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Hierarchical Aggregations for
High-Dimensional Multiplex Graph Embedding

Kamel Abdous, Nairouz Mrabah, Mohamed Bouguessa

Abstract—We investigate the problem of multiplex graph embedding, that is, graphs in which nodes interact through multiple types of
relations (dimensions). In recent years, several methods have been developed to address this problem. However, the need for more
effective and specialized approaches grows with the production of graph data with diverse characteristics. In particular, real-world
multiplex graphs may exhibit a high number of dimensions, making it difficult to construct a single consensus representation.
Furthermore, important information can be hidden in complex latent structures scattered in multiple dimensions. To address these
issues, we propose HMGE, a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs.
Hierarchical aggregation consists in learning a hierarchical combination of the graph dimensions and refining the embeddings at each
hierarchy level. Non-linear combinations are computed from previous ones, thus uncovering complex information and latent structures
hidden in the multiplex graph dimensions. Moreover, we leverage mutual information maximization between local patches and global
summaries to train the model without supervision. This allows to captures globally relevant information present in diverse locations of
the graph. Detailed experiments on synthetic and real-world data illustrate the suitability of our approach on downstream supervised
tasks, including link prediction and node classification.

Index Terms—Multiplex Graphs, Graph Representation Learning, Graph Neural Networks.

✦

1 INTRODUCTION

1.1 Context and Background Information

TODAY’S real systems are mostly made of entities that
interact with each other through multiple channels of

connectivity. To better represent such complex systems, a
new class of graphs, called multiplex graphs, has emerged. In
a multiplex graph, nodes (entities) are connected to each
other through multiple types of relations (links) [1]. We
refer to these relations as dimensions. Such graphs arise
in various areas, such as protein-protein interactions [2],
neuroimaging [3], social networks [4], online recommen-
dation [5]. In general, multiplexes provide a more general
framework that allows rich and flexible modeling of several
interconnected systems.

In recent years, many efforts have been made to de-
sign effective mining algorithms for multiplex graphs [6],
[7], [8], [9], [10]. Most of these approaches are based on
graph embedding techniques, which aim to project the
graph dimensions to a compact and low-dimensional la-
tent space representation. An effective embedding method
should achieve exploitable representations for various pre-
diction tasks, such as node classification [11], [12] and link
prediction [13], [14]. This is not straightforward because
multiplex graphs may have a large number of dimensions,
each containing various complementary and / or divergent
information on node interactions [7]. Therefore, an optimal
embedding method should only encode the intrinsic infor-
mative structures hidden in the graph dimensions.

Over the past few years, a number of embedding meth-
ods for multiplex graphs have been proposed. Some of these
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methods [14], [15], [16] generalize random walks [17] to
the multiplex scenario. They either perform random walks
on individual dimensions and then aggregate the results
or run random walks that jump from one dimension to
another. However, with high-dimensional multiplex graphs,
long sequences of nodes are needed to account for all
dimensions. Since these methods optimize the embeddings
on local patches, it becomes difficult to extract global infor-
mation. Another line of work uses consensus embeddings to
encode information of multiple dimensions [18], [19], [20].
A consensus embedding is the representation of a node that
includes all dimensions of the graph [18]. In particular, these
methods leverage regularization to force the embeddings to
be similar across dimensions. This strategy is effective in
some cases, but in the presence of complementary dimen-
sions, it can hinder the quality of the final representations.

The success of deep neural networks in encoding com-
plex data is effectively aligned with learning appropriate
embeddings for multiplex graphs [21]. In this regard, Graph
Neural Networks (GNNs) [22], [23] extend the deep learning
framework to graph-structured data. The most successful
attempts to extract latent representations for multiplexes
leverage GNNs [12], [21]. Most of these methods construct
separate embeddings on individual dimensions with GNNs
and then aggregate the dimension-specific embeddings into
a consensus one using a linear weighted summation. How-
ever, these methods consider a single and simple com-
bination. A linear aggregation of the dimension-specific
embeddings cannot capture complex relations between the
graph dimensions. Moreover, it is not clear from previous
work how to exploit several aggregations probably because
combined representations from different sets of dimensions
lead to inconsistent results [24]. In this context, we argue
the existence of relevant hidden dimensions, which can
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be established hierarchically from the dimension-specific
embeddings. Thus, a high-level relation can be seen as
a composition of lower-level ones. Unfortunately, existing
aggregation strategies cannot handle this compositional as-
pect.

1.2 Motivations

Multiplex graphs are increasingly characterized by the pres-
ence of a high number of dimensions (that is, a large number
of links of different types connecting multiple nodes). In
this setting, informative and complex latent structures can
be hidden across various dimensions. Mining such high-
dimensional multiplex graphs continues to pose a challenge
to existing methods. In particular, the number of possi-
ble combinations grows exponentially with the number of
dimensions. Aggregating all dimensions in a single linear
step can cause significant information loss. To explain these
problems, we provide two illustrative examples.

Single vs Multiple: We consider the case of a co-
authorship multiplex graph, where nodes are the authors
of research papers, and edges indicate that two authors
have co-written a paper. Edges can be scattered in multiple
dimensions such that each dimension represents a publi-
cation venue (that is, two authors have co-written a paper
in a specific journal or a conference). In this case, different
combinations can expose different information about the
authors’ research domain.

We suppose that two authors have published a paper at
a data mining conference and another paper at a computer
vision conference. Combining the two dimensions may sug-
gest that the research domain of these authors revolves
around “image indexing or image clustering”. If the two
authors have also co-written an article in a fuzzy logic jour-
nal, then we can infer the research domain “fuzzy logic for
image processing” by combining the data mining and fuzzy
logic dimensions. We can see that different combinations can
lead to seemingly divergent predictions. Therefore, a single
combination at the initial level can cause a significant loss of
information by destroying the divergent information. This
information can be useful at a higher level of refinement.
For example, we can infer from the initial dimension “fuzzy
logic” and the hidden dimension “image indexing or image
clustering” that the authors work on “robot navigation”. We
illustrate this example in Figure 1a, where nodes 1 and 4
have a high chance of sharing the aforementioned research
domains. From this perspective, we can see that some initial
dimensions (e.g., “fuzzy logic”) are more informative when
they are used to refine higher-level dimensions (e.g.,“image
clustering”).

Linear vs Non-Linear: The high-dimensionality in mul-
tiplex graphs gives rise to another phenomenon, which is
the complex structure associated with information hidden
in a large number of dimensions. We consider a multiplex
graph that models a transportation network for a given
city. Nodes represent locations in the city, and dimensions
represent different means of transportation. An edge in a
dimension indicates that two locations are directly linked
through a transportation mean. We suppose the existence of
three dimensions: Bus Lines (G1), Metro (G2), and Tramway
(G3). Fig. 1b shows an illustration of some relevant hidden

dimensions that can be extracted non-linearly from the
initial dimensions.

First, we can extract a relevant latent structure G
′

1,
which represents the locations that can be reached with two
consecutive bus trips. This latent structure can be obtained
using a non-linear operation by squaring the adjacency
matrix of the Bus Lines dimension G1. Since there is a path
2→ 1→ 4 in G1, the latent structure G

′

1 contains a new link
2 → 4. This link is not present in the initial graph structure
G1.

Another relevant latent structure G
′

2 represents the lo-
cations that can be accessed by a metro trip followed by a
tramway trip. This dimension can be formed by combining
the Metro dimension G2 and the Tramway dimension G3

using a non-linear operation. More precisely, the links 1→ 4
in G2 and 4→ 2 in G3 form the link 1→ 2. The link 4→ 3
is formed by 4→ 5 in G2 and 5→ 3 in G3.

A third relevant latent structure can be revealed by
combining G

′

1 and G
′

2. It contains locations that are linked
by two bus trips, followed by a metro trip and a tramway
trip. This combination forms a new path 1 → 2 → 3. This
path was not present in any of the original dimensions. Most
importantly, the link 2→ 3 cannot be obtained by any linear
combination between G1, G2, and G3.

Hierarchical Aggregations: High-dimensional data,
such as images or audio, are well-known to be hierarchical
in nature [25]. In other words, high-level features are com-
posed of lower-level ones. For example, in image datasets,
objects are combinations of motifs, which are themselves
combinations of edges. Similarly to high-dimensional data,
the complex structure of high-dimensional graphs inherits
this compositional aspect. More precisely, there exist high-
level hidden dimensions, which can be seen as non-linear
compositions of some lower-level dimensions. The two real-
world examples presented in Fig. 1a and 1b show the
suitability of hierarchical aggregations to account for this
compositional aspect.

1.3 Contributions

Due to their hierarchical design, neural networks can con-
struct compositions of low-level features and gradually
generate high-level patterns [25], [26]. Although the state-
of-the-art methods harness the deep learning framework
to embed the initial dimensions separately, the aggregation
step of these methods remains simple and can not discover
the compositional structures hidden in the non-linear com-
binations of dimensions. To capture complex interactions
between the initial dimensions, we advocate the adoption of
a hierarchical aggregation method. We take inspiration from
the deep learning framework to design our aggregation
strategy for high-dimensional multiplex graph embedding,
named HMGE (Hierarchical Multiplex Graph Embedding).

Our approach hierarchically combines the dimensions
of a multiplex graph to construct new dimensions. Each
layer of our model computes a more refined multiplex graph
with a lower number of dimensions. The last hidden layer
produces a one-dimensional graph. The node embeddings
are computed by applying a standard GCN on the graph
generated by the last hidden layer. Our training process
leverages the hidden dimensions computed at each level
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Fig. 1: Motivating examples of hierarchical aggregation of multiplex graphs.

to gradually extract higher-level ones. This progressive re-
finement allows to alleviate the information loss caused by
the widely used single and linear aggregation step. Since
non-linear combinations are computed from previous ones,
the proposed approach can uncover complex interactions
between the different relations. Finally, to encode globally
relevant information present in diverse locations of the
graph, we introduce mutual information maximization in
the optimization module. The significance of this work can
be summarized as follows.

• Methodology: We propose HMGE, a novel embed-
ding method for high-dimensional multiplex graphs.
Our method relies on a hierarchical aggregation
strategy to capture complex interactions between
the initial dimensions. Progressive refinement of the
hidden relations allows to align a large number
of divergent and complementary dimensions to a
consensus embedding, which in turn alleviates the
information loss caused by the widely used single
and linear aggregation step.

• Datasets: To reflect the compositional nature of high-
dimensional multiplex graphs in the experiments, we
collected from various sources four multiplex graphs
with an important number of dimensions. Specif-
ically, we collected two protein-protein interaction
graphs, a co-authorship graph, and a movie database
graph. We made this data public for future research
in the domain.

• Experiments: We conducted detailed experiments on
both synthetic and real high-dimensional multiplex
graphs. Specifically, we evaluated HMGE on two
downstream tasks: node classification and link pre-
diction. Our results show considerable improvement
compared to the state-of-the-art methods for several
cases. Furthermore, our ablation study confirms that
this improvement is imputed to our hierarchical ag-
gregations.

2 RELATED WORK

In this section, we review the literature on multiplex graph
embedding. Before that, we define two important terms

that we use throughout the section. A dimension-specific node
embedding is the embedding of a node in a given dimension.
A consensus node embedding is the embedding of a node
taking into account all dimensions [18].

2.1 Random Walk-Based Methods
Random walk is a popular approach to graph embedding
[27], and several methods have been developed to gener-
alize such a method to the multiplex scenario. SMNE [15]
generates random walks in individual dimensions, allowing
the method to learn dimension-specific node embeddings.
After that, a transformation matrix is applied to obtain
consensus node embeddings. MultiVERSE [14] improves
SMNE by performing random walks that can jump from one
dimension to another. Additionally, it supports the presence
of heterogeneous nodes in the multiplex graph. PMNE [16]
designs first- and second-order random walks to browse
single layers. It uses the Node2Vec [28] parameters p and
q to flexibly traverse the neighbors of the node.

A drawback of random walk-based methods is that
they are inherently transductive (that is, they cannot han-
dle the arrival of unobserved nodes). GATNE [29] solves
this issue by generating training samples using random
walks and then computing node embeddings with trainable
transformations. In the case of high-dimensional multiplex
graphs, random walk-based methods suffer from a major
limitation. Indeed, to cover all the graph dimensions, long
sequences of random walks must be generated. Since the
skip-gram model takes advantage of local patches to opti-
mize representations [30], it can be difficult to capture long-
range dependencies in the node sequences. In other words,
these methods cannot effectively uncover latent structures
spanning multiple dimensions. Moreover, random walk-
based methods lack the expressive power to model the
compositional nature of high-dimensional multiplex graphs.

2.2 Sharing Information with Regularization
While learning node embeddings, sharing information be-
tween dimensions is essential to capture common and com-
plementary information. To this end, a handful of methods
rely on regularization. DMNE [19] uses an auto-encoder to
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encode each dimension of the multiplex graph. After that,
a regularization term is applied to force the dimension-
specific embeddings to be similar. This results in a consensus
embedding for each node. MELL [20] follows a similar
approach, but for directed multiplex graphs. It uses two
embedding vectors for each node: one as a head vector
and another as a tail vector. In addition, MELL learns layer-
specific representations (i.e., embeddings for entire layers).
These representations are used to compute the probability
of an edge between two nodes in a specific layer. The opti-
mized loss function is computed from these probabilities, in
a similar fashion to the first-order loss of LINE [31]. MTNE
[18] also uses a regularization term to encode the different
dimensions to the consensus embeddings. In contrast to
the other methods, the dimension-specific embeddings are
generated from a pretraining stage.

Sharing information with regularization is a simple tech-
nique to build consensus embeddings. In fact, most of the
regularization-based methods force the dimension-specific
embeddings to be similar. However, the used similarity
metrics are fixed and simple. Without prior knowledge to
systematically identify the best metric, these methods gener-
ally underfit the complex interactions between the different
dimensions. More precisely, these approaches cannot ac-
count for the compositional structures hidden in hierarchical
combinations of the initial dimensions. Consequently, the
consensus embeddings obtained based on these methods
can only contain low-level and common information. In the
presence of complementary dimensions, forcing the embed-
dings to be similar can cause significant information losses,
which in turn hinders the quality of the final representa-
tions. Because of these limitations, our approach does not
rely on regularization. Instead, it learns to hierarchically
combine the multiplex graph dimensions to extract both
common and complementary high-level information.

2.3 Multiplex Graph Neural Networks

Learning dimension-specific node representations using
GNNs and then combining these representations based on
simple aggregations (e.g., linear combination, concatena-
tion) is the gold standard for the most recent body of
literature. For instance, DMGI [11] computes consensus em-
beddings by assigning attention weights to the node repre-
sentations of each dimension. The training process of DMGI
leverages InfoMax (mutual information maximization) [32]
to optimize the latent representations. HDMI [12] improves
on DMGI by defining a higher-order InfoMax mechanism
that includes node features. SSDCM [33] applies InfoMax
between local node-level representations and global cluster-
aware graph summary.

A limitation of these methods is the loss of informa-
tion that results from the single and linear aggregation
of dimension-specific node embeddings. Different combi-
nations of dimensions can highlight different interactions
between dimensions [24]. This means that some information
can only be uncovered by combining specific sets of dimen-
sions. Second, these methods do not account for the compo-
sitional nature of high-dimensional multiplex graphs. Con-
sequently, they cannot learn hidden structures that capture
complex interactions between different dimensions. On the

contrary, our approach hierarchically combines the initial
dimensions, making it possible to retrieve latent structures
at different levels of the hierarchy. Moreover, our method
learns more complex combinations than linear aggregation
methods, which we will show in Section 3.4.

3 PROPOSED APPROACH

Let us first present the notations used throughout the paper
and define the problem of multiplex graph embedding.

Multiplex Graph: A multiplex graph is defined as a set
of D graphs G = (G1, G2, . . . , GD), where Gd = (V, Ad, X)
is a graph with N nodes from the set V = {v1, v2, . . . , vN},
Ad ∈ {0, 1}N×N is the adjacency matrix and X ∈ RN×F

is the node feature matrix. The nodes and their features
are shared across all graphs, while each Gd has its own
adjacency matrix. We refer to each graph Gd as a dimension
of G.

Multiplex Graph Embedding: Given G, the goal is to
learn an M -dimensional vector representation zi ∈ RM for
each node vi ∈ V , in an unsupervised setting. The vector
representations are regrouped in a matrix Z ∈ RN×M ,
which can be used in multiple downstream tasks, such as
node classification and link prediction.

HMGE learns node embeddings by computing trainable
non-linear combinations of the initial dimensions. More
precisely, the graph dimensions are hierarchically combined;
that is, each new combination is computed based on com-
binations from a lower level. Each dimension Gd is rep-
resented by its corresponding adjacency matrix Ad. New
combinations are represented by new adjacency matrices re-
sulting from hierarchical aggregations. This process forms a
hierarchy of latent dimensions that reflect the compositional
aspect of high-dimensional graphs. In fact, hierarchical ag-
gregation aims to encode complex interactions between the
initial dimensions in the final embeddings. To train the
model, we maximize the mutual information between the
graph-level representation and the local patches.

In this section, we give a detailed presentation of HMGE
and of the hierarchical aggregation process. After that, we
show formally that our hierarchical aggregation strategy
can capture more complex patterns than linear aggregation
methods such as DMGI [11] and HDMI [12].

3.1 Overview of HMGE

Fig. 2 depicts the architecture of the proposed approach.
HMGE introduces a graph neural network with L layers
that can tackle the multiplex case. Unlike previous meth-
ods, our approach can learn both latent features and latent
graph structures. Specifically, each layer l takes as input
a multiplex graph G(l−1), whose attributes are the node
embeddings H(l−1) (G(0) = G and H(0) = X). Then, this
layer outputs a new multiplex graph G(l), whose attributes
H(l) and graph structures A(l)

d are computed from G(l−1).
Fig. 2a illustrates HMGE on a three-dimensional multi-

plex graph. The first layer computes the node embedding
matrix H(1) and transforms the three input dimensions
into two dimensions by combining the graph structures of
G1 and G2. The second layer computes H(2) by refining
H(1) using the newly created dimensions and combines the
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Fig. 2: The architecture of HMGE.

structures of G
(1)
1 and G

(1)
2 to obtain a single graph G

(2)
1 .

The final node embeddings Z are computed by running a
graph convolutional layer (GCN) on G

(2)
1 .

Multiple transformations are applied inside each layer l,
as depicted in Fig. 2b. More precisely, each layer operates
in two phases: 1) computing the node embedding matrix
H(l); 2) generating hidden dimensions in the form of a
multiplex graph G(l). In the next subsections, we present
in detail how the embeddings are computed and how the
hierarchical aggregation strategy refines the initial multi-
plex graph structures to obtain lower-dimensional multiplex
graph structures.

3.2 Computing Node Embeddings

The first phase of the encoding process in each layer l
focuses on computing the node embeddings. Given the
representation H(l−1) and the graph structures A

(l−1)
d , a

single graph convolutional operation is applied on each
dimension d of G(l−1) to obtain new node representations
H

(l)
d :

H
(l)
d = ReLU(∆̂

− 1
2

d Â
(l−1)
d ∆̂

− 1
2

d H(l−1)W
(l)
d ), (1)

where Â
(l−1)
d = A

(l−1)
d + I , ∆̂d = diag(Â(l−1)

d 1N ), 1N ∈
RN is a vector of ones, W (l)

d is the weight matrix of the
graph convolutional layer, and ReLU is the rectified linear
unit activation function. After that, the dimension-specific
embeddings H

(l)
d are aggregated into a single embedding

H(l) as described by the following equations:

h(l)
n =

Dl−1∑
d=1

β
(l)
n,d h

(l)
n,d, (2)

H(l) =
∥∥∥N
n=1

h(l)
n , (3)

where h
(l)
n is the embedding of node vn generated by the

lth layer, β(l)
n,d are attention weights [34], Dl−1 denotes the

number of dimensions in G(l−1), and
∥∥ stands for the

concatenation operation. The matrix H(l) constitutes the
node features of the newly generated multiplex graph G(l),
which is the input of the next layer of HMGE.

The importance of each dimension in G(l−1) is measured
by the attention weights β

(l)
n,d, which are computed as fol-

lows:

β̂
(l)
n,d = tanh(y(l)

T

d V
(l)
d h

(l)
n,d), (4)

β
(l)
n,d =

β̂
(l)
n,d∑Dl−1

d′=1
β̂
(l)

n,d′

, (5)

where V
(l)
d ∈ RM×M and y

(l)
d ∈ RM are part of the training

parameters. The attention weights adjust the contribution of
each individual dimension to the representations. In spite
of its widespread adoption, the attention mechanism is not
sufficient to capture complex interactions between the graph
dimensions. To address this limitation, the second phase
of the encoding process at each layer refines the graph
structures.

3.3 Hierarchical Aggregations
The second phase of the encoding process in each layer l fo-
cuses on computing the graph structures A(l)

d . As discussed
in the motivation subsection, relevant information can be
hidden in non-linear compositions of the graph dimensions.
To identify this information, the lth layer computes Dl out-
put adjacency matrices from Dl−1 input adjacency matrices
such that Dl−1 < Dl.

Each output graph structure is computed based on a
weighted summation of the input adjacency matrices fol-
lowed by a non-linear activation function. The weighted
summation can uncover hidden paths in the multiplex
graph. It also transforms multiple adjacency matrices into
a single output matrix. The activation function models non-
linear interactions, and stacking multiple HMGE layers can
capture more complex interactions. Accordingly, the jth

output adjacency matrix of the lth layer is computed as
follows:

A
(l)
j = σ(

Dl−1∑
i=1

α
(l)
i,jA

(l−1)
i ), (6)

where σ is an activation function (we use ReLU in the
experiments), and α

(l)
i,j is the weight associated with the
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ith input and jth output dimensions. Let α(l) = (α
(l)
i,j) ∈

RDl−1×Dl be the matrix that contains the combination
weights. Since α(l) is a trainable matrix, HMGE learns com-
binations of adjacency matrices that maximize the mutual
information objective function. Note that before computing
Eq. (6), the weights α

(l)
i,j are normalized with a softmax

function:

α
(l)
i,j =

exp (α
(l)
i,j)∑Dl−1

k=1 exp (α
(l)
k,j)

. (7)

The lth layer learns and computes multiple combina-
tions, which are then used by the layer l + 1 to improve the
node embeddings H(l) and compute other combinations.
This process forms a hierarchy of adjacency matrices as
illustrated in Fig. 2a. In addition, since each layer incre-
ments on the embeddings of the previous layer, the final
representation Z contains information about both the input
graph G and the intermediate graphs G(l). Moreover, by
applying an activation function on the output dimensions
and stacking multiple layers, HMGE can uncover non-
linear latent structures hidden in the input multiplex graph
dimensions.

To tackle the high-dimensionality of real-world multi-
plex graphs, the proposed solution gradually reduces the
number of dimensions of the input at each layer. When the
number of dimensions is high, aggregating all embeddings
in a single step is ineffective, as it can cause a significant loss
of information. HMGE addresses this issue by aggregating
the embeddings multiple times on several intermediate
multiplex graphs. We show in the next subsection that this
hierarchical aggregation process can model more complex
patterns than linear aggregation.

3.4 HMGE vs Linear Aggregation Methods

Most current approaches to multiplex graph embedding
rely on linear aggregation to extract node representations
[11], [12]. More specifically, they compute node embeddings
on individual dimensions and then aggregate them using a
weighted summation. Attention weights are used to account
for the relevance of each dimension. In this section, we show
that hierarchical aggregations can model more complex
patterns than linear aggregation approaches.

For readability, we ignore the attention weights in the
following equations and suppose that all graph convolu-
tional operations have the same weight matrix W . More-
over, we ignore the activation functions to clearly exhibit the
combinations that are formed by the different methods. For
illustration purposes, consider a two-dimensional multiplex
graph in the input. The following equation summarizes the
embedding module of a linear aggregation method with two
layers:

Z = A1 (A1XW )W +A2 (A2XW )W,

= (A2
1 +A2

2)XW 2.
(8)

We can see that A2
1 and A2

2 are summed to compute the
node embedding matrix Z . On the other side, a two-layer
HMGE embedding module on the same input graph can be
summarized as follows:

Z = (α1A1 + α2A2)H
(1) W,

= (α1A1 + α2A2) (A1XW +A2XW )W,

= (α1A1 + α2A2) (A1 +A2)XW 2,

= (α1A
2
1 + α1A1A2 + α2A2A1 + α2A

2
2)XW 2,

= (α1A
2
1 + (α1 + α2)A1A2 + α2A

2
2)XW 2.

(9)

HMGE can learn more complex patterns than linear
aggregation methods. Using hierarchical aggregations, both
A2

1 and A2
2 are leveraged, while also introducing A1A2.

Moreover, the weights α1 and α2 make it possible to con-
sider the importance of each term. The term A1A2 may
reveal edges that cannot be retrieved by considering A1

and A2 individually, or by combining them linearly. For
example, as illustrated in Fig. 1b, the combination of two
adjacency matrices (specifically, in this figure, the product
of the matrices) forms relevant paths between nodes that
were not previously connected.

In practice, given a high-dimensional multiplex graph,
several HMGE layers can be stacked to construct even more
complex combinations. In the experiments section, we show
that the additional expressive power of HMGE improves
the performance on downstream tasks compared to linear
aggregation methods on both synthetic and real-world data.

3.5 Training Algorithm

HMGE is trained based on a self-supervised strategy [35],
which involves the learning of general-purpose node em-
beddings. Therefore, the trained model can be used to
perform multiple downstream tasks. Specifically, inspired
by Deep Graph Infomax (DGI) [36], we employ a loss
based on mutual information maximization [32]. The train-
ing procedure maximizes the mutual information between
the graph-level representation and the local patches from
the set {z1, z2, . . . , zN}. The graph-level representation s
is a summary of the entire graph G and is obtained by
aggregating all the node embeddings zi:

s =
1

N

N∑
i=1

zi. (10)

A discriminator D is used as a proxy to maximize the
intractable mutual information function. The discriminator
takes as input a patch-summary pair and is trained to
compute the probability score assigned to the pair. To this
end, we select positive pairs, which consist of the graph
summary s and samples from Z = HDME(G). On the other
hand, negative pairs are formed from s and samples from
Ẑ = HDME(Ĝ). The graph Ĝ is a corrupted version of the
input graph that can be generated in multiple ways, such
as swapping nodes and removing or adding links. In this
work, we randomly shuffle the node features to obtain a
corrupted version X̂ and use this version as the feature
matrix of Ĝ. The discriminator function D is implemented
based on bilinear scoring:

D(hi, s) = Sigmoid(hi Qs), (11)
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Algorithm 1 HMGE

Input: multiplex graph G, embedding dimension M , num-
ber of layers L, number of iterations T .

Output: Node embeddings Z .
1: for epoch← 1 to T do
2: X̂ ← Shuffle(X)
3: Ĝ← G, but replace X with X̂ .
4: Z ← Encode-Multiplex-Graph(G)
5: Ẑ ← Encode-Multiplex-Graph(Ĝ)
6: s← 1

N

∑N
i=1 zi

7: L ←
∑

zi∈Z logD(zi, s) +
∑

ẑj∈Ẑ log(1−D(ẑj , s))

8: Update {α(l),W
(l)
d , V

(l)
d , y

(l)
d } to minimize L with

Adam.
9: end for

10: return Z.

Algorithm 2 Encode-Multiplex-Graph

Input: multiplex graph G, number of layers L.
Output: node embeddings H(L).

1: G(0) ← G
2: H(0) ← X
3: for l← 1 to L do
4: G(l), H(l) ← Hierarchical-Aggregation(G(l−1), H(l−1))
5: end for
6: return H(L).

where Q ∈ RM×M is a parameter matrix, and M is the
size of node embeddings. We minimize the binary cross-
entropy loss L to train the discriminator and generate the
node embeddings as described by:

L =
N∑
i=1

logD(zi, s) +
N∑
j=1

log(1−D(ẑj , s)). (12)

Algorithms 1, 2 and 3 summarize the proposed ap-
proach. We train the model for T iterations and update the
parameters {α(l),W

(l)
d , V

(l)
d , y

(l)
d } by minimizing the loss L

using the Adam optimizer. The time complexity of HMGE
is O(TLD(EM +NM2 + ED)), where N is the number of
nodes, D the number of input dimensions, L the number
of embedding layers, M the size of node embeddings,
and E is the maximum number of edges in the graph
dimensions. The memory complexity of our approach is
O(LD(E +NM +M2 + 2D2)).

4 EXPERIMENTS

In this section, we evaluate the suitability of HMGE for
high-dimensional multiplex graph embedding. First, we
perform experiments on synthetically generated data. After
that, we compare HMGE with various multiplex graph em-
bedding methods on real-world data for two downstream
tasks: link prediction and node classification. Finally, we
present an ablation study followed by visualizations of the
embeddings and combination weights α(l).

Algorithm 3 Hierarchical-Aggregation

Input: multiplex graph G(l−1), node embeddings H(l−1).
Output: multiplex graph G(l), node embeddings H(l).

1: H(l) ← Phase-One(G(l−1), H(l−1))
2: G(l) ← Phase-Two(G(l−1))
3: return G(l), H(l).

4: Function Phase-One(G(l−1), H(l−1))
5: for d← 1 to Dl−1 do
6: H

(l)
d ← GCN(H(l−1), A

(l−1)
d )

7: end for
8: Compute β(l) according to Eq. (4) and Eq. (5).
9: h

(l)
n =

∑Dl−1

d=1 β
(l)
n,d h

(l)
n,d

10: H(l) =
∥∥∥N
n=1

h
(l)
n

11: return H(l).

12: Function Phase-Two(G(l−1))
13: for j ← 1 to Dl do
14: A

(l)
j ← σ(

∑Dl−1

i α
(l)
i,jA

(l−1)
i )

15: G
(l)
j ← (V, A

(l)
j , H(l))

16: end for
17: G(l) ← (G

(l)
1 , G

(l)
2 , . . . , G

(l)
Dl
)

18: return G(l).

4.1 Experimental Setup

4.1.1 Datasets

Due to the scarcity of real-world labeled high-dimensional
multiplex graphs, we collected from various sources four
datasets to assess the suitability of HMGE. Table 1 summa-
rizes the statistics of these multiplex graphs. The datasets
and the implementation of HMGE are on Github 2.

BIOGRID: We collected a multiplex graph from the
BIOGRID database of proteins [2]. Nodes represent proteins,
and edges represent protein-protein interactions. Protein-
protein interactions can be inferred by various protocols, for
example, by using the biochemical effect of one protein on
another or from X-ray Crystallography at the atomic level
[2]. The dimensions of the multiplex constitute different
inference protocols. Node classification labels represent the
species from which the proteins have been extracted.

DBLP-Authors: This dataset represents a coauthorship
graph. We used AMiner [37] to collect it. The nodes are
the authors of research papers, and an edge between two
authors indicates that they have co-written a paper. Di-
mensions represent various conferences and journals. For
example, if two authors are connected in dimension d1, they
have co-written a paper in the conference or journal d1. We
use the authors’ research areas as classification labels. Note
that we end up with a multilabel classification problem (i.e.,
a node can belong to more than one class).

IMDB: It is a multiplex graph extracted from IMDB
1. Nodes are movies, and an edge between two movies
indicates that a person has participated in both movies.
Different dimensions represent different roles: actors, direc-

2. https://github.com/abdouskamel/HMGE
1. https://www.imdb.com/interfaces/

https://github.com/abdouskamel/HMGE
https://www.imdb.com/interfaces/
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Dataset # Dimensions # Nodes # Edges # Training data # Classes
BIOGRID 15 4,211 280 979 252 4

DBLP-Authors 10 5,124 33 250 307 4
IMDB 8 3000 224 984 173 3

STRING-DB 7 4,083 4 923 554 244 3

TABLE 1: Real-world data statistics.

tors, producers, etc. We use the movie genre as classification
labels.

STRING-DB: This is another protein-protein interaction
graph collected from STRING-DB [38]. It is similar to BI-
OGRID in terms of node, edge, and dimension semantics.
The difference with BIOGRID is in the classification labels.
In this dataset, the labels represent protein families instead
of animal species.

4.1.2 Compared Algorithms
Our comparison focuses on methods designed for multiplex
graph embedding.

CrossMNA [13]: This method defines node embeddings
as a combination of intra-vectors (i.e., dimension-specific
embeddings) and inter-vectors (i.e., consensus embeddings).
It then optimizes a loss based on edge reconstruction.

MultiVERSE [14]: It is a random walk-based method.
It learns embedding by performing random walks on the
supra-adjacency matrix of the multiplex graph (i.e., walks
can jump from one dimension to another). After that, the
random walks are turned into a similarity matrix from
which node embeddings are then generated.

GATNE [29]: This method runs random walks on each
dimension of the graph and then generates new training
samples based on nodes’ proximity. It then computes em-
beddings with a trainable linear combination mixed with
attention. Finally, it optimizes a loss function based on graph
reconstruction.

DMGI [11]: It is a linear aggregation method that learns
individual node embeddings in each dimension by max-
imizing mutual information. After that, embeddings are
aggregated using attention scores. A regularization term is
employed to fine-tune the representations.

HDMI [12]: It is an extension of DMGI that defines a
high-order mutual information loss. On each dimension, it
maximizes the mutual information between a graph sum-
mary, local patches, and node features.

SSDCM [33]: Similar to DMGI and HDMI, this method
is based on mutual information maximization. However,
structure-aware global graph representations are leveraged
to optimize the InfoMax loss. This is achieved by a cluster-
aware strategy for graph summary generation.

4.1.3 Evaluation Protocol
To evaluate HMGE, we perform both link prediction and
node classification. We use the unsupervised loss in Eq. (12)
to learn the node embeddings for both tasks. Then, for node
classification, we run logistic regression on the embeddings
and evaluate the results with F1-Macro and F1-Micro. For
link prediction, we use the inner product activated with
a Sigmoid function to calculate the missing links scores:
Sigmoid(ZZT ). The results are then evaluated with the area
under the ROC curve (AUC-ROC) and average precision

(AP). Note that for link prediction, we randomly remove
10% of the links for the sake of evaluation.

4.1.4 Parameter Settings
For our method, we set the size of node embeddings to 64
(except on BIOGRID, where we set it to 32, as it leads to
better results) and the number of layers to 2. We use Adam
as an optimizer with a learning rate of 0.001 and a weight
decay of 10−5. We train for 2, 000 epochs and adopt early
stopping with a patience of 100.

4.2 Experiments on Synthetic Data

We first compare HMGE with DMGI and HDMI on gener-
ated data. Through this evaluation, we show that when the
graph dimensions increase, the classification accuracy of the
competitors rapidly decreases. In contrast, the accuracy of
HMGE is significantly less affected by the increase in the
number of dimensions.

4.2.1 Data Generation
To synthesize a multiplex graph with N nodes, D dimen-
sions and K classes, we run a stochastic block model (SBM)
[39] D times. Each run generates a dimension of the graph
along with node labels specific to this dimension. The SBM
proceeds as follows: (1) Each node has a probability pi to
belong to class ci. We set K = 2 (binary classification) with
p1 = p2; (2) For every pair of nodes vi and vj , such that
vi is in class ci and vj is in class cj , the edge (vi, vj) has a
probability pi,j . We use two probabilities pin and pout: the
probabilities of an edge between two nodes of the same class
and of different classes, respectively.

After running SBM D times, we obtain D adjacency
matrices each with its own classification labels. We use a
voting mechanism across the dimensions to get a single
global label for each node. For example, if v is in class c1
in dimension G1, in class c2 in dimension G2, and in class
c1 in dimension G3, we assign v to class c1. This process
creates a multiplex graph whose dimensions contribute to
the node labels. In this context, an effective embedding
method should capture as much information as possible
from every dimension.

In total, we generate 9 synthetic multiplex graphs with
3,000 nodes and with the following number of dimensions:
{3, 7, 11, 15, 21, 25, 31, 35, 41}. We set p1 = p2 = 0.5, pin =
0.05, and pout = 0.01. We generate binary classes and use
the classification accuracy for evaluation.

4.2.2 Evaluation Results
Fig. 3 shows the node classification results on the synthetic
datasets. We can see that the accuracy of DMGI and HDMI
significantly decreases as the number of dimensions in-
creases, going from a near-perfect classification when D = 3
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Fig. 3: Node classification results on synthetic data.

to below 70% when D = 41. As the number of dimensions
increases, the global node labels become more and more dif-
ferent from the dimension-specific labels, making predicting
the correct global node labels more difficult. On the other
hand, the accuracy of HMGE drops at a considerably slower
rate, reaching 83% when D = 41.

Note that the competing algorithms have near-perfect
accuracy when D = 3. This is because each dimension has
a simple structure consisting of two highly dense regions
connected by a sparse region. When D is small, predicting
the node labels from this simple structure is straightforward,
but the prediction becomes more difficult as D increases.
These results illustrate the difficulty of effectively encoding
high-dimensional multiplex graphs.

Furthermore, the results suggest that competitors con-
sidered in the comparison do not fully exploit the infor-
mation provided by each dimension. This aspect exhibits
a serious limitation of state-of-the-art methods, particularly
common embedding techniques that use linear aggregation.
HMGE alleviates this issue by leveraging hierarchical aggre-
gations.

4.3 Experiments on Real-World Data

In this section, we evaluate HMGE on real-world high-
dimensional multiplex graphs collected from various
sources (Table 1). We perform two downstream tasks: link
prediction and node classification.

4.3.1 Link Prediction

Table 2 shows a comparison between the proposed approach
and state-of-the-art methods on the link prediction task. We
can see that most compared algorithms have AUC and AP
scores below or near 50%. These methods are not well-
suited for link prediction on high-dimensional multiplex
graphs for several reasons. On the one hand, MultiVERSE
and GATNE require long sequences of random walks to
consider all dimensions. Moreover, these methods can not
capture long-range dependencies in the node sequences. On
the other hand, SSDCM, DMGI, and HDMI are limited by
the single and linear aggregation of dimension-specific node
embeddings. Therefore, they fail to capture the composi-
tional relations between the initial dimensions.

We can also see from Table 2 that HMGE yields better
results than the compared algorithms. In particular, our
method outperforms the state-of-the-art models by a sig-
nificant margin in several cases. For instance, the difference
in the link prediction task between HMGE and the most
competitive method on BIOGRID (i.e., CrossMNA) is higher
than 20% in terms of AUC. Furthermore, HMGE achieves
AUC and AP scores over 70% on BIOGRID, and close to
70% on DBLP-Authors. These two datasets have the highest
number of dimensions among the other ones. Our results
substantiate the effectiveness of HMGE in encoding high-
dimensional multiplex graphs. Unlike previous methods,
our approach stands out by its ability to perform hierar-
chical aggregations, which are introduced to capture com-
positional interactions between the initial dimensions.

4.3.2 Node Classification

Table 3 shows the evaluation results on node classification.
HMGE outperforms HDMI, DMGI, and SSDCM, which
are based on mutual information maximization and linear
aggregation. Particularly, these methods are less competitive
on BIOGRID, which is the dataset with the highest number
of dimensions. For instance, the difference in node classifica-
tion performance between HMGE and DMGI on BIOGRID
is higher than 40% in terms of F1-Macro and F1-Micro. As
the number of dimensions increases, the linear aggregation
strategy becomes less effective. We reported similar results
on synthetic data. In the high-dimensional setting, informa-
tive and complex latent structures can be hidden across var-
ious dimensions. These latent structures can be established
hierarchically from the dimension-specific embeddings.

We can also see from Table 3 that our model yields
better results than random walk-based methods (GATNE
and MultiVERSE). These methods use the skip-gram model,
which has limited capacity to capture long-range dependen-
cies in the node sequences. Unlike these methods, HMGE
leverages hierarchical aggregations to capture the composi-
tional interactions between the initial dimensions in the final
node embeddings.

4.4 Ablation Study

In this section, we perform two ablation experiments to
show the significance of our contributions: ablation of the
whole hierarchical aggregation mechanism, and ablation of
the combination weights.

4.4.1 First Ablation (Hierarchical Aggregation Mechanism)

We evaluate the performance of HMGE without using the
hidden layers that generate the latent multiplex graphs.
When the number of hidden layers is zero, our training
process amounts to learning the embeddings on each di-
mension with GCNs and then aggregating them linearly to
a single representation. The goal is to illustrate the benefits
of hierarchical aggregations to high-dimensional multiplex
graph embedding.

The first rows of Tables 4 and 5 show the results obtained
after performing the first ablation, respectively on the tasks
of link prediction and node classification. We can see that the
hierarchical aggregation mechanism significantly improves
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Dataset BIOGRID DBLP-Authors IMDB STRING-DB
Metrics AUC AP AUC AP AUC AP AUC AP

CrossMNA 50.95 50.48 53.17 51.63 50.9 50.45 50.19 50.09
MultiVERSE 50.3 50.15 54.54 52.38 48.34 49.15 50 50

GATNE 39.82 42.53 43.57 44.34 37.54 41.05 48.15 47.89
SSDCM 32.14 40.52 62.74 58.54 53.84 54.48 50.4 50.2
DMGI 42.33 44.16 50 50 52.84 52.66 54.62 52.69
HDMI 43.91 46.01 60.64 59.36 50.95 50.76 54.46 53.96
HMGE 71.76 70.17 67.31 67.21 57.42 55.77 65.46 62.84

TABLE 2: Results on link prediction. Best in bold and second best underlined.

Dataset BIOGRID DBLP-Authors IMDB STRING-DB
Metrics F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro

CrossMNA 97.04 96.98 63.52 70.08 34.42 34.33 33.26 72.44
MultiVERSE 98.53 98.53 57.9 60.72 41.3 41.3 46.68 47.75

GATNE 98.43 98.49 58.12 71.34 42.52 42.31 70.1 72.11
SSDCM 11.22 28.42 57.67 71.70 24.78 33.59 61.13 65.84
DMGI 50.98 51.96 54.49 62.36 38.2 38.2 65.61 67.62
HDMI 62.9 64.46 57.1 70.8 38.9 39.5 72.03 73.94
HMGE 98.75 98.77 57.52 71.76 43.02 43.16 80.33 82.08

TABLE 3: Results on node classification. Best in bold and second best underlined.

Dataset BIOGRID DBLP-Authors IMDB STRING-DB
Metrics AUC AP AUC AP AUC AP AUC AP

HMGE (First Ablation) 47.16 47.17 56.02 53.76 41.73 43.70 59.75 58.23
HMGE (Second Ablation) 66.48 63.38 47.91 49.05 52.45 51.28 62.64 60.02

HMGE 71.76 70.17 67.31 67.21 57.42 55.77 65.46 62.84

TABLE 4: Ablation study on the task of link prediction. Best in bold and second best underlined.

Dataset BIOGRID DBLP-Authors IMDB STRING-DB
Metrics F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro

HMGE (First Ablation) 91.07 91.26 56.74 70.07 39.18 40.97 61.95 66.69
HMGE (Second Ablation) 95.87 96.03 57.35 70.35 21.29 34.75 79.61 81.45

HMGE 98.75 98.77 57.52 71.76 43.02 43.16 80.33 82.08

TABLE 5: Ablation study on the task of node classification. Best in bold and second best underlined.

the link prediction and node classification results. The pro-
gressive refinement of the hidden relations allows to align a
large number of divergent and complementary dimensions
to a consensus embedding, which in turn alleviates the
information loss caused by the widely used single and linear
aggregation step. Note that the optimal number of layers
depends on the dataset and should be selected through
empirical tests.

4.4.2 Second Ablation (α Weights)

We evaluate the performance of HMGE without using the
α weights. More precisely, we compare between using Eq.
(6) to compute the non-linear combinations, and using the
same formula without weights:

A
(l)
j = σ(

Dl−1∑
i=1

A
(l−1)
i ). (13)

The second rows of Tables 4 and 5 show the results
obtained after performing the second ablation, respectively
on the tasks of link prediction and node classification.
We can see that the α weights grant the trained model
more flexibility to improve the link prediction and node
classification results. These weights are necessary to adjust
the importance of each latent dimension. Otherwise, all the
dimensions would contribute equally to the generated latent
structures. To identify relevant non-linear combinations,
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Fig. 4: Sensitivity to the embeddings size on STRING-DB

some dimensions must be attenuated or even discarded
using the trainable α weights.

4.5 Hyper-parameters Sensitivity
Fig. 4 shows the variations of F1-macro and F1-micro scores
with respect to the node embedding size M . We can see that
the variations remain small as the scores fluctuate within
the range of 71% and 82%. Since HMGE yields consistent
results for a wide range of values, we can conclude that our
approach is robust with respect to the node embedding size.
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(a) Layer 0. (b) Layer 1. (c) Layer 2.

Fig. 5: Visualization of the embeddings learned at different layers of HMGE on STRING-DB.

(a) Layer 0. (b) Layer 1. (c) Layer 2.

Fig. 6: Visualization of the embeddings learned at different layers of HMGE on IMDB.

4.6 Visualizations
In this subsection, we show qualitative results to give addi-
tional insights into the inner working of HMGE.

4.6.1 Node Embedding
Fig. 5 and 6 show 2D T-SNE visualizations of the embedding
matrix H(l) at multiple layers of HMGE, respectively on
STRING-DB and IMDB. Different colors represent different
classes. Generally, we can see that each layer improves upon
the separation between the different classes. Note that layer
0 represents the input layer.

On STRING-DB, the classes cannot be linearly separated
at layer 0. At layer 1, the blue class is well separated from the
rest of the classes, but the purple and yellow classes are still
tangled. Layer 2 improves the geometric configuration by
pushing away samples from the yellow class from samples
from the purple one. We conclude that, for STRING-DB, one
layer is sufficient to identify the blue class. A second layer is
necessary to better separate the purple and yellow classes.
This illustrates the benefits of a hierarchical aggregation
approach to multiplex graph embedding. On IMDB, layer 1
forms the foundation for partitioning the nodes into 2 com-
munities. Layer 2 improves on this separation. However,
the classes are still not linearly separable. Since the model
is trained without ground-truth labels, the representations
may not align with all downstream tasks.

4.6.2 Combination Weights
Fig. 7 shows a visualization of the combination weights
α(1) of the first layer on DBLP-Authors. The horizontal axis
shows the different dimensions of the first layer. The vertical
axis shows the weight of each dimension.

We can see that dimensions 3, 8, 9, and 10 have been as-
signed small weights compared to the other dimensions. In
the ablation study, we showed that the combination weights
have an important impact on the quality of the final embed-
dings. In particular, the results of link prediction on DBLP-
Authors significantly drop when not using combination

Fig. 7: Visualization of the combination weights α(1) on
DBLP-Authors.

weights. The visual results confirm that some dimensions
are less relevant than the others for link prediction.

5 CONCLUSION

In this paper, we propose HMGE, a novel approach for
embedding high-dimensional multiplex graphs. In the high-
dimensional setting, informative latent structures are hid-
den in non-linear combinations of the initial dimensions.
In this context, traditional methods based on linear aggre-
gation struggle to achieve suitable consensus embeddings.
To tackle these issues, our approach hierarchically encodes
the input multiplex graph to low-dimensional node repre-
sentations using hierarchical aggregations. At each level of
the hierarchy, hidden dimensions are formed by comput-
ing non-linear combinations of the input dimensions. This
process gradually generates lower-dimensional multiplex
graphs and identifies relevant latent structures hidden in
the initial graph. Experiments on synthetic and real-world
datasets show that our approach outperforms the state-of-
the-art methods in multiplex graph embedding. The abla-
tion study confirms the relevance and effectiveness of hier-
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archical aggregations for high-dimensional multiplex graph
embedding.
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