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Abstract

Real-world data can often be represented as a heterogeneous network relating nodes of different types. E.g., a job
market can be represented as a job seeker-skill-vacancy network. It can be relevant to consider the imbalance between nodes
of different types, in terms of whether they are similarly connected in the network. For example, it is desirable that job seekers
and vacancies are mixed well. If they are not, then there is imbalance. We propose to quantify the imbalance between two sets
of nodes in a network as the Earth Mover’s Distance between the sets. Given this quantification, we introduce GREASE (Graph
imbalance REduction by Adding Sets of Edges), a method that selects a fixed number of unconnected node-pairs, which—if
links were added between them—aims to maximally reduce the imbalance. In the job market network, GREASE can be used
to select skills that job seekers do not yet have, but could strive to acquire, to reduce the imbalance between job seekers
and vacancies. GREASE may also be used in other applications, such as reducing controversy between opposing sides on a
polarizing topic. We evaluated GREASE on several datasets and find that GREASE outperforms baselines in reducing network
imbalance.

Index Terms

Graphs and networks, Graph algorithms, Imbalance reduction, Network embedding, Representation learning

✦

• Y. Mashayekhi, B. Kang, J. Lijffijt, and T. De Bie are with the IDLab, Department of Electronics and Information Systems (ELIS), Ghent University, Gent
9000, Belgium.

E-mail: {yoosof.mashayekhi,bo.kang,jefrey.lijffijt,tijl.debie}@ugent.be

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3304478

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



1

GREASE: Graph Imbalance Reduction by
Adding Sets of Edges

1 INTRODUCTION

Graphs (or networks) are natural models for a wide
range of real-world structures [1], arising from, e.g., social
networks [2], biology (Protein-Protein interaction networks)
[3], and linguistics (word co-occurrence networks) [4]. Net-
work embedding provides a flexible means to solve graph
analytics problems by encoding nodes as real-valued vec-
tors, which can later be used as input feature vectors to a
machine learning model [5]. Using these vector representa-
tions, machine learning methods can be applied to graph
datasets to perform analysis tasks such as link prediction
[6], information diffusion [7], and node classification [8].

An imbalance between two sets of nodes in terms of their
connectivity in a network may be undesirable. This paper (1)
studies how to quantify network imbalance and (2) proposes
a method to reduce network imbalance by adding a limited
number of links to the network.

Motivation. There are many networks for which it is
desirable to minimize the imbalance between specific sets of
nodes. Let us consider an example of a job market network
with three sets of nodes: job vacancies, job seekers, and
skills. Job vacancies are connected to the skills they require,
and job seekers are connected to the skills they have and
possibly to the job vacancies they have shown an interest in.

Imagine there are many Python developers seeking a job
and few vacancies requiring Python programming, while
there are many vacancies requiring Java programming and
few Java developers on the market. As a result, many Java
jobs would remain unfilled and Python programmers would
remain unemployed. With an ever faster evolving job mar-
ket, such imbalances are increasingly common and serious,
harming job market efficiency and ultimately the economy.
Quantifying such imbalances may provide policy makers
with an objective picture of the current state of affairs.

Moreover, the ability to quantify imbalance also opens
up the possibility of trying to reduce it through targeted
interventions and incentives. While policy makers may not
be able to influence employers to shift their requirements,
they can provide courses and training material for specific
worker profiles lacking sought-after skills, to shift their
area of expertise and better meet the demand of the job
market. In network terms, it is equivalent to adding a certain
number of links connecting job seekers (let us call this
the set of source nodes) to skills (auxiliary nodes), to reduce
the imbalance between job seekers (source nodes) and job
vacancies (target nodes).

A naive approach would be to formalize imbalance in
this case as the difference in the number of job seekers
having a skill and the number of jobs requiring that skill,
but the problem is actually more complex. Jobs typically
require a rich set of skills, hence to fill an open position
for which there are no perfect candidates, it makes sense to
offer a relevant course to a job seeker that is otherwise most

suitable. We aim to go beyond individual recommendations
and study this problem at the level of the whole network,
which also means there are interactions and competing
interests. Hence, the imbalance quantification is based on
a type of distance between job seekers and positions (or
abstractly, between any two given sets of nodes).

Other applications. Imbalance quantification and re-
duction could have applications in domains other than
the job market, such as controversy in social networks. In
social networks, there are topics that users have different
opinions on such as politics, COVID-19 vaccination, sports
club fans, etc. This conflict in users’ opinions could result
in an imbalance between users. In this case, recommending
new content with a non-controversial topic to users could
reduce the imbalance between them in the social network,
thus potentially decreasing conflict. Another example of
imbalance is in a company where employees have multiple
expertise and projects also require a set of expertises. It
may not be possible to allocate the employees over the
projects such that all requirements are met, in which case
there is an imbalance. Training courses could be offered
to a well-chosen set of employees to expand their area of
expertise to meet the needs of their projects. In this way,
the imbalance between employees and projects would be
reduced. A similar problem may also exist in universities
for assigning students to supervisors for performing their
theses due to a mismatch in the students’ skills and the
supervisors’ expertises. As a solution, some students could
be recommended additional courses related to the work of
less overloaded supervisors, allowing them to do a thesis
with those supervisors.

In the paper, we use the job market example as a running
example, for clarity of the explanations. Our contributions
are generic and applicable well beyond this use case. We also
evaluate our method to reduce the imbalance in networks in
a wider diversity of settings in the experiments.

Our approach. In a job market network, assigning job
seekers to job vacancies with the lowest cost—where cost
could be defined as the required training time of employees
in the company, or the effort a job seeker has to make to be
suited for a job—appears to be the ideal situation. Hence,
informally speaking, we quantify the imbalance through
Earth Mover’s Distance (EMD) [9], with a model-dependent
distance between the nodes in the network. The EMD corre-
sponds to the minimal amount of work to map two sets onto
each other. It is equivalent to the Wasserstein 1-distance, and
as shown in Appendix A, it also corresponds to a matching
problem, i.e., to fractional perfect b-matching.

More formally: We denote an undirected network by
G = (V,E), where V and E are the sets of nodes and
links respectively. Moreover, we define two sets of nodes,
namely source nodes S ⊂ V (e.g. job seekers in the job market
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network) and target nodes T ⊂ V (e.g. job vacancies). S and
T must be disjoint (S ∩ T = ∅) and V may contain also
other nodes besides those contained in S and T . There are
no restrictions on the links in the network, i.e., both links
within and between nodes of any sets are allowed.

We define the imbalance between S and T in G as the
EMD between the sets S and T , where the costs of mapping
each node in S to each node in T (costs in EMD) are given
by a model. The mapping cost is lower for a pair of nodes
from S and T if they have a higher affinity with each other
in the network. More details are presented in Section 2.

Next, we define the problem of adding a limited number
of links between sets S and U ⊆ V in graph G, to reduce the
imbalance between sets S and T . Adding links will change
the structure of the network G and thereby affect the im-
balance (i.e., the EMD). We propose a method called Graph
imbalance REduction by Adding Sets of Edges (GREASE)
to tackle this problem. GREASE is based on updating the
parameters of some nodes in the model that provides the
mapping costs, instead of updating the whole model after
adding a few links, thus providing the necessary scalability.
The proposed method benefits from some heuristics and
assumptions that are necessary to solve the problem in a
limited execution time. For the definition of imbalance, U
can be any subset of V and overlap with S and T , but in our
experiments U will be disjoint from both S and T . Hence,
the effectivity of GREASE is only evaluated for this setting.

This paper is an extended version of our previous paper
[10], proposing a completely new method for the problem
of imbalance reduction with a major difference in imbalance
quantification and problem formulation. The main contri-
butions of the present paper are:

• We define the imbalance between two sets of nodes,
S and T , in a network and propose the measure
ψ(D, S, T ) for quantifying it, where the costs of node-
pair mappings D are given by a suitable model
based on the network structure.

• We introduce the novel problem of reducing the imbal-
ance in a network by adding a number of links.

• We also propose a novel generic method, Graph im-
balance REduction by Adding Sets of Edges (GREASE),
to select a set of links in an efficient manner.

• To better understand the merits of GREASE, we pro-
pose two baselines (a naive and a more intelligent
baseline) for the novel problem of reducing the im-
balance in a network.

• GREASE is proposed as a generic method, applicable
to a wide range of models that provides the costs of
node-pair mappings in networks. We also develop
a concrete instantiation using conditional network em-
bedding (CNE) [11], a state-of-the-art network embed-
ding method that provides the node-pair mapping
costs (based on link probabilities).

• We perform several experiments to compare the per-
formance of GREASE and baselines in reducing the
imbalance in a network. The experiments show that
GREASE outperforms the baselines in this task.

Outline. In Section 2, we define and quantify imbalance
in networks. In Section 3, we formalize the problem of
reducing network imbalance by adding links to a network.

In Section 4, we introduce our method GREASE to reduce
the imbalance in a network. In Section 5, we provide an
experimental evaluation of GREASE. In Section 6, we discuss
the related work. In Section 7, we conclude and outline
avenues for future work.

2 NETWORK IMBALANCE

In this section, we first review EMD. Secondly, we motivate
informally through an example of what the imbalance mea-
sure should quantify. Finally, we provide the definition and
quantification of imbalance in networks.

2.1 Earth Mover’s Distance
The Earth Mover’s Distance (EMD) is a measure of the
distance between two distributions and we restrict it here
to the distance between two probability distributions. EMD
is defined as the minimum amount of work to map the
distribution of the source nodes to the distribution of the
target nodes, based on given mapping costs dij for all pairs
of events (here nodes of the network) i ∈ S, j ∈ T . Formally:

Definition 1 (Earth Mover’s Distance (EMD) [9]). Assume
two probability distributions represented by PS = {(i, wi)|i ∈
S} and PT = {(j, wj)|j ∈ T}, where wi and wj are the
probabilities for the respective events. LetD = [dij ] be the matrix
of mapping costs between events in PS and PT . EMD is a linear
program whose goal is to find a flow F = [fij ] between two
distributions PS and PT that minimizes the overall cost:

DEMD(D, PS , PT ) = min
F

m∑
i=1

r∑
j=1

fijdij

s.t. fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ r,
r∑

j=1

fij = wpi, 1 ≤ i ≤ m, (1)

m∑
i=1

fij = wqj , 1 ≤ j ≤ r, . (2)

The optimal flow F is found by solving this linear
optimization problem.

2.2 Definition of network imbalance
Before we define our proposed notion of imbalance formally,
we explain it through the concrete example of the job
market network. For this example, the imbalance is the EMD
between all job seekers and job vacancies. Note that any job
seeker and job can be mapped in EMD, also if they are not
connected in the original graph, although the mapping cost
is typically related to whether they are connected (we use
costs based on a machine learning model of the network).

A link in the network between a job seeker and a job
vacancy might mean that the job seeker has applied for the
job or has otherwise expressed interest, not necessarily that
they were employed for that job. Importantly, the absence
of a link does not imply that the job seeker is a poor
candidate for the job. This property distinguishes our work from
the literature on combinatorial matching problems in graphs.
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However, the skills to which the job seeker and job
vacancy are linked, and jobs vacancies they are linked to,
provide information on whether the job seeker is suited for
the job; and the more suited, the smaller their mapping
cost in EMD should be. Hence, the cost of mapping a job
seeker to a job vacancy should be a function of the network
structure, and adding or removing skills to that job seeker
or job vacancy should influence their mapping cost. Thus,
the cost could be defined using a model that provides
link costs or link probabilities (so the costs of node-pair
mapping could be computed based on them), based on the
network structure. In this paper, we investigate using link
probabilities provided by a network embedding for this, as
it is a state-of-the-art approach to summarize the network
structure, where proximity between node embeddings re-
flects the probability that both nodes should be linked.

Figure 1 shows a sample job market, where a Java prod-
uct manager (E) and a Python developer (F) are looking for
jobs. The costs of mapping job seekers to the job positions in
their area of expertise is lowest and with other job positions
is higher. Mapping with a low cost may correspond to a high
chance of employment. The ideal case is where there are
equally many job positions with low mapping costs for each
of the job seekers (Figure 1a). On the other hand, Figure 1b
shows an imbalanced job market where one job does not
have a really suitable job seeker. If we define the EMD to
map each job seeker to two job positions, then the dashed
lines give an optimal solution, mapping the Java product
manager (E) with the Python product management job (B),
highlighting the imbalance.

2.3 Formal definition of network imbalance
Recall we denote an undirected network by G = (V,E),
where V is the set of |V | = n nodes and E ⊆

(V
2

)
is the

set of links between nodes. For convenience, we index the
set of nodes by natural numbers, i.e. V = {1, . . . , n}. Let A
denote the adjacency matrix, and aij is the element of the
adjacency matrix corresponding to the link between node
i and node j, i.e. aij = 1 iff {i, j} ∈ E. Function zij(A)
denotes the probability of having a link between nodes i
and j in graph G, for some function zij : Rn×n → [0, 1]. A
suitable function z is presented below in Section 2.4.

Given a cost defined for each node-pair {i, j}, D = [dij ]
(e.g., based on the link probability or distance in the embed-
ding space), we define the imbalance as the EMD between
the distributions PS and PT defined respectively over the
node sets S and T . These distributions are defined by means
of probability weigths wi = 1

|S| for nodes i ∈ S, and
wj = 1

|T | for nodes j ∈ T . We can then apply the EMD
definition DEMD from Section 2.1 to define the imbalance in
a network, and we refer to it as ψ or ψEMD.

Definition 2 (Imbalance Measure ψEMD). Given a network
G = (V,E), two disjoint sets of nodes, namely source nodes
∅ ⊂ S ⊂ V and target nodes ∅ ⊂ T ⊂ V , and the
mapping cost of each pair of nodes D = [dij ], we define two
probability distributions PS = {(i, wi = 1

|S| ) | i ∈ S} and
PT = {(j, wj = 1

|T | ) | j ∈ T}. Using this, we define imbalance
measure ψ or ψEMD:

ψEMD(D, S, T ) = DEMD(D, PS , PT ).

Fig. 1: A sample job market. A, B, C, and D are job positions
and E and F are job seekers. E is a Java product manager
and F is a Python developer. Solid lines are the links in the
original graph. Dashed lines give the mapping that mini-
mizes the EMD. (a) A and B are Java related job positions
and C and D are Python related job positions. (b) A is a
Java related job position and B, C, and D are Python related
job positions. Note that in both cases B is about product
management, whereas A, C, and D are developer positions.
Since there are four job positions available and two people
are seeking jobs in the example, the ideal case is (a) where
there are two job positions with low mapping costs for each
of the job seekers. On the other hand, in (b) there is an
imbalance in the job market where one job seeker (F) can
be mapped to two job positions with low costs (C and D),
and the other job seeker (E) can be mapped to only one job
position (A) with a low cost, while for one job (B) there is no
ideal candidate available. Giving all nodes per type equal
weight, the EMD maps each job seeker to a fixed number of
job positions. The EMD for (b) is high, due to the high cost of
mapping the Java product manager (E) to one of the Python
related job positions (e.g., B). Hence, the EMD corresponds
to the degree of imbalance in the job market.
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We can also define imbalance in terms of fractional
perfect b-matching (see, e.g., [12]) which results in an equiv-
alent measure. The details are described in Appendix A.

2.4 The mapping cost
The mapping cost can be freely chosen, depending on the
application. Here we suggest a function based on link prob-
abilities and provide an intuition for choosing this term.

A high link probability between two nodes means that
they could be easily linked. Therefore, their mapping cost (in
EMD) should be low and their mapping cost in computing
the imbalance ψ should also be low. We propose using the
minus log probability of links as the cost:

dij = − ln(zij(A)). (3)

In this case, the imbalance is given by
−
∑
i∈S

∑
j∈T

fij ln(zij) = −
∑
i∈S

∑
j∈T

ln(z
fij
ij ) = − ln

∏
i∈S

∏
j∈T

z
fij
ij .

The intuition behind choosing this term is as follows. In
the case where |S| = |T | (regardless of D) the EMD has an
optimum where each source node is mapped to exactly one
target node and vice versa, i.e., fij ∈ {0, 1} in F = [fij ].
For this case, it is easy to see that computing the imbalance
would be the same as computing a matching between source
nodes and target nodes with the highest probability.

3 PROBLEM FORMULATION

In this section, we formulate the problem of reducing imbal-
ance by adding links to a network.

We assume that the costs of node-pair mappings (map-
ping costs in EMD) depend on the structure of the network,
such that they can be influenced by modifying the network.
Motivated by the job market example, we propose the
operation of adding links as the kind of modification that
can be made. We further propose to restrict the problem
to add links between the nodes from the source set S to
the auxiliary set of nodes U . This is again motivated by
the job market, where we can realistically add new links
between skills and job seekers (by training job seekers),
but not between job vacancies and skills. We introduce the
following problem:

Problem 1 (Imbalance Reduction Problem). Assume given a
network G = (V,E), two mutually disjoint sets of nodes source
nodes ∅ ⊂ S ⊂ V and target nodes ∅ ⊂ T ⊂ V , a set of
auxiliary nodes ∅ ⊂ U ⊂ V , a set of candidate non-links L ⊆
S × U , L ∩ E = ∅ connecting nodes from set S with nodes
from set U , and imbalance measure ψ(D, S, T ). We write DG′

to correspond to the mapping costs of G′ = (V,E ∪ E). The
Imbalance Reduction Problem is to find at most k links E ⊆ L
that most reduce the imbalance between sets S and T :

argmin
E

E⊆L⊆S×U,E∩E=∅,0≤|E|≤k

ψ(DG′ , S, T ).

In the rest of the paper, we simply refer to the candidate
non-links L as the candidate set L.

4 REDUCING NETWORK IMBALANCE: GREASE
In this section, we introduce GREASE, a method to solve
Problem 1, i.e., how to add at most k links to a network
in order to maximally reduce the network imbalance. We
first provide a sketch of the solution and then discuss more
details in the respective sections below.

Problem 1 amounts to finding a set of links that jointly
minimize the imbalance. An exact approach may be com-
putationally expensive when the number of node-pairs in
the candidate set is large, since it may require computing
the imbalance reduction for every possible set of k′ ≤ k
links. Besides the vast number of possible sets, to com-
pute the reduction in imbalance we need to recompute the
mapping costs (e.g., costs based on the link probabilities;
and hence recompute the machine learning model on which
those are based), and recompute the imbalance. This pro-
cess of recomputing could be computationally demanding
depending on the model that provides the costs of node-
pair mappings, such as network embedding methods, and
could be practically impossible even for a moderate number
of node-pairs in the candidate set.

To formally define the exact approach, we assume there
is a given model M used to define the cost of node-pair
mappings, based on the network structure. We assume that
the mapping costs are computed by the parameters of model
M , which are learned by optimizing an objective function
based on a network. For example, network embedding
methods [6], [8], [13], including CNE [11] are an example
of a model on which the cost of node-pair mapping could
be based. Section 4.3 below introduces CNE, the model used
for the mapping costs in the experiments.

Let B indicate which node-pairs in L should be con-
nected in the network to reduce the imbalance optimally in
Problem 1: B = {biu ∈ {0, 1} | {i, u} ∈ L}, i.e., a binary
indicator per candidate link in L. Since the mapping costs
are based on the network structure (via model M ), they also
depend on B. For convenience, we write dij(B) defined as
dij : {0, 1}|L| → R to correspond to the mapping costs DG′

where G′ = (V,E ∪ E) with E = {{i, u} | biu = 1}. Hence,
we want to solve the following program:

min
F ,B

∑
i∈S

∑
j∈T

fijdij(B),

s.t. fij ≥ 0 ∀(i, j) ∈ S × T,∑
j∈T

fij = wi ∀i ∈ S,∑
i∈S

fij = wj ∀j ∈ T,∑
{i,u}∈L

biu ≤ k,

biu ∈ {0, 1}, ∀{i, u} ∈ L. (4)

Model M computes the cost dij of mapping node i to
node j based on the network structure. Here, the network
structure is defined by the initial adjacency matrix and the
links added to the network. The function dij is usually a
function that depends on model parameters which them-
selves are learned based on the network structure. Since
different values of B change the graph structure, for each
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possible set of values of B, function dij has to be re-
computed. The model M from which dij is computed may
be the result of an optimization problem (based on the graph
structure). We see an example of those optimization prob-
lems in Section 4.3. For these kinds of models, Eq. (4) is thus
a mixed-integer non-linear bi-level program (MINLBLP).

Most approaches to solve MINLBLP problems require
some assumptions such as the convexity of the objective
function [14], bounds on variables [15], [16], and having
polynomial objective functions [17], which might not be true
for model M . Our approach is to simplify the MINLBLP in
Eq. (4) and turn it to a mixed-integer quadratic program
(MIQP), which has less complexity and easier to solve.

Rather than solving Eq. (4) exactly, we use some heuris-
tics and assumptions to arrive at a scalable method. Specifi-
cally, we precompute the changes in the mapping costs (dij)
for adding each link to the network, instead of computing it
for each set B. Hence, Eq. (4) is turned into a MIQP, which
is easier to solve. To fully explain our approach, we first
describe the required properties of model M that enables
the precomputation of the mapping costs after adding links
to the network, then we introduce our method, and finally,
we discuss our choice of model M .

4.1 Properties of the model for the mapping costs
We assume that model M has three properties. First, we
assume that model M computes the mapping costs (based
on link probabilities) between nodes i and j based only
on the parameters (model internal parameters) related to
nodes i and j. Some examples of such models are network
embedding methods [6], [8], [11].

Second, we assume that adding a link between node i
and j would mostly affect parameters related to nodes i and
j in model M , an assumption that has been studied and
used before for network embedding methods [18]. Hence,
by adding a link between nodes i and j, we could estimate
the new mapping costs in the network by only updating the
parameters related to the two nodes i and j. We validated
this property for the models used in the experiments, the
results are given in Appendix B.

Third, we assume that adding links to high degree nodes
would have little impact on the parameters related to it
in model M . Since the auxiliary nodes usually have high
degrees (we show that in the dataset statistics), this assump-
tion allows us to only update the parameters related to node
i after adding a link between source node i and auxiliary
node j. We investigated this property for the models used
in the experiments, the results are given in Appendix C.

The result of the properties is that adding a link between
a source node i and auxiliary node uwould mostly affect the
parameters related to node i and hence, only the mapping
costs of node i to other target nodes need to be updated.
Based on these properties, dij only depends on the values
in B that correspond to links connected to source node i,
instead of all values in B.

It goes without saying that the last two properties are not
perfectly satisfied in many models, but the changes in the
parameters of other nodes may be limited. We expect that
the results of GREASE are better if the properties described
are satisfied more strongly. Hence, the use of the proposed

approach is limited to the models that the properties de-
scribed are satisfied. We investigate those properties for a
model that we use in this paper in Section 4.3.

4.2 GREASE

In order to find at most k links from the candidate set L
to add to the network to reduce the imbalance optimally,
our approach is to precompute the mapping costs based on
adding each individual node-pair in the candidate set to the
network and include it in the imbalance quantification. To
find the mapping costs after adding a link between source
node i and auxiliary node u, we only update the parameters
of node i in model M , in accordance with the properties
in Section 4.1. Since we assume the cost of a node-pair
mapping can be computed only based on the parameters
of those two nodes, we only have to update the costs of
mapping the source node i to all target nodes. The value diuij
denotes the cost of mapping node i to j after adding a link
between nodes i and u, which can be precomputed.

We further increase scalability by performing an incre-
mental update of the parameters related to node i after
adding a link between nodes i and u (and ignore the small
changes in other parameters, as discussed in Section 4.1).
As we only update the parameters related to node i, the
mapping costs can be computed with almost no additional
cost. We denote the cost of mapping the source node i to the
target node j based on the initial adjacency matrix as dij . As
a result, values diuij and dij appear as constants.

Note that if we would add multiple links to a source
node i, we would have to precompute the mapping costs
of node i to all target nodes for each possible set of k′ ≤ k
links in L that are connected to node i. Let Li ⊆ L denote
the set of links in L that are connected to i. The number
of computations is

∑
i∈S

∑
0≤k′≤k

(|Li|
k′

)
, which is infeasible

to compute. To avoid this problem, we add at most one
link to each source node (this results in finding a sub-
optimal solution). This approach results in a mixed-integer
quadratic program (MIQP) to find at most k links to add to
the network in order to reduce the imbalance optimally. The
minimization MIQP is as follows:

min
F ,B

∑
i∈S

∑
j∈T

fij

1−
∑

{i,u}∈Li

biu

 dij+

∑
{i,u}∈Li

biud
iu
ij

 ,

s.t. fij ≥ 0 ∀(i, j) ∈ S × T,∑
j∈T

fij = wi ∀i ∈ S, (5)∑
i∈S

fij = wj ∀j ∈ T, (6)∑
{i,u}∈Li

biu ≤ 1 ∀i ∈ S,

∑
{i,u}∈L

biu ≤ k,

biu ∈ {0, 1}, ∀{i, u} ∈ L. (7)
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B gives the links that should be added to the network to
maximally reduce the imbalance. We call this method Graph
imbalance REduction by Adding Sets of Edges (GREASE).

4.2.1 Speed up solving the MIQP
The MIQP in Eq. (7) has |L| binary variables bij for each link
{i, j} in the candidate set L and |S| · |T | real variables for
the mapping variables F . In one of the datasets used in the
experiments (VDAB), there are 21,794,110 real variables F in
Eq. (7). Solving the MIQP with a large number of variables
is time consuming. We propose an approach to reduce the
number of variables, to improve the performance.

The mapping variables F are used to map the nodes in
S to nodes in T . If mapping node i ∈ S to node j ∈ T has
a high cost compared to others (i.e., dij is high), fij would
probably be zero and not participate in the solution of EMD.
Hence, for each node i ∈ S (or j ∈ T ), we only keep a r ratio
of mapping variables fij , j ∈ T (or i ∈ S) with lowest costs
dij . The value eij shows if fij is removed or not (if eij is
zero, fij is removed. Otherwise, eij is one). Removing some
of the mapping variables can make Eq. (7) infeasible due
to the constraints in Eq. (5) and Eq. (6). To solve this issue,
we introduce artificial variables Y = {yi : i ∈ S ∪ T} in
constraints in Eq. (5) and Eq. (6), and we also add them
to the objective function with a large coefficient Υ to force
them to be as small as possible. The modified MIQP is:

min
F ,B,Y

∑
i∈S

∑
j∈T

eijfij

1−
∑

{i,u}∈Li

biu

 dij +

∑
{i,u}∈Li

biud
iu
ij

+Υ

∑
i∈S

yi +
∑
j∈T

yj

 ,

s.t. fij ≥ 0 ∀(i, j) ∈ S × T,

yi +
∑
j∈T

eijfij = wi, yi ≥ 0, ∀i ∈ S,

yj +
∑
i∈S

eijfij = wj , yj ≥ 0, ∀j ∈ T,∑
{i,u}∈Li

biu ≤ 1 ∀i ∈ S,

∑
{i,u}∈L

biu ≤ k,

biu ∈ {0, 1}, ∀{i, u} ∈ L. (8)

Using Eq. (8) might worsen the results compared to
Eq. (7) in situations where node i will be mapped to node
j despite relatively high mapping cost dij . In this case,
maybe adding a link to the source node i would reduce
the mapping cost dij , which will not be possible if variable
fij is removed. We investigate the effect of ratio r on the
imbalance reduction in Section 5.4.3.

4.3 Choice of the model providing the mapping costs
While mapping costs based on link probabilities could be
computed in several ways, network embeddings arguably
offer a natural way to define them by finding an embedding
of the network. Network embedding methods encode each
node i ∈ V as a d-dimensional real vector xi ∈ Rd. For

convenience, the embeddings may be aggregated in a matrix
X = (x1, ...,xn)

′ ∈ Rn×d.
Our approach is to use Conditional Network Embedding

(CNE; [11]) as the model to provide the link probabilities
and thus the mapping costs. We use CNE for four reasons.
First, CNE computes the link probabilities between two
nodes only based on the embeddings of the two nodes
(first property). Second, computing partial embedding after
adding a link to the network is possible in CNE, as we can
only update the embedding of the node of interest instead
of the whole network (second property). We also investigate
the how much the second and third properties hold in CNE
in the experiments in Appendix B and Appendix C, respec-
tively. Third, re-embedding the network starting from an
initial embedding is easily done with CNE, greatly speeding
up our proposed method. And fourth, CNE was shown to
have state of the art performance on downstream tasks [11].

The objective of CNE is to find the embedding X
that maximizes the likelihood of observing graph G. The
optimization task is formulated as a Maximum Likelihood
Estimation (MLE) problem, argmaxxP (G | X) (Eq. (6) in
[11]). The optimal embeddings are computed using a block
stochastic gradient descent approach. The gradient of the
likelihood function with respect to the embeddings of any
node i could also be computed for that purpose. We then
only update the embedding of a particular node i as the
partial embedding approach.

In summary, the link probability between any two nodes
i and j in CNE depends only on the embeddings of nodes
i and j. Moreover, we can update the embeddings of only
specific nodes in CNE after adding a link to the network. In
Section C, we show that the third property in Section 4.1
(which is about the embedding stability of high degree
nodes) is also true to some extent for CNE. Hence, CNE
is a suitable model for our approach.

5 EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation of
GREASE. We investigate four research questions Q1: How
does GREASE perform in reducing the imbalance ψ com-
pared to the baselines? Q2: How does GREASE perform in
terms of execution time compared to the baselines? Q3: How
sensitive is GREASE to the changes in mapping variables
ratio r? Q4: How does GREASE perform in reducing network
imbalance with a reduced solver time limit?

We also investigate two other research questions in the
appendix. Q5: How the embeddings of nodes change after
adding a link to the network, based on their distance (in the
graph, i.e., the number of links in a shortest path connecting
them) from the nodes of the added link (Appendix B)? Q6:
How stable are the embeddings of high degree nodes com-
pared to others after adding links to them (Appendix C)?

We first discuss the datasets, baselines, and settings.
Next, we present the result of each experiment. The source
code for repeating the experiments and the preprocessed
public datasets are available here 1.

1. https://github.com/aida-ugent/GREASE
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5.1 Datasets
We evaluated the methods using the following datasets:

VDAB 2: VDAB is the employment service of Flanders in
Belgium. It provides a platform for job seekers to find jobs.
The dataset contains a suitably anonymized sample of the
applications made by job seekers to available job vacancies
from April 2020 until October 2020. We construct the job
market network with three sets of nodes: job seekers, job
vacancies, and skills. Job vacancies are connected to job
seekers that have applied for them and to the skills they
require. Our goal is to reduce the imbalance between job
seekers (source nodes) and job vacancies (target nodes) by
adding links connecting job seekers with skills. This could
be seen as teaching a group of job seekers some skills, in a
way that balances the job market network.

Twitter 3: Twitter is one of the most popular microblog-
ging services in the world. The dataset contains the social
graph and tweets of Manchester United and Manchester
City fans between January 1 and September 22 in 2021. We
construct the network with three sets of nodes: Manchester
United, Manchester City, and hashtags. Users are connected
to their friends (reciprocal follow relationships) and the
hashtags of their tweets. We crawled the followers of fan
club pages on Twitter to find the fans of each club. We
also removed the hashtags related to the clubs. Our goal
is to reduce the imbalance between United fans (source
nodes or target nodes) and City fans (target nodes or source
nodes) by adding new links connecting users with hashtags
(auxiliary nodes). It is more like recommending tweets with
specific hashtags to the users to increase their interest in that
hashtag. In the experiments, we call this dataset Twitter-UC
if United fans are the source nodes and City fans are the
target nodes. Otherwise, we call the dataset Twitter-CU.

Weibo [19]: Weibo is the most popular Chinese mi-
croblogging service. The dataset contains tweets of the users
and the topic distribution of each tweet. We construct the
network with three sets of nodes: male users, female users,
and topics. Users are connected to their friends (reciprocal
follow relationships) and the top topics of their tweets.
To find the top topics for each tweet, we first sort the
topic probabilities (relevance of the topic for the tweet)
in descending order. Next, we select the top topics until
the difference between the probabilities of two consecutive
topics is greater than a very small threshold (1e-6). We select
a sample from the dataset by only considering tweets for the
first year of the data. Our goal is to reduce the imbalance
between males (source nodes or target nodes) and females
(target nodes or source nodes) by adding new links connect-
ing males/females with topics (auxiliary nodes). It is more
like recommending tweets with specific topics to the users
to increase their interest in that topic. In the experiments, we
call this dataset Weibo-mf if males are the source nodes and
females are the target nodes. Otherwise, we call the dataset
Weibo-fm.

Movielens [20]: MovieLens is a web-based movie rec-
ommender system. The dataset contains 100000 user ratings
on movies. We construct the network with three sets of
nodes: users, movies, and movie genres. There is a link

2. https://www.vdab.be/
3. https://www.twitter.com/

between each user and movie for each rating. We also
connect each movie to its genres. Our goal is to reduce the
imbalance between movies (source nodes or target nodes)
and users (target nodes or source nodes) by adding new
links connecting movies with genres (auxiliary nodes).

Weibo2 [19]: Weibo2 is the same as Weibo dataset, except
that the auxiliary nodes are connected to each other if
they have at least three common neighbors. Identical to
the Weibo dataset, we evaluate the methods on Weibo2-mf
and Weibo2-fm datasets depending on whether males or
females are considered as the source nodes.

We only used the largest connected component in each
network. Table 1 shows the main statistics of each of the
networks. The average degrees of auxiliary nodes are higher
than the whole network average degrees, which supports
the required properties of the model providing the mapping
costs in Section 4.1.

5.2 Baselines
As mentioned earlier, we are the first to introduce the
concept of imbalance in a network in the way described in
Section 2.2 and to reduce it by adding links to the network.
However, there exist other methods that try to add links to
the networks to make them more cohesive. We consider two
of those methods [21], [22] for comparison.

The work in [21] minimizes the average shortest path
in a network by adding links. the authors in [22] compute
controversy between two sets of nodes using the random
walks starting from one set, and ending in the same or the
other set. The main difference between the imbalance and
controversy is that the amount of links between nodes in the
same set has a major effect on the controversy, which is not
necessarily the case in computing the imbalance. Moreover,
we compute the costs of node-pair mappings based on the
link probabilities, while they consider the actual links in the
network to compute the controversy.

We also designed a random method that ensures a re-
duction in the imbalance after adding links and a simple
random method for comparison, see below.

In summary, the following methods will be evaluated as
baselines:

GraB [10]: ‘Graph Balancing’ is a method to reduce the
imbalance in a network by adding links to the network.
It estimates if adding a link would reduce the imbalance
locally for a node, and proposes a greedy algorithm to
consider the imbalance reduction globally. It also adds links
in batches to increase the robustness of the recommended
links. GraB selects b links connecting source nodes with
auxiliary nodes for each batch based on the local imbalance
reduction estimation. To select k links to add to the network,
GraB runs k

b iterations. It also filters the results in a post-hoc
filtering phase to ensure the selected links improve the local
imbalance measure.

ROV [22]: ’Recommend opposing view’ adds links to the
network to reduce controversy. In this work, k links between
high degree nodes in sets S and T that reduce controversy
the most, are added using a greedy algorithm. We adopt this
method for our problem setting by adding links between
sets S and U using the same method.

SSW [21]: ’Shortcuts for a smaller world’ adds links to
the network to reduce the average shortest path length. In
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TABLE 1: Main statistics of the networks used for evaluation.

Dataset VDAB Twitter-UC Twitter-CU Weibo-mf Weibo-fm Movielens Weibo2-mf Weibo2-fm

Nodes 9539 6751 6751 1364 1364 2644 1364 1364
Source nodes 4531 4939 1724 822 442 1682 822 442
Target nodes 4810 1724 4939 442 822 943 442 822
Auxiliary nodes 198 88 88 100 100 19 100 100
Links 48451 220498 220498 14308 14308 102893 14873 14873
Average degree 12 65 65 20 20 77 21 21
Auxiliary nodes average degree 154 138 138 34 34 152 39 39

this work, k links are added to the network using different
strategies. We employ the greedy strategy since it has the
best performance [21].

S-Random: The ‘simple random’ baseline selects k ran-
dom links connecting source nodes with auxiliary nodes.

G-Random: The ‘greedy random’ baseline selects a link
at each iteration, adds it to the network, re-embeds the
network, and computes the network imbalance. If the im-
balance measure is reduced, the link is added to the result
set. It continues the iterations for a given amount of time.

5.3 Experimental settings
We compare methods in terms of the imbalance ψ (Def-
inition 2) or imbalance reduction −∆ψ. We conduct the
experiments on CNE with dimensions 2 and 4 with a
combination of block and degree prior (see [11]). The names
of the datasets are combined with d2 or d4, which show the
embedding dimensions.

For the experiments, we design a strategy for the candi-
date set of links L to be added to the network. Adding a link
to a source node means that the source node has to form a
connection with an auxiliary node. Hence, the candidate set
should have a high link probability, to enhance forming the
connection in real life. E.g., a job seeker could acquire skills
with less effort if it has already high link probabilities with
them. Hence, we consider the top n skills with the highest
link probabilities for each source node. We call this strategy
as top n links per source node (TnLS). In the experiments, we
set n to one (T1LS) and five (T5LS).

In the experiments, the methods are evaluated on several
datasets. We set k to 5% of the size of the source nodes for all
experiments. G-Random and GREASE can add up to k links
(zero to k links) to each dataset. However, other methods do
not allow adding flexible number of links to the networks.
Hence, other baselines add exactly k links to the networks.

We solve the MIQP in Eq. (8) using Gurobi v9.1 in
GREASE. We limit the time of solving the MIQP to 10
minutes using Gurobi in all experiments. We also tune r
from values {0.2, 0.4, 1.0} for experiment in Section 5.4.1.

In the experiment in Section 5.4.1, we use the author’s
implementation of computing the controversy in a network
between two sets and used their default hyper-parameters,
which are used in ROV. We used 10% of the high degree
source nodes and 20 high degree auxiliary nodes for the
candidate selection in ROV. We also use the author’s imple-
mentation of SSW. SSW does not require setting any partic-
ular hyper-parameter. For I-Random, we limit the execution
time to one hour. Moreover, we average the results for S-
Random and G-Random over 3 repetitions to smoothen out
random fluctuations. For GraB, we added links in one batch

and also in several batches of 25 links in Movielens and
Weibo datasets, and added links in one batch for VDAB
and Twitter datasets, since adding links in several batches
resulted in high execution time.

5.4 Experimental results
In this section, we present the results of the experiments to
investigate the research questions Q1, Q2, Q3, Q4, and Q5.

5.4.1 Baseline comparison
Here we compare the methods in terms of ψ on all datasets.
We report ψ on the main graph as well (Q1). Table 2
and Table 3 show the result of this experiment with the
candidate set strategies T1LS and T5LS respectively.

GREASE reduces ψ over the main graph and outper-
forms the other methods in most of the datasets. Moreover,
GREASE performs better in reducing ψ for T1LS than T5LS
compared to the baselines. It also performs better for T1LS
than T5LS in some datasets compared to itself, although the
candidate set in T5LS includes the node-pairs in T1LS. This
is due to two reasons. First, the MIQP in T5LS is bigger than
in T1LS. Since we limited the amount of time to solve the
MIQP in Eq. (8), it is possible GREASE performs worse for
T5LS with the same amount of solver time limit. Second,
despite all baselines, GREASE only adds at most one link to
each source node. Hence, in T5LS, the baselines have the
opportunity to add several links to a source node that could
reduce the imbalance a great amount, which is not possible
in GREASE.

GraB and SSW also outperform the other baselines in
most of the datasets. On the other hand, G-Random reduces
the imbalance by a small amount. It even performs worse
than S-Random in some of the datasets. The reason is that
G-Random computes the embedding for each link addition,
and only adds the link if the imbalance reduces. Since com-
puting the embedding is time consuming itself, G-Random
does not add many links in one hour, which is the maximum
time we set for it to select the links.

The other methods S-Random and ROV do not perform
particularly well (in some datasets they increase the im-
balance, and the amount of imbalance reduction in other
datasets is less than GREASE), since they are random or
designed for a different purpose and objective function. We
did not report the result of ROV on VDAB and Twitter
datasets because it did not finish in a reasonable amount
of time (several hours).

Moreover, we also analyze the number of links that
are added to the datasets. The baselines add k links (the
maximum number of links) to each dataset (except for G-
Random, which adds up to k links to the datasets). Although
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TABLE 2: ψ after adding links to each network for candidate set strategy T1LS. The best performance per dataset is
highlighted in bold.

Dataset Main
Graph

S-
Random

G-
Random

SSW ROV GraB GREASE

VDAB-d2 6.2858 6.2859 6.2858 6.2857 6.2851 6.2846
Twitter-UC-d2 15.5578 15.5489 15.5576 15.5207 15.5179 15.4917
Twitter-CU-d2 15.5578 15.5099 15.5572 15.4328 15.4441 15.4173
Weibo-mf-d2 10.4774 10.4768 10.4756 10.4774 10.4775 10.4724 10.4708
Weibo-fm-d2 10.4774 10.4767 10.4747 10.4752 10.4796 10.4704 10.4677
Movielens-d2 3.7369 3.7363 3.7363 3.7355 3.7368 3.7297 3.7313
Weibo2-mf-d2 10.4788 10.4778 10.47566 0.4788 10.4780 10.4725 10.4712
Weibo2-fm-d2 10.4788 10.4771 10.4753 10.4733 10.4788 10.4714 10.4671
VDAB-d4 6.3096 6.3097 6.3096 6.3092 6.3089 6.3082
Twitter-UC-d4 15.4756 15.4586 15.4754 15.4193 15.4393 15.3856
Twitter-CU-d4 15.4756 15.4344 15.4749 15.3459 15.3669 15.3261
Weibo-mf-d4 10.4959 10.4958 10.4945 10.4944 10.4964 10.4931 10.4910
Weibo-fm-d4 10.4959 10.4953 10.4941 10.4934 10.4963 10.4920 10.4867
Movielens-d4 3.8063 3.8047 3.8060 3.8038 0.8067 3.8047 3.8022
Weibo2-mf-d4 10.4966 10.4966 10.4948 10.4967 10.4965 10.4920 10.4912
Weibo2-fm-d4 10.4966 10.4959 10.4938 10.4923 10.4964 10.4924 10.4902

TABLE 3: ψ after adding links to each network for candidate set strategy T5LS. The best performance per dataset is
highlighted in bold.

Dataset Main
Graph

S-
Random

G-
Random

SSW ROV GraB GREASE

VDAB-d2 6.2858 6.2860 6.2858 6.2866 6.2851 6.2846
Twitter-UC-d2 15.5578 15.5421 15.5575 15.4986 15.4967 15.4939
Twitter-CU-d2 15.5578 15.5184 15.5560 15.4403 15.4248 15.4291
Weibo-mf-d2 10.4774 10.4775 10.4748 10.4770 10.4782 10.4696 10.4688
Weibo-fm-d2 10.4774 10.4771 10.4746 10.4794 10.4771 10.4633 10.4624
Movielens-d2 3.7369 3.7364 3.7366 3.7330 3.7373 3.7251 3.7294
Weibo2-mf-d2 10.4788 10.4787 10.4763 10.4790 10.4775 10.4714 10.4703
Weibo2-fm-d2 10.4788 10.4767 10.4752 10.4707 10.4787 10.4669 10.4633
VDAB-d4 6.3096 6.3099 6.3096 6.3100 6.3089 6.3082
Twitter-UC-d4 15.4756 15.4623 15.4756 15.3865 15.4333 15.3817
Twitter-CU-d4 15.4756 15.4395 15.4750 15.3563 15.3625 15.3525
Weibo-mf-d4 10.4959 10.4966 10.4943 10.4956 10.4974 10.4927 10.4879
Weibo-fm-d4 10.4959 10.4950 10.4943 10.4922 10.4962 10.4922 10.4839
Movielens-d4 3.8063 3.8048 3.8060 3.8011 3.8064 3.7987 3.8011
Weibo2-mf-d4 10.4966 10.4966 10.4941 10.4977 10.4963 10.4926 10.4911
Weibo2-fm-d4 10.4966 10.4960 10.4940 10.4919 10.4964 10.4845 10.4830

GREASE allows for adding zero to k links, in practice it
adds the maximum number of links to all datasets in our
experiments. Hence, all methods (except for G-Random)
add the same number of links to the datasets.

5.4.2 Execution time comparison
In this experiment, we compare the methods in terms of
the execution time (Q2) with the same settings as experi-
ment 5.4.1. Figure 2a and 2b show the execution time in
seconds (log-scale) for all methods, including the time for
hyper-parameter tuning for candidate set strategy T1LS and
T5LS respectively.

GREASE, GraB, ROV, and G-Random have the highest
execution time among all methods.

GraB has a high execution time due to the number of
hyper-parameters to be tuned, the link selection step, and
also re-embedding after adding each batch. ROV has a high
execution time due to the time needed for computing the
controversy after adding each candidate link to the graph.
We did not report ROV execution time for VDAB and
Twitter datasets because they did not finish in a reasonable
amount of time (several hours). We set one hour as the
maximum execution time for G-Random.

Although GREASE has a high execution time, it still is
faster than some baselines (faster than ROV in all datasets,
and lower or equal execution time compared to G-Random
and GraB in some of the datasets). We set the maximum
time for the solver, Gurobi, to 10 minutes in GREASE. The
total execution time also includes some pre-processing time
to design the MIQP in Eq. (8). We also tune the mapping
variables ratio r from 3 values.

5.4.3 Sensitivity to the mapping variables ratio r
In this section, we test if removing some of the mapping
variables in Section 4.2.1 improves the performance in re-
ducing the imbalance in networks. We evaluate the sensi-
tivity of GREASE to the mapping variables ratio r (Q3) in
terms of the amount of imbalance reduction, −∆ψ. Higher
values of −∆ψ mean a greater reduction in the imbalance.
To investigate Q3, we let Gurobi run for 10 minutes for each
dataset. Figure 3 shows −∆ψ against mapping variables
ratio r after adding links to each dataset.

In general, it appears that very small values of r hinder
the optimization, except for the large VDAB network. The
reason is that for large datasets, the MIQP in Eq. (8) is large
and complex, and difficult to solve. Hence, in the limited
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(a) T1LS

(b) T5LS

Fig. 2: Execution time (log-scale) of methods for experi-
ment 5.4.1 on each evaluated network for candidate set
strategies T1LS and T5LS. Since the y-axis is in log-scale,
0.1 is used to represent all values between zero and 0.1.

amount of time for the solver, reducing the number of map-
ping variables would make it simpler and easier to solve.
On the other hand, we observe that for the other datasets
values 0.1 and 0.2 of r result in keeping only a small amount
of mapping variables and hence, a poor performance. The
results are mostly consistent across different dimensions and
different candidate set strategies.

Since the imbalance reduction in GREASE improves in
some datasets with a value of r other than one, we conclude
that the technique described in Section 4.2.1 is effective in
some situations.

5.4.4 Sensitivity to solving time
In this section, we analyze the sensitivity of GREASE to the
solver time limit (Q4) in terms of the amount of imbalance
reduction, −∆ψ. Higher values of −∆ψ mean a greater
reduction in the imbalance.

To investigate Q4, we let Gurobi run for 10 minutes for
each dataset and evaluate the results after every minute.
Figure 4 shows −∆ψ against solving time after adding
links to each dataset. Here we only include the result for
the mapping variables ratio r with the highest imbalance
reduction after 10 minutes. The complete results of this
experiment for different values of mapping variables ratio r
are presented in Appendix D.

The amount of reduction in imbalance −∆ψ generally
improves by increasing the solving time, as expected. How-
ever, in some cases increasing the solving time worsens
the performance in reducing the imbalance. This would be
due to the estimation of computing the parameters in the
model after adding a link (partial embedding in CNE) and
reducing the number of mapping variables. Both techniques
in computing the new mapping costs with partial embed-
ding and also reducing mapping variables with high costs
sometimes have errors that could cause inconsistent results.
The results are mostly consistent across different dimensions
and different candidate set strategies.

6 RELATED WORK

Imbalance in the workforce has been studied in various sys-
tems [23], [24]. However, our work differs from these stud-
ies. Previous studies are mostly domain-specific and they
analyze the supply and demand based on domain-specific
features such as educational training program length, retire-
ment, and salary. Previous studies in this area also lack a
global measure to quantify the imbalance between two dif-
ferent entities. In contrast to this, we tackle the problem from
a graph analysis approach. We propose a quantification of
the imbalance in the network and a method to reduce the
imbalance by adding links to the network.

Another line of research focuses on matching problems
[25], [26]. Finding the cost of the fractional perfect b-
matching [12] with minimum cost in bipartite networks is
related to our work (Appendix A). In this problem, the goal
is to find a matching between two sets of nodes in a network
with minimum total cost. We define the imbalance as the
cost of the minimum cost fractional perfect b-matching on
a new bipartite network created from the original network
(see Appendix A for more details). Our work differs from
the studies focusing on matching since we do not address
the computational problem of how to find the matching. We
only use the cost of the matching to quantify the imbalance.
Moreover, we add links to the network (not directly between
the two sets of nodes of interest), to change the cost of
links between the two sets of nodes, and hence, reduce the
imbalance in the network.

Fairness in node embeddings is studied in various re-
search papers [27], [28]. These studies try to learn an unbi-
ased network embedding. The similarity between learning
an unbiased embedding and reducing the imbalance in a
network embedding is that they both try to have a mix
between nodes with different attributes or different types
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Fig. 3: Amount of imbalance reduction −∆ψ against matching variables ratio r for dimensions 2 and 4 and candidate link
strategy T1LS and T5LS. Note a different scale is used for the Twitter datasets, hence there is a double y-axis.

(job seeker and job vacancy, female and male, etc.). The
main difference is that debiasing methods learn an unbi-
ased embedding based on the original network, while we
modify the network in order to make it more balanced. A
second difference is in the quantification of the imbalance
or unfairness. In our setting, we intend to bring two sets
of nodes closer, to reduce the imbalance, while the goal to
reduce unfairness is that the two sets of nodes cannot be
separated, which is not important in our case.

There are also several papers aiming to add links to a
network to modify its structure. Some of the research fo-
cuses on adding links to a network to make it more cohesive,
where cohesiveness is quantified using network properties
such as shortest paths [21], [29], diameter [30], information
unfairness [31], controversy [22] and structural bias [32]. The
work in [22] is most related to our work since they add links
to the network to reduce the controversy between two sets
of nodes. However, the difference between our works is that
we consider a different measure to compute the imbalance
and use a different approach to optimize it.

7 CONCLUSIONS AND FUTURE WORK

We defined and quantified the concept of imbalance be-
tween two sets of nodes in a network, and introduced the
novel problem of reducing that imbalance by introducing
new links. We proposed GREASE to tackle this problem

by solving a mixed-integer quadratic program. To ensure
the efficiency of solving this problem, several reasonable
assumptions as well as effective heuristics were made. We
presented experiments applying GREASE together with CNE
as the network embedding method to various networks.
The experimental results indicate that GREASE outperforms
baselines for reducing imbalance in a network embedding.

In future work, we plan to investigate the benefits of a
new link for individual nodes (e.g., improving the access
to a target set of nodes) instead of just for the global
balance of the network, as well as other problem settings
such as reducing the imbalance in a network by removing a
specific number of links from the network (e.g., changing job
contents and required skills, making jobs more accessible),
or both adding and removing links at the same time.

Moreover, other types of networks, such as attributed
networks, can be investigated. More specifically, in order to
know whether GREASE could be used on such networks,
it has to be investigated to what degree link probability
models (such as network embedding models) for attributed
networks satisfy the requirements for GREASE.
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