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Fraction-Score: A Generalized Support
Measure for Weighted and Maximal

Co-location Pattern Mining

Harry Kai-Ho Chan, Cheng Long, Da Yan, Raymond Chi-Wing Wong, and Hua Lu

Abstract—Co-location patterns, which capture the phenomenon that objects with certain labels are often located in close geographic

proximity, are defined based on a support measure which quantifies the prevalence of a pattern candidate in the form of a label set.

Existing support measures share the idea of counting the number of instances of a given label set C as its support, where an instance

of C is an object set whose objects collectively carry all labels in C and are located close to one another. However, they suffer from

various weaknesses, e.g., fail to capture all possible instances, or overlook the cases when multiple instances overlap. In this paper, we

propose a new measure called Fraction-Score which counts instances fractionally if they overlap. Fraction-Score captures all possible

instances, and handles the cases where instances overlap appropriately (so that the supports defined are more meaningful and

anti-monotonic). We develop efficient algorithms to solve the co-location pattern mining problem defined with Fraction-Score.

Furthermore, to obtain representative patterns, we develop an efficient algorithm for mining the maximal co-location patterns, which are

those patterns without proper superset patterns. We conduct extensive experiments using real and synthetic datasets, which verified

the superiority of our proposals.

Index Terms—Co-location pattern, spatial data mining

✦

1 INTRODUCTION

With the advancement of technologies such as GPS,
databases that record objects with both categorical labels
and spatial information are prevalent. For instance, in ecol-
ogy, animals and plants not only possess labels such as their
species, but also location information about their habitats;
in urban areas, point-of-interests (POIs) such as restaurants
and shops are also associated with some labels such as their
business types and brands as well as their locations (e.g.,
in Google Maps); also in epidemiology, patients are usually
recorded with not only demographic information like their
jobs, ages and races, but also location information like their
home addresses. We call an object as an instance of a label
if the object carries the label. One interesting pattern on
these objects is the co-location pattern [26], [28], [19], [18].
A co-location pattern corresponds to a set of labels whose
instances are frequently located in a close geographic proximity
(i.e., the instances are within a distance d from each other).
As an example, Snack Bar shops and Beauty Salon shops
are often found located near each other [26], forming a co-
location pattern.
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Similar to frequent itemsets in the context of transaction
data [1], co-location patterns are defined based on a support
measure, which quantifies how frequently those instances
of the labels in a given label set are located closely. In
the context of transaction data, the support of an itemset
is defined as the number of transactions that contain all
objects in the itemset. Unfortunately, this definition cannot
be straightforwardly adapted to our context since there exist
no explicit transactions in spatial data.

We say that a set of objects is an instance of a label set
if the objects carry all labels in the label set and are located
within distance d from each other. The challenge of defining
the support properly is mainly due to the fact that different
instances of a label set usually overlap with each other,
and this leads to a dilemma that enumerating all instances
would over-count the support while using heuristics would
miss some instances completely. Figure 1 shows an example.
Both sets {R7, C1} and {R8, C1} are instances of the label set
{restaurant, church}. However, the two sets are overlapped
by the object C1. In the literature, several support mea-
sures for co-location patterns have been proposed, namely
partitioning-based [28], construction-based [26], enumeration-
based [28], [19], [18], and participation-based [28], [19], [18],
[46], [45], [44]. The major idea shared by these approaches
is to count for a given label set the number of its instances
for measuring the support. However, as will be discussed in
Section 2, they all suffer from various weaknesses such as
missing or over-count instances, or is not anti-monotonic.

An instance is said to be a row instance if it does not
have a proper subset which is also an instance of the same
label set. For example, the set {R7, C1} is a row instance
of the label set {restaurant, church} in Figure 1, while
{R7, R8, C1} is not. In our prior work [8], we propose a
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Fig. 1. A small portion of a real dataset of POIs in United Kingdom,
including 8 restaurants (blue), 3 banks (green) and 3 churches (red),
where the icons indicate the labels of the spatial objects and the disks
have their centers at C1 - C3 and radii all equal to d.

new support measure called Fraction-Score which puts all
possible row instances into different groups then counts the
groups. Specifically, it selects a label and then puts all row
instances sharing the same object with the selected label in
the same group. Compared to the participation-based ap-
proach that also groups the row instances (to be detailed in
Section 2), Fraction-Score avoids the over-counting problem.
The major idea is to count each group as a fractional unit of
prevalence instead of an entire one, where the fraction value
is calculated by amortizing the contribution of an object
among all the row instances that the object is involved in.

Here, we briefly illustrate how the fraction values are
calculated (the detailed definitions will be introduced in
Section 3). Consider Figure 1 and the label set {restaurant,
church}. Suppose that label “restaurant” is the label used
for grouping the row instances. In this case, there would
be eight groups, formed by R1 - R8, respectively. Consider
the group formed by R1. It involves only one row instance,
namely {R1, C1}. The fraction associated with the group by
R1 would be set to 1/8, and the intuition is that it involves
an object C1 and there are 8 groups (or objects involving
the label “restaurant”, namely R1 - R8) that share C1 and
thus, each of the groups (including the one by R1) would
be associated with a fraction 1/8 (of C1). Similarly, the
fraction associated with each group by R2 - R6 would be
set to 1/8. The fraction associated with the group by R7

would be set to 1, which is explained as follows. First, the
row instances in this group, namely {R7, C1}, {R7, C2}, and
{R7, C3}, involve three churches, namely C1, C2, and C3.
Second, the fractions w.r.t. these objects are 1/8, 1/2, and
1/2, respectively (the fraction 1/8 of C1 could be explained
as above, the fraction 1/2 of C2 (C3) could be explained
by the fact that C2 (C3) is shared by two groups, namely
those byR7 andR8). Third, the fractions are first aggregated
(using a sum function) and then bounded by 1 (using a min
function) simply because each group cannot be counted as
more than one unit. Similarly, the fraction associated with
the group by R8 is 1.

The sum of fractions, 1/8⋅6+1+1 = 2.75, corresponds to
the support of {restaurant, church} by Fraction-Score. This
is more meaningful than 8 that is the support defined by
the participation-based approach, which we will see shortly
in Section 2, since indeed there are roughly three units of
prevalence of the label set (one in left region, one in the top-
right region, and one in the middle region which overlaps
with the other two).

The example above illustrates the cases in an un-
weighted dataset. However, in some cases, each object con-
tains a weight attribute which quantifies its importance. For
example, the NeuroSynth dataset [39] (details will be given
in Section 6.1) contains a mapping between labels (e.g.,
“depression” and “anxiety”) and the activated locations in
the brain (i.e., location). Each object weight is a relevance
score between the label and the location. As a general-
ization of the definition in [8] that defined Fraction-Score
based on unweighted objects, our Fraction-Score proposed
in this journal extension also works well on these weighted
datasets, since it seamlessly captures object weights in its
support definition. The unweighted case proposed in [8] is
a special case with all weights equal to 1.

Moreover, as will be shown later, the support defined
by Fraction-Score satisfies the desirable anti-monotonicity
property. Based on Fraction-Score, we define co-location
patterns using a pre-set parameter minimum support.

Since Fraction-Score satisfies the anti-monotonicity prop-
erty, we adopt an Apriori-like algorithm for mining the co-
location patterns. One key component of the algorithm is
to compute the support of a given label set C , which is
not as straightforward in our case as in the transaction data
scenario. To compute C’s support, we design an algorithm,
where a basic operation is to decide whether there exists a
row instance of C , which involves a particular object. We
show that the decision problem of this operation is NP-hard
(w.r.t. ∣C∣). In fact, this operation is also necessary when the
supports defined by the participation-based approach [28],
[19], [18], [46], [45], [44] are computed, and it is solved by
materializing all row instances of C there. Nevertheless, we
observe that the complete materialization is an overkill since
the operation could be finished by just finding one row
instance involving the object if there exists one. Besides,
we notice that though the decision problem in general is
NP-hard, it can be easily solved in certain cases. Motivated
by these observations, we design a filtering-and-verification
approach for the decision problem, which performs a few
efficient pre-checking procedures (i.e., filtering) for cases
where the decision problem could be answered easily, and
performs a verification procedure for those remaining cases.
Note that the algorithm improved over the one in [8] in both
memory usage and efficiency by additionally including a
memory-saving strategy and filtering and pruning steps.

In addition, we found that the number of patterns re-
turned is large in some cases, which might cause difficulty
for users to interpret the results. Thus, we study the maximal
co-location patterns [43] mining problem based on Fraction-
Score, where a pattern is maximal if it has no proper super-
set pattern. It is particularly useful when we want to obtain
a smaller set of patterns that can concisely represent all the
co-location patterns. We propose an efficient algorithm for
mining all maximal co-location patterns. The major idea
is to generate candidate maximal patterns from the size-2
patterns, and verify them in a top-down manner. Thus, it
avoids the unnecessary computations in the above Apriori-
like algorithm which is designed for mining all patterns.
Compared to the existing maximal pattern mining algo-
rithm [38] that generates the candidate patterns from size-2
instance table, we do not need to materialize the instances.
In the verification, the filtering-and-verification approach is
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also adopted, with an additional filter for better efficiency.
The contributions of this paper are summarized as fol-

lows.

• We show the weaknesses of existing support mea-
sures and propose a new and better one called
Fraction-Score, which avoids the weaknesses and
satisfies the desirable anti-monotonicity property.

• For a fundamental operation involved in mining the
co-location patterns, we provide hardness results and
design an efficient algorithm.

• We propose an efficient algorithm for answering the
maximal co-location pattern mining problem based
on Fraction-Score.

• We conducted extensive experiments on both real
and synthetic datasets, which showed the superiority
of Fraction-Score as well as the efficiency of the
proposed algorithms.

This journal extension adds substantial new technical
contributions over [8] by (1) generalizing the definition of
Fraction-Score to be applicable on weighted objects (Sec-
tion 3.3); (2) improving the algorithms to be more memory-
saving and efficient (Section 4); (3) proposing an efficient
algorithm to find the maximal patterns (Section 5); (4)
including an additional real dataset NeuroSynth [39] to
evaluate our algorithms (Section 6); and (5) releasing the

source code of our algorithms
1
.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 gives the formal defi-
nition of Fraction-Score and defines our problems. Section 4
adopts an Apriori-like algorithm for mining the co-location
patterns and introduces an algorithm for computing the
support defined by Fraction-Score. Section 5 discusses the
maximal co-location pattern mining based on Fraction-
Score. Section 6 presents the experimental results. Section 7
concludes the paper and provides some future directions.

2 RELATED WORK

2.1 Support Measures for Co-location Pattern Mining

The co-location pattern mining problem has been studied
extensively using different support measures. We illustrate
the weaknesses of different approaches as follows. Table 1
summarizes them and compares with Fraction-Score.

Partitioning-based approach [28] uses a grid to partition
the space into many cells, constructs for each cell a trans-
action involving all objects within the cell, and then defines
supports based on the generated transactions as if they are
on conventional transaction data [1]. With this approach,
only those instances within individual cells are considered,
while those across cells are missed since two objects within
distance d but across cell boundaries are ignored.

Construction-based approach [26] constructs instances of
a given label set heuristically and counts the number of
constructed instances as the support. This approach is not
robust simply because some instances of a label set might
be missed due to the heuristic nature.

Enumeration-based approach [28], [19], [18] counts for a
given label set all its row instances. With this approach, no

1. https://github.com/harryckh/TKDE-colocation

TABLE 1
Existing support measures

Approach Prevalence
Anti-

monotonic

Partitioning-based [28] miss-count yes
Construction-based [26] miss-count no
Enumeration-based [28], [19], [18] counter-intuitive no
Participation-based [28], [19], [18], [44], [45], [46] over-measured yes
Fraction-Score meaningful yes

instances can be missed, but the support definition is not
anti-monotonic and counter-intuitive. That is, the support of
a label set is larger than that of its subset, which breaks the
anti-monotonicity property that is important both to make
sense semantically, and to enable the design of efficient
algorithms for frequent pattern mining. The insight into the
problem is that this approach may reuse one object in many
row instances, and since the object contributes wholly to
every row instance that it is involved in, the support is over-
measured. Due to this problem, the supports defined by this
approach are not used on their own, but as components for
defining the confidence of a rule candidate [28], [19], [18].

Participation-based approach [28], [19], [18], [46], [45], [44]
considers all possible row instances, but instead of counting
each individual row instance, it puts the row instances into
different groups and then counts the groups. Specifically,
it selects a label and then puts all row instances sharing
the same object with the selected label in the same group.
The rationale is that all row instances within a group are
counted as one unit of prevalence since they are all based
on the same object with a particular label. Nevertheless,
in cases where some row instances across different groups
share an object, this approach would count them as multiple
units of prevalence (one for each group), i.e., the object’s
contribution is over-counted. To illustrate, consider Figure 1.
Consider the label set {restaurant, bank, church}. Suppose
that the label “restaurant” is the label used for grouping the
row instances. There would be eight groups, each based on
a restaurant R1 - R8. Within each group, all row instances
contain the same restaurant. Thus, the support defined
by the participation-based approach would be equal to 8.
Nevertheless, among these eight groups, many share objects
with labels of “bank” and/or “church” (e.g., {R3, B1, C1}
and {R6, B1, C1} are two row instances from two different
groups since they contain different restaurants but they
share their restaurant and church, i.e., B1 and C1). In this
case, the prevalence is over-measured.

Note that the partitioning-based, construction-based and
participation-based approaches can be adapted to handle
weighted objects. The details can be found in Appendix A.

In [49], Zhang et al. proposed to improve the efficiency
of co-location pattern mining by adopting a multi-way
join approach. In [20], Huang et al. developed a FP-tree
based algorithm for the co-location pattern mining problem.
Motivated by the fact that it is expensive to generate row
instances of a size-(k + 1) label set via joining the row in-
stances of two size-k label sets, in [46], [45], [44], the authors
proposed some partial join and joinless techniques which
materialize some transactions of spatial objects such that
those row instances within transactions could be generated
without the join process [28], but for those row instances
across different transactions, they still use the join operation.
In [4], Boinski and Zakrzewicz developed a new method to
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efficiently process co-location pattern queries using materi-
alized, improved candidate pattern instance tree (iCPI-tree).

2.2 Condensed Co-location Pattern Mining

In [43], Yoo and Bow studied the closed top-k co-location
pattern mining problem. The authors also studied the max-
imal co-location pattern mining problem [42]. In [38], Yao et
al. proposed to construct a graph based on size-2 co-location
patterns, and then find maximal cliques as the maximal
co-location pattern candidates for better efficiency. In [23],
Liu et al. studied the problem of summarizing co-location
patterns. In [31], Wang et al. proposed a redundancy re-
duction for co-location patterns. All these studies aimed at
finding a representative set of patterns that is of a smaller
size. However, their definitions and methods are designed
based on the participation-based measures, and thus cannot
be used in our Fraction-Score.

2.3 Variants of Co-location Pattern Mining

Some works defined the spatial co-location pattern based
on regions and polygons. In [35], Xiong et al. presented
a framework for mining co-location patterns for extended
spatial objects, e.g., polygons and line strings. In [10], Ding
et al. studied the problem mining regional (or local) co-
location patterns. In [11], Eick et al. studied the problem
of finding regions that each represented as a set of spatial
objects by using a clustering-like algorithm where the in-
terestingness score of a region is based on how much the
objects representing the region have their continuous values
co-related with each other. In [13], [12], the authors studied
of finding co-location patterns where a set C of spatial labels
corresponds to a pattern if the clusterings each based on the
objects with a spatial label in C have at least a certain degree
of overlap which is captured by the area intersected by the
polygons formed based on the clusters. In [6], Celik et al.
proposed to find zonal or local co-location patterns which
represent subsets of label types that are frequently located
in a subset of space (i.e., zone). In [33], Wang et al. studied
the problem of finding regions that each represented by a set
of cells linking with each other where two labels co-occur
more frequently than globally. In [25], Long et al. proposed
to find the co-location patterns from regional objects, and
defined the proximity relationship between instances by
their overlapping area.

Some other studies related to the co-location pattern
mining problem are reviewed as follows. In [22], Koperski
and Han aimed to find strong association rules where a
rule indicates certain association relationship among a set of
spatial and possibly non-spatial predicates. In [3], Barua and
Sander studied the problem of finding statistically signifi-
cant co-location patterns based on hypothesis testing, where
some models are assumed which limits its application scope.
In [21], Huang and Zhang proposed to cluster on the set
of spatial labels where the similarity between two labels is
measured with some spatial statistical functions [9]. In [37],
Yang et al. studied the co-location pattern mining problem
with the consideration of distance decay effects and also
the direction information. In [36], Yang et al. studied the
problem of finding the co-location patterns with or without
rare features. In [41], [29] (resp. [40], [2], [27]), MapReduce

TABLE 2
Notation table

Notation Definitions

t a label
o a spatial object with its location o.λ, its label o.t and its

weight o.w
T the set of all possible labels of the objects
C a label set (or a co-location pattern candidate)
O the set of spatial objects
Ot the set of spatial objects with the label t
Wt the total weight of objects with the label t
Wmax the largest total weight among all Wt

d the distance threshold for defining neighbor sets

Θ(o′, t, d) the set of objects which are located in Disk(o′, d) and
carry the label t

∆obj(o, o′) the amount of fraction of o
′

that o receives

∆label(o, t′) the aggregated fraction of objects sharing a label t
′
∈

C − {t} that o receives
∆labelSet(o,C) the aggregated fraction o receives w.r.t. C

based methods (resp. parallel algorithms on GPU) were
developed for the co-location pattern mining problem.

3 FRACTION-SCORE AND PROBLEM DEFINITION

Section 3.1 introduces some notations. Section 3.2 gives
an overview of Fraction-Score, and Section 3.3 presents its
formal definition. Section 3.4 defines our problems.

3.1 Notations

Let O be a set of n objects. Each object o ∈ O has a
location o.λ, a weight o.w in range [0, 1] that represents
the importance of the object, and also a set of (categorical)
labels (e.g., a shop brand name such as Starbucks). For
ease of presentation, we assume that each object o has
only one single label, denoted by o.t, but the concepts and
algorithms introduced in this paper can easily be applied to
the general case by making some duplications of each object
with multiple labels, each with one label. For example,
object A1 in Figure 2 has the label ◦ and a weight 0.8.

Let T be the set of all possible labels of the objects, i.e.,
T = {o.t∣o ∈ O}. Let Ot be the set of objects with label t,
i.e., Ot = {o∣o.t = t}. Given a label t, we use Wt to denote
the sum of weights of the objects in Ot, i.e., Wt = ∑o∈Ot

o.w,
and Wmax to denote the largest Wt among all t ∈ T .

Given two objects o and o
′
, we denote the distance

between them by d(o, o′). Depending on the applications,
different metrics such as Euclidean distance and Haversine
distance could be used for defining the distance. For ease
of illustration, we use Euclidean distance in this paper.
Given a set S of objects, we say that S is a neighbor set if
the maximum pairwise distance within S is bounded by a
distance threshold d, i.e., maxo,o’∈Sd(o, o′) ≤ d. Given an
object o and a real number r, we denote by Disk(o, r) the
disk with its center at o.λ and its radius equal to r. Given
a label set C , a set S of objects is said to be an instance
of C if S is a neighbor set and covers all labels in C (i.e.,
C ⊆ {o.t∣o ∈ S}). An instance of C is said to be a row
instance of C if none of its proper subsets is an instance of
C . The main notations that are used throughout the paper
are summarized in Table 2.

3.2 Overview of Fraction-Score

Same as the participation-based approach, Fraction-Score
groups the row instances of C by the objects with a given
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Fig. 2. A toy example where × and ◦ are two labels, and A1-A9 and B1-
B9 are 18 objects each with exactly one label indicated by the shape
representing the object, and its weight is indicated by the values in blue.
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Fig. 3. The distribution of the fractions from the perspective of objects
with label ◦, represented by the arrows with solid lines and the values in
black

label t in C , i.e., all row instances involving the same object
with label t are put in the same group. Note that this is
always possible since each row instance involves exactly
one object with the label t since otherwise, a subset of it will
also be a row instance, a contradiction. To solve the over-
counting problem when instances across different groups
share an object, says o

′
, with a label t

′
other than t, Fraction-

Score assigns a fraction of o
′

to each group among all
groups whose row instances share o

′
. This fraction is equal

to o
′
.w divided by the total number of such groups. That

is, Fraction-Score splits object weight o
′
.w into some equal

fractions and distributes these fractions to all groups of row
instances that share o

′
. Note that for each label other than t

in C , the object o (and essentially the corresponding group
of row instances) may receive multiple fractions since there
are multiple objects other than o in the group that might be
shared by other groups. We use an appropriate aggregation
function on these fractions which gives an aggregated one
for the object o (or equivalently the corresponding group)
and then sum the (aggregated) fractions of all groups to be
the support. We note that for each label t in C , we would
have a grouping of the row instances of C and correspond-
ingly a support. To capture the worst-case prevalence, we
choose to use the minimum one among all supports as the
final support which would then be normalized into [0, 1] by
being divided by a constant.

3.3 Formal Definition of Fraction-Score

We start by defining some concepts related to fraction. Let t
be the label used for grouping the row instances of C . We
denote by Obj(t, C) the set of objects o which has the label

t and there are some row instances of C involving o. Con-
ceptually, each object o in Obj(t, C) corresponds to a group
of row instances of C (by label t). To illustrate, consider
Figure 2. Suppose C is {×,◦} and × is used for grouping the
row instances of C (we will use this setting as our running
example in this section unless otherwise specified). Then,
Obj(×, C) is {B1, B2, ..., B5} and each object in Obj(×, C)
corresponds to a group of C’s row instances.

Consider an object o in Obj(t, C) and another object o
′

with its label different from t (i.e., o
′
.t ≠ t). If some row

instances in the group formed by o involve o
′
, i.e., o

′
is

shared by this group, we know that o must be located in
Disk(o′, d) since otherwise o and o

′
cannot be involved in

the same row instance of C . Thus, the potential number of
groups that o

′
could be shared by is bounded by the number

of objects which are located inDisk(o′, d) and have the label
t. Let us denote by Θ(o′, t, d) the set of objects which are
located in Disk(o′, d) and carry the label t (note that o ∈

Θ(o′, t, d)). Motivated by the previous observation, Fraction-
Score splits o

′
into ∣Θ(o′, t, d)∣ equal fractions each equal

to o
′
.w/∣Θ(o′, t, d)∣ and then distributes each fraction to an

object in Θ(o′, t, d), To illustrate, consider Figure 2. We have
Θ(A1,×, d) = {B1} and Θ(A9,×, d) = {B2, B3, B4, B5}.
Thus, a fraction 0.8 from A1’s weight is distributed to B1

and a fraction 0.1 from A9’s weight is distributed to each
of B2 - B5. The intuition here is that A1’s weight could be
shared by 1 group (one with a fraction of 0.8) and A9 by 4

groups (each with an equal fraction 0.1, i.e., 1/4 of 0.4).

Now, we take the perspective of how object o receives
fractions of objects located nearby. Specifically, it would re-
ceive a fraction of each of those objects o

′
with o ∈ Θ(o′, t, d).

Besides, the amount of fraction of an object o
′
that o receives,

denoted by ∆obj(o, o′), is equal to o
′
.w/∣Θ(o′, t, d)∣, i.e.,

∆obj(o, o′) =
o
′
.w

∣Θ(o′, t, d)∣ (1)

Consider the example in Figure 2. We have ∆obj(B1, A1) =

A1.w

∣Θ(A1,×,d)∣
= 0.8, which means B1 receives a fraction 0.8

from A1. Similarly, ∆obj(B2, A9) =
A9.w

∣Θ(A9,×,d)∣
= 0.1, which

means B2 receives a fraction 0.1 from A9. Note that this is a
generalization of the definition of unweighted case in [8].

Object o may receive fractions from multiple objects,
which need to be aggregated. This is achieved in two steps.
First, we aggregate the fractions from those objects with the
same label using a sum function since the fraction of one
object could contribute to forming a row instance and that
of another object could also contribute to forming another
row instance within the same group (i.e., these fractions are
complementary to one another for forming row instances).
Second, we bound the aggregated fraction for a label by one
unit since each group cannot be counted as more than one
unit (recall that the row instances within each group share
one single object with the label used for grouping the row
instances). In summary, the aggregated fraction of objects
sharing a label t

′
∈ C−{t} that o receives (these objects form

the set Θ(o, t′, d)), denoted by ∆label(o, t′), is defined as

∆label(o, t′) = min{ ∑
o’∈Θ(o,t’,d)

∆obj(o, o′), 1} (2)
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Consider the example in Figure 3 where C = {×,◦}. We
have ∆label(B1,◦) = min{3, 1} = 1 since B1 receives 0.8 +

0.8 + 0.8 + 0.6 = 3 from A1 - A4. Similarly, ∆label(B2,◦) =

min{0.1, 1} = 0.1.
Now, we are ready to introduce the formal definition of

Fraction-Score. Instead of materializing all row instances of
C and then grouping the row instances by the objects with
the label t explicitly as existing studies did [28], [19], [18],
we only maintain the grouping conceptually. Recall that
Obj(t, C) denotes the set of objects o which have the label
t and are involved in some row instances of C . For each
object o in Obj(t, C), we aggregate the fractions it receives
w.r.t. all labels t

′
in C − {t} using a min function, since

it corresponds to the worst-case scenario that one object
is shared by multiple groups. We denote the aggregated
fraction o receives w.r.t. C by ∆labelSet(o,C), i.e.,

∆labelSet(o,C) = min
t’∈C−{t}

∆label(o, t′) (3)

The above definition is for cases where ∣C∣ ≥ 2, and in the
case when ∣C∣ = 1, we simply define ∆labelSet(o,C) = o.w.
Consider the example in Figure 2 where C = {×,◦}.
We have ∆labelSet(B1, C) = ∆label(B1,◦) = 1 and
∆labelSet(B2, C) = ∆label(B2,◦) = 0.1.

We then define the support given the label t for grouping
row instances, denoted by sup(C∣t), as the sum of the
aggregated fractions that the objects in Obj(t, C) receive
w.r.t. C , i.e.,

sup(C∣t) = ∑
o∈Obj(t,C)

∆labelSet(o,C) (4)

Consider the example in Figure 3 where C = {×,◦}. In
this case, we have Obj(×, C) = {B1, B2, ..., B5}. Then,
sup(C∣×) = ∑5

i=1∆labelSet(Bi, C) = 1 + 4 ⋅ 0.1 = 1.4.
Note that depending on different choices of label t, we

may have different sup(C∣t). To capture the worst-case
prevalence, we choose the label given which the value is
the smallest. Besides, we normalize the value to [0, 1] by
dividing it by the maximum total weight Wmax among the
labels in T . In summary, the support of a given label set C ,
denoted by sup(C), is defined as follows.

sup(C) = mint∈C sup(C∣t)
Wmax

(5)

Consider the example in Figure 2 again where C = {×,◦}.

We have sup(C) = min{ sup(C∣×)
7

,
sup(C∣◦)

7
} = 1.4

7
= 0.2.

It is worth mentioning that all row instances are captured
and counted appropriately by Fraction-Score. All instances
that are involved in any row instance (and thus possibly
contributing to the support of the label set) are considered,
and thus no instance is missed. Moreover, Fraction-Score
satisfies the anti-monotonicity property.

Lemma 1 (Anti-monotonicity property). Given two label sets
C

′
and C , where C

′
is a subset of C , we have sup(C ′) ≥ sup(C).

Proof. The correctness relies on the fact sup(C ′∣t) ≥

sup(C∣t) for any t in C
′

which could be verified by
checking the following facts against Equation (4): (1)
Obj(t, C) ⊆ Obj(t, C ′) for any t and (2) ∆labelSet(o,C) ≤

∆labelSet(o,C ′) for any o ∈ Obj(t, C) (which is based on
the Equation (3) and the fact that C

′
⊆ C).

3.4 Problem Definition

We formally define the co-location pattern mining problem.

Problem (Co-location Pattern Mining). Given a set O of
objects, each with a location, a weight and a label, a distance
threshold d for defining neighbor sets, and a user parameter min-
sup, the co-location pattern mining problem is to find all co-
location patterns, where a label set C is a co-location pattern if
sup(C) ≥ min-sup.

A closely related problem called co-location rule mining
problem [8] can be answered easily once we found the co-
location patterns. Due to page limit, please refer to our
previous work [8] for the details.

Besides, we define the maximal pattern mining problem
as follows. Formally, a pattern C is a maximal pattern if
there is no superset C

′
⊃ C that is a pattern. For example,

if both label sets C = {×} and C
′
= {×,◦} are co-location

patterns, C must not be a maximal pattern since C
′
⊃ C . It

is noteworthy that the closed co-location pattern mining is not
suitable in our setting, where a pattern C is closed if there
is no superset C

′
⊃ C that is closed and sup(C) = sup(C ′),

since our Fraction-Score definition usually leads to different
support values for a pattern and its subsets.

Problem (Maximal Co-location Pattern Mining). Given a set
O of objects, each with a location, a weight and a label, a distance
threshold d for defining neighbor sets, and a user parameter min-
sup, the maximal co-location pattern mining problem is to find
all maximal co-location patterns, where a label set C is a maximal
co-location pattern if sup(C) ≥ min-sup and there is no superset
C

′
⊃ C that is a pattern.

4 CO-LOCATION PATTERN MINING ALGORITHMS

Section 4.1 presents an algorithm for mining the co-location
patterns based on Fraction-Score. Section 4.2 details the
support computation algorithms. Section 4.3 discusses the
problem of deciding whether an object is involved in any
row instance of a given label set, and Section 4.4 presents a
filtering-and-verification approach for it.

4.1 An Apriori-like Algorithm

Since the fraction-based prevalence measure satisfies the
anti-monotonicity property (Lemma 1), we design an
Apriori-like algorithm for computing all co-location pat-
terns from O. The major idea is to iteratively construct co-
location pattern candidates and then verify them in an as-
cending order of their sizes. Specifically, we useCk (k ≥ 1) to
denote the set of co-location pattern candidates with the size
of k and Lk (k ≥ 1) the set of confirmed co-location patterns
with the size of k. The algorithm proceeds iteratively. At
the first iteration, it computes C1 as {{t}∣t ∈ T } and L1 as

{{t}∣sup({t}) ≥ min-sup, t ∈ T }. At the k
th

iteration (k ≥ 2),
it generates Ck as {L∪L

′∣L ∈ Lk−1, L
′
∈ Lk−1, ∣L∪L

′∣ = k}
and Lk as {C∣C ∈ Ck, sup(C) ≥ min-sup}. Here, Ck is
generated by combining any two patterns in Lk−1 only, and
the rationale is that by the anti-monotonicity property, it
cannot happen that an object set is in Lk while one of its
subsets is not in Lk−1.

As could be noticed, a key procedure involved in the
above Apriori-like algorithm is to compute for a given label
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set C its support, i.e., sup(C). Different from the case on
transaction databases [1], where the procedure could be
finished by scanning the transactions once and counting
how many transactions involve the label set, this procedure
is non-trivial in our scenario. Besides, none of the algorithms
proposed for this procedure in existing studies on mining
co-location patterns [26], [28], [19], [18] could be used for
the procedure based on Fraction-Score. First, the procedure
based on the partitioning-based approach is the same as
that on transaction databases and thus not applicable, Sec-
ond, that based on the construction-based approach [26] is
far from being applicable here since it is based on some
heuristics only and involves no concepts of fraction. Third,
those based on the enumeration-based and participation-
based approaches [28], [19], [18] all materialize and count
all row instances of a given label set, while the support by
Fraction-Score does not rely on counting row instances of a
given label set.

We note here that our main technical focus in this paper
is on computing the supports defined by Fraction-Score,
which is orthogonal to existing studies aiming for faster
and more scalable frequent pattern mining techniques [30],
[32]. In fact, these techniques could be easily adapted to our
problem since the supports defined by Fraction-Score satisfy
the anti-monotonicity property.

4.2 An Algorithm for Computing the Support

Algorithm 1 FractionComputation(O, T , d, min-sup)

Require: an object set O, a label set T , a distance threshold d
and a support threshold min-sup

Ensure: the aggregated fraction each object o ∈ O receives w.r.t.
each t ∈ T , i.e., ∆label(o, t)

1: for object o in O do
2: for label t in T do
3: ∣Neigh(o, t, d)∣ ← 0

4: ∆label(o, t) ← 0

5: for object o in O do
6: for object o

′
in Disk(o, d) do

7: ∣Neigh(o, o′.t, d)∣ += 1

8: for object o
′

in Disk(o, d) do
9: ∆obj(o′, o) ← o.w/∣Neigh(o, o′.t, d)∣

10: ∆label(o′, o.t) += ∆obj(o′, o)
11: if ∆label(o′, o.t) > 1 then
12: ∆label(o′, o.t) ← 1

Our algorithm consists of two procedures, namely
FractionComputation which collects the information of
∆label(o, t) for all objects o’s and all labels t’s and Support-
Computation which computes the support of a given label
set C based on these information.
FractionComputation. Algorithm 1 presents the Frac-
tionComputation. First, it initializes ∣Neigh(o, t, d)∣ and
∆label(o, t) for each object o ∈ O and each label t ∈ T

as 0 (lines 1-4). Second, for each object o ∈ O, it proceeds
as follows. It counts the number of objects in Disk(o, d)
which have a label t (lines 6-7). Then, it distributes a fraction
o.w/∣Neigh(o, o′.t, d)∣ of o to each object o

′
in Disk(o, d)

(line 9), which is generalized from the unweighted case
in [8] that distributes a fraction 1/∣Neigh(o, o′.t, d)∣. It then
updates the fraction o

′
receives w.r.t. o.t (line 10). Finally,

Algorithm 2 SupportComputation(C , O)

Require: a label set C and an object set O
Ensure: the support of C, i.e., sup(C)

1: sup(C) ← ∞

2: for label t in C do
3: sup(C∣t) ← 0

4: for object o ∈ Ot do
5: if there is a row instance of C which involves o then
6: sup(C∣t) += FractionAggregation(O, C, o)
7: if sup(C∣t) > sup(C) then break;

8: if sup(C∣t) ≤ sup(C) then sup(C) ← sup(C∣t)
9: Return sup(C)

it bounds the fraction an object receives w.r.t. a label by 1
(lines 11-12). A straightforward implementation of this al-
gorithm would occupy O(∣O∣ ⋅ ∣T ∣) memory for storing
the information ∆label(o, t). For better storage efficiency, we
have the following two strategies. First, we do not need
to store the fractions of those objects o ∈ Ot that t have
a total weight Wt ≤ min-sup/Wmax, since these labels t

cannot be involved in any co-location pattern. This is a new
strategy that cannot be found in [8]. Second, we adopt a
maintenance-on-demand strategy, i.e., only those ∆label(o, t)’s
with t ∈ ⋃o’∈Disk(o,d){o

′
.t} are computed, given the fact that

the objects within the neighborhood of an object usually
involve not that many labels. Based on these strategies,
the memory usage for storing the fractions would be much
smaller than O(∣O∣ ⋅ ∣T ∣).
SupportComputation. Algorithm 2 presents the Support-
Computation procedure. First, it initializes sup(C) to be
infinity (line 1). Then, it tries to use different labels in C

for grouping the row instances of C conceptually (line 2). For
a specific label t, it first initializes sup(C∣t) as 0 (line 3),
and then for each object o ∈ Ot which is involved in
some row instances of C , it adds up the fraction it receives
w.r.t. C , which is computed by the “FractionAggregation”
procedure (whose details are presented in Algorithm 3), as
sup(C∣t). To speed up the additions, if sup(C∣t) > sup(C),
it terminates the search on t and proceeds with the next
label, as sup(C∣t) cannot contribute to a smaller sup(C)
(lines 4-7). Finally, it returns the smallest sup(C∣t) for a label
t ∈ C as sup(C) (lines 8-9).

In practice, we can speed up the procedure if we only
need to compute the support of label sets that have at least
min-sup as follows. Specifically, we keep track of an upper
bound of sup(C∣t), denoted by sup(C∣t)UB , by assuming
that there is a row instance of C which involves the remain-
ing objects o ∈ Ot. If sup(C∣t)UB < min-sup, we know that
C cannot be a pattern.

The “FractionAggregation” procedure, which for an ob-
ject o in O, computes the fraction it receives w.r.t. a label
set C , i.e., ∆labelSet(o,C), is presented in Algorithm 3. First,
it initializes the fraction o receives w.r.t. C as ∞ (line 1).
Second, for each label t in C − {o.t} (line 2), it updates
∆labelSet(o,C) if ∆label(o, t) < ∆labelSet(o,C) (lines 3-4).
Finally, it returns ∆labelSet(o,C) (line 5).

4.3 OIRI: Is Object o Involved in a Row Instance of C

There is one issue in Algorithm 2 that remains unsolved,
namely, the step to decide whether an object o is involved
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Algorithm 3 FractionAggregation(O, C , o)

Require: an object set O, a label set C, and an object o in O
Ensure: the aggregated fraction object o receives w.r.t. C, i.e.,

∆labelSet(o,C)
1: ∆labelSet(o,C) ← ∞

2: for label t in C − {o.t} do
3: if ∆label(o, t) < ∆labelSet(o,C) then
4: ∆labelSet(o,C) ← ∆label(o, t)
5: Return ∆labelSet(o,C)

in any row instance of a given label set C (line 5 in Algo-
rithm 2). We denote this problem by OIRI. Unfortunately,
the OIRI problem is NP-hard, which we present in the
following theorem.

Theorem 1. The OIRI problem, which is to decide for given
label set C and an object o whether there exists a row instance of
C involving o is NP-hard.

Proof. The proof can be found in Appendix B.

4.4 A Filtering-and-Verification Approach for OIRI

A naive method for OIRI is to enumerate all row instances
of C and check whether there exists one involving object o.
However, as has been known in existing studies [46], [45],
[44], the procedure of materializing all row instances of a
given label set is very expensive. In this paper, we develop
a filtering-and-verification approach for OIRI, which involves
two phases, namely a filtering phase and a verification
phase. The filtering phase is to solve OIRI for easy cases and
the verification phase for all remaining cases. The details are
introduced as follows.

4.4.1 Filtering Phase

The filtering phase is motivated by the fact that the remain-
ing issue OIRI could be easy to solve with some information
re-used in certain cases:

• Filter 1. (For ∣C∣ = 2 only.) Let t
′

denote the label
in C \ {o.t}. We check if ∆label(o, t′) > 0. If so,
we return “yes”. Otherwise, we return “no” (since
∆label(o, t′) > 0 if and only if o is involved in a row
instance of C). Note that compared to [8], this filter
is newly included.

• Filter 2. We check if there exists a row instance S

of C , which was found previously when answering
another OIRI instance for a different object o

′
and

label set C , such that o is involved in S. If so, we
return “yes”. To support this checking, we could
keep track of all those objects that are involved in
row instances that have been found.

• Filter 3. We check if all objects in Disk(o, d) together
carry all labels in C . If no, we return “no” (since all
possible sets of objects in Disk(o, d) correspond to
subsets of the set containing all objects in Disk(o, d)
and thus, they cannot carry all labels in C either).

• Filter 4. We check if all objects in Disk(o, d/2) to-
gether carry all labels in C − {o.t}. If so, we re-
turn “yes” (since there exists a set S of objects in
Disk(o, d/2) including o that has maxo,o′

∈S d(o, o′) ≤
d and corresponds to a row instance of C).

4.4.2 Verification Phase

We propose three methods for verification phase as follows.

Dia-CoSKQ-Adapt. This method is based on the close
relationship between OIRI and Dia-CoSKQ. In the proof
of the NP-hardness of OIRI, we show that any decision
problem instance of Dia-CoSKQ could be transformed to
a OIRI problem instance. Here, we further show that an
arbitrary instance OIRI could be answered by solving a cor-
responding optimization problem instance of Dia-CoSKQ.
Specifically, given an instance of OIRI which involves a set
O of spatial objects, a set C of labels, a real number d, and
one object o in O, we consider a Dia-CoSKQ problem which
is to find a set S of POIs from a given set D of POIs which
covers all query keywords of a given query q and has the
diameter of S ∪ {q} the smallest, where the set D of POIs
includes one POI for each object o in Disk(o, d) with its
location as o.λ and its set of keywords as {o.t} and the query
q has its location at o.λ and its set of query keywords as
C − {o.t}. It could be verified that if the diameter of S ∪ {q}
is at most d, the answer of the OIRI is “yes”; otherwise, the
answer is “no”. Based upon this, we can utilize the exact
algorithm proposed in [24] for OIRI. Note that we could
do slightly better by adopting an early-stopping strategy that
whenever a set S with the diameter of S ∪ {q} at most d is
found, it returns “yes” immediately.

Combinatorial-Search. We notice that enumerating all row
instances of C is more than necessary for answering the
question of OIRI. In fact, it would be sufficient to find one
row instance of C which involves o if it exists to answer the
question. Besides, there are two constraints that could be
utilized for refining the search space. First, it is safe to focus
the search on those objects which are near o, specifically,
those in Disk(o, d), since those objects outside this disk
have their distances from o larger than d and cannot be
involved in the same row instance together with o. Second,
it is enough to consider those object sets that only contain
objects corresponding to different labels in C , since other
object sets either do not carry the labels in C or have proper
subsets which carry all the labels in C . Based upon the
above two constraints, we design an algorithm for searching
a possible row instance of C involving o if there exists one
as follows.

• Step 1. it finds all objects inDisk(o, d) by performing
a range query with its center at o and its radius of d.

• Step 2. it prunes the objects that already returned
“no” as the answer in the previous iterations for
the same label set C . Note that this step is new as
compared to [8].

• Step 3. it indexes the remaining objects using an
inverted index which stores the objects using different
lists each corresponding to a label and contains all
objects with this label.

• Step 4. it tries all combinations of objects from those
lists corresponding to the labels in C − {o.t} and for
each combination S which contains ∣C−{o.t}∣ objects
it checks whether the maximum pairwise distance of
S is at most d. If such a combination is found, it stops
by returning “yes”; otherwise, it returns “no”.

Optimization-Search. In Combinatorial-Search, there is a
step which is to enumerate all combinations of some objects
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in Disk(o, d) indexed by their labels in C
′
= C − {o.t} and

see whether there exists a combination with the diameter
at most the value d. An alternative for this step is to
compute the set of objects in Disk(o, d) which covers all
labels in C

′
and has the smallest diameter and then compare

this diameter against d to answer the question, i.e., if this
diameter is at most d, it returns “yes”, and otherwise, it
answers “no”. In the literature, the problem of finding a set
objects which covers a given set of labels/keywords and has
the smallest diameter has been studied [47], [48], [15] and is
called the m-closest keywords (mCK) problem. Based upon
this, we can utilize the exact algorithm proposed in [15] for
mCK to do this step, and the resulting method corresponds
to Optimization-Search. Similar to the Dia-CoSKQ-Adapt
method, an early-stopping strategy could be adopted here.

4.4.3 Time Complexity Analysis

Since the verification phase dominates the time cost of the
approach, we focus on the verification phase only. The

complexity of Dia-CoSKQ-Adapt is O(n1 ⋅ (Crange+k
∣C∣−2
3 ⋅

∣C∣2)) [24], where n1 (n1 << ∣O∣) is the number of objects
that carry a label t ∈ C − {o.t}, k3 (k3 << ∣O∣) is the number
of objects shared by results of range queries. The complexity

of Combinatorial-Search is O(Crange + k1 + k
∣C∣
2 ), where

Crange is the cost of performing the range query in Step 1, k1
(k1 << ∣O∣) is the number of objects returned by the range
query in Step 1, and k2 (k2 << ∣O∣) is maximum number of
objects in an inverted list constructed in Step 3. While the
worst-case time complexity is exponential, the algorithm is
feasible in practice with the help of index structures such
as inverted lists and also because of the problem nature
(e.g., the exponent ∣C∣ is small in most cases), and this
will be verified by the experiments. The complexity of

Optimization-Search is O(Crange + k1 + n1 ⋅ k
∣C∣−2
1 ) [15].

5 MAXIMAL CO-LOCATION PATTERN MINING

Section 5.1 presents an algorithm for mining the maximal co-
location patterns based on Fraction-Score. Section 5.2 details
the supports computation algorithm. Section 5.3 analyzes
the time complexity.

5.1 An Algorithm for Finding the Maximal Patterns

A straightforward solution to find all maximal patterns is
to first find all co-location patterns using the algorithms
proposed in Section 4, and then check the maximality of
each pattern one by one. This method, however, incurs
unnecessary computations as most of the patterns are not
maximal and will not be in the result.

To this end, we propose an algorithm that generates the
candidate maximal patterns and checks the maximality of
each candidate, so it avoids those unnecessary computations
as much as possible. It consists of the following steps.

• Step 1. (Finding size-2 patterns). We find the size-2
patterns using the algorithms discussed in Section 4,
denoted by L2.

• Step 2. (Generating Candidate Maximal Patterns).
Inspired by [38], we construct a graph G from L2,
and find the maximal clique to generate the can-
didate maximal patterns. In particular, each label t

correspond to a vertex v in G. If the labels form a
size-2 pattern (i.e., can be found in L2), each pair
of vertices is connected by an edge in G. We then
find the set CMP of all maximal cliques in G by
utilizing the Bron-Kerbosch algorithm [5]. Different
from [38] that generate the candidate patterns from
size-2 instance table, we do not need to materialize
the instances.

• Step 3. (Finding Maximal Patterns). We find the
maximal patterns MP from the candidate set CMP .
The major idea is to iteratively verify the candidate
patterns in a descending order of their sizes. If a
candidate pattern C is not maximal (i.e., sup(C) <

min-sup), all its subsets C
′

with ∣C ′∣ = ∣C∣ − 1 are
constructed as the candidate patterns to be checked.
The iterations stop when ∣C ′∣ = m.

Algorithm 4 shows the maximal pattern mining algo-
rithm. It takes a set O of objects, a label set C as inputs, and
finds all maximal patterns and stores in MP . Specifically,
it first finds all size-2 patterns, denoted by L2. Second,
it constructs a graph by L2, and find the set of maximal
cliques in G to be the set of candidate maximal patterns
CMP (lines 4-5). Third, it iteratively checks each label set
C in CMP in descending order of their sizes j, where
2 ≤ j ≤ maxC∈CMP ∣C∣ (lines 7-16). Consider an iteration
it processes size j and label set C . If C is a subset of any
pattern in the result, we can safely skip C . Otherwise, it
invokes the procedure “SupportComputationMaximal” (to
be discussed below), which takes a label set C and an
object set O as inputs, and computes the support sup(C).
If sup(C) > min-sup, C is added to MP . Otherwise, it
constructs the subsets of C , denoted by C

′
, with ∣C ′∣ = j−1,

and inserts C
′

into CMP if C
′

does not exist in CMP .
The iterations end when all candidates in CMP have been
iterated. Finally, it returns MP as the result.

Algorithm 4 MaximalPatternMining(O, T )

Require: an object set O, a label set T
Ensure: the set of maximal patterns MP

1: MP ← ∅

2: L2 ← Patterns with size-2 ▷ Step 1
3: if L2 = ∅ then return ∅

4: G ← Construct a graph by L2 ▷ Step 2
5: CMP ← Find the set of maximal cliques in G
6: j ← ∣T ∣
7: while j ≥ 2 do ▷ Step 3
8: for each candidate C ∈ CMP with ∣C∣ = j do
9: if C is a subset of R ∈ MP then continue;

10: sup(C) ← SupportComputationMaximal(C,O)
11: if sup(C) > min-sup then
12: MP ← MP ∪ {C}
13: else
14: for each label set C

′
⊂ C with ∣C ′∣ = j − 1 do

15: if C
′ /∈ CMP then CMP ← CMP ∪ {C ′}

16: j ← j − 1
return MP

Theorem 2. The MaximalPatternMining algorithm correctly
finds all maximal co-location patterns.

Proof. The completeness can be proven as follows. It is easy
to see that all maximal patterns with size-2 can be found



10

TABLE 3
Datasets used in the experiments

Dataset # of objects # of labels Weighted

UK (Real) 182,334 36 ×

NeuroSynth (Real) 507,891 3,229
√

Unweighted Synthetic 94,028 462 ×

Weighted Synthetic 94,028 462
√

in Step 1. For maximal patterns with size larger than 2, we
show that they must exists in CMP . Specifically, we prove
it by contradiction. Suppose there exists a maximal pattern
C not in CMP . Then, either (1) there exists a superset of
C is in CMP , or (2) there exists a subset C

′
⊂ C with

∣C ′∣ = 2 that is not a pattern. In the former, C is not a
maximal pattern by definition. In the latter, C can not be
a pattern by the anti-monotonicty property. Both cases lead
to contradictions. Thus, all maximal patterns C are in CMP .
The correctness is guaranteed as the algorithm calculates the
support of each candidate patterns.

5.2 Algorithm SupportComputationMaximal

In fact, since the definition of sup(C) does not change,
we can reuse ”SupportComputation” procedure (i.e., Algo-
rithm 2) to calculate the support value of a label set C .

Nevertheless, to further improve the performance, we in-
clude an additional filter in the filtering phase of “Support-
Computation”. The resulting procedure is called “Support-
ComputationMaximal”. In particular, the additional filter
takes advantage of the top-down approach in our maximal
pattern mining algorithm to reuse information from previ-
ous checking. It is inserted after Filter 2, and is as follows.

Filter 2’. We check if there exists a row instance of C
′′
⊃ C

involving o for the label set C
′′

that satisfies ∣C ′′∣ = ∣C∣ + 1.
If so, we return “yes” (since o must also be involved in a
row instance of C). To support this checking, we maintain
the objects involved in the row instances of each label set
with size (k + 1) when we process the label set with size k.

5.3 Time Complexity Analysis

It is easy to see that the time complexity of Support-
ComputationMaximal is same as that of SupportCompu-
tation, denoted by θ. We analyze the time complexity of
Algorithm 4 as follows. The complexity of MaximalPat-
ternMining is dominated by Step 3. The complexity is
O((∣L2∣+∣CMP∣)⋅θ), since it need to compute the supports
of at most (∣L2∣ + ∣CMP∣) label sets.

6 EMPIRICAL STUDIES

Section 6.1 details the experimental set-up. Section 6.2 re-
ports the results on co-location pattern mining, and Sec-
tion 6.3 presents the results on maximal pattern mining.

6.1 Experimental Set-up

Datasets. We use both real and synthetic datasets, as shown
in Table 3. The first real dataset UK is the set of POIs of the
United Kingdom

2
. Each POI has a textual description (e.g.,

supermarket, bank, cinema) and a GPS location. It consists

2. http://www.pocketgpsworld.com

of 182,334 objects with 36 types (i.e., labels). The second
real dataset NeuroSynth [39] was developed as an auto-
mated brain mapping framework that uses text mining to
generate a large database of mappings between neural and
cognitive states. The database contains a mapping between
terms (e.g., “depression” and “anxiety”) and the activated
locations in the brain (3D coordinates in the MNI stereotaxic
space, which we mapped to 3D Euclidean space). It contains
507,891 locations (i.e., objects) with 3,229 terms (i.e., labels).
The object weights, obtained from text-mining, are relevance
scores between the labels and the locations.

TABLE 4
Parameters and Settings

Parameter Settings

λ2 40, 50, 60, 70, 80
mclump 1, 2, 3, 4, 5
moverlap 1, 5, 10, 15, 20
min-sup 0.2, 0.3, 0.4, 0.5, 0.6

The synthetic datasets are generated by following exist-
ing studies [18], [28] as follows. Step 1 (Label Set Genera-
tion): We generate Nco loc subsets of labels one by one, and
for each one, we construct it by sampling a certain number
of labels randomly where the number follows a Poisson
distribution with mean λ1. We then construct moverlap max-
imal co-location patterns (i.e., label sets) from each set of
labels constructed by augmenting it with one more random
label. Step 2 (Instance Construction): For each maximal co-
location pattern, we construct a certain number of instances
where the number follows a Poisson distribution with mean
λ2, each by creating mclump objects for each label in this
instance and putting them inside a random grid cell with
size d×d from the spatial frame of size D×D. Step 3 (Noise
Injection): We generate (rnoisy label×n1) noisy labels, where
n1 is equal to the number of non-noisy labels (i.e., those
generated in Step 1). We then construct (rnoisy num × n2)
noisy instances based on the noisy labels similarly as we
did based on non-noisy labels (i.e., via Step 2), and put each
noisy instance at a random grid cell, where n2 is equal to the
number of non-noisy instances (i.e., those generated in Step
2). We set Nco loc, λ1, D, d, rnoisy label, and rnoisy num as 20,

5, 10
6
, 10, 0.5, and 0.5, respectively. By following existing

studies [18], [28], we set the other parameters as shown in
Table 4 (with the default ones in bold). Note that the num-
bers of objects and labels in the synthetic datasets depend
on the parameter settings. Under the default settings, the
dataset contains 94, 028 objects and 462 labels. In addition
to the unweighted datasets, we further assign weights to
generate weighted datasets. Specifically, we assign each
object a weight picked uniformly at random in the range
[0, 1] to form the weighted datasets.

Algorithms. For the co-location pattern mining problem,
we test our Filtering-and-Verification approach. For com-
parison, we adapt the Join-less algorithm from [44] for two
reasons. First, it is the state-of-the-art algorithm for co-
location pattern mining. Second, though originally designed
for participation-based measure, it involves procedures of
computing the row instances of given label set, which
is shared by our Fraction-Score measure. Specifically, the
adapted algorithm works as follows. First, it generates all
star neighborhoods. Second, for each label set C , it finds
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all the row instances from the corresponding star neighbor-
hoods. Third, to check whether an object o is involved in C ,
it checks whether o exists in one of the row instances of C .

For the maximal pattern mining problem, we test
our MaximalPatternMining algorithm. For comparison, we
adapt the SGCT algorithm from [38], which is the state-of-
the-art algorithm for maximal co-location pattern mining.
Similar to the above, though it is originally designed for
participation-based measure, we adapt it for our Fraction-
Score measure. Specifically, the adapted algorithm works
as follows. First, it finds the size-2 patterns and candidate
maximal patterns. Second, for each candidate C , it generates
all row instances and stores them in a condensed instance
tree. Third, to check whether an object o is involved in C , it
checks whether o exists in the tree.

All algorithms were implemented in C/C++ and are
memory-based. All experiments were conducted on a Linux
platform with a 2.66GHz machine and 32GB RAM.

6.2 Experiment Results on Co-location Pattern Mining

6.2.1 Effectiveness Results on Synthetic Datasets

We compare Fraction-Score with the other approaches
in terms of how close the supports measured are from
the ground truths. Note that we did not include the
enumeration-based approach here since it is used for defin-
ing the confidence of a rule candidate only as mentioned
in Section 2. Besides, we use the unweighted synthetic
datasets only for the study here since it allows the flexibility
to generate the datasets where the ground-truth supports
could be estimated accurately. For this particular experi-
ment, we set the parameter mclump, i.e., the number objects
to be generated for a label, to be a random number from
a uniform distribution of [1, 5] instead of a fixed number
as we do for other experiments, and the purpose here is
to test the robustness of support measures. Specifically,
we estimate the ground-truth support of a pattern as the
maximum number of disjoint row instances of the pattern.
Based on the way we generate the synthetic datasets, this
is close to the number of instances of a label (which follows
Pois(λ2)) with the smallest mclump values among the labels
in the pattern. For normalization, we then divide it by the
maximum number of objects that have a specific label in T .

Figure 4 shows the results of patterns with top-10 sup-
ports, where the x-axis corresponds to the patterns (in a
descending order of their supports) and the y-axis shows
the actual supports. According to these results, the supports
by Fraction-Score are closest to the ground-truths among
all approaches. This could be explained by the fact that the
row instances that overlap with each other are not counted
multiple times when collecting ground-truths, which is
reasonable, while the participation-based approach would
count those row instances which share some objects with
their labels different from the one used for grouping the row
instances as if they share nothing. The partitioning-based
approach under-measures the supports since it misses some
of the row instances, and the construction-based approach
misses some of the row instances due to its heuristic nature.

We also studied how the fractions in Fraction-Score are
distributed. The results showed that only around one-fifth
of the patterns have their fractions equal to 1. Due to page
limit, please refer to our previous work [8].
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Construction-based
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Fig. 4. Support value comparison (unweighted synthetic)

6.2.2 Effectiveness Results on the UK Dataset

We study the effectiveness of different support measures
on the UK dataset. Specifically, we ran our algorithm and
found the co-location patterns with top-5 supports (with
the setting of d = 1000m). Table 5 presents the patterns,
each with its supports computed by other approaches also
shown. According to the results, we know that the supports
by the participation-based approach are very close to 1
(which is mainly because this measure has a normaliza-
tion step of dividing by the number of occurrences of the
label but not the maximum among all labels as Fraction-
Score does) and the supports by the partitioning-based
and construction-based approaches are slightly smaller than
those by Fraction-Score (which is mainly because the former
ones miss some row instances while Fraction-Score captures
all instances appropriately).

We also visualized the objects involving the labels in two
different patterns. The distributions shown in the visualiza-
tions are consistent with our computation results. Due to
page limit, please refer to [8].

TABLE 5
Patterns in UK dataset

Pattern Fraction-
Score

Partici-
pation

Partit-
ioning

Constr-
uction

{church, restaurant} 0.7017 0.9613 0.6164 0.6829
{church, gas station} 0.5908 0.9832 0.5076 0.5595
{restaurant, gas station} 0.5132 0.9577 0.4324 0.4856
{church, restaurant, gas station} 0.5027 0.9552 0.3952 0.4659
{ATM, church} 0.4301 0.9093 0.4025 0.4280

6.2.3 Effectiveness Results on the NeuroSynth Dataset

We further study the effectiveness of our Fraction-Score
on the NeuroSynth dataset. Specifically, in the 3D space
with x, y, z ∈ [−100, 100] mapped from the MNI space, we
found the co-location patterns by setting d = 20. We selected
four interesting patterns, and computed their supports with
different approaches. Note that the baseline approaches
originally do not support weighted dataset, and we adapted
them to handle the case with weights. For the adaption
details, please refer to Appendix A.

The results are shown in Table 6. According to the
results, we found that autism spectrum disorder (ASD)
is often correlated to pain, speech and working memory
(WM), which conforms with the findings in existing stud-
ies [34], [16]. We found that ASD and Parkinson’s disease
(PD) have similar activated locations in the brain, which is
also an ongoing research direction in the medical field [14],
[17]. In addition, we have observations on the supports by
other approaches similar to above. The supports by the
participation-based approach are very close to 1, which
decreased the ability to distinguish patterns from label sets.
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The supports by partitioning-based and construction-based
approaches are smaller than those by Fraction-Score.

TABLE 6
Patterns in NeuroSynth dataset

Pattern Fraction-
Score

Partici-
pation

Partit-
ioning

Constr-
uction

{ASD, pain, WM} 0.3466 0.9982 0.1897 0.3206
{ASD, pain, speech} 0.3159 0.9956 0.1535 0.2944
{ASD, PD} 0.3100 0.9975 0.1728 0.2836
{PD, pain, reward, speech, WM} 0.2021 0.9923 0.0965 0.1728

6.2.4 Results on the Filtering-and-Verification Approach

Filtering phase. In this part, we show the results reflecting
the effectiveness of the filtering phase. Consider Figure 5(a),
where we vary min-sup and measure the percentage of OIRI
instances that are found by each of the four filters in the
filtering phase and also that by the verification phase. These
results show that more than 80% of OIRI instances could
be found in the filtering phase, and thus less than 20% OIRI

instances would be left in the verification phase. Besides, we
notice that when min-sup increases, the filtering powers of
Filters 1 and 2 increase while that of Filter 3 decreases. The
former is because the number of large co-location patterns
decreases when min-sup increases and as a consequence, it is
more likely that size-2 patterns have a larger portion, which
benefits Filter 1, and it is easier to find a row instance of a
label set, which benefits Filter 2. The latter is because when
min-sup increases, it becomes rare forDisk(o, d) to not cover
all labels of a label set (which is of a small size) and thus the
filtering power of Filter 3 decreases. The results on the other
datasets provide similar clues and thus they are omitted.
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Fig. 5. Effectiveness of the filtering phase (unweighted synthetic)

Verification phase. We conducted experiments on both real
and synthetic datasets for studying the performance of the
three methods proposed for the verification phase. The
results can be found in Appendix C due to page limit.
According to the results, Combinatorial-Search runs the
fastest consistently under all settings. This could probably
explained by the fact that the exact algorithms employed in
Dia-CoSKQ-Adapt and Optimization-Search were originally
designed for some optimization problem (i.e., Dia-CoSKQ
and mCK problems) while OIRI is a decision problem.
These exact algorithms involve extra steps for finding an
optimal solution and thus they take more time. Therefore,
we focus on Combinatorial-Search in the verification phase
for the remaining experiments. With Combinatorial-Search
used in the verification phase, the breakdown of the running
time is shown in Figure 5(b).

We also compared the overall improvement of the
Filtering-and-Verification approach to the one proposed
in [8]. The results can be found in Appendix D. According to
the results, the updated Filtering-and-Verification algorithm

runs faster and uses fewer memory in most cases, which
demonstrates the effectiveness of the additional filtering and
pruning steps and the strategy to reduce memory usage.

6.2.5 Filtering-and-Verification vs State-of-the-art

In this part, we compare the performance between Filtering-
and-Verification and Join-less [44], in terms of running time
and memory consumption.
Effect of min-sup. Figure 6 shows the results on the real
dataset where we vary min-sup. According to Figure 6(a),
the running times of both algorithms decrease when min-sup
increases. This is because fewer co-location patterns would
be found when min-sup increases. Besides, our Filtering-
and-Verification approach runs much faster than the Join-
less method, which could be explained by the fact that
the former only needs to check whether some objects are
involved in any of the row instances while the latter needs to
find all row instances of each co-location pattern. According
to Figure 6(b), our Filtering-and-Verification approach con-
sumes significantly less memory than the Join-less method,
which is because the former only maintains the fractions
received by each object for each label while the latter needs
to store all row instances of each co-location pattern.
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Fig. 6. Effect of min-sup (UK)

Figure 7 shows the results on the NeuroSynth dataset
where we vary min-sup, where the results for Join-less with
min-sup ≤ 0.4 are not shown because it takes more than
1 day to run. According to Figure 7(a), the running times
of both algorithms decrease when min-sup increases. Our
Filtering-and-Verification approach runs faster than the Join-
less method, which is because we only check if the objects
are involved in any row instances, while Join-less finds all
row instance for each pattern. According to Figure 7(b), our
Filtering-and-Verification approach consumes less memory
than the Join-less method, since the Join-less method needs
to store all row instances of the patterns. The results on the
synthetic datasets, where we vary other parameter settings,
can be found in Appendix E.
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Fig. 7. Effect of min-sup (NeuroSynth)

6.2.6 Scalability Test

We further generated 5 synthetic datasets with sizes
{180k, 360k, 540k, 720k, 900k} from the real dataset for scal-
ability test. According to the results, our Filtering-and-
Verification method could scale up on large datasets of
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size 1M, while the Join-less method cannot scale to large
datasets, e.g., it ran for more than 2 days on dataset of size
about 180k. The results can be found in Appendix F.

6.3 Experiment Results on Maximal Pattern Mining

In this part, we compare the performance between our
MaximalPatternMining algorithm and SGCT [38], in both
running time and memory consumption.

Figure 8 shows the results on the weighted synthetic
dataset where we vary min-sup. According to Figure 8(a),
the runnning times of both algorithms decrease when min-
sup increases. This is because fewer co-location pattern exists
and thus the sizes of the maximal patterns would decrease.
Besides, our MaximalPatternMining runs much faster than
the SGCT method, which is because (1) our two-phases
approaches prune more non-promising candidates, and (2)
we do not need to generate and store all row instances, while
SGCT materializes all of them. According to Figure 8(b), the
two algorithms have similar memory usage.
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Fig. 8. Effect of min-sup on maximal pattern mining (weighted synthetic)

Figure 9 shows the results on the NeuroSynth dataset,
where the results for SGCT with min-sup < 0.4 are not
shown because it takes more than 1 day to run. According
to Figure 9(a), our MaximalPatternMining runs consistently
faster than SGCT, which is because of MaximalPatternMin-
ing has more effective prunings to reduce the number of
candidate patterns. The results for the unweighted synthetic
and UK datasets can be found in Appendix G.
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Fig. 9. Effect of min-sup on maximal pattern mining (NeuroSynth)

Summary of Results. Our Fraction-Score metric measures
the prevalence of co-location pattern candidates more prop-
erly than existing ones. Three filters in the filtering phase
are effective (e.g., they filter more than 80% OIRI in-
stances), and among three methods in the verification phase,
Combinatorial-Search works the best. Besides, our Filtering-
and-Verification approach works consistently better than the
state-of-the-art in terms of both running time and memory
consumption. Moreover, our MaximalPatternMining algo-
rithm runs faster than the state-of-the-art.

7 CONCLUSION

In this paper, we studied the co-location pattern mining
problem. We showed the weaknesses of the existing support
measures, and proposed Fraction-Score which quantifies the
prevalence properly. We proposed an Apriori-like algorithm

for mining co-location patterns based on Fraction-Score.
We developed a filtering-and-verification algorithm for an
operation of deciding whether an object is involved in a
row instance of a label set, which is proved to be NP-hard.
We also studied the maximal co-location pattern mining
problem based on Fraction-Score, and develop an efficient
method for the mining task. We conducted experiments
on both real and synthetic datasets, which verified that
Fraction-Score measures the prevalence better than existing
approaches and our algorithms run significantly faster than
the adaption of state-of-the-arts.

In the future, we plan to study the co-location pattern
mining problem on spatio-temporal data, where a time
dimension is taken into consideration. This problem is inter-
esting since some patterns occur only at certain time stamps.
It is also interesting to develop parallel algorithms on GPU
for mining co-location patterns based on Fraction-Score.
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Fraction-Score: A Generalized Support Measure
for Weighted and Maximal

Co-location Pattern Mining (Appendix)
APPENDIX A

ADAPTION OF EXISTING SUPPORT MEASURES FOR

WEIGHTED DATASET

Given a label set C , we calculate the support of C by
different approaches as follows.

Participation-based Approach. Instead of counting each
group as 1 as in the unweighted version, we use the fol-
lowing adapted equation for participation ratio of a label t
in C .

PR(t∣C) =
∑o∈Obj(t,C) o.w

∑o∈Ot
o.w

(6)

where Obj(t, C) is the set of objects o which has the label t
and there are some row instances of C involving o.

Correspondingly, we utilize the same definition of par-
ticipation index as follows.

PI(C) = min
t∈C

PR(t∣C) (7)

Partitioning-based Approach. We partition the space by d×
d grids. For each grid, we calculate the count of C in the grid
by the minimum weighted object that contains any label
in C , multiplied by the minimum count of the number of
objects for each label in C . The sum of these counts from all
grids are used as the support of C .

Construction-based Approach. We arbitrary construct row
instances for C . For each constructed row instance, we use
the minimum weight among the objects in the row instance
as the contribution of this row instance, such that it can cap-
ture the worse-case scenario. The sum of these contributions
among all row instances are used as the support of C .

APPENDIX B

NP-HARDNESS PROOF OF THE OIRI PROBLEM

Proof. We prove by reduction from the existing Collective
Spatial Keyword Query with the Diameter cost function
(Dia-CoSKQ) problem [24], [7] which is NP-hard.

We first give the formal definition of the decision prob-
lem of Dia-CoSKQ. Given a set D of POIs where each POI
p has a location p.λ and a set of keywords p.ψ and a query
q with a query location q.λ, a set of query keywords q.ψ,
and a real number c, the decision problem of Dia-CoSKQ is
to decide whether there is a set S of POIs in D such that
S covers all the query keywords (i.e., q.ψ ⊆ ∪p∈Sp.ψ) and
the diameter of S∪{q}, which corresponds to the maximum
pairwise distance of S ∪ {q}, is at most c.

We next transform a given decision problem instance
of Dia-CoSKQ to a OIRI problem instance as follows. We
construct a set O of objects by, creating for each POI p in
D, ∣p.ψ∣ objects each with p.λ as its location and a keyword
in p.ψ as its label, and creating another object o with its
location as q.λ and its label as a fictious one t. We create

a set C containing those labels corresponding to the query
keywords in q.ψ and also t, i.e., C = q.ψ ∪ {t}. Lastly, we
set d to be c. The OIRI problem is to decide whether there
exists a row instance of C which involves q. Clearly, the
above transformation step is in polynomial time.

It could be easily verified that the decision problem of
Dia-CoSKQ is equivalent to that of OIRI.

APPENDIX C

EXPERIMENTAL RESULTS ON VERIFICATION PHASE

In this part, we show the results reflecting the performance
of three proposed methods for the verification phase. Fig-
ure 10 and Figure 11 show the results on the unweighted
and weighted synthetic datasets, respectively, where we
vary min-sup. Figure 12 and Figure 13 show the results on
the UK and NeuroSynth dataset, respectively. According
to the results, Combinatorial-Search runs the fastest consis-
tently under all datasets. This could probably explained by
the fact that the exact algorithms employed in Dia-CoSKQ-
Adapt and Optimization-Search were originally designed
for some optimization problems (i.e., Dia-CoSKQ and mCK
problems) while OIRI is a decision problem. These exact al-
gorithms involve extra steps for finding an optimal solution
and thus they take more time.
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Fig. 10. Effect of min-sup (unweighted synthetic)
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Fig. 11. Effect of min-sup (weighted synthetic)
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Fig. 12. Effect of min-sup (UK)
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Fig. 13. Effect of min-sup (NeuroSynth)

APPENDIX D

EXPERIMENTAL RESULTS ON IMPROVED

FILTERING-AND-VERIFICATION ALGORITHM

In this part, we show the results comparing the performance
of the improved Filtering-and-Verification algorithm and
the one developed in [8] (Filtering-and-Verification-Old).
The Combinatorial-Search are used here as it is the fastest
one among the three verification methods. Figure 14 and
Figure 15 show the results on the unweighted and weighted
synthetic datasets, respectively, where we vary min-sup.
Figure 16 and Figure 17 show the results on the UK and
NeuroSynth dataset, respectively. According to the results,
the updated Filtering-and-Verification algorithm runs faster
and uses fewer memory than the old one in most cases,
which demonstrates the effectiveness of the additional fil-
tering and pruning steps and the strategy to reduce memory
usage.

APPENDIX E

EXPERIMENTAL RESULTS ON UNWEIGHTED AND

WEIGHTED SYNTHETIC DATASETS

Effect of λ2. Figure 18 and Figure 19 show the results on the
unweighted and weighted synthetic datasets, respectively,
where we vary λ2. According to the results, the algorithms
have the same trends in both running time and memory
consumptions for both datasets. Specifically, the running
times of both algorithms increase when λ2 increases. This
is because when the average size of the row instances in-
creases, more objects need to be checked. Our Filtering-and-
Verification approach outperforms the Join-less method, and
the gap increases with λ2. Moreover, the memory consump-
tions of both algorithms increase with λ2. This is because the
datasets would involve more objects when λ2 increases. The
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Fig. 15. Effect of min-sup (weighted synthetic)

Filtering-and-Verification Filtering-and-Verification-Old

 0

 10

 20

 30

0.2 0.3 0.4 0.5 0.6

R
u
n
n
in

g
 t
im

e
 (

s
)

min-sup

 0

 50

 100

 150

0.2 0.3 0.4 0.5 0.6

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

min-sup

(a) Running time (b) Memory usage

Fig. 16. Effect of min-sup (UK)
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Fig. 17. Effect of min-sup (NeuroSynth)

memory usage of our Filtering-and-Verification approach is
much smaller than that of the Join-less method consistently.
For example, when λ2 = 80 in the unweighted dataset,
filtering-and-verification approach only consumes less than
400MB of memory, while join-less method consumes more
than 1200MB of memory, which is 3 times more.

Effect of mclump. Figure 20 and Figure 21 show the results
on the synthetic datasets where we vary mclump. The results
of the Join-less method for mclump = 5 are missing which is
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Fig. 18. Effect of λ2 (unweighted synthetic)
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Fig. 19. Effect of λ2 (weighted synthetic)

simply because it ran for a very long time, i.e., more than 6
hours (this time upper bound applies for all the following
results). According to the results, the running times of both
algorithms increase when mclump increases. This is because
the number of co-location patterns increases when mclump

increases. Besides, our Filtering-and-Verification approach
runs faster than the Join-less method by orders of mag-
nitude. This is because the latter needs to enumerate all
row instances for each co-location pattern, which is very
time-consuming (and memory-consuming). This also shows
that the Filtering-and-Verification approach is scalable to
mclump while the Join-less method is not. Moreover, the
memory consumptions of both algorithms increase when
mclump increases, which is simply because the total number
of objects increases with mclump.
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Fig. 20. Effect of mclump (unweighted synthetic)
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Fig. 21. Effect of mclump (weighted synthetic)

Effect of moverlap. Figure 22 and Figure 23 show the results

on synthetic datasets when we vary moverlap. According to
the results, the running times of both algorithms increase
when moverlap increases and our Filtering-and-Verification
approach outperforms the Join-less method. In addition,
the memory consumption of our Filtering-and-Verification
approach is consistently much smaller than that of the Join-
less method.
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Fig. 22. Effect of moverlap (unweighted synthetic)
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Fig. 23. Effect of moverlap (weighted synthetic)

APPENDIX F

SCALABILITY TEST

We generated 5 synthetic datasets from the real dataset for
scalability test. Specifically, for each object o in the original
dataset, we create n new objects each with location set to
be a random location from the original dataset by following
the distribution and label set to be o.t. We vary the number
n from 1 to 5 and obtain synthetic datasets with sizes
{180k, 360k, 540k, 720k, 900k}. Figure 24 shows the results,
according to which, we see that the Join-less method cannot
scale to large datasets, e.g., it ran for more than 2 days on
dataset of size about 180k (and thus its plots are missing),
and our Filtering-and-Verification method could scale up on
large datasets of size 1M.
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Fig. 24. Scalability test
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APPENDIX G

EXPERIMENTAL RESULTS ON MAXIMAL PATTERN

MINING

Figure 25 shows the results on the UK dataset, where we
vary min-sup. According to Figure 25, the running times
and memory consumptions of both algorithms decrease
when min-sup increases. This is because fewer maximal co-
location pattern candidates exists when min-sup is large,
and thus fewer time and space are needed to process and
store these candidates. Also, our MaximalPatternMining
runs significantly faster than SGCT, especially when min-sup
is small, since MaximalPatternMining has more aggressive
prunings to remove those unpromising row instances for the
candidates, and thus reducing the processing time needed.
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Fig. 25. Effect of min-sup on maximal pattern mining (UK)

Figure 26 shows the results on the unweighted synthetic
dataset, where we vary min-sup. According to Figure 26(a),
the running times of both algorithms increase when min-sup
increases. We investigated the reason for this trend. It is
because when min-sup increase, the number of maximal pat-
tern candidates increases. To illustrate, consider a maximal
pattern candidate C with size k. If C is not a maximal
pattern (after checking by the algorithms), all its proper
subsets that has a size k − 1 will become the maximal
pattern candidates. In this case, the algorithms need to
check the maximality of each candidate, and thus resulting
a larger running time. Note that this situation can happen
recursively until k = 2. Still, our MaximalPatternMining
performs much better than SGCT, which is becasuse Maxi-
malPatternMining has the additional filter that utilizes the
previous checking results to speed up the checking, and thus
reducing the total processing time. Besides, the memory
consumptions of both algorithms are similar, and decrease
when min-sup increase.
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Fig. 26. Effect of min-sup on maximal pattern mining (unweighted syn-
thetic)


