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Unsupervised Detection of Behavioural Drifts
with Dynamic Clustering and Trajectory Analysis

Bardh Prenkaj and Paola Velardi

Abstract—Real-time monitoring of human behaviours, especially in e-Health applications, has been an active area of research in the

past decades. On top of IoT-based sensing environments, anomaly detection algorithms have been proposed for the early detection of

abnormalities. Gradual change procedures, commonly referred to as drift anomalies, have received much less attention in the literature

because they represent a much more challenging scenario than sudden temporary changes (point anomalies). In this paper, we

propose, for the first time, a fully unsupervised real-time drift detection algorithm named DynAmo, which can identify drift periods as

they are happening. DynAmo comprises a dynamic clustering component to capture the overall trends of monitored behaviours and a

trajectory generation component, which extracts features from the densest cluster centroids. Finally, we apply an ensemble of

divergence tests on sliding reference and detection windows to detect drift periods in the behavioural sequence.

Index Terms—Anomaly detection, unsupervised detection, drift detection, behavioural changes, e-health, dynamic clustering.

✦

1 INTRODUCTION

Behavioural changes are gradual processes over a long
period [1]. Gradual change procedures represent a concep-
tually systematic set of behaviours [2], widely analysed
in many contexts; among these patterns of decline in the
elderly resulting from Alzheimer’s and Parkinson’s diseases
[3] and personal or collective behaviour changes, such as
stopping smoking, saving energy and losing weight [4].

Recently, real-time monitoring systems based on sensors
offer an unprecedented opportunity to monitor human be-
haviour [5] unobtrusively. For example, environmental sen-
sors and wearable devices are widely used in telemedicine
applications to support doctors in preventing, treating, and
improving health conditions [6]. On top of these systems,
deep learning anomaly detection algorithms have been
proposed to automatically identify and detect behavioural
changes, as surveyed in [7]. However, most models in the
literature suffer from at least one of the following limita-
tions:

1) They mostly concentrate on sudden, temporary
changes, referred to as point anomalies [8], rather than
gradual changes (drift anomalies).

2) They need training on behavioural data, which might
not be realistic since behaviours, and anomalies therein,
are highly context- and person-dependent.

3) They fail to discover latent drift periods when the
training (reference) set contains anomalous behaviours,
a possibility that cannot be ruled out in real-world
contexts.

This paper presents DynAmo, short for Dynamic Drift
Anomaly Detector, a fully unsupervised strategy for de-
tecting gradual behavioural changes based on dynamic
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clustering and trajectory detection. The dynamic clustering
component captures an overall trend of the time series rep-
resenting a monitored behaviour (e.g., sleeping). It produces
clusters for each monitoring interval (e.g., one day). The
densest cluster in each interval becomes the input to the next
component. This trajectory generator extracts features from
the cluster centroids. Finally, DynAmo predicts the drift
areas for each observed feature of the monitored action, for
example, the duration and onset of sleep or the number of
sleep interruptions. Although the proposed strategy applies
to general drift detection, this paper explicitly addresses a
challenging scenario where the goal is unsupervised real-
time detection of drift changes from sensor data sequences.
This context is particularly relevant in telemedicine and
continuous patient care [9].

We organise the rest of this paper as follows. Sec. 2
discusses the related work and provides an overview of
this paper’s contribution. Sec. 3 describes our strategy,
ranging from the input modelling techniques to the drift
detection mechanism. Sec. 4 enlists synthetic and real-
scenario datasets and illustrates their characteristics in the
normal/anomalous period throughout the time series. Sec.
5 provides extensive experiments on DynAmo and SOTA
methods. Finally, Sec. 6 concludes the paper.

2 RELATED WORK

As we already remarked, while there is a vast literature on
point anomaly detection [7], drift detection received much
less attention, due to its increased complexity. As illustrated
in Table 1, systems of drift anomaly detection are divided
into batch and online detectors. According to Gemaque et al.
[29], drift detection methods utilise a reference and detection
window. The former (usually) contains the normal1 event
distribution, whereas the latter contains unseen data, pos-
sibly including sudden or drift anomalies. In batch detection

1. We remark that, in real-life contexts, this is not guaranteed: anoma-
lies may occur at any time, including the initial monitoring period.
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TABLE 1: Drift anomaly detectors in the literature. In the
Learning column, S denotes supervised learning, SS semi-
supervised learning, U unsupervised learning.

Detector type
Learning Pub. yearBatch Online

Whole-batch Partial-batch
Fixed reference

window
Sliding reference

window

MD3 [10] X × × × S 2015
IKS-bdd [11] × × X × U 2016
SAND [12] × × × X SS 2016
DbDDA [13] × × × X S 2016
CD-TDS [14] × × X × U 2016
OMV-PHT [15] × × X × SS 2016
UDetect [16] X × × × SS 2017
MD3-EGM [17] X × × × SS 2017
DDAL [18] × X × × S 2018
NN-DVI [19] X × × × U 2018
PDetect [20] × X × × S 2018
KLCPD [21] × × × X U 2019
D3 [22] × × × X S 2019
FAAD [23] X × × × U 2019
Plover [24] × × × X U 2019
DSDD [25] × × × X SS 2020
ERICS [26] × × × X SS 2021
STUDD [27] X × × × SS 2022
CDLEEDS [28] × × × X U 2022

DynAmo [us] × × × X U 2023

approaches, the reference window remains fixed in time,
whereas the detection window slices through the trajectory
of events. Batch detectors raise a drift anomaly when the
distribution of the detection window differs from the ref-
erence window. Contrarily, the reference window of online
detectors is dynamically replaced by the detection window
when their distributions differ more than an established
threshold. This window change renders online detectors
adjustable to routine changes (e.g. seasonality shifts, perma-
nent or temporary changes of lifestyles). As the detection
window moves through the series, the reference window
can generally slide one event at a time2.

The literature has contributed several (semi)supervised so-
lutions towards drift anomaly detection, whether by exploit-
ing batch [10], [16], [17], [18], [20], [27] or online approaches
[12], [13], [15], [22], [25], [26]. Unsupervised drift detection
has also been covered in the literature [11], [14], [19], [23],
[24], [28].

Batch drift detectors: Liu et al. [19] propose NN-DVI. This
distribution-based approach assumes that regional density
changes cause miss-drifts. The authors rely on three mod-
ules: (1) kNN-based space partitioning for data modelling,
(2) distance function to accumulate density discrepancies,
and (3) statistical significance test to determine the drifts. Li
et al. [23] build models using random feature sampling and
calculate their corresponding anomaly scores. They exploit
an anomaly buffer based on a model dynamic adjustment
algorithm to distinguish between true drifts and normal
sequences incorrectly labelled anomalous. Bashir et al. [16]
propose a two-phase architecture. First, they train a classifier
and collect data characterising each class. Second, they
collect batches of data for each class and verify whether the
instances of these classes differ from the data of the previous
phase. Sethi and Kantardzic [10] propose MD3 to monitor
changes in the region of the classifier decision space where
predictions are uncertain. The authors assume that drift
occurs when the density of this variation is higher than a
specific threshold, similar to [18]. Inspired by the limitation
of [10], the same authors [17] propose MD3-EGM, a semi-
supervised method based on ensembles. Lastly, Cerqueira

2. The amount of slide is a hyperparameter (e.g. every minute, every
day, or every month).

et al. [27] propose STUDD. In this semi-supervised teacher-
student learning paradigm, drifts are detected according to
the error of the student model.

Online drift detectors: dos Reis et al. [11] propose IKS-bdd,
an online form of the KS test with two sliding windows
for drift detection. Koh [14] proposes a drift detector on
transactional data streams. The method has two parts: i.e.
local and global drift detection. The main idea behind de-
tecting local drifts is to compare W0 and W1 windows using
the Hoeffding Bound. A drift is signalled when the sample
mean difference between W0 and W1 is more than δ. The
author uses two decision trees for W0 and W1 for global
drift detection and examines their disagreement. Lughofer
et al. [15] use the Page-Hinkley test to detect changes. Chang
et al. [21] propose KLCPD, a composite kernel method that
combines RBF kernels with injective functions. The authors
parameterise the injective functions via RNNs to capture
the temporal dynamics of complex time series. De Mello
et al. [24] exploit the concept of stability by computing
the divergence between the sliding reference and detection
windows. Haque et al. [12] propose SAND, an ensemble of
kNN classifiers. SAND predicts the label of an unknown
example x′ by majority voting and stores the predicted class
and confidence scores. If the confidence values diverge from
the beta distribution by exceeding a threshold, then SAND
detects a drift. An adaptation procedure occurs by updating
the ensemble with the true labels of the instances with
low confidence scores. Similarly, Pinagé et al. [25] propose
a dynamic classifier based on an initial ensemble and a
configurable drift detector guided by a pseudo-error rate
to perform detections. When a certain number of the base
classifiers in the ensemble indicate a drift, the validation set
gets updated using the new labelled samples; otherwise, the
ensemble continues learning using the ground truth labels.
Kim et al. [13] first train the model on labelled instances.
Then, they monitor the differences in uncertainty for the
instances in both windows. Before labelling the instances
of the detection window, the model calculates a confidence
interval for the uncertainty of the events in the reference
window. If it exceeds the upper limit, a drift is signalled.
Upon detecting a drift, the authors retrain the model on the
true positive events in the detection window. Gözüaçık et al.
[22] introduce D3. It integrates a discriminative classifier in
an online fashion. By analysing the classifier’s performance
on a fixed-size sliding window, D3 identifies concept drifts
without estimating distributions. AUC (Area Under the
Curve) measures separability between old and new data
classes. When AUC falls below a threshold, indicating insuf-
ficient separability, drifts are detected. The sliding window
is adjusted dynamically by removing or replacing samples
based on the underlying classifier’s performance. Haug and
Kasneci [26] propose ERICS, a model-agnostic framework
that treats the parameters of a predictive model as random
variables and detects concept drifts by associating them
with a change in the distribution of the optimal parameters.
Lastly, to bridge the gap of invalid local attributions under
drift conditions, Haug et al. [28] propose CDLEEDS, an
adaptive hierarchical clustering approach capable of detect-
ing local and global distributional drifts.
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2.1 Limitations of the works in the literature and open

challenges

The works in the literature suffer from several limitations,
including the cold-start problem, specifically for batch-
based detectors. In detail, batch-based detectors do not cope
with incoming real-time data. Hence, these detectors suffer
in critical scenarios such as continual remote monitoring,
which is the scope considered in this paper. Additionally,
most of the methods enlisted in Table 1 require prior knowl-
edge of the underlying distribution (data labels) to identify
future drift periods correctly. Although knowing data la-
bels is generally acceptable for non-impactful scenarios, one
cannot assume to know human’s normal behaviour beforehand,
especially for patients whose behaviour may be altered by
their specific health conditions. For example, a disturbed
sleep with many interruptions may be the normality for a
certain patient, for whom, instead, a gradual change may
be represented by the lengthening of the period in which
they stay in bed. Although unsupervised methods proposed
in the literature overcome this problem, they suffer from
intra-window distributional changes and feature evolution.
Therefore, while they might be able to identify a drift occur-
ring inside the detection window correctly, they cannot detect
a drift starting inside the reference window. Since anomalies in
real-world scenarios can occur anytime after the monitoring
starts, not being able to detect them immediately is a draw-
back. We argue that the outlined problem is a special case
of the well-known cold-start problem since drifts can only
be identified in the detection window. This phenomenon
worsens if the detector is batch-based or an online detector
with a fixed-reference window.

Another common limitation is that drift detectors are
usually specialised in detecting only some kinds of drift
types [30] (e.g., gradual or recurrent drifts). Thus, they are
unsuitable to cope with sudden spikes of distributional
changes since the width of the windows needs to be cali-
brated to handle the specific type of shift.

A final open issue is the reproducibility and replicability
of the experiments provided in the original papers, which is
essential to compare and evaluate the merits and drawbacks
of the different solutions. While some works do not publish
their code online, others do not thoroughly explain the data
processing, hyperparameter tuning, and evaluation used3.

2.2 Our contribution to the literature

Considering the drawbacks of the SOTA described above,
we provide the following contributions:

1) We propose a fully unsupervised drift detection tech-
nique based on dynamic clustering and trajectory de-
tection, which works independently of input data dis-
tribution and prior knowledge of anomaly types (see
Sec. 3.5 and Algorithm 1).

2) We avoid the cold-start problem, frequently observed
in the literature, by not reserving portions of the input
to fine-tune the model to detect drifts.

3. For example, do the methods employ soft margins to help detect
drift periods? We refer to soft margins as the area before and after
the drift - in terms of a particular time unit - that the prediction can
still be considered correct/valid. As for gradual drifts, soft margins are
typically used when a prediction at an exact time unit is unnecessary.

3) DynAmo is agnostic to various drift anomaly types
(e.g., gradual and recurrent drift), which provides ro-
bustness w.r.t. other strategies in the literature.

4) DynAmo has an integrated backward lookup param-
eter λ that considers past events in a behavioural tra-
jectory. DynAmo uses λ to check the evolution of the
feature hyperboxes associated with monitored events,
which detects potential shifts within the same window
(reference or detection) regardless of whether the dis-
tribution is anomalous (see Algorithm 2 and Sec. 5.2).

5) DynAmo traces the trajectory of the densest cluster
centroid for each sliding step, thus providing a vi-
sual and interpretable tool which gives domain non-
specialists the ability to identify drifting trends in a
two-dimensional space (see Sec. 3.3 and 3.4).

6) To support the Open Science movement, we publish
the code to our solution and provide easy steps for
reproduction/replicability purposes of the experiments
(see Sec. 5.1).

3 METHODOLOGY

Here, we describe the proposed method for modelling and
detecting anomalous periods in behavioural sequences. To
help the reader understand the model description, Tables
2, 3, 4, and 5 summarise the notation used throughout the
paper.

3.1 Application scenario and summary workflow

We refer to a scenario in which an IoT environment is set to
collect signals from a variety of ambient and wearable sen-
sors to monitor specific behaviours such as daily activities
(sleeping, eating, personal hygiene), vital signs (pressure,
ECG), energy consumption (lighting, heating, use of house-
hold appliances), eating habits, smoking, physical activity,
and more. We also assume that one or more sensors are set to
monitor a specific behaviour (e.g., for sleep: pressure sensor
in the bed, lighting, wearable sleep trackers), generating pre-
processed signals transformed into temporal sequences of
discrete events (data points).

The problem addressed in this section is detecting grad-
ual changes (drift anomalies) in the characterisation of
data points, for example, changes in sleep quality. Note
that addressing single behaviours does not mean that they
are considered in isolation since, as described hereafter,
a behaviour is represented as a complex event that may
include contextual features such as, for the case of sleep,
the activities performed before and after, or any breaks to
go to the toilet.

Figure 1 illustrates the steps of the proposed pipeline,
summarised in the caption. We begin by presenting a math-
ematical formalisation of the input model (see Sec. 3.2). As
shown in the Figure, the crucial steps of drift detection are
based on dynamic clustering [31] of the data points referring
to a given observed behaviour, and next, on capturing the
trend of the trajectory by building a stream of centroids that
maximally comprehend the original series.

We briefly describe how dynamic clustering works in
Sec. 3.3. Trend capturing is crucial because it eliminates
noisy data points (such as outliers) within a specific time
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Fig. 1: Workflow of the proposed pipeline: i.e. input modelling (described in Sec 3.2), dynamic clustering (Sec. 3.3), trajectory
generation (Sec. 3.4), and DynAmo (Sec 3.5). In Step 1, event vectors, generated in real-time during the signal pre-processing
phase, are accumulated according to their type throughout the monitoring period T . In Step 2, a sequence Xi is generated
for each event type i, where each row represents the new event of type i detected along the monitoring period, and each
column represents the feature dimension φ ∈ Φ. In Steps 3 and 4, the dynamic clustering component captures an overall
time series trend. It produces clusters for each temporal interval ∆ in T . The clusters in each interval become the input
to the next component - trajectory generation (Steps 5 and 6) - which extracts features from the densest cluster centroids.
Finally, in Steps 7 and 8, DynAmo predicts the drift areas (green boxes) for each feature of the events in the series, using
an ensemble of divergence tests.

TABLE 2: Notation used for the input modelling.

Notation Description

e
b,f
i Event of type i with beginning time b and end time f s.t. b < f

Φi Feature set of event type i, i.e., Φi = {φi,1, . . . , φi,mi
}

mi The number of features for event type i, i.e., mi = |Φi|

T End timestamp of the overall monitoring period, starting at t = 0

Ei The events of type i within the monitoring time T

Xi
Sequence of events of type i with their associated feature sets Φi

ordered by the beginning time of each event

∆
Time unit (e.g., hourly, daily, weekly) expressed in seconds that
partitions Xi into consecutive intervals

b(j) The beginning time of the j-th ∆ interval

f(j) The end time of the j-th ∆ interval

n
Number of time intervals from the beginning until the end of
monitoring according to the ∆ time unit, i.e., n = ⌈ T

∆
⌉

window. This strategy allows us to discard data coming
from the stream that do not contribute to the overall trend
of the original behavioural sequence (see Sec. 3.4). Then, we
explain our prediction framework (see Sec. 3.5).

3.2 Input modelling

Before explaining the proposed method, we provide the
reader with a brief formalisation of the behavioural se-
quences given in input. The input modelling described
hereafter applies to the context of multi-sensor monitoring
of human behaviour in controlled environments. However,

it can be easily extended to input data represented as
multivariate temporal trajectories. In this context:

a) One or more sensors may concur in identifying a spe-
cific event type i such as sleep, hygiene, or eating;

b) Each event ei of type i has a feature set Φi =
{φi,1, φi,2, . . . , φi,mi

} such as the duration, the begin-
ning time, or the portion of day (e.g. night, morning) in
which the event is captured. Here mi is the number of
features4 of the event type i;

c) Events can be non-contiguous since the environment
can contain blind spots out of sensor reach, or there
might be unobserved/unobservable behaviours.

d) Events (also of different types) are non-overlapping.
These time series are composed of events of different types
with associated beginning and end times. In other words,

we consider a discrete time series of events eb,fi with be-
ginning time b and end time f such that b < f , and
type i. Notice that, in our scenario, two events of any

type5 eb
′,f ′

∗ and eb
′′,f ′′

∗ cannot overlap with one another: i.e.,
b′ ≥ f ′′ ∨ b′′ ≥ f ′. Additionally, each event ei has its feature
vector Φi. Two events of the same type i have the same
number of features mi, while two events of different types
might be mapped to two different feature vector spaces.

We group events of type i in a set Ei and order them
according to their beginning time to generate a behavioural

4. Note that mi depends of the observed event. For example, mod-
elling the activity sleep may require specific fine-grained descriptors in
addition to those previously listed, such as the number of interruptions
to go to the toilet, the sleep phases (e.g., light vs. deep).

5. We use ∗ to denote any events in our time series.
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TABLE 3: Notation used for capturing trends via dynamic
clustering

Notation Description

µCk µ-cluster, i.e., a group of events close in all their feature dimensions Φ

pk Number of events (elements) in µCk

Fk

The set of features of each event in µCk . It can be represented as a
matrix in Rpk×m where each row corresponds to the feature set of
the events in µCk

αk The time when µCk is created

βk The time of last assignment of an event in µCk

dk The density of µCk

Ok The centroid of the µCk cluster

Uh
The span of the hyperbox of µCk defined as
|maxFk[:, h]−minFk[:, h]|

Nj Number of clusters identified in the j-th ∆ interval

Cl,j
The l-th identified cluster, i.e., a set of connected µ-clusters
{µCk1

, . . . , µCkn
}, in the j-th ∆ interval s.t. l ≤ Nj

representation - see step 1. Thus, we can define Xi as the
sequence that contains the feature vectors of events ei - see
step 2 - for the entire monitoring time T . To comply with
the formalisation in [32], [33], [34], we reserve two features
in Φi to describe the beginning b and end time f of an
event ei. Therefore, the temporal dimension of the events
is preserved through this input transformation.

Note that our framework is adaptable to multiple types
of events and, in particular, it is completely agnostic with
respect to the event type and its number and type of features,
information that is only used to explain a detected drift
during subsequent human inspection6. Therefore, for sim-
plicity and notation readability purposes, we omit the type
index i from the notation and assume that all the following
formulas and discussions hold for any event type. So, now,

Xi becomes X , Φi is Φ, mi is m, eb,fi is eb,f , and Ei is E .
One can viewX ∈ R

|E|×m as a real matrix of dimensions
|E| ×m. We can divide X into n contiguous intervals with
specific duration ∆, i.e., n = ⌈ T∆⌉. Suppose each j-th ∆
interval s.t. 1 ≤ j ≤ n has a beginning b(j) and end f(j)
time. In this way, X [b(j):f(j)] delineates those events that
are within the temporal boundaries of the j-th ∆ interval.
Notice that events spanning over the temporal boundaries
[b(j), f(j)] (i.e., their end time exceeds f(j)) are split into
distinct contiguous events, where the remainder spans over
to the next (j + 1)-th ∆ interval. For example, this could
happen when we trace a sleep event, which begins at 21:30:00
of day j and ends at 04:00:00 of day j + 1. Assuming that
we are grouping events according to a daily interval (thus,
∆ = 1 day), we split this event into two: i.e., the first begins
at 21:30:00 and ends at 23:59:59 of day j, and the second
begins at 00:00:00 and finishes at 04:00:00 of day j + 1. This
reasoning can be extended to propagate the remainder of
over-spanning events in multiple contiguous ∆ intervals.

3.3 Capturing trends via dynamic clustering

Unlike other approaches in drift anomaly detection, we use
dynamic clustering, a method for tracking evolving environ-
ments (see steps 3-4 of Figure 1). We build on top of DyClee

6. For example, medical personnel are notified that a detected be-
havioural drift has involved the duration and onset time features of
sleep events.

[35] and adapt it to create a trajectory of denser clusters
used to classify, without any supervision, a sequence as
anomalous or not.

DyClee is a distance and density-based algorithm that
handles non-convex and multi-density clustering, working
incrementally unsupervised. It uses a two-stage algorithm
to produce the final dense set of clusters. First, it collects,
processes, and compresses data samples in µ-clusters based
on the Manhattan distance. In detail, a µ-cluster µCk is a
group of events close in all their feature dimensions Φ. A µ-
cluster µCk is a tuple µCk = (pk, Fk, αk, βk, dk, Ok) where:

• pk ∈ N is the number of elements in µCk.
• Fk ∈ R

pk×m the feature matrix for each event in µCk.
• αk is the time when µCk was created.
• βk is wwhen the last event was assigned to µCk.
• dk is the density of µCk.
• Ok = {o1, . . . , om} s.t. oi = 1

pk
·
∑pk

j=1 Fk[j, i] is the
centroid of µCk.

Notice that each µ-cluster can be seen as an m-dimensional
vector - hereafter hyperbox. This hyperbox is bound in size
at each feature dimension according to Uh = |maxF [:, h]−
minF [:, h]| ∀h ∈ [1,m]. Hence, we can express the density
of µCk as dk = pk∏

m
h=1

Uh
where the denominator is the

volume of the bounding hyperbox.
Recall that we choose a ∆ time unit to divide X into

n contiguous portions. We use ∆ to coordinate the clus-
tering procedure that operates as a wake-up protocol over
the incoming events X . At each j-th ∆ interval, DyClee
wakes up with an empty set of µ-clusters. The first event
in X [b(j):f(j)] becomes the centre of the first µ-cluster. The
other incoming events are grouped according to Def. 3.1.
Here, we abuse the original notation of the event to facilitate
readability and assume that an event now corresponds to a
row in X .

Definition 3.1. A µ-cluster µCk is reachable from event e ∈
X [b(j):f(j)] with feature vector Φ = {φ1, . . . , φm} if

L∞(e, µCk) ≡ max
h
|φh −Ok[h]| <

Uh

2
∀h ∈ [1,m]

and assigned to the closest reachable cluster according to
the Manhattan distance

L1(e, µCk) =
m∑

h=1

|φh −Ok[h]|

Notice that with each new event being part of µCk its tuple
elements get updated: i.e., pk is incremented by one, βk
reflects a new assignment time, dk is recalculated, and Ok

shifts w.r.t. the new features (row) added to Fk.
Having generated the µ-clusters, DyClee enters its sec-

ond phase (step 4), during which clusters are classified as a
µ-cluster w.r.t. its density as dense (Dµ-cluster), semi-dense
(Sµ-cluster), or low-dense (Oµ-cluster). Dynamic cluster is
important to monitor trend changes in the distribution of
µ-cluster, thus, that of the incoming events. To monitor tem-
poral trend shifts of µCk, the algorithm employs a forgetting
function based on the j-th ∆ interval and βk. As suggested
in [35], we use e−0.02(t−βk) where t represents the wake-up
time of DyClee in the j-th ∆ interval. The forgetting func-
tion discards those µ-clusters that are no more significant in
determining the trend shifts. DyClee’s second phase outputs
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TABLE 4: Notation used for the trajectory generation.

Notation Description

C∗
j The densest cluster in the j-th ∆ interval

C∗[j′:j′′] The set/trace of the densest clusters C∗
j s.t. j′ ≤ j ≤ j′′

qj,h The centroid of feature φh ∈ Φ of C∗
j

Q The trend trajectory, i.e., Q ∈ Rn×m

a set of µ-cluster groups where each µ-cluster in a group is
a Dµ-cluster and all its surrounding µ-clusters are either Sµ-
or Dµ-clusters. A cluster can be defined according to Def.
3.2 and 3.3. Here, Nj ∈ R+ denotes the number of clusters
identified in the j-th ∆ interval.

Definition 3.2. (µ-cluster connectivity) µCk1
and µCkn

are
connected if there is a set of µ-clusters {µCk1

, . . . , µCkn
}

such that the hyperbox of µCki
overlaps with that of

µCki+1
∀i ∈ [1, n) in all but θ dimensions.

Definition 3.3. (dynamic cluster) A set of µ-clusters Cl,j =
{µCk1

, . . . , µCkn
} s.t. 1 ≤ l ≤ Nj is the l-th identified

(dynamic) cluster in the j-th ∆ interval if all the µ-
clusters are connected with one another.

DyClee assumes that low-density Oµ-clusters are outliers
in each of the ∆ intervals, an assumption that does not
fit the context considered in our study. Oµ-clusters do
not necessarily include an anomalous event because their
density is lower than the median of the already-formed µ-
clusters. Moreover, the construction of Oµ-clusters is capa-
ble of capturing only abrupt anomalous events (i.e. point
anomalies) and not gradual trend shifts in the trajectory (i.e.
drift anomalies). This is because Oµ-clusters can transit into
being Sµ-clusters in case their density exceeds the median of
the other µ-clusters formed throughout the first step of the
algorithm. Therefore, the density of a µ-cluster is a necessary
but insufficient criterion in determining anomalous clusters
that continuously grow in time due to a drift happening in
the original time series.

3.4 Trajectory generation

We add a mechanism to identify trajectory trends from
dynamic clusters to account for the drawback mentioned
above in signalling a potential drift (see steps 5-6 in Figure
1). We trace the densest cluster for each j-th ∆ interval to
form a trend trajectory of X . We obtain the densest cluster
in each j-th ∆ interval as follows:

C∗j = argmax
Cl,j ∀l∈[1,Nj]

∑

µCk∈Cl,j

dk

|Cl,j |
(1)

Figure 2 illustrates the trajectory generation process. In
this example, we observe a patient’s sleep patterns, with
∆ = 1 day. The red area in the Figure shows how the
patient begins sleeping earlier and longer than usual. For
illustration purposes, we divide the monitoring period into
three portions:

• [t0, t1] and [t2, t3] depict the normality of the series
where the first interval before the drift and the second
corresponds to the new behaviour after the drift;

Fig. 2: Trajectory generation via the densest cluster in each
day. The central part of the image illustrates the sleep
pattern of a patient according to duration and begin time.
We divide the time series into three time-intervals: i.e.
[t0, t1] and [t2, t3] depicting normality, and [t1, t2] depicting
a potential shift of distributions. The red area is the ground
truth. In [t0, t1] (lower-left) the densest clusters C∗[t0, t1] are
contained in a specific region; in [t1, t2] (upper-central) we
detect C∗[t1, t2] whose trend is shifting towards the upper
quadrant of the plot indicating a possible drift; in [t2, t3]
(lower-right) the trace of C∗[t2, t3] is again contained within
a specific region, depicting a new stable state.

• [t1, t2] represents a potential shift of feature distribu-
tions.

For readability purposes, we use C∗[a, b] to indicate the set
of densest clusters C∗j in the j-th ∆ interval s.t. j ∈ [a, b]. In
this way, Figure 2 depicts that C∗[t0, t1] and C∗[t2, t3] remain
within a specific region of the plot, while C∗[t1, t2] moves
diagonally from one extreme to the other. We exploit each
densest cluster C∗j and trace how its centroid moves during
the monitoring time. To this end, we use the centroid of
each C∗j in the j-th ∆ interval, which can be represented as
follows:

qj,h =
1

|C∗j |
·

∑

µCk∈C∗

j

Ok[h] ∀h ∈ [1,m] (2)

whereOk is the centroid of µCk. In other words, the centroid
of the densest cluster C∗j is the mean of the centroids of its
µ-clusters on all feature dimensions h ∈ [1,m]. Hence, for
each j ∈ [1, n], we the overall trend trajectory Q ∈ R

n×m is

Q =











q1,1 . . . q1,m
...

. . .
...

qj,1 . . . qj,m
...

. . .
...

qn,1 . . . qn,m











(3)
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3.5 Predictive strategy

TABLE 5: Notation used for the prediction strategy

Notation Description

Q[j′:j′′]
The trend trajectory containing only the centroids that are within
the j′-th and j′′-th ∆ intervals s.t. 1 ≤ j′ ≤ j′′ ≤ n,
i.e., Q[j′:j′′] = {qj,h | qj,h ∈ Q ∧ j′ ≤ j ≤ j′′ ∀φh ∈ Φ}

δ Time step that the windows move at each iteration

ℓ
The size used for both reference and detection windows.
Each window contains ℓ

2
hyperboxes

λ Past hyperboxes considered to reconstruct the evolution trend

σ
The consensus threshold when aggregating the anomaly detectors
via trackers

Ψ Ensemble of trackers Ψ = {ψ1, . . . , ψu}

Γ Set of divergence tests Γ = {γ1, . . . , γv}

g(j′, j′′) The girth of the hyperbox of the centroids in Q[j′:j′′]

ĝ(j′, j′′) The L2-norm of the girth of the hyperbox of the centroids in Q[j′:j′′]

G(Q′, Q′′, φh, f)
The element-wise difference between the hyperboxes for feature φi
in Q′ and Q′′, aggregated via a generic function f ,
i.e., f(Q′[:, h])− f(Q′′[:, h])

Ĝ(Q′, Q′′, f)
The L2-norm between the hyperboxes for all features in Q′ and Q′′,

aggregated via a generic function f , i.e.,
∣

∣

∣

∣f(Q′)− f(Q′′)
∣

∣

∣

∣

2

2

R(ψ) Reference window of hyperboxes traced by tracker ψ ∈ Ψ

D(ψ) Detection window of hyperboxes traced by tracker ψ ∈ Ψ

Ŷ
Drift output matrix Ŷ ∈ {0, 1}v×u

s.t. Ŷ [i, j] = 0 if γi(R(ψj ),D(ψj)), 1 otherwise

In what follows, we illustrate the algorithm to predict
behavioural drifts, which is the central contribution of this
work. We begin with a high-level summary of the algorithm.
Summary: In online drift detection scenarios, we use two
sliding windows, named reference R and detection D. We
signal a drift if their data distributions change according
to a divergence test γ (e.g., KL divergence) applied on
the hyperboxes of Q. If γ gives a negative outcome, the
elements belonging to the detection window become part
of the reference window. Both windows move according to
each iteration’s time step δ. We set the window sizes to ℓ

2 s.t.
4 ≤ ℓ ≤ ⌊n2 ⌋ ∧ ℓ ≡ 0 (mod 2). Notice that ℓ is a multiple
of ∆ intervals. For example, if ∆ = 1 day, then ℓ might be
4, or 16 days: i.e., ℓ = 4∆ and 16∆, respectively.

Unlike other sliding window detectors, DynAmo can
reconstruct the evolution trend of the last λ hyperboxes.
In this way, the distribution change between the reference
and detection windows transcends the mere current view
of the hyperboxes, including their evolution during the
monitoring time. The evolution of the λ hyperboxes can be
traced in different ways described below. Here, we adopt
an ensemble of trackers Ψ = {ψ1, . . . , ψu} allowing us
to have several detection strategies which lead to a more
robust way of detecting anomalies [36]. Similarly, we use a
set of divergence tests Γ = {γ1, . . . , γv} that generate the
divergence prediction for each component ψ ∈ Ψ.

F
ill

referen
ce

w
n

d
.

F
ill

d
etection

w
n

d
.

Is
th

ere
a

d
rift?

Is
ℓ

too
big

?

To put this in perspective, we have u × v predictions
at each iteration. By relying on the look-back hyperparam-
eter λ, we track how the hyperbox of the densest cluster
evolves in time. This allows DynAmo to track the impact
of the ”movement” of the centroid corresponding to the
densest cluster (see Fig. 2) in time. Hence, DynAmo can

Algorithm 1 DynAmo: Ensembles of window-based trackers
and drift checkers.

Require: Q ∈ R
n×m, δ > 0, 0 ≤ λ < n, 4 ≤ ℓ ≤ ⌊n2 ⌋ ∧

ℓ ≡ 0 (mod 2), 0 < σ < 1, Ψ = {ψ1, . . . , ψu}, Γ =
{γ1, . . . , γv}

1: ŷ ← [0, . . . , 0] s.t. |ŷ| = n
2: t← 1
3: R,D← {ψ : ∅ ∀ψ ∈ Ψ}, {ψ : ∅ ∀ψ ∈ Ψ}
4: while t ≤ n do
5: if n− t+ 1 < ℓ then
6: ℓ← ⌊n−t+1

2 ⌋
7: end if
8: Wprev ← ∅
9: for j = t to t+ ℓ

2 − 1 do
10: Wcurr = Q[max{1, j − λ}:j]
11: for ψ ∈ Ψ do
12: R[ψ].add(ψ.track(Wprev ,Wcurr))
13: end for
14: Wprev ←Wcurr

15: end for
16: Wprev ← ∅
17: for j = t+ ℓ

2 to t+ ℓ− 1 do
18: Wcurr ← Q[max{1, j − λ}:j]
19: for ψ ∈ Ψ do
20: D[ψ].add(ψ.track(Wprev,Wcurr))
21: end for
22: Wprev ←Wcurr

23: end for
24: Ŷ ← detect(R,D,Γ)
25: if consensus(Ŷ , σ) = 1 then
26: ŷ[t+ ℓ

2 :t+ ℓ− 1] = 1
27: t← t+ ℓ

2
28: else
29: t← t+ δ
30: end if
31: R,D ← {}, {}
32: end while
33: return ŷ

Algorithm 2 detect: Subroutine to detect the drift in the
two windows.

Require: R,D,Γ = {γ1, . . . , γv}
1: Ŷ ← 0v×u

2: for t, γ ∈ enumerate(Γ) do
3: for j, ψ ∈ enumerate(R.keys()) do

4: Ŷ [t, j]← ¬ γ(R[ψ], D[ψ])
5: end for
6: end for
7: return Ŷ

interpret slight evolution shifts in Q. Additionally, DynAmo
can identify drift periods as they are happening because,
in case of drifts, the old detection window becomes the
new reference window, thus updating the current view of
”normality”. As depicted in Fig. 2, the drift interval shows
a continuous change in the data distribution. DynAmo’s
windows go through the drift interval in these scenarios,
constantly firing drift signals. Lastly, we aggregate the pre-
diction of all γ ∈ Γ for each tracker ψ ∈ Ψ. Notice that
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DynAmo is a flexible framework that accepts any set of
trackers, divergence tests, and aggregation functions (e.g.,
majority voting) that might use a threshold σ for binarising
the predictions.
Algorithm description: To help the reader understand the
algorithm 1, we first use Q[j′:j′′] to denote the set of
centroids inQ that are within the j′-th and j′′-th ∆ intervals.
We invite the reader to imagine the population of the refer-
ence and detection window as an incremental procedure to
track how the centroids in Q evolve with each passing iter-
ation (see the upper subplot in Fig. 2). Specifically, we want
to track how the m-dimensional feature vector (hyperbox)
of each centroid changes with each passing j-th ∆ interval.
Each window, R and D, will contain exactly ℓ

2 × u tracked
hyperboxes in each iteration. The procedure is in four steps,
as indicated in Algorithm 1 and detailed hereafter.
1. Fill the reference window: First, we fill the reference window
(lines 6-13). Here, we use an alternating and incremental
strategy to keep track of the evolution of the hyperboxes that
contain the centroids in a specific time interval. Therefore,
we can rely on Q[j′:j′′] to slide through the time series.
In particular, for the reference window, we need to see
how adding a new centroid (line 10) changes the bounding
hyperbox (line 12). Since we can look at λ steps in the past,
we clamp the left extreme such that it does not go past the
first ∆ interval. Assuming that we do not fall off bounds, in
each iteration, Wcurr contains the centroids from j − λ to j,
whereas Wprev contains those from j − λ − 1 to j − 1. In
this way, tracking how Wcurr changes w.h.t. Wprev means
measuring how much the centroids’ distribution changes
if we ”forget” the first one in Wprev and consider the one
corresponding to the j-th ∆ (current) interval. Hence, with
each new centroid being added toWcurr , we track its impact
on the evolution of the hyperbox in Wprev (line 12). We
remark that this is one central idea of DynAmo, which makes
it robust to oscillatory signals and sensible to slight changes, as
later shown in Sec. 5. Next, we update the reference window
R represented as a dictionary of key-value pairs for each
tracker ψ ∈ Ψ. Notice that R contains the evolution for each
batch of ℓ

2 incoming centroids. Because we use an ensemble,
we track the evolution from Wprev to Wcurr for each ψ ∈ Ψ.
We assume that each ψ has a method track that measures
how Wcurr changes w.r.t. Wprev .
2. Fill the detection window: Next, we fill the detection win-
dow (lines 16-23). The same reasoning with the reference
window can be applied in this case. Notice that D operates
on the next ℓ

2 centroids (line 17). Differently from the refer-
ence window, when filling the detection window with the
tracking result on Wprev and Wcurr , we allow it to look λ
steps in the past without worrying that this looking back
might lead beyond the limits of the window (line 18). In
other words, we allow looking back into what might have
happened in the reference window instead of cutting it to fit
the temporal interval of the detection window from the left
side (i.e., line 18 would be Wcurr ← Q[max{t+ ℓ

2 , j−λ}:j]).
This is a desired property since the detection window might
contain a portion of evolutive history outside its temporal
bounds to track how the current trend of the centroid
hyperboxes behaves w.h.t. the past (see upper subplot in
Fig. 2). Similarly to R, D exploits the same data structure
containing key-value pairs for each tracker ψ ∈ Ψ.

3. Is there a drift? Lastly, when we have populated bothR and
D with the ℓ, we need to detect whether D contains a drift.
We rely on Algorithm 1 to output a matrix Ŷ ∈ {0, 1}v×u

that contains the result of each divergence test γ ∈ Γ
on the reference and detection windows. Notice that we
use the utility function enumerate to loop through an
array by accessing simultaneously the current element and
its index (e.g., lines 2-3). Additionally, we assume that R
and D, dictionaries, have a function called keys which
returns their key sets, i.e., Γ. Hence, for each divergence
test γ, we check if it gives a negative result on the tracked
hyperboxes R[ψ] and D[ψ] ∀ψ ∈ Ψ. If the divergence
test gives a negative result, then there is a drift, and we

set the i, j cell of Ŷ to 1; otherwise, to 0 (line 4). This
subroutine returns the drift-decision matrix Ŷ to line 24 in
Algorithm 1. Subsequently, since we have multiple decisions
- i.e., v × u - we aggregated them according to a function
consensus: {0, 1}v×u × R → {0, 1} (line 25) which might
use a binarisation threshold σ. Suppose the aggregation
of decisions suggests that there is drift. In that case, we
label the current window anomalous (line 26) and replace
the reference window with the detection7 (line 27). If no
drift is signalled (line 28), we move both windows forward
by δ time steps. Notice that, in false positive cases - i.e.,
identifying an inexistent drift - DynAmo wrongly replaces
R with D. However, in the next iteration, R will contain
elements that, in reality, are normal, thus not hindering
the correct functioning of the algorithm. The ensemble-based
prediction strategy outlined in this paragraph is another relevant
aspect of DynAmo that contributes to its stability across different
datasets and anomaly types (see Sec. 5).

4. Is ℓ too big? At each iteration, we reset both R and D. To
ensure the algorithm does not exceed the n-th ∆ interval,
we check for enough space to fill the last two windows (line
5) and redefine ℓ as half of what remains. The algorithm
might suffer from one-off - i.e., the last centroid remaining -
if n ≡ 1 (mod 2). However, we ignore this edge case here
for clarity.

Dynamo’s components: Notice that DynAmo can take, in
a plug-and-play fashion, any tracker, divergence test, and
consensus function without modifying its backbone. For
reproducibility, we describe what we used in this paper.

Trackers: We use four hyperbox trackers, i.e., Ψ =
{ψ1, ψ2, ψ3, ψ4}. We rely on the notation in Table 5 to briefly
describe them here.

• ψ1 tracks the volume of the hyperbox, g(j′, j′′), within
the bounds [j′, j′′]

g(j′, j′′) =
m∏

h=1

(

max value for φh ∈ Φ
︷ ︸︸ ︷

maxQ[j′:j′′][:, h]−

min value for φh ∈ Φ
︷ ︸︸ ︷

minQ[j′:j′′][:, h]
)

Here, we first select the centroids within [j′, j′′]. Then,
we calculate the span (i.e., difference between maxi-
mum and minimum) of each feature φh ∈ [1,m].

7. From the pseudocode, one can notice that we do not explicitly
replace R with D. Instead, we move i to the index corresponding to
where the current detection window starts, i.e., i+ ℓ

2
. Therefore, in the

next iteration, R will be filled with the hyperboxes of D in the previous
iteration.
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• ψ2 tracks the L2-norm of the hyperbox, ĝ(j′, j′′), within
the bounds [j′, j′′]

ĝ(j′, j′′) =

√
√
√
√

m∑

h=1

(
maxZ −minZ

)2

where Z here is a short-hand for Q[j′:j′′][:, h].
• ψ3 tracks the difference between two hyperboxes in

terms of minimum (maximum) spans. First, we use two
temporal bounds [x, y] and [w, z] to get Q′ = Q[x:y]
and Q′′ = Q[w:z]. In other words, we calculate the
difference between the maximum value of φh ∈ Φ in Q′

and that for the same feature in Q′′. Hence, we denote
withG(Q′, Q′′, φH , f) = f(Q′[:, h])−f(Q′′[:, h]), where
f is an aggregation function. The difference between the
two hyperboxes on all elements is the matrix






G(Q′, Q′′, φ1,max) G(Q′, Q′′, φ1,min)
...

...
G(Q′, Q′′, φm,max) G(Q′, Q′′, φm,min)






Interestingly, the sign in these vectors illustrates
shrinkages/expansions happening for each feature φh
through time; meanwhile, its magnitude is represented
by the difference value.

• ψ4 tracks the L2-norm of the difference between two
hyperboxes in terms of minimum (maximum) spans.
Similarly to γ3, we use Q′ and Q′′. Here, we calculate

Ĝ(Q′, Q′′,max) =

√
√
√
√

m∑

h=1

(maxQ′[:, h]−maxQ′′[:, h])2

Ĝ(Q′, Q′′,min) =

√
√
√
√

m∑

h=1

(minQ′[:, h]−minQ′′[:, h])2

and use these two values for tracking purposes.

Divergence tests: We use two different drift detection crite-
ria, i.e., Γ = {γ1, γ2}. Notice that we can rely on well-
established divergence tests, such as KL divergence or the
Kolmogorov-Smirnov test. Instead, we devise ad-hoc detec-
tion criteria. Recall that we use the divergence test once the
reference and detection windows (line 24 in Algorithm 1).
Therefore, for each tracker ψ ∈ Ψ, the following divergence
test get in input the values of R[ψ] and D[ψ]:

γ1(x,y) = 1

[ ℓ
2∑

j=2

∣
∣x[j]− x[j − 1]

∣
∣ ≥

ℓ
2∑

j=2

∣
∣y[j] − y[j − 1]

∣
∣

]

γ2(x,y) = 1

[

µ(x)− σ(x) < µ(y) < µ(x) + σ(x)

]

where µ(·) and σ(·) are the mean and standard deviation of
the input vector, respectively. For trackers ψ3 and ψ4, which
do not output a single value, γ1 and γ2 check whether their
conditions are met in any dimension. Notice that DynAmo’s
backbone allows prospective users to specify established
divergence tests to assess whether the distribution of R
changes w.h.t. D. Additionally, by employing, for instance,
the Kolmogorov-Smirnov test, one can measure the KS
statistic, which entails the magnitude of the difference. In
this way, one could incorporate several severity levels of

drift detection, e.g., small, noticeable, and complete be-
havioural shifts. In this way, system users can fine-tune
DynAmo according to the specific needs of the monitored
patient’s and caregivers’ decisions. This investigation re-
mains as future work.
Consensus function: We use the average voting aggregation,

i.e. if the average of Ŷ exceeds σ, then a drift is signalled;
otherwise, it is considered normal behaviour.
Complexity: Algorithm 1 converges since it is bound to the
last n-th ∆ interval. DynAmo does a single pass over the
time series. It ensures correct tracking of the evolution of
the hyperboxes in the two windows. Again, our strategy
remains unsupervised, requiring only ℓ data points to build
the two windows for detection purposes. Here, we assume
that the cost for calculating maxima, minima, norms, sum-
mations, products and aggregations via consensus func-
tions is O(1). Hence, the time complexity of Algorithm 1
is O(n × (ℓu + uv)). Knowing that ℓ can be at most n

2 ,
we have that O(n × (ℓu + uv)) = O(n × (nu + uv)).
Generally, u and v can be disregarded since u << n and
v << n. Therefore, the overall cost of the algorithm is
O(n2). Specifically, the whole algorithm is encapsulated in
a loop (line 4), which costs O(n). Populating the two win-
dows (lines 9-15 and 17-23) costs O(ℓu). Lastly, the detect
subroutine costs O(uv). The space complexity of Algorithm
1 is O(n + ℓu + ℓ + uv) = O(n). In detail, O(n) accounts
for maintaining the vector ŷ; O(ℓu) for the reference R and
detection D; O(ℓ) for both Wcurr and Wprev ; and O(uv) for

the output matrix Ŷ of the detect subroutine.

4 DATASETS

To the best of our knowledge, there are no works in the lit-
erature that evaluate datasets containing behavioural trajec-
tories annotated with drifts during the time of monitoring.
Rather, the literature concentrates on activity recognition in
smart home environments [37], [38], [39], [40]. However, we
rely on the reproduction of ARAS [37], VanKastereen [40],
and PolimiHouse as proposed in [41] to evaluate DynAmo.
These datasets have a synthetically generated drift period
that we attach to the end of the normal period. Each simula-
tion day contains activities of daily living and each sensor’s
scheduling timetable (wake-up call). Each dataset comprises
90 days of a virtual inhabitant’s life and has drift periods
compatible with dementia symptoms.

Additionally, we use the E-Linus (EL) dataset consisting
of the daily routines of two patients with symptomatic
senile social isolation disorders. We created this dataset by
collecting activity data within an ambient assisted living
environment for older people during an industry-driven
project, as detailed in [34]. Although two patients may seem
small, we consider them as single datasets that present
different anomaly types (duration, sequence, start time,
daily frequency) on six different activities (sleep, hygiene).
Moreover, the challenge here is to learn a model of normality
and abnormality tailored to each patient’s peculiarities since
the conditions of the two selected patients and their habitual
activities were very different, for example, one with regular
and the other with deregulated sleep patterns.

Given the relatively short monitoring period, we artifi-
cially extend these sequences over longer periods, based on
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TABLE 6: The dataset characteristics for each monitoring scenario in E-Linus (obtained from real data with realistic
perturbations) and the other synthetic datasets. For simplicity purposes, we analyse only the activity of sleep.

Datasets
Monitoring

days

% of drift

in series

Avg. daily duration

of sleep (h)

Avg. daily duration of

sleep interruptions (mins)

When does the patient go

to sleep on avg.? (hh:mm:ss)

Avg. duration of sleep

during drift (h)

Avg. interruptions of sleep

during drift (mins)

Real

ELP1
D 1,460 40.00% 8.96 ± 1.24 9.22 ± 3.76 22:04:36 ± 00:37:54 9.22 ± 0.78 9.17 ± 3.69

I 1,460 40.00% 7.54 ± 0.22 12.76 ± 8.05 22:45:24 ± 00:09:01 7.52 ± 0.25 15.19 ± 6.61

ELP2
D 1,460 40.00% 8.46 ± 1.51 22.90 ± 11.82 21:35:57 ± 00:57:31 8.73 ± 1.18 23.06 ± 12.07

I 1,460 40.00% 6.89 ± 0.93 35.84 ± 18.93 22:16:26 ± 00:43:56 6.86 ± 0.95 39.61 ± 16.82

Synthetic
PH 170 47.06% 7.51 ± 1.37 5.84 ± 20.86 22:19:14 ± 00:50:32 7.08 ± 1.72 10.86 ± 28.75

AS 171 47.37% 7.31 ± 1.54 4.64 ± 20.94 22:23:39 ± 00:39:54 6.58 ± 1.84 7.71 ± 28.86

VK 151 39.33% 7.97 ± 3.37 9.60 ± 68.16 22:38:19 ± 00:49:29 9.11 ± 5.27 25.31 ± 108.77

small realistic perturbations of the observed routines relying
on the tool proposed in [42]. Furthermore, we injected var-
ious types of drifts by perturbating the features according
to well-defined rules specified with the help of geriatricians
participating in the E-Linus project. For each patient (ELP1
and ELP2), we generated two datasets: D, with perturba-
tions on the sleep duration, and I, with perturbations on
the number of sleep interruptions. We describe the feature
processing in Sec. A. Notice that, in this paper, we only
consider sleep events for all datasets.

Table 6 illustrates the characteristics of the datasets for
Duration (D) and Interruptions (I). Notice how the first pa-
tient (P1) in EL has more regular sleep patterns than the
second patient (P2) - see 3rd and 4th column of the table.
Additionally, we report the average duration of sleep and
the interruption duration when the drift occurs (see the last
two columns).

We invite the reader to notice that the synthetic datasets
clearly define a much easier scenario to detect abnormal
periods of activity. In particular, for PolimiHouse (PH) and
ARAS (AS), the sleeping duration decrements noticeably,
and the interruptions take approximately twice as much as
in the normal period. In VanKastareen (VK), the duration of
interruptions and sleep increase, respectively, of ∼164% and
14%. Therefore, for the synthetic datasets, we expect that
approaches based on a fixed reference window will have an
advantage over others because the drift period happens near
the end of the monitoring time. Contrarily, for EL, we expect
the fixed-reference window approach to underperform w.r.t.
sliding window approaches since the distribution of the
sleeping patterns continues to change inside the drift period.

Additional analyses and discussions on the diversity
between the two types of datasets are in Sec. B.

5 EXPERIMENTS

Here, we describe the experiments performed on all datasets
and compare DynAmo with several SOTA systems. Sec. 5.1
enlists the compared methods and explains the experimen-
tal and hyperparameter settings to endorse reproducibility
for future research. Sec. 5.2 describes the performances of
the compared methods and provides detailed insights and
limitations of each of them.

5.1 Compared methods, experimental setup, metrics,

and hyperparameters

Compared methods: We compare with baseline strategies
such as Keep It Simple (KIS)8, BinSeg [43], BottomUp [44],

8. Naive baseline that labels every day randomly.

PELT [45], [46], Window [47], IKSS-bdd [11], IKSSW9, and
KernelCPD [48]. We also compare with the following state-
of-the-art methods10: KLCPD [21], MD3 [10], MD3-EGM
[17], STUDD [27], D3 [22], NN-DVI [19], ERICS [26], and
CDLEEDS [28]. We refer the reader to Sec. 2 and Table 1 for
a summary description of compared methods and to Sec. E
for more details.
Hyperparameters and reproducibility of DynAmo: We
do not divide the input trajectory into sets for training,
validation, and testing to maintain a fully unsupervised
drift detection approach. Instead, we label the windows in
an online fashion. We use a ∆ = 1 day to generate Q. We
performed a Bayesian optimisation with an average F1 score
as the target function - see Sec. C for more details - for 100
trials and achieved the best performances for:

• EL by setting λ = 25, δ = 10, ℓ = 30, and σ = 0.2666,
• Synthetic datasets (PH, AS, VK) by setting λ = 4, δ = 4,
ℓ = 16, and σ = 0.3422.

Notice that optimising for maximising the F1 score does
not compromise DynAmo’s unsupervised nature since this
helps optimise the hyperparameters, not the model param-
eters. The optimisation strategy could be seen as a grid
search on all possible combinations of DynAmo’s hyperpa-
rameters, where we report the best variation based on the
average F1 score. There are no learned/updated parameters
in DynAmo in this process since the clustering procedure
is frozen and only the two-window (i.e., reference and
detection window) procedure is executed.
Fair comparison policy: To make sure that all of the com-
pared methods are in the same realistic scenario - i.e., a situ-
ation in which it is not guaranteed that the reference (train-
ing) window represents normality, nor it is known whether
any drifts would start to appear during this window - we
need to uniform the amount of ”history” that each method
can consider before making predictions. This phenomenon
is even more pronounced with (semi)supervised strategies
that need a minimum amount of data points reserved for
training purposes. It is natural that we reserve only ℓ

2 data
points for the compared methods for ”training” purposes
such that they have the same view of the distributional
changes as DynAmo has in each iteration. Notice that in
STUDD, MD3, MD3-EGM, and D3, this is inherently inhib-
ited due to the fact that the underlying binary classifiers
require to have at least one observation belonging to the

9. A sliding window approach that extends IKS-bdd.
10. We searched for the implementation of all the papers in Table 1,

however, [12], [18], [25] are not replicable/reproducible. Whereas, [13],
[14], [15], [16], [20], [23], [24] do not have a publicly available code
repository.
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TABLE 7: Average F1 scores (over 30 runs) of SoA methods
against DynAmo. Notice that × represents no convergence.
A value is in bold if it is the highest value on average; it
is underlined when it is not significantly diverse from the
best-performing model according to a one-way ANOVA test
with a post-hoc Tukey HSD with a p-value of 0.05. A value
is italic if it is the second-best value on average. S denotes
supervised, SS semi-supervised, and U unsupervised learn-
ing.

Synthetic datasets Realistic datasets

PH AS VK ELP1-D ELP1-I ELP2-D ELP2-I

U KIS 0.4836 0.4832 0.4321 0.4426 0.4446 0.4426 0.4421
U Pelt [45], [46] 0.1489 0.1505 0.1270 0.1979 0.1956 0.2093 0.2093
U BinSeg [43], [49] 0.1573 0.1348 0.1422 0.2148 0.2057 0.2119 0.2119
U Window [47] 0.0952 0.0244 0.0656 0.0134 0.0168 0.0231 0.0166
U BottomUp [44] 0.1915 0.1720 0.1875 0.1961 0.1938 0.2093 0.2093
U IKSSW 0.2247 0.2222 0.0000 0.0487 0.0000 0.0714 0.0000B

as
el

in
es

U IKSS-bdd [11] 0.2247 0.6667 0.0000 0.1595 0.0000 0.2176 0.0000
U KernelCPD [48] 0.5564 0.5246 0.5316 0.4455 0.4455 0.4484 0.4484

S MD3 [10] 0.7018 0.9051 0.0000 0.0000 0.6273 0.6282 0.6525
SS MD3-EGM [17] 0.0282 0.0278 0.0392 0.0036 0.0036 0.0036 0.0036
SS STUDD [27] 0.0909 0.0000 0.0000 0.6708 0.0315 0.3068 0.1250
U KLCPD [21] 0.1300 0.2567 × 0.0181 0.2513 0.0392 0.0000
S D3 [22] 0.7097 0.6829 0.7445 0.9471 0.7142 0.5613 0.4340
U NN-DVI [19] 0.6789 0.5889 × 0.4550 0.4134 0.2428 0.2327
SS ERICS [26] 0.6371 0.6345 0.5604 0.3572 0.4028 0.4147 0.4312

S
o

A

U CDLEEDS [28] 0.6556 0.6584 0.5771 0.7136 0.6625 0.6625 0.6625

U DynAmo [us] 0.7159 0.8187 0.7407 0.6988 0.7601 0.7699 0.6686

anomalous class. Therefore, these strategies have an advan-
tage and cannot be fully aligned to fairly compare against
the others. Finally, we also optimised the hyperparameters
of all SoA methods, similar to what we did for DynAmo.
We refer the reader to Sec. D for more details.
Evaluation metrics: We use average F1 scores over 30 runs
to evaluate all the methods. For completeness, in Sec. E, we
also report the false positive rate (FPR) and false negative
rate (FNR) for all methods in Table 7. Concerning these
latter performance indicators, we argue that in real-world
clinical scenarios, false negative errors should be worse
since a ”real anomalous” behavioural shift has happened,
and DynAmo missed it, leading to potential risks for the
monitored patients. Balancing the cost of false positives for
the hospital and the risk to patient’s health arising from false
negatives depends on local policies. However, according to
ethical principles, we should assign more weight to human
health.
The code to replicate/reproduce our solution and experi-
ments is available online11.

5.2 Discussion and Ablation Study

DynAmo is a promising fully unsupervised drift detector
for complex and realistic domains: Table 7 shows the
performances in terms of average F1 scores on 30 runs for
each dataset. Since the Table does not suggest a clear winner
over all datasets, we conducted a Friedman Test on the
illustrated average F1 scores. Here, we obtain a test statistic
equal to 77.601 with a p-value of 4.4895×10−10. Since the p-
value is less than 0.05, we can reject the null hypothesis that
the average F1 scores across all datasets are the same for all
methods. To verify whether DynAmo has statistically and
significantly different (better) average F1 scores across the
board, we perform a Bonferroni-Dunn post-hoc test where
the control detector is DynAmo. The test suggests that

11. https://github.com/bardhprenkaj/dynamo

DynAmo is statistically and significantly different across the
board, across the board, to Pelt, BinSeg, Window, BottomUp,
IKSSW, IKSS-bdd, MD3-EGM, STUDD, and KLCPD. The
average F1 scores per dataset suggest that DynAmo is
the best detector on 4/7 datasets, underperforms in 2/7
cases (while keeping the second and third position), and
performs equally well on 1/7 scenarios according to a one-
way ANOVA with post-hoc Tukey HSD (p-value of 0.05).
Overall, DynAmo is the best-performing method, despite it
being unsupervised, surpassing the supervised D3 by 7.91%
on average on all datasets.

We also observe that DynAmo has very stable perfor-
mance across all datasets, a property shared only with some
of the baseline methods - which have far fewer parameters.
This desirable feature depends on the ensemble-based pre-
dictive strategy that ensures stability in different contexts.

Regarding the two types of datasets, we note that per-
formances on the synthetic datasets are better on average
for all systems due to the less challenging scenarios (see
Sec. 4). Here, Dynamo is surpassed only in the AS dataset
by the supervised MD3 approach. In the challenging and
realistic EL datasets, Dynamo always holds the lead except
for ELP1-D, where the supervised D3 and the unsupervised
CDLEEDS surpass it. Since ELP1-D represents a patient with
homogeneous behavioural patterns (as far as the duration
of sleep) throughout the normality period, D3’s underlying
trained classifier can easily devise a separation hyperplane
between anomalous and normal instances. However, D3’s
performances drop in the other three harder and oscillatory
scenarios. We note that all (semi)supervised methods (i.e.,
D3, MD3, MD3-EGM, STUDD, and ERICS) fail to output
a decision (i.e., F1 = 0) where the underlying classifier is
not capable of distinguishing between normal and abnormal
behaviour patterns.

DynAmo is robust to distributional changes within the
drift period: During the drift period, an observed behaviour
changes until a new ”normality” pattern is adopted. We
want to demonstrate that DynAmo is robust against any
setting of the reference and detection windows throughout
the trajectory given in input. Since we are in an unsuper-
vised scenario, we compare DynAmo’s performances with
CDLEEDS, the second-best unsupervised approach accord-
ing to the sum of ranks produced by the Friedman test on
all datasets12. In Figure 3, we show the difference in terms
of F1 scores between DynAmo and CDLEEDS on patients
P1 and P2 of EL. Positive (blue) values indicate that Dy-
nAmo outperforms CDLEEDS. Negative (red) values show
that CDLEEDS is better than DynAmo. The shaded areas
represent the (ground-truth) drift periods. The experiment
shows that DynAmo performs better than CDLEEDS in
general. It does so also when the monitoring time starts
slightly before or within the drift period - the grey area
in Figure 3)- although in some cases, e.g., for patient P2,
CDLEEDS has the upper hand during the first portion of
the drift trajectory. For the synthetic datasets, it is interesting
to notice how - in line with what is reported in Table 6 -
for VK, both strategies are competitive until the near end

12. DynAmo has a sum of ranks equal to 115, while CDLEEDS 104;
where the highest sum of ranks is 17 × 7 = 119, i.e., the number of
compared methods for all the 7 datasets.

https://github.com/bardhprenkaj/dynamo
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Fig. 3: DynAmo vs CDLEEDS: varying the start offset of
the monitoring time (x-axis), the plots depict the difference
in terms of F1 scores between DynAmo and CDLEEDS (y-
axis). For visualisation purposes we depict the difference in
performances according to a red-blue divergent colour scale
where blue indicates that DynAmo outperforms CDLEEDS
and red vice versa. The shaded area depicts the drift period.

Fig. 4: DynAmo’s performances in terms of F1 scores when
varying the amount of daily hyperboxes (window size) ℓ.

of the behavioural sequence. In this case, neither DynAmo
nor CDLEEDS can capture anomalous behaviours when the
beginning monitoring day is within the drift period. Con-
trarily, for PH and AS, DynAmo outperforms CDLEEDS.

More daily hyperboxes for testing the distributional shifts
imply more confident detections: Figure 4 depicts the
contribution of the amount of daily hyperboxes ℓ used to
populate the two windows. Here, we set ℓ ∈ [2, 40] for EL
and ℓ ∈ [2, 30] for the synthetic datasets and leave the other
hyperparameters unchanged. With a black circle, we report
the average performances for all datasets reached according
to the Bayesian optimisation (see Sec. D). Additionally,
a blue circle illustrates similar performances as the ones
reported from the optimisation with a different choice of

Fig. 5: DynAmo’s performances in terms of F1 scores when
varying the look-back parameter λ.

the window size ℓ′. Red circles represent the choices of the
window size, which produce better average results than
those reported in Table 7, leaving the other hyperparame-
ters unchanged. This phenomenon is present specifically in
the synthetic datasets, which leads us to believe that the
optimisation strategy reached a local minimum, pruning
the trials that might have generated a better combination
of hyperparameters with higher average F1 scores on the
datasets. For the synthetic datasets, the F1 curve keeps
increasing due to the homoscedasticity of the ”normal”
period in the behavioural sequence.

Nevertheless, we need to cope with real-world critical
scenarios where the promptness of prediction is a crucial aspect
and not much time is spent in training/updating the models.
In this context, the fewer daily profiles needed to make
predictions, the more robust the system is. We invite the
reader to notice that ⌊ ℓ2⌋ = 15 days are a reasonable amount
of time to build the reference/detection window (i.e., only
∼ 1% of the total monitoring days) in the EL datasets.
Similarly, for the synthetic datasets, although we can reach
better F1 scores with larger ℓ - see the red dots - we argue
that coping with the cold start problem and capping the
window size is more beneficial. We perform a similar study
for MD3, MD3-EGM, D3, and ERICS in Fig. 12.
A short/medium-term look-back has benefits in dealing
with recurrent normal behaviour: Figure 5 illustrates the
contribution of the look-back amount λ used to trace the
evolution of the feature hyperboxes within the same win-
dow. The circles have the same meaning as presented in the
previous ablation study (see Figure 4), now with λ as the
parameter of interest. Notice that a large λ in EL degrades
the performances in almost all cases besides ELP2-I. In
particular, we argue that maintaining the history of λ days
before the current might help have a complete overview
of the hyperbox evolution in time. However, it does not
always represent the current behavioural situation due to
outdated routine activities. ELP2-I presents a sawtooth-like
trend, which leads us to believe that the noise in the daily
routines does not permit DynAmo to build an effective
evolutionary view of the feature hyperboxes in time (see
Sec. B).

Additionally, we notice that a λ ∈ [1, 30] has a substan-
tial performance gain w.r.t. λ = 0 because daily routines
tend to re-occur according to a specific seasonality trend.
More specifically, λ allows DynAmo to learn this intrinsic
and latent seasonality in the evolution of the feature hy-
perboxes (e.g., sleeping less in hot seasons). Contrarily, the
synthetic datasets do not have a clear shared monotonicity
of the F1 scores when varying λ. Moreover, one can notice
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how looking back for too much leads to worse performances
than not looking back at all. For this reason, a trade-off
between λ (past), ℓ (current and future), and the trajectory
length is necessary for real-world complex scenarios.

6 CONCLUSION

We presented a drift anomaly detection framework for mul-
tivariate symbolic sequences, such as human behavioural
patterns. Our approach, DynAmo, is based on dynamically
clustering the monitored events of the same type with a
selected frequency (e.g., days or weeks), generating a tra-
jectory by extracting features from the densest clusters of
centroids. Finally, DynAmo exploits an ensemble of track-
ers/divergence tests to predict a drift on the reference or
detection windows.

In summary, DynAmo has the following notable fea-
tures:

1) It is fully unsupervised, which is desirable, particularly
for personalised learning applications and in contexts
where it is not easy to obtain labelled data.

2) Dynamo surpasses, on average, supervised, unsuper-
vised and semi-supervised systems with a stronger
advantage in complex, realistic scenarios (such as those
of the E-Linus patients telemonitoring dataset).

3) Contrary to other compared systems, DynAmo is ro-
bust to oscillatory input signals, thanks to the look-
back λ parameter. Furthermore, the look-back strategy
allows for detecting drift anomalies even when they
occur during the construction of the reference window.
This is a relevant property since we cannot guarantee
that drifts do not occur during the initial observation
period.

4) Performances are stable across datasets due to the pre-
diction strategy based on an ensemble of trackers and
divergence tests.

A limitation of DynAmo is that it needs to integrate
point and drift anomalies into a single detection frame-
work. However, it can identify potential outliers as low-
density peripheral clusters (see Sec. 3.3). DynAmo also lacks
explainability mechanisms, for example, to detect causal
patterns among detected anomalies. Finally, we have omit-
ted some technical details on how drifting behaviours are
collected and analyzed in applications. For example, in some
application scenarios, it may be relevant to recognize that a
detected anomaly has occurred previously or is recurring
(see Sec. G). We leave these extensions to future studies.
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APPENDIX A

FEATURE PROCESSING AND EVENT FILTERING

TABLE 8: The description of the cumulative functions
Z1, . . . , Z5. Notice that we use the first-order logic to de-
scribe the meaning of the features extracted from the set of
daily events

Cumulative function Feature extracted Description

Z1(Ej ) argmin
b(ei)

{ei ∈ Ej}
The beginning time of the first
sleep event in the j-th ∆ interval

Z2(Ej ) argmax
f(ei)

{ei ∈ Ej}
The end time of the last sleep
event in the j-th ∆ interval

Z3(Ej )
∑

ei∈Ej

(

f(ei)− b(ei)
)

The cumulative daily sleep portion

Z4(Ej ) |Ej |
The number of distinct sleep
events depicts the number of
interruptions in the j-th ∆ interval

Z5(Ej )

∑

e′i,e
′′

i ∈Ej

∧ o(e′′i )=o(e′i)+1

(

b(e′′i )− f(e′i)
)

where o(e) is the order in which
the events re sorted in Ej

The cumulative duration of sleep
interruptions in the j-th ∆ interval

In the E-Linus (EL) and the synthetic datasets, we con-
sider the anomalies over trajectories of nocturnal sleep
events. It is important to analyse sleep patterns because
many disorders can affect it [50], becoming chronic over
time.

To effectively represent the daily sleep behaviour of a
particular patient, we begin our daily monitoring between
21:00 of the day j and noon of j + 1. Notice that Xj ∈ R

5

now is a vector of five dimensions since we extract five
different features from the events in the j-th ∆ interval.
For convenience purposes, we denote with Ej the set of
events collocated within the temporal bounds of the j-th
∆ interval.

Xj =
[
Z1(Ej) Z2(Ej) Z3(Ej) Z4(Ej) Z5(Ej)

]

Table 8 illustrates the features extracted and their descrip-
tion for each cumulative function Z .

APPENDIX B

DATASET CHARACTERISTICS

Here, we present the characteristics of the datasets exam-
ined in the main manuscript to make it easier for the reader
to follow the discussion of Section 5.3. In Figures 6 and 7, we
illustrate the trend of each feature described in Table 8 for,
respectively, EL and the synthetic datasets. For visualization
purposes, we depict scatter plots in the scenario of EL due
to the very long length of this dataset13 (4 years). Instead, we
opt for line charts for the synthetic datasets to emphasize the
artificial trend of the patient trajectories. Besides depicting
real/realistic patient behaviours, notice how not all features
in EL have a clear trend. When the duration of the sleep
patterns is perturbed in the first patient (ELP1-D), the third
feature - i.e. cumulative daily duration of sleep - has a
clear drifting trend, whereas the features corresponding to
sleep interruptions - see the first two subplots - have a
completely irregular pattern which hinders DynAmo and
SOTA detectors from performing well. Contrarily, when

13. Remember however that we started from a much shorter moni-
toring period, six weeks, that we artificially but realistically prolonged
and described in Sec. 4 of the main paper.

leaving the sleep duration untouched, in ELP2-I, there is
no evident trend in the last two subplots, while the number
of interruptions - see the second subplot - delineates a clear
shift in distributions within the drift periods. Considering
more heterogeneous behavioural patterns in the second pa-
tient, the detection becomes even more arduous, as reported
in the ablation study of the performances of DynAmo and
CDLEEDS when offsetting the beginning of the monitoring
time (see the plots for ELP2-D and ELP2-I).

In the synthetic datasets, notice how the patient ”nor-
mality” is simpler than that in the real-world scenarios in
EL. Particularly, in VanKastareen (VK), the normality does
not aid methods that are based on the evolution of the
feature space - e.g. DynAmo, CDLEEDS [28], and ERICS
[26] - because of its homoscedasticity. Moreover, notice how,
in the drift period, the shift in distribution is not gradual, as
illustrated in EL. This rapid change in distribution makes it
difficult for the hyperbox evolution to grasp any significant
trend. Exploiting a window size of 7 (i.e. ⌊ ℓ2⌋ = 14

2 ), Dy-
nAmo is incapable of capturing any clear evolution when
the minimum and maximum span of the feature space
remains unvaried (or slightly varies), especially when the
beginning monitoring time shifts towards the end of the
trajectory. We suspect that reconstruction-based methods
would perform well in the synthetic dataset scenarios due
to the homogeneity of the normal period, which would aid
the underlying model in differentiating the abnormal period
more easily. Nevertheless, testing these methods is out of the
scope of this work.

APPENDIX C

HYPERPARAMETER ANALYSIS FOR DYNAMO

The parameters described in Section 5.2 of the main material
are a derivation of a Bayesian optimisation for 100 trials
with the following search space for each hyperparameter
and dataset:

• EL - λ ∈ [1, 180], ℓ ∈ [4, 30], δ ∈ [1, 10], and σ ∈ U0.95
0.05 ;

• PH, AS, VK - λ ∈ [1, 20], ℓ ∈ [4, 20], δ ∈ [1, 10], and
σ ∈ U0.95

0.05 ;

where Uy
x is a uniform distribution with the low-end equal

to x and the high-end to y. Instead of performing an
optimisation for each dataset, we optimise the choice of
the hyperparameters for all datasets belonging to the same
group (i.e. real vs synthetic) where the objective function is
the average F1 score.

Figures 8 and 9 represent contour plots of the hyper-
parameter optimisation for EL and the synthetic datasets.
Notice that, for each pair of the hyperparameters14, we
illustrate the reached F1 score - see the dots in the subplots
- over the objective value region depicted in a light-to-
dark colour scale. The darker the region, the nearer the F1
score to the maximally reached value in the optimisation.
It is interesting to notice that, throughout the optimisation,
DynAmo can reach local minima - see the ridges in the plots
- that make the combination of hyperparameters harder
to reach the objective value. Furthermore, optimisation in
EL is concentrated on the darker region sooner than in

14. The contour plots for the pairs of two identical hyperparameters -
e.g., (σ, σ) - are not shown because they do not convey any information.
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Fig. 6: The five features described in Section A normalised in the range [-1,1] for each patient in E-Linus. The highlighted
portions of the trajectory illustrate the drift period.

synthetic datasets, where the F1 scores are distributed het-
erogeneously throughout the regions.

Figure 10 depicts the optimisation history of EL and the
synthetic datasets according to the combination of the hy-
perparameters described above. The x-axis depicts the trial,
and the y-axis the objective value (i.e., the F1 score). Notice
that the maximum number of trials set in the optimisation
is 100. Nevertheless, the Bayesian optimiser can prune the
current trial if its difference in the objective value does not
exceed a certain threshold. Therefore, the x-axis in the two
plots in the Figure is cut off. As Figure 8 shows, the objective

value converges to the best obtainable value curve (see the
concentration of the blue dots w.r.t. the red curve).

Meanwhile, the optimisation for the synthetic datasets
follows a more spurious trend even though the final objec-
tive value is higher than that in EL. Finally, if one compares
Figure 9 with the plot on the right in Figure 10, the Bayesian
optimisation behaves like a random optimisation strategy.
This leads us to believe that the absence of anomalies
in the synthetic datasets’ sequences before the monitoring
time’s end does not make DynAmo adapt to potential false
positives/negatives when detecting drifts.
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Fig. 7: The five features described in Sec. A normalised in the range [-1,1] for the synthetic datasets. The highlighted
portions of the trajectory illustrate the drift period. Notice how, differently from EL, the normal behavior of the patient is
mostly homoscedastic with rare distributional outliers.

Fig. 8: The hyperparameter contour plot in the EL scenario.

Fig. 9: The hyperparameter contour plot in the synthetic
dataset scenarios.

For completeness, we show the slice plots (see Figure
11) for all the hyperparameters contributing to the objective
value according to the number of trials passed in the opti-
misation process.

Fig. 10: The optimisation history for EL and the synthetic
datasets.
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Fig. 11: The objective value reached for each hyperparameter through the optimisation trials.

TABLE 9: Search space of the hyperparameters of the baselines.

BinSeg BottomUp PELT Window IKSSW IKSS-bdd KernelCPD

EL ℓ ∈ [4, 30]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 30]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 30]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

width ∈ [2, 10]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 30]
δ ∈ [1, 10]

ℓ ∈ [4, 30]
δ ∈ [1, 10]

ℓ ∈ [4, 30]
pen ∈ [1, 10]
min size ∈ [2, 10]
kernel ∈ {linear, cosin, rbf}

Synthetic ℓ ∈ [4, 20]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 20]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 20]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

width ∈ [2, 10]
pen ∈ [1, 10]
min size ∈ [2, 10]
jump ∈ [5, 10]
model ∈ {l1, l2, rbf}

ℓ ∈ [4, 20]
δ ∈ [1, 10]

ℓ ∈ [4, 20]
δ ∈ [1, 10]

ℓ ∈ [4, 20]
pen ∈ [1, 10]
min size ∈ [2, 10]
kernel ∈ {linear, cosin, rbf}

APPENDIX D

COMPARED METHODS AND HYPERPARAMETER OP-

TIMISATION

The following are the baseline strategies that we compare
to in the experiments. As done with DynAmo, we use a
Bayesian optimisation (where applicable) for 100 trials for
all SoA methods. Tables 9 and 10 show the search space
for each method in EL and the synthetic scenarios. Tables
11 and 12 show the hyperparameters of each compared
method that produce the best performance for each scenario.
Notice that for BottomUp, PELT, BinSeg, and KernelCPD,
we divide the input trajectory into contiguous windows of

length ⌊ ℓ2⌋. Hence, we have an additional hyperparameter
on these methods w.r.t. the original hyperparameters.

• Keep It Simple (KIS) is a naive baseline which labels
every day randomly. In cases where a strategy under-
performs w.r.t. KIS, we can state that it has a random
behaviour, making it unfeasible in critical scenarios like
e-health. KIS does not have hyperparameters.

• BinSeg [43], [49] is a greedy procedure that segments a
series using a sequential approach in two steps. First, it
detects one change point in the complete input series.
Then, it splits the series around the change point and
repeats these steps on the two resulting sub-series.
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TABLE 10: Search space of the hyperparameters of the SoA.

KLCPD MD3 MD3-EDM STUDD D3 NN-DVI ERICS CDLEEDS

EL ℓ ∈ [4, 30]
trn ratio ∈ [0.3, 0.5]
val ratio ∈ [0.3, 0.5]
max iter ∈ [5, 50]
batch size ∈ {1, 2, 4, 8, 16, 32, 64}
λae ∈ [1e− 5, 1]
λreal ∈ [1e− 5, 1]
eval freq ∈ [5, 25]
weight clip ∈ [10−2, 10−1]
σ ∈ [0.01, 0.95]
rnn hidden dim ∈ [5, 15]
sub dim ∈ [1, 5]
optim ∈ {rmsprop, adam, sgd}
lr ∈ [1e− 4, 1e− 1]
weight decay ∈ [10−5, 10−2]
momentum ∈ [10−2, 1]
grad clip ∈ [5, 15]
critic iters ∈ [1, 10]

Constraints:
val ratio > trn ratio

σ ∈ [0.05, 0.95]
ℓ ∈ [4, 30]
normal history ∈ [280, 320]
gamma ∈ {scale, auto}
tol ∈ [10−4, 10−3]
C ∈ [1, 10]

ℓ ∈ [4, 30]
normal history ∈ [300, 320]
gamma ∈ {scale, auto}
tol ∈ [10−4, 10−3]
C ∈ [1, 10]
sensitivity ∈ [10−8, 10−2]

window size ∈ [300, 320]
delta ∈ [10−3, 0.5]

w ∈ [4, 30]
rho ∈ [0.1, 2]
auc ∈ [0.75, 0.99]

batch size ∈ [2, 15]
k nn ∈ [4, 50]
sampling time ∈ [250, 750]
alpha ∈ [10−3, 1]

Constraints:
batch size > k nn
sampling time > k nn

wnd mvg avg ∈ [4, 30]
wnd drift det ∈ [4, 30]
beta ∈ [10−5, 10−3]
init mu ∈ [0, 1]
init sigma ∈ [0.1, 0.5]
epochs = [10, 50]
lr mu ∈ [10−2, 10−1]
lr sigma ∈ [10−3, 10−2]

significance ∈ [10−3, 10−2]
gamma ∈ [0.05, 0.95]
max node size ∈ [280, 320]
max tree depth ∈ [1, 10]
max time stationary ∈ {5, 10, 25, 50, 75, 100}
trn ratio ∈ [0.05, 0.2]
baseline weight ∈ [0.05, 0.95]

Synthetic ℓ ∈ [4, 20]
trn ratio ∈ [0.2, 0.3]
val ratio ∈ [0.2, 0.3]
max iter ∈ [5, 50]
batch size ∈ {1, 2, 4, 8, 16, 32, 64}
λae ∈ [10−5, 1]
λreal ∈ [10−5, 1]
eval freq ∈ [5, 25]
weight clip ∈ [10−2, 10−1]
σ ∈ [0.01, 0.95]
rnn hidden dim ∈ [5, 15]
sub dim ∈ [1, 5]
optim ∈ {rmsprop, adam, sgd}
lr ∈ [1e− 4, 1e− 1]
weight decay ∈ [10−5, 10−2]
momentum ∈ [10−2, 1]
grad clip ∈ [5, 15]
critic iters ∈ [1, 10]

Constraints:
val ratio > trn ratio

σ ∈ [0.05, 0.95]
ℓ ∈ [4, 20]
normal history ∈ [80, 100]
gamma ∈ {scale, auto}
tol ∈ [10−4, 10−3]
C ∈ [1, 10]

ℓ ∈ [4, 20]
normal history ∈ [80, 100]
gamma ∈ {scale, auto}
tol ∈ [10−4, 10−3]
C ∈ [1, 10]
sensitivity ∈ [10−8, 10−2]

window size ∈ [70, 100]
delta ∈ [10−3, 0.5]

w ∈ [4, 20]
rho ∈ [0.1, 0.5]
auc ∈ [0.75, 0.99]

batch size ∈ [2, 10]
k nn ∈ [4, 20]
sampling time ∈ [10, 25]
alpha ∈ [10−3, 1]

Constraints:
batch size > k nn
sampling time > k nn

wnd mvg avg ∈ [4, 20]
wnd drift det ∈ [4, 20]
beta ∈ [1e− 5, 1e− 3]
init mu ∈ [0, 1]
init sigma ∈ [0.1, 0.5]
epochs = [10, 50]
lr mu ∈ [10−2, 10−1]
lr sigma ∈ [10−3, 10−2]

significance ∈ [10−3, 10−2]
gamma ∈ [0.05, 0.95]
max node size ∈ [90, 100]
max tree depth ∈ [1, 10]
max time stationary ∈ {5, 10, 25, 50, 75, 100}
trn ratio ∈ [0.05, 0.2]
baseline weight ∈ [0.05, 0.95]

TABLE 11: Hyperparameters of the baselines that reach the best performances for the considered scenarios.

BinSeg BottomUp PELT Window IKSSW IKSS-bdd KernelCPD

EL ℓ = 20
pen = 4
min size = 3
jump = 7
model = l1

ℓ = 16
pen = 4
min size = 5
jump = 7
model = l1

ℓ = 16
pen = 4
min size = 5
jump = 7
model = l1

width = 5
pen = 2
min size = 8
jump = 6
model = l1

ℓ = 30
δ = 2

ℓ = 30
δ = 1

ℓ = 30
pen = 2
min size = 2

Synthetic ℓ = 14
pen = 7
min size = 7
jump = 10
model = l2

ℓ = 12
pen = 6
min size = 7
jump = 9
model = l2

ℓ = 16
pen = 6
min size = 6
jump = 10
model = l2

width = 7
pen = 2
min size = 8
jump = 6
model = l1

ℓ = 20
δ = 4

ℓ = 20
δ = 5

ℓ = 16
pen = 7
min size = 2
kernel = linear

TABLE 12: Hyperparameters of the SoA that reach the best performances for the considered scenarios. The strikeout text
shows that the hyperparameter, although optimised, is not used (i.e., momentum is useless when the optimiser is different
from SGD).

KLCPD MD3 MD3-EDM STUDD D3 NN-DVI ERICS CDLEEDS

EL ℓ = 30
trn ratio = 0.3204
val ratio = 0.3418
max iter = 12
batch size = 64
λae = 0.1382
λreal = 0.1966
eval freq = 12
weight clip = 0.0839
σ = 0.1013
rnn hidden dim = 14
sub dim = 1
optim = rmsprop
lr = 0.0605
weight decay = 0.0074
momentum = 0.0488
grad clip = 7.8281
critic iters = 2

σ = 0.05
ℓ = 4
normal history = 320
gamma = scale
tol = 8.9035 × 10−4

C = 9.9999

ℓ = 28
normal history = 320
gamma = auto
tol = 5.7601 × 10−4

C = 6.1124
sensitivity = 9.2560× 10−3

window size = 320
delta = 0.4999

w = 12
rho = 0.7911
auc = 0.8868

batch size = 15
k nn = 15
sampling time = 564
alpha = 6.3838 × 10−2

wnd mvg avg = 10
wnd drift det = 20
beta = 7.6941 × 10−4

init mu = 0.7570
init sigma = 0.1865
epochs = 50
lr mu = 5.4294 × 10−3

lr sigma = 6.8574 × 10−3

significance = 2.2349× 10−3

gamma = 0.6566
max node size = 300
max tree depth = 7
max time stationary = 75
trn ratio = 0.1917
baseline weight = 0.6230

Synthetic ℓ = 14
trn ratio = 0.2121
val ratio = 0.2364
max iter = 12
batch size = 1
λae = 0.9415
λreal = 0.5164
eval freq = 18
weight clip = 0.0436
σ = 0.0337
rnn hidden dim = 9
sub dim = 1
optim = adam
lr = 0.0999
weight decay = 0.0075
momentum = 0.9728
grad clip = 13.5545
critic iters = 2

σ = 0.25
ℓ = 4
normal history = 96
gamma = scale
tol = 10−3

C = 9.9999

ℓ = 18
normal history = 100
gamma = auto
tol = 5.7601 × 10−4

C = 6.1124
sensitivity = 9.2560× 10−3

window size = 98
delta = 0.2570

w = 15
rho = 0.1842
auc = 0.7809

batch size = 15
k nn = 15
sampling time = 564
alpha = 6.3838 × 10−2

wnd mvg avg = 17
wnd drift det = 12
beta = 10−3

init mu = 0.7670
init sigma = 0.3318
epochs = 33
lr mu = 10−3

lr sigma = 3.3538 × 10−3

significance = 2.8058× 10−3

gamma = 0.5298
max node size = 91
max tree depth = 10
max time stationary = 50
trn ratio = 0.05
baseline weight = 0.5476
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• BottomUp [44] sstarts with many change points and
successively deletes the less significant ones. First, it
divides the series into sub-series regions along a regular
grid. Then, it merges contiguous segments according to
a similarity measure.

• PELT [45], [46] relies on pruning criteria to eliminate all
possible partitions of a time series. The procedure stops
when convergence gets met, thus producing an optimal
segmentation of the change points.

• Window [47] uses two sliding windows along the tra-
jectory. It compares statistical properties of the sub-
series corresponding to each window according to a
discrepancy metric. The discrepancy metric measures
how (dis)similar the two sub-series are. When the two
windows are highly dissimilar, a change point is sig-
nalled.

• For IKSSW, we use an approach similar to Win-
dow, where the discrepancy metric is the Kolmogorov-
Smirnov (KS) test. We assume that the first window
represents the distribution in the KS test, and the sec-
ond window is the sample. If the KS test shows that the
sample does not come from the distribution, we signal
a change point. This approach is an extension of IKS-
bdd [11], which performs the KS test between a fixed
reference window and a sliding detection one. We use
a p-value of 0.01 for the KS test.

• KernelCPD [48] maps the original time series onto
a reproducing Hilbert space associated with a user-
defined kernel function. The method detects change
points by finding mean shifts in the mapped signal
while minimising a particular function. Because we do
not induce the number of change points a priori, the
optimisation procedure is described in [45].

Additionally, we compare with the following state-of-the-art
methods:

• For KLCPD [21] we set the maximum number of itera-
tions to 500.

• MD3 [10] uses a linear SVM to calculate the marginal
density used to detect drifts.

• MD3-EGM [17] extends MD3.
• STUDD [27] is a semi-supervised approach that re-

quires the first window observed to contain both classes
(i.e., drift and no drift) for it to work properly.

• D3 [22] relies on an underlying supervised classifier
to detect drifts. As observed from the code-base15, we
exploit the Hoeffding Tree [51] classifier with default
parameters.

• NN-DVI [19] involves the integration of reference and
test data batches, followed by generating a normalised
version of the adjacency matrix obtained from a k-
NN search. Subsequently, the distances between data
points in the reference and test sections of the combined
adjacency matrix are analysed. These changes in dis-
tances are then compared to a predetermined threshold
value α. To determine this threshold, new reference and
test sections are randomly sampled, and the resulting
distance changes are used to fit a Gaussian distribution
through a statistical analysis.

15. https://github.com/ogozuacik/d3-discriminative-drift-detector-concept-drift

• For ERICS [26] we use the probit base model, and fine
tune the other parameters.

• For CDLEEDS [28] we use the exponential weighted
moving average baseline, and fine tune the rest of the
hyperparameters.

APPENDIX E

SOA COMPARISON ON OTHER METRICS

Recall from Sec. 3.5 of the main material that DynAmo
might wrongly replace the reference and detection win-
dows, resulting in a false positive drift alarm. We argue that
in real-world clinical scenarios, false negative errors should
be carefully treated since it is worse than ”real anomalous”
behavioural shifts that happened and were missed by Dy-
nAmo, leading to potential risks for the monitored patients.
However, we note that balancing the cost of false positives
to manage intervention costs and the risk to the patient’s
health arising from false negatives may depend on local
policies. Nevertheless, according to a fairness principle, we
should weigh human health more than intervention costs.
Here, we provide Tables 13 and 14 that illustrate averages
of False Positive Rate (FPR) and False Negative Rate (FNR),
respectively, for all methods described in Sec. D on the
datasets of Sec. B.

TABLE 13: Average FPR scores (over 30 runs) of SoA meth-
ods against DynAmo. Notice that × represents no conver-
gence. A value is in bold if it is the lowest value on average;
it is italic if it is the second best. S denotes supervised learn-
ing, SS semi-supervised learning, U unsupervised learning.

Synthetic datasets Realistic datasets

PH AS VK ELP1-D ELP1-I ELP2-D ELP2-I

U KIS 0.4824 0.4963 0.5007 0.5025 0.4991 0.5034 0.4999
U Pelt [45], [46] 0.0952 0.0714 0.0118 0.1223 0.1223 0.1430 0.1430
U BinSeg [43], [49] 0.0353 0.0353 0.0116 0.1295 0.1295 0.1422 0.1422
U Window [47] 0.0109 0.0109 0.0109 0.0069 0.0057 0.0160 0.0126
U BottomUp [44] 0.0698 0.0581 0.1875 0.0000 0.1303 0.1430 0.1430
U IKSSW 0.0000 0.0000 0.0000 0.0172 0.0000 0.0092 0.0000B
as

el
in

es

U IKSS-bdd [11] 0.0000 0.0000 0.0000 0.3330 0.0000 0.1636 0.0000
U KernelCPD [48] 0.2024 0.0000 0.5316 0.4953 0.4953 0.4977 0.4977

S MD3 [10] 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
SS MD3-EGM [17] 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
SS STUDD [27] 1.0000 1.0000 1.0000 0.6199 0.0091 0.3561 0.0899
U KLCPD [21] 0.0000 0.0395 × 0.0330 0.3841 0.0292 0.0000
S D3 [22] 0.0112 0.0112 0.0111 0.0243 0.1168 0.2786 0.1873
U NN-DVI [19] 0.2173 0.6250 × 0.0872 0.0720 0.1347 0.0884
SS ERICS [26] 0.9889 0.9889 0.9890 0.1324 0.1187 0.2591 0.1872

S
o

A

U CDLEEDS [28] 1.0000 1.0000 1.0000 0.5771 0.9967 0.9967 0.9967

U DynAmo [us] 0.3667 0.3667 0.2857 0.4578 0.3128 0.3893 0.3927

APPENDIX F

HOW DOES THE WINDOW SIZE AFFECT THE PERFOR-

MANCE OF SOA METHODS?

This section shows how the drift detection window affects
approaches that use the window size hyperparameter to
signal drifts. For simplicity purposes, we show only how
this hyperparameter affects the average F1 scores on the EL
dataset. Figure 12 shows this effect for MD3, MD3-EGM, D3
and ERICS. Notice that we leave the other hyperparameters
unvaried as specified in Table 12. Here, we set the window
size in [2, 40] with a step of 2. We only illustrate the average
F1 scores w.r.t. the variation of the window size for EL. We
report with a black circle the average performances for all
datasets reached according to the Bayesian optimisation (see

https://github.com/ogozuacik/d3-discriminative-drift-detector-concept-drift
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TABLE 14: Average FNR scores (over 30 runs) of SoA
methods against DynAmo. Notice that × represents no
convergence. A value is in bold if it is the lowest value
on average; it is italic if it is the second best. S denotes
supervised learning, SS semi-supervised learning, U unsu-
pervised learning.

Synthetic datasets Realistic datasets

PH AS VK ELP1-D ELP1-I ELP2-D ELP2-I

U KIS 0.5034 0.5004 0.5046 0.5027 0.5014 0.5024 0.5044
U Pelt [45], [46] 0.9114 0.9125 0.9310 0.8703 0.8720 0.8584 0.8584
U BinSeg [43], [49] 0.9114 0.9250 0.9310 0.8567 0.8635 0.8567 0.8567
U Window [47] 0.9494 0.9875 0.9655 0.9932 0.9915 0.9881 0.9915
U BottomUp [44] 0.8861 0.9000 0.8966 0.8703 0.8720 0.8584 0.8584
U IKSSW 0.8734 0.8750 1.0000 0.9744 1.0000 0.9625 1.0000B

as
el

in
es

U IKSS-bdd [11] 0.2125 0.0247 0.1525 0.8703 1.0000 0.8481 1.0000
U KernelCPD [48] 0.5316 0.6379 0.6000 0.5051 0.5051 0.5000 0.5000

S MD3 [10] 0.4595 0.1733 1.0000 1.0000 0.0630 0.0612 0.0072
SS MD3-EGM [17] 0.9857 0.9859 0.9800 0.9982 0.9982 0.9982 0.9982
SS STUDD [27] 0.9523 1.0000 1.0000 0.1533 0.9838 0.7498 0.9234
U KLCPD [21] 0.9163 0.8148 × 0.9685 0.6138 0.9662 1.0000
S D3 [22] 0.4430 0.4750 0.3966 0.0683 0.3413 0.4590 0.6604
U NN-DVI [19] 0.3705 0.3208 × 0.6681 0.7116 0.8345 0.8507
SS ERICS [26] 0.0125 0.0247 0.0169 0.7329 0.6986 0.6250 0.6233

S
o

A

U CDLEEDS [28] 0.6556 0.6584 0.5771 0.1147 0.0000 0.0000 0.0000

U DynAmo [us] 0.2125 0.0247 0.1525 0.0942 0.0993 0.0086 0.2021

Sec. D). Additionally, a blue circle illustrates similar perfor-
mances as the ones reported from the optimisation with a
different choice of window size. Red circles represent the
choices of the window size, which produce better average
results than those reported in Table 7 of the main material,
leaving the other hyperparameters unchanged.

The window size for MD3-EGM does not affect the
performance at all. This means that no amount of additional
information gives the underlying classifier how to separate
the normal from the abnormal instances. The same happens
for MD3 in ELP1-D since it never fires a drift signal (i.e., it
has an average F1 of 0). Generally, all methods have a non-
decreasing trend regarding F1 scores when the window size
increases. For ERICS, this happens until the trend reverses
monotonicity. This is reasonable because, as discussed in
Sec. 5.2 in the main material, drift detection approaches in
real-world scenarios need to consider the promptness of
the detection. Hence, a cutoff on the window size is an
important aspect such that not much time is spent train-
ing/updating the models.

APPENDIX G

DETECTING RECURRENT ANOMALIES

DynAmo effectively detects recurrent anomalies through
its two-window drift detection strategy. To illustrate this
capability, consider Fig. 13, which exhibits recurring be-
havioural shifts based on seasonality. For instance, patients
may take more showers per week during hot seasons and
fewer during colder ones. The analysis begins with a ref-
erence window representing the winter season at [t1, t2).
Monitoring commences by analyzing the evolution of hy-
perboxes within this time frame. The detection window,
[t2, t3), is subsequently labelled anomalous using the main
material’s divergence tests. This anomaly triggers a shift in
the reference window, indicating a newly adopted normality.

This process of the ”new-normality-anomaly game” con-
tinues until the last time interval [t9, t10), where the en-
tire series is labelled as anomalous based on the newly
adopted behaviours. Such detection of recurring anomalies

is crucial in healthcare, as addressing seasonality anomalies
beforehand is essential for patient well-being. Although
our toy example showcases a non-life-threatening anomaly,
multiple other recurrent anomalies could cause permanent
damage to patients [52], [53].

To enhance DynAmo’s ability to reason on seasonality,
we propose modifying its default behaviour to include a
queue of past behaviours. When a new drift anomaly is de-
tected, we can compare the distribution of new hyperboxes
with those in the behaviour queue using statistical diver-
gence tests like Kolmogorov-Smirnov. This process verifies
whether the new anomaly has been observed previously,
enabling us to identify recurrent anomalies within specific
confidence intervals.

Naturally, the action to be taken upon detecting a recur-
rent anomaly depends on the specific deployment scenario
and application. We leave the task of identifying recurrent
anomalies and devising appropriate actions for future re-
search, as it holds promise for further advancements in
anomaly detection and healthcare practices.
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Fig. 12: SoA’s performances in terms of F1 scores when varying the window size hyperparameter for the systems not
analyzed in Fig. 4.

Fig. 13: A toy example of recurrent anomalies corresponding to the shower/bathroom action in different seasons. For
example, a patient might take, on average, more showers per week in the hot seasons rather than colder ones. The
rectangles at the top of the series represent pairs of recurrent anomalies, e.g., a recurrent anomaly for [t3, t4) is [t7, t8) w.r.t.
the initial reference window of [t1, t2).
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