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Language Models
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Abstract—Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have
yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters
can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they
still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to
incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced
Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies
respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of
NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and
rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some
promising future directions of KE-PLMs.

Index Terms—Pre-trained language models, natural language processing, knowledge-enhanced pre-trained language models, natural
language understanding, natural language generation.

✦

1 INTRODUCTION

W ITH the continuous development of deep learning
technologies in recent years, Pre-trained Language

Models (PLMs) which are trained with unsupervised ob-
jectives on massive text corpora, have been widely used in
the field of Natural Language Processing (NLP), and yielded
state-of-the-art performance on various downstream tasks.
Different from traditional supervised learning, PLMs based
on self-supervised learning are usually pre-trained on
general-purpose large-scale unlabeled data first and then
fine-tuned on small-scale labeled data for the specific tasks.
Representative work, such as BERT [1], GPT [2], T5 [3], has
refreshed benchmark records constantly in many Natural
Language Understanding (NLU) and Natural Language
Generation (NLG) tasks, successfully promoting the devel-
opment of NLP.

As the size of PLMs grows larger, PLMs with hundreds
of millions of parameters have been extensively demon-
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strated to possess the ability of capturing rich linguistic [4],
[5], [6] and factual knowledge [7], [8] in certain probings.
However, due to the lack of explicit representation of knowl-
edge in the raw data, PLMs suffer from limited performance
on downstream tasks. In particular, the prior study has
found that traditional pre-training objectives often have
weak symbolic reasoning capabilities [9] since PLMs tend
to concentrate on the word co-occurrence information. In-
corporating knowledge into PLMs can empower their mem-
orization and reasoning [10]. For instance, in the language
understanding problem of ”The monument to the people’s
Heroes sits solemnly on [MASK] square”, traditional PLMs
predict the output of the masked position as ”the”, while
knowledge-enhanced PLMs predict ”Tiananmen”, which is
more accurate.

For language generation, although existing PLMs are
able to obtain rich language information from text corpus
and generate correct sentences, almost all of them fail to gen-
erate output towards capturing the human commonsense,
since they overlook the external world knowledge [11]. In
other words, sentences generated by PLMs often conform to
the grammatical norm, but not to logic. For example, given a
concept set {hand, sink, wash, soap} to generate a sentence,
conventional PLMs may generate ”hands washing soap on
the sink”, while the PLM with extra knowledge generates
”man is washing his hands with soap in a sink”, which is
more natural and logical.

To address the above issues, explicitly incorporating
knowledge into PLMs has been an emerging trend in re-
cent NLP studies. Wei et al. [12] reviewed the knowledge-
enhanced PLMs along three taxonomies: types of knowl-
edge sources, knowledge granularity, and application.
Yin et al. [13] summarized the recent progress of pre-
trained language model-based knowledge-enhanced mod-
els (PLMKEs) according to three crucial elements of them:
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knowledge sources, knowledge-intensive NLP tasks, and
knowledge fusion methods. In this work, considering the
fact that injecting knowledge into language models can pro-
mote both NLU and NLG tasks, and these two areas have
different focuses, we aim to present a comprehensive review
of Knowledge-Enhanced Pre-trained Language Models (KE-
PLMs) in the two areas to provide respective insights of
KE-PLMs in NLU and NLG. The main contributions of this
survey can be summarized as follows:

(1) In this survey, we divide KE-PLMs into two main
categories according to the downstream tasks: NLU
and NLG. Appropriate taxonomies are respectively
presented to highlight the focuses of these two dif-
ferent kinds of tasks in NLP.

(2) For NLU, KE-PLMs are further divided into four
sub-categories according to the types of knowledge:
linguistic knowledge, text knowledge, knowledge
graph (KG), and rule knowledge. For NLG, focused
on the knowledge sources, KE-PLMs are further cat-
egorized into retrieval-based methods and KG-based
methods. Fig. 1 shows our proposed taxonomies for
NLU and NLG.

(3) We discuss some possible directions that may tackle
the existing problems and challenges of KE-PLMs in
the future.

The rest of this paper is arranged as follows. In section
2, we provide the background of PLMs under the devel-
opment of training paradigms in NLP. In Section 3, we
introduce the taxonomy of KE-PLMs in the field of NLU.
In Section 4, we introduce the taxonomy of KE-PLMs in the
field of NLG. For both NLU and NLG fields, we discuss the
representative work of each leaf category in the taxonomy.
In Section 5, we propose the possible research directions of
KE-PLMs in the future based on the existing limitations and
challenges. Finally, we conclude in Section 6.

2 BACKGROUND

Pre-trained Language Models. Although the idea of pre-
training on a language modeling task is not novel, the
training paradigm has shifted to pre-train and fine-tune, with
the emergence of ELMo [14] and ULMFiT [15]. Both are
based on Long Short-Term Memory (LSTM) architecture.
They propose to fine-tune the language model layer by layer
for downstream tasks, and their performance demonstrates
the competitiveness of pre-trained language models.

Unlike the early fully supervised method that learns
salient features from limited data [16], language models can
be trained on a large amount of raw textual data to ob-
tain general-purpose representations. Then, the pre-trained
models will be applied to various downstream tasks by fine-
tuning them through task-specific objective functions [17].
For example, UNILM [18] unifies three language modeling
objectives, which can be adapted to NLU and NLG tasks
simultaneously.

As the Transformer architecture with multi-head self-
attention mechanism is put forward [19], all popular lan-
guage models, including GPT [2], BERT [1], BART [20]
and T5 [3] are proposed based on the Transformer. The
multi-head self-attention mechanism allows every word to

attend to each other, making the models capture long-range
dependencies and learn more expressive representations.
These models differ in the model structure and training
objectives. In particular, GPT is an autoregressive language
model (unidirectional) which predicts the next word given
all the previous words. BERT is a masked language model
(bidirectional) that aims to predict the “masked” word con-
ditioned on all the other words. BART and T5 are encoder-
decoder language models that learn to generate a sequence
when given an input sequence.

Prompt Learning. Instead of adapting PLMs to different
downstream tasks by designing specific objective functions,
“pre-train, prompt, and predict” which reformulates down-
stream tasks through textual prompts has taken the place
of “pre-train, fine-tune” to become the fourth paradigm
in NLP [17]. In this paradigm, there is even no need for
fine-tuning models using task-specific training objectives,
PLMs themselves can directly be employed to predict the
output that is desired, breaking through the problem of data
constraints and bridging the gap of objective forms between
pre-training and fine-tuning [7], [21], [22], [23], [24], [25],
[26]. Previous work [17] conducts a comprehensive survey
on the emerging field of prompt-based learning.

Though this prompt learning method has achieved
promising results via constructing prompt information
without changing the structure and parameters of PLMs sig-
nificantly, it also calls for the necessity of choosing the most
appropriate prompt template and verbalizer [22] which may
have a great impact on model’s performance [22]. To this
end, some work [27], [28], [29], [30], [31] has proposed to use
knowledge as prompt to enhance the prompt-tuning process
and reduce the cost of template construction and label map-
ping. Through injecting domain/task-relevant knowledge at
the fine-tuning stage, PLMs can better serve downstream
tasks and obtain better performance. In this survey, we also
investigated the knowledge-enhanced pre-trained language
models that incorporate external knowledge via prompt
learning.

3 KE-PLMS FOR NLU
NLU is a subpart of NLP concerning all the methods which
enable machines to understand and interpret the content
of textual data. It extracts core semantic information from
the unstructured text and applies this information to down-
stream tasks, thus playing a vital role in applications such as
text classification, relation extraction, named entity recogni-
tion (NER), and dialogue system. In line with the taxonomy
shown in Fig. 1, we divide the knowledge incorporated
by KE-PLMs which are designed for NLU tasks into the
following four categories according to their different types,
that is, linguistic knowledge, text knowledge, knowledge
graph, and rule knowledge. For each category, we discuss
its representative methods.

3.1 Incorporating Linguistic Knowledge into PLMs

Linguistic knowledge, mainly divided into lexical knowl-
edge and syntax tree, is the most common auxiliary fea-
ture incorporated into PLMs [32]. Among them, lexical
knowledge includes but is not limited to Part-of-Speech
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Fig. 1. Taxonomy of Knowledge Enhanced Pre-trained Language Models (KE-PLMs) based on the two core tasks of NLP: Natural Language
Understanding (NLU) and Natural Language Generation (NLG).

(POS) tagging, and sentiment tags of words. LIBERT [33]
introduces lexical relation classification (LRC) as a new
pre-training task on the basis of standard BERT objectives,
using synonyms and hypernym-hyponym pairs to predict
whether two words are in specific semantic relations, which
enhances the modeling ability of PLMs for semantic infor-
mation. SenseBERT [34] integrates word-supersense (e.g.,
noun.food, noun.state) and predicts their corresponding
supersenses by restoring the masked words, which can
explicitly learn the semantic information of words in a
given context. SKEP [35] improves the effect of PLM on the
sentiment analysis task by integrating sentiment knowledge
(sentiment words, polarity, and aspect-sentiment pairs).
Sentiprompt [28] incorporates sentiment knowledge about
aspects, opinions, and polarities into prompt through the
construction of consistency and polarity judgment tem-
plates, and explicitly models term relations between aspect
and opinion terms, better introducing task-related knowl-
edge for the language models through prompt-tuning meth-
ods. LET [36] integrates semantic information of HowNet
to improve the Chinese sentence matching task. KEAR [37]
combines the knowledge from ConceptNet, dictionary entry
definition, and labeled training data to enhance its perfor-
mance on commonsense knowledge question answering.
DictBERT [38] takes dictionary knowledge as the exter-
nal source, and achieves knowledge enhancement for pre-
training tasks by means of contrastive learning.

Considering the different ways of incorporating syntax
tree knowledge into PLMs, we divided the KE-PLMs into
three categories as illustrated in Fig. 2, including intro-
ducing new relevant pre-training tasks [39], adopting new
attention mechanism [40], [41], and designing new model
structure [42]. For instance, LIMIT-BERT [39] realizes multi-
task learning across five linguistic tasks, and simply sums
up these task-specific losses together on the basis of a variety
of linguistic knowledge such as POS tagging, semantic role
labeling (SRL), dependency relations, syntax trees, and etc.
in model training. Syntax-BERT [40] provides additional
syntax information by constructing a syntax tree parser,
and generates a new attention mechanism according to
the constructed syntax tree. Syntax-augmented BERT [42]
introduces a syntax-based graph neural network to fuse the

syntax information from dependency trees to improve PLM.
Despite the above methods consistently incorporating

linguistic knowledge into PLMs, they differ in the stages of
knowledge fusion. LIBERT [33], SenseBERT [34], SKEP [35],
Dictbert [38], LIMIT-BERT [39], and Syntax-BERT [40] fuse
linguistic knowledge in the pre-training stage of PLMs to
enhance the representation of the input, while Sentiprompt
[28], LET [36], and KEAR [37] fuse knowledge in the fine-
tuning stage of PLMs for improving task performance.

3.2 Incorporating Text Knowledge into PLMs

Text knowledge is usually retrieved from general-domain
text collection (such as WikiText [43], Wiktionary [37]) or
large corpus (such as Wikipedia [44]). KNN-LM [43] selects
the nearest K neighbors from training samples as knowl-
edge incorporated into PLM, and its earlier idea comes
from cache-LM [45] which remains the first K words in
the cache. REALM [44] utilizes text corpus to train a text
retriever explicitly, exploiting information retrieved from
external knowledge bases such as Wikipedia documents to
help the prediction of tokens that are masked. ExpBERT
[46] and KEAR [37] also incorporate textual descriptions
into their models to improve performance. OK-Transformer
[47] incorporates large-scale out-of-domain commonsense
descriptions to enhance the representation of input text.
Kformer [48] obtains some external text knowledge through
retrieval, and injects this knowledge into the FFN layer of
Transformer. REINA [49] retrieves some training samples
similar to the input from external datasets as knowledge
to enhance PLM. UniK-QA [50] and UDT-QA [51] use
text, knowledge graph and table knowledge together, and
transform all the knowledge into text for knowledge en-
hancement.

In addition to the type of general text knowledge that
has been mentioned above, some work also utilizes domain-
specific corpora or scientific and technical literature for pre-
training tasks. In particular, BioBERT [52] and SciBERT [53]
conduct the pre-training process on large-scale scientific
domain corpora and achieve promising results on down-
stream academic NLP tasks. S2ORC-BERT [54] leverages
the same method as SciBERT on a larger corpus which
contains numerous academic papers covering dozens of



4

Syntax T reeLexical Knowledge

LIBERT , SenseBERT, SKEP, Sentiprompt, 
LET , KEAR, DictBERT

KEPLM in NLU

Knowledge Graph

Rule Knowledge

Linguist ic Knowledge

T ext  Knowledge

New Model Structure

New Attent ion Mechanism

New Pre-training T asks

Syntax-BERT , SLA

Syntax-augmented BERT

LIMIT-BERT

Fig. 2. Categorization of Linguistic knowledge.

academic disciplines, and slightly promotes its performance
on several downstream tasks.

As for the stage of fusing knowledge, REALM [44],
BioBERT [52], SciBERT [53] and S2ORC-BERT [54] inte-
grate text knowledge in the pre-training stage, while KNN-
LM [43], ExpBERT [46], KEAR [37], OK-Transformer [47],
Kformer [48], REINA [49], UniK-QA [50], and UDT-QA [51]
integrate knowledge in the fine-tuning stage.

3.3 Incorporating Knowledge Graph into PLMs

Knowledge graph can be considered as a kind of pow-
erful expression that represents real world knowledge in
the structural form of graph, where its nodes represent
entities, and edges represent relations between entities [55],
[56]. Compared with other types of knowledge, such as
text knowledge which is unstructured, knowledge graph
often contains more abundant structured information which
makes it more applicable to enhance the potential learning
capability of models [57], [58], [59], [60]. Here, we further
divide KG into entity knowledge and triplet knowledge as
shown in Fig. 3.

3.3.1 Entity Knowledge

As the most basic semantic unit, entity plays a vital role in
many natural language scenarios, such as machine reading
comprehension, NER, sentiment analysis, and etc [61]. In-
corporating entity knowledge into PLMs helps to improve
the semantic understanding ability of models and their
performance in downstream tasks as well. According to the
different ways of incorporating entity knowledge, we divide
them into three sub-categories as follows.

One is to design entity related pre-training tasks [62],
[63], [64], [65], [66]. ERNIE [62] proposes a multi-stage
knowledge masking strategy of both entity level and phase
level. WKLM [63] integrates knowledge of external entities
through the entity replacement strategy, and determines
whether each entity is replaced by performing binary clas-
sification prediction. KECP [64] adopts contrastive learning
and prompt learning to integrate entity knowledge.

The second is to change the attention mechanism of the
model. For example, LUKE [67] introduces an entity-aware
self-attention mechanism to capture the entity information
in calculating attention scores.

The third is to change the model structure [68], [69],
[70], [82]. ERNIE-THU [68] leverages an N-layer T-encoder
structure which is similar to the BERT-base model to extract
text information, and then uses a proposed K-encoder to
integrate entity knowledge. KnowBert [69] retrieves entity
embeddings related to the input text via an entity linker
and then updates contextual word representations through
word-to-entity attention, allowing the long-range interac-
tions between words and all entities. EaE [70] expands each
entity mention embedding in the input text by fusing it
with the top K relevant entity embeddings retrieved by a
proposed component called an entity memory layer.

Note that several methods may belong to more than
one sub-category, and we assign them to the sub-category
according to their most significant contributions.

3.3.2 Triplet Knowledge
In addition to the entity knowledge mentioned above, there
are also a great number of relational triples in the knowledge
graph, which can provide sufficient structured information
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Fig. 3. Categorization of knowledge graph and injection methods of each sub-category.

TABLE 1
Entity/Triplet related pre-training tasks. Here MLM represents masked

language modeling.

Method Pre-training Tasks/Objectives

ERNIE [62] Token-level, Phrase-level and Entity-level MLM

WKLM [63] Entity replacement, MLM

KECP [64] Token-level MLM, Span-level contrastive learning

ERICA [65] Entity and relation discrimination tasks, MLM

DKPLM [66] Relational knowledge decoding, Token-level MLM

KP-PLM [72] Prompt relevance inspection, Masked prompt modeling

KEPLER [71] Knowledge embedding, MLM

for PLMs and also improve the semantic understanding
ability of them. Similar to the KE-PLMs incorporating entity
knowledge, we also divide KE-PLMs in this category into
three sub-categories according to their specific ways of
knowledge incorporation.

One is to design pre-training tasks related to triplets
[65], [71], [66], [72]). ERICA [65] introduces both entity and
relation discrimination tasks to deepen PLM’s understand-
ing of entities and relations through contrastive learning.
KEPLER [71] trains knowledge embedding and masked lan-
guage modeling objectives jointly to improve the knowledge
representation. DKPLM [66] focuses on long-tail entities, en-
riching semantic information of low-frequency entities with
knowledge graphs. KP-PLM [72] designs two knowledge-
aware pre-training tasks to incorporate knowledge triplets
into multiple continuous prompts for NLU tasks. In Table 1,
we summarize entity and triplet relevant pre-training tasks
designed by the existing work.

The second is to change the attention mechanism of the
model [73], [74], [37]). K-BERT [73] leverages a knowledge

layer to inject relevant triplets from KG into the input sen-
tence and transform it into a knowledge-rich sentence tree.
Then this sentence tree is converted into a visible matrix
to control the visible area of each word in the sentence,
preventing the sentence from deviating from the correct
semantics due to injecting too much knowledge. If K-BERT
intends to expand input text into a sentence tree, the core
concept of CoLAKE [74] is to expand the input context
into word-knowledge graphs (WK graphs), and then feed
these constructed WK graphs into masked self-attention
to gather information of nodes. KEAR [37] proposes an
external attention mechanism to enhance the Transformer
architecture, and integrate external knowledge into its pre-
diction process. We illustrate their attention mechanism in
Table 2, where Q, K, V denote the query, key, and value
matrices, respectively. dk is the dimension of the key, which
is used as the scaling factor.

The third is to change the model structure, which usually
introduces a knowledge fusion module [30], [31], [75], [76],
[77], [78], [79], [80], [81], [82], as shown in Fig. 4(a). FaE
[75] introduces an additional memory module of facts on
the basis of EaE [70], so that it can effectively combine
the information in the symbolic knowledge graph. Besides
the layer structure of the original pre-trained model, K-
adapter [76] and KB-adapters [77] incorporate knowledge
into PLM through external adapter modules. KLMO [78]
uses a component named knowledge aggregator to fuse the
embeddings of the input text and KG, which applies an
entity-level cross-KG attention to interactively model entity
segments in text along with entities and relations in KG,
as shown in 4(b). KERM [79] designs a knowledge injector
module that combines the knowledge between text corpus
and KG for passage re-ranking task as shown in Fig. 4(b).
JointLK [80] and GreaseLM [81] exploit GNNs for model-
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TABLE 2
Examples of changing attention mechanism for incorporating triplet knowledge.

Method Attention Mechanism Formalized expression Variation in Calculation

K-BERT [73] Masked Self-Attention Attn(Q,K, V ) = Softmax(QK⊤+M√
dk

)V
visible matrix M for the input sentence tree,
Mij = 0 if token i and token j are in the
same branch, while Mij = −∞ if not

CoLAKE [74] Masked Self-Attention Attn(Q,K, V ) = Softmax(QK⊤
√

dk
+M)V

mask matrix M for word-knowledge graph,
Mij = 0 if node i and node j are connected,
while Mij = −∞ if not

KEAR [37] External Attention Attn(Q,K, V ) = Softmax(QK⊤
√

dk
)V

concatenate extra knowledge K into the input
text H0 = [X;K]

Text Encoder

Knowledge Injector

Mutil-head Attention 

Feed Forward

Text Encoder

Input Sequnce

Knowledge Fusion Module

Output

External Knowlege

Input

Knowlege Graph

Text Output
Knowledge Output

(b) Knowledge Injector of KERM(a) Overview of Model Architecture

Text Encoder

Knowledge Aggregator

Token-level Self-Attention

Entity-level Cross-KG Attention
 
 
 

Input

Knowlege Graph

Knowledge Graph Attention

...... ...... ......

Entity Spans

Output

(c) Knowledge Aggregator of KLMO

KG Wikipedia

Fig. 4. (a) Incorporating triplet knowledge through a knowledge fusion module. (b) KLMO designs a knowledge aggregator to fuse knowledge into
the input token sequence. (c) KERM develops a knowledge injector to integrate knowledge explicitly.

ing extracted knowledge graphs and couple the LM with
GNN modules to perform joint reasoning for commonsense
reasoning. Besides, KnowPrompt [30] incorporates entity
and relation knowledge contained in the relation labels into
prompt templates, and inserts these templates into the input
text for relation extraction. OntoPrompt [31] linearizes on-
tology knowledge extracted from external knowledge graph
into texts as auxiliary prompts, and introduces a visible
matrix to guide the knowledge injection process, avoiding
injecting irrelevant or noisy knowledge.

In addition to using knowledge graph as auxiliary in-
formation to improve PLMs’ ability of language under-
standing, some work also learns a knowledge embedding
representation while incorporating triplet knowledge, so
that PLMs can complete some tasks related to knowledge
reasoning, such as entity classification, relation prediction,
knowledge graph completion and etc. Representative work
includes ERICA [65], KEPLER [71], KLMO [78], FaE [75]
mentioned above.

3.3.3 Fusion stage
The above mentioned methods ERNIE [62], ERNIE-THU
[68], WKLM [63], LUKE [67], EaE [70], FaE [75], ERICA
[65], CoLAKE [74], KEPLER [71], KLMO [78], DKPLM [66],
KERM [79], JAKET [82] and KP-PLM [72] are pre-fusion
methods that fuse knowledge in the pre-training stage,
while KnowBert [69], K-BERT [73], K-adapter [76], [37],
KECP [64], KB-adapters [77], JointLK [80], GreaseLM [81]
are post-fusion methods which fuse knowledge in the fine-
tuning stage. The two fusion stages are also called the
training stage and reasoning stage, respectively. For exam-

ple, CoLAKE [74] jointly learns the embeddings of entities
and relations during the training phase, while K-BERT [73]
injects triples from KG during the reasoning phase.

3.4 Incorporating Rule Knowledge into PLMs

Logic rules always contain clear logical reasoning processes,
and can formalize knowledge from external sources [83].
Incorporating this type of knowledge into PLMs can facil-
itate the demonstration of reasoning path via its good in-
terpretability. For example, RuleBERT [84] utilizes the Horn
rules of existing corpus to establish a training dataset and
then fine-tunes the model on it. It adopts a probabilistic an-
swer set programming to predict the probability of events,
and tries to learn soft rules from PLM. The results show
PLMs that reason with soft rules over natural language
could improve their performance for deductive reasoning
tasks. Besides, PTR [27] incorporates logic rules to construct
task-specific prompts composed with sub-prompts designed
manually, so that the model can encode task-related prior
knowledge in the prompt-tuning and generate prompts that
are more interpretable. Both RuleBERT and PTR incorporate
rule knowledge in the fine-tuning stage.

4 KE-PLMS FOR NLG
The goal of NLG is to enable machines to generate language
texts that can be understood by humans and follow the way
where humans express themselves. Incorporating various
forms of knowledge into generation models other than
input sequences helps to improve the performance of text
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Fig. 5. Further categorization of retrieval-based method and KG-based method. The left figure demonstrates the categorization of retrieval-based
method, and the right demonstrates the categorization of KG-based method.

generation tasks. Referring to the survey on knowledge-
enhanced text generation [32], we further divide KE-PLMs
in the field of NLG into two categories based on their
different knowledge sources: one is retrieval-based method
and the other is KG-based method.

4.1 Incorporating Retrieval-based Knowledge into
PLMs
The retrieval-based methods mainly integrate and uti-
lize additional knowledge related to the input sequences
through retrieval. Other than the input sequence itself, the
additional knowledge is retrieved from external sources
such as online search engines, large data sets, and training
sets to guide the generation process. Considering whether
the methods focus on re-ranking the retrieved items for
generation or not, we divide these retrieval-based methods
into two sub-methods as shown in the left of Fig. 5: one
is retrieval augmented generation method that aims to im-
prove generation by retrieving related knowledge [49], [85],
[86], [87], [88], [89], [90], [91], [92], and the other is retrieve,
rerank and rewrite method which focuses on re-ranking
retrieved items for generation [93], [94]. The flow charts of
these two kinds of methods are shown in Fig. 6. Notably,
these KE-PLMs incorporate external knowledge in the fine-
tuning stage to improve their performance on downstream
tasks.

In the line of retrieval augmented generation method,
MemNet [85] proposes a Transformer memory network that
can retrieve topic-relevant knowledge based on the dialogue
history, and then generates the next dialogue utterance with
the help of this retrieved knowledge. RAG [86] leverages
a retriever to find the top-K relevant documents given
the input sequence, and uses them as additional context
when generating predictions. KFCNet [87] first retrieves
prototypes that comprise concepts in the given concept set,
while keeping these retrieved results semantically similar
to the target sentences. Then it applies two contrastive
learning modules in both encoder and decoder to capture
global target information and learn general features from the
multiple retrieved prototypes. REINA [49] retrieves some
training samples which are similar to the input text and

 

Knowledge Pool Revelant  Documents

Sequence Decoder

Sequence Encoder

Source Sentence

Retrieval Generat ion Output Text

Source Sentence
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Knowledge Pool Soft  T emplate
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(a) Retrieval augmented generation method

(b) Retrieve, rerank and rewrite method

Fig. 6. Flow charts of retrieval-based methods. (a) demonstrates the
retrieval augmented generation method. (b) demonstrates the retrieve,
rerank and rewrite method. Notably, the retrieved candidate templates
will be reranked before rewriting.

takes them as knowledge to improve the effect of machine
translation. KGR4 [88] divides the generation of common-
sense into four stages, that is, retrieval of commonsense,
generation of commonsense by means of generation models,
refinement and correction of the generated commonsense
statements, and scoring of the generated statements. Best
results can be obtained through this process. KG-FiD [89]
is based on the Fusion-in-Decoder (FID) [95] model, but it
proposes to solve the validity and efficiency of FID with
the help of KG, which improves the ability of open domain
question answering significantly. SeeKeR [90] leverages a
set of documents retrieved from the search engine to gener-
ate knowledge response. This method can incorporate up-
to-date information through its three-module framework
(search, knowledge generation, and final response). RETRO
[91] retrieves from large text databases and builds trillions
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of tokens as retrieve sources to expand the language model.
UnifiedSKG [92] unifies six categories of tasks (i.e., se-
mantic parsing, question answering, data-to-text generation,
fact verification, conversation, and formal language-to-text
translation tasks) into a text-to-text format and introduces
linearized knowledge to strengthen their performance.

Representative work of the retrieve, rerank and rewrite
method, such as SKT [93], regards knowledge selection
as a sequential decision-making process, and uses the se-
quential latent variable model to improve the accuracy of
knowledge selection in multiple rounds of dialogue. PLUG
[94] retrieves related knowledge from Wikipedia, dictionary,
and knowledge graph, and then ranks them based on sta-
tistical and semantic information for knowledge-grounded
dialogue generation.

4.2 Incorporating KG-based Knowledge into PLMs
In order to distinguish the granularity of knowledge uti-
lized by different KE-PLMs more specifically, we divide
existing work into three categories: knowledge extracted by
path finding, triplet knowledge, and subgraph knowledge
extracted from KG as shown in the right of Fig. 5.

The first is to extract knowledge by path finding [96],
[97]. In this way, the relation path is clearly reasoned to
make reliable decisions. CE-PR [96] and MRG [97] mainly
perform explicit reasoning on relation paths, significantly
improving the effectiveness of text generation. Specifically,
CE-PR first retrieves a subgraph given the source concepts,
and then scores each triple on this graph, propagates scores
along the paths to each node from the source concepts and
preserves the nodes with higher scores. MRG leverages
the reasoning module to infer paths step by step from
the source concepts, and then uses the sentence realization
(i.e., sentence generation) module to generate a complete
sentence based on the inferred paths. Fig. 7 demonstrates
the inference process of these two methods.

The second sub-category is KE-PLMs based on triplet
knowledge [98], [99], [100]. KEPM [98] converts common-
sense triplets in the knowledge bases into natural language
statements based on templates to provide additional in-
formation for story generation. MixGEN [99] adopts an
encoder-decoder framework to incorporate expert knowl-
edge (from dataset annotation), explicit knowledge (from
knowledge graph), and implicit knowledge (from genera-
tive PLM) to produce implications of toxic text. CNTF [100]
models the commonsense, named entities and topic-specific
knowledge via a multi-hop attention module to facilitate
dialogue generation task.

The third one is subgraph knowledge [11], [101], [102],
[103]. Different from the first two categories, subgraph
contains context information on related concepts, which
plays an important role in understanding related concepts
and language generation. This kind of methods generally
use GNNs to model extracted subgraphs, and then fuse
these extracted subgraphs to enhance the natural language
generation ability.

For the integration of subgraph knowledge, we further
divide them based on the specific position they integrate
as shown in Fig. 8. Some work incorporates subgraph
knowledge into only encoder to improve the language un-
derstanding ability, such as JointGT [102] and MoKGE [103].

concept concept

MRG

Transformer

Generation

Triple Scoring

Path Rout ing

Concept  Select ion

Transformer Encoder

Graph-based Multi-hop 
Reasoning Module

Path-aware Sentence 
Realization Module

Transformer Decoder

CE-PR

Fig. 7. Comparison of CE-PR and MRG incorporating knowledge ex-
tracted by path finding.

Some inject subgraph knowledge into the decoder, such as
GRF [101]. In this way, every step of decoding can be traced,
so that the model can be better interpreted. Others introduce
subgraph knowledge into both encoder and decoder, such
as KG-BART [11].

Encoder

KG

Decoder

Encoder Decoder

(a) KG-Fusion Encoder (b) KG-Fusion Decoder

(c) KG-Fusion Encoder & Decoder

Fig. 8. Integration position of subgraph knowledge. (a) incorporating KG
into the encoder. (b) incorporating KG into the decoder. (c) incorporating
KG into both the encoder and decoder.

Among the above mentioned KE-PLMs for NLG,
JointGT [102], PLUG [94], UnifiedSKG [92] are pre-fusion
methods (fuse knowledge during pre-training), and CE-
PR [96], MRG [97], KEPM [98], GRF [101], KG-BART [11],
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MoKGE [103], MixGEN [99], CNTF [100] are post-fusion
methods (fuse knowledge during fine-tuning).

In Table 3 and Table 4, we respectively summarize the
existing KE-PLMs for NLU and NLG.

5 FUTURE DIRECTIONS
In this section, we propose some possible research directions
of KE-PLMs in the future, which may meet the existing
problems and challenges.

5.1 Integrating Knowledge from Homogeneous and
Heterogeneous Sources

Since most of the existing work only utilizes knowledge
from a single source, such as knowledge graph or web
resource, exploring how to integrate knowledge from het-
erogeneous sources is still a valuable direction for future
research.

As we present in the section above, some prior work has
tried to incorporate different types of knowledge to improve
the performance of question-answering. For example, UniK-
QA [50] integrates external knowledge including text, ta-
bles, and relational triplets in the knowledge base. Through
the heuristic method of linearizing heterogeneous knowl-
edge sources including knowledge base (KB) triples and
semi-structured tables into text, it unifies structured knowl-
edge involved in KBQA and unstructured knowledge in-
volved in TextQA, expanding the sources of external knowl-
edge. UDT-QA [51] introduces structured knowledge such
as knowledge graphs and tables into open-domain question
answering, and converts them into linear sequences as the
input of text generation tasks.

In the field of open-domain question answering, improv-
ing the ability of PLMs to integrate multiple knowledge
sources can effectively increase the knowledge coverage, so
that models can generate more reliable answers.

5.2 Exploring Multi-modal Knowledge

Most of the current research focuses merely on text knowl-
edge with fewer multi-modal sources. In fact, images,
videos, and audio in addition to textual and tabulated in-
formation can also become the knowledge sources of PLMs,
which can further improve the performance of KE-PLMs.

Several studies have explored integrating multi-modal
knowledge. Representative work includes KB-VLP [104],
and ERNIE-VIL [105]. KB-VLP [104] extracts knowledge
information from the external knowledge base based on
both the input text and image, and uses the knowledge as
additional inputs to enhance the model’s ability of seman-
tic alignment and knowledge perception. ERNIE-VIL [105]
parses the input description texts of images into structured
scene graphs, and designs cross-modal pre-training tasks to
pay attention to detailed semantic alignments across vision
and language modalities.

Since images and associated text contain rich semantics,
the injection of these different modalities of knowledge and
concentration on detail semantics can make them comple-
ment and enhance each other, which will boost the perfor-
mance of PLMs on both NLU and NLG tasks.

5.3 Providing Interpretability Evidence
Although many existing KE-PLMs have achieved great suc-
cess on a series of text generation tasks, it should not be
ignored that, if the generation process requires common-
sense knowledge reasoning, the performance of models will
be affected.

Some work has attempted to tackle this problem [44],
[76], [86]. For example, GRF [101] utilizes external knowl-
edge graphs for explicit commonsense reasoning, and in-
corporates rich structural information in order to perform
dynamic multi-hop reasoning on multiple relational paths.
Reasoning paths obtained in this process provide a theoret-
ical basis for the generation of results. This work suggests
that, giving an explicit reasoning path will help improve
the interpretability of models and make predictions more
rational.

5.4 Learning Knowledge in a Continuous Way
Existing work is usually trained on a large number of static
or non-updated data in the pre-training stage. But models
may forget the original knowledge learned before when
facing new tasks, which leaves them vulnerable to a phe-
nomenon called catastrophic forgetting problem [106]. With
the continuous growth of knowledge from heterogeneous
sources, exploring methods to make models master new
knowledge while not forgetting the previous one learned
in the past requires continual learning (also called life-long
learning) to integrate various knowledge constantly.

ELLE [107] proposes an extension module that maintains
the network function to expand the width and depth of
the model, so that the model can effectively acquire new
knowledge and retain the old to a greater extent at the same
time. K-adapter [76] and KB-adapters [77] adds the adapters
with PLMs to store factual and linguistic knowledge, so as
to continuously incorporate more knowledge into PLM.

Incorporating knowledge continuously is a promising
direction in future research [32]. The application of continu-
ous and increasing pre-training will effectively improve the
universality of PLMs, and solve the catastrophic forgetting
problem while incorporating more knowledge.

5.5 Optimizing the Efficiency of Incorporating Knowl-
edge into Large Models
The scale of pre-trained models and injection of knowl-
edge has become increasingly large in recent years [108],
thus bringing severe challenges to the computational effi-
ciency and computational resources that cannot be ignored.
Though most of the existing work has achieved good results
in various pre-training tasks, few studies mention the cost
of knowledge fusion in the process.

In view of this challenge, we propose the following two
possible directions that may be worth further exploring:
one is to improve the efficiency of knowledge acquisition
and filtering, and the other is to optimize the computational
burden.

Existing work, such as ZeRO [109], has been explored in
the second area. Based on traditional data parallel training
mode, ZeRO deeply optimizes the redundant space and
eliminates the memory occupied by redundancy through
dividing the parameters, gradients, and optimizer states of
the model into different processes.
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TABLE 3
Summarization of different KEPLMs. Here RC: relation classification; ET: entity typing; QA: question answering; RE: relation extraction; WiC:

words in context; NER: named entity recognition; NLI: natural language inference; GLUE: general language understanding evaluation.

Method Knowledge Type Fusion in
Pre-training

Fusion in
Fine-tuning NLU or NLG tasks

LIBERT [33] lexical Yes lexical simplification, sentence/sentence-pair
classification, NLI

LIMIT-BERT [39] syntax tree Yes syntactic parsing, semantic parsing
SenseBERT [34] lexical Yes word supersense disambiguation, WiC

SKEP [35] lexical Yes sentence/aspect-level sentiment
classification, opinion role labeling

Sentiprompt [28] lexical Yes triplet extraction, pair extraction
aspect term extraction

LET [36] lexical Yes Chinese short text matching
KEAR [37] lexical, general text, triplet Yes commonsense reasoning

Syntax-BERT [40] syntax tree Yes syntactic and semantic compositionality of
sentiment classification, NLI, GLUE

DictBERT [38] lexical Yes NER, RE, commonsense reasoning
KNN-LM [43] general text Yes language modeling
REALM [44] general text Yes open-QA
ExpBERT [46] general text Yes RE
OK-Transformer [47] general text Yes commonsense reasoning, text classification
Kformer [48] general text Yes commonsense reasoning, medical QA

REINA [49] general text, retrieval
augmented generation Yes summarization, language modeling

machine translation, QA
UniK-QA [50] general text Yes multi-source QA
UDT-QA [51] general text Yes open-domain QA
BioBERT [52] domain-specific text Yes biomedical NER, RE, QA

SciBERT [53] domain-specific text Yes sequence tagging, sentence classification,
dependency parsing

S2ORC-BERT [54] domain-specific text Yes inline citation detection, bibliography
parsing, bibliography linking

ERNIE [62] entity Yes NLI, semantic similarity, NER,
sentiment analysis, QA

ERNIE-THU [68] entity Yes Yes ET, RC
WKLM [63] entity Yes QA, ET
KnowBert [69] entity Yes Yes RE, WiC, ET
LUKE [67] entity Yes ET, RC, NER, cloze-style/extractive QA
EaE [70] entity Yes open-domain QA, RE
KECP [64] entity Yes extractive QA
ERICA [65] entity, triplet Yes RE, ET, QA
K-BERT [73] triplet Yes sentence classification, QA, NER

CoLAKE [74] triplet Yes ET, RE, knowledge probing, GLUE
knowledge graph completion

FaE [75] entity, triplet Yes open-domain QA
K-adapter [76] general text, triplet Yes ET, QA, RC

KB-adapters [77] entity, triplet Yes knowledge-probing using response selection
fact memorization, response generation

KLMO [78] entity, triplet Yes ET, RC
KEPLER [71] entity, triplet Yes RC, ET, GLUE, link prediction
DKPLM [66] entity, triplet Yes knowledge probing, RE, ET
JAKET [82] entity, triplet Yes RC, QA over KG, entity classification
KP-PLM [72] triplet Yes knowledge probing, RE, ET
KERM [79] triplet Yes passage re-ranking
JointLK [80] triplet Yes commonsense reasoning
GreaseLM [81] triplet Yes commonsense reasoning
RuleBERT [84] rule Yes rule reasoning
PTR [27] rule Yes RC
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TABLE 4
Summarization of different KEPLMs. Here QA: question answering.

Method Knowledge Source Fusion in
Pre-training

Fusion in
Fine-tuning NLU or NLG tasks

MemNet [85] retrieved text Yes open-domain dialogue generation

RAG [86] retrieved text Yes open-domain/abstractive QA,
question generation, fact verification

SKT [93] retrieved text Yes knowledge-grounded dialogue
KFCNet [87] retrieved text Yes commonsense/keyword generation
KG-FiD [89] retrieved text Yes open-domain QA
KGR4 [88] retrieved text Yes commonsense generation
SeeKeR [90] retrieved text Yes open-domain dialogue, prompt completion
RETRO [91] retrieved text Yes language modelling, QA
UnifiedSKG [92] structured knowledge Yes structured knowledge grounding

PLUG [94] retrieved text,
knowledge graph Yes dialogue generation

CE-PR [96] knowledge graph Yes commonsense explanation generation
MRG [97] knowledge graph Yes story/review/description generation
KEPM [98] knowledge graph Yes story generation

MixGEN [99] knowledge graph,
expert knowledge Yes toxic text explanation

CNTF [100] knowledge graph Yes dialogue generation

GRF [101] knowledge graph Yes story ending generation, abductive NLG,
explanation generation

KG-BART [11] knowledge graph Yes commonsense generation/QA
JointGT [102] knowledge graph Yes KG-to-text generation

MoKGE [103] knowledge graph Yes commonsense explanation generation,
abductive commonsense reasoning

5.6 Increasing the Variety of Results Generated

It is a vital research direction in NLG to generate alter-
native outputs or predict all possible results for the real
situation, which is also the purpose of output diversity
in the generative commonsense reasoning task. Existing
work, such as MoKGE [103], uses the diversified knowledge
reasoning of commonsense knowledge graph to complete
the diversity generation of NLG. Based on the observation
of human annotations, the concepts related to original input
are associated into the generation process, and the mixture
of expert method is used to generate diversified reasonable
outputs, thus increasing the diversity of generated results.

6 CONCLUSION

In this survey, we present a comprehensive review of KE-
PLMs from the perspective of NLU and NLG, and respec-
tively propose proper taxonomies for both NLU and NLG
to highlight their different focuses. We also discuss the
representative work in the taxonomies. Finally, in view of
the existing problems and challenges, we discuss potential
future research directions of KE-PLMs, hoping to facilitate
relevant research in this promising area.
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