.9 67.4 67.3 42.8 43.0 55.4 51.6 25.3 71.0 32.8 33.8 72.5 60.6 52.4

3 88.6 62.7 69.0 67.3 42.4 43.1 58.8 53.3 27.3 71.2 33.1 34.2 72.6 60.5 52.6
k-nn (correlation) 5 88.7 62.9 69.2 68.1 43.4 43.9 55.7 51.1 26.6 71.1 32.9 34.0 72.6 60.5 52.5

10 88.3 62.2 68.5 68.1 43.8 44.2 57.1 52.5 26.2 71.1 32.9 34.0 72.5 60.5 52.4
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Fig. 5: Clustering accuracy plotted against training times on a logarithmic scale of subspace clustering algorithms on the
different datasets. Linear SC3 timing is used as the reference; for instance, on ACM, LSR×13 means that it is approximately
10 times slower than SC3. Linear SC3 consistently gives the best results and training times. PubMed is left out due to OOMs.

level of association between terms within each cluster. Es-
sentially, if a majority of the words within a term cluster are
interconnected, it can be inferred that the cluster is semanti-
cally coherent from a statistical standpoint. Topic coherence
measures the degree of semantic similarity between the top
words within a topic or term cluster. It takes into account
both the intrinsic coherence of the words themselves, as well
as their coherence within the context of the topic or cluster
as a whole. This metric has been shown to be effective in
assessing the quality of topic models and identifying topics
that are most representative of the underlying data. We
consider the top 10 terms when computing this metric. We
also report the sizes of the topics which are considered as a
good metric for assessing topic quality.

6.5 Convolution Using k-nn Graphs

Unless we are working with attributed graphs, no ground
truth adjacency matrix on the rows is provided, but only the
feature matrix. Consequently, we need to generate an adja-
cency matrix on the rows ourselves. A popular choice is the
k-nearest neighbors graph, based on some metric. In table 7
we compare results on the five datasets using k-nn graphs
generated based on the Euclidean and cosine dissimilarity
with a number of neighbors k ∈ {3, 5, 10}. We symmetrize
the obtained k-nn matrix A as follows: (A + A⊤)/2. We
see that even without using the ground truth graph, our
model continues to outperform subspace clustering and co-
clustering models, including CFOND, which uses the actual
ground truth graph on all datasets. It also outperforms
attributed graph clustering models on Wiki and ACM. On
ACM, the results obtained by our model results are better
when using the k-nn graph than when using the ground
truth graph, since the ACM ground truth graph is not very
informative. To sum up, we note that whatever the number
of neighbors k ∈ {3, 5, 10} and the similarity measure used,
SC3 remains profitable for data even without ground truth
adjacency matrix on the data points.

7 CONCLUSION

We proposed SC3, a new approach to leverage subspace
clustering for text data through co-clustering and a bilateral
graph convolution. SC3 circumvents the computational and
spatial complexity issues inherent in subspace clustering by
using factor matrices and nonnegative kernel feature maps.
We showed that the simple model that we propose has a

grouping effect, and we demonstrated how the bilateral
convolution helps to put this grouping property to good
use. Experiments on synthetic and real datasets showed that
our model is competitive with the state of the art on the
tasks of document and word clustering in the context of
document-term attributed graphs, while also being efficient
(linear complexity in the number of nodes) and robust in
the face of uninformative graph topologies. Even when no
ground truth graph is available, the bilateral convolution
operation improves performance in comparison to classical
subspace clustering approaches.
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