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PATNet: Propensity-Adjusted Temporal Network
for Joint Imputation and Prediction using Binary

EHRs with Observation Bias
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Abstract—Predictive analysis of electronic health records (EHR) is a fundamental task that could provide actionable insights to help
clinicians improve the efficiency and quality of care. EHR are commonly recorded in binary format and contain inevitable missing data.
The nature of missingness may vary by patients, clinical features, and time, which incurs observation bias. It is essential to account for
the binary missingness and observation bias or the predictive performance could be substantially compromised. In this paper, we
develop a propensity-adjusted temporal network (PATNet) to conduct data imputation and predictive analysis simultaneously. PATNet
contains three subnetworks: 1) an imputation subnetwork that generates the initial imputation based on historical observations, 2) a
propensity subnetwork that infers the patient-, feature-, and time-dependent propensity scores, and 3) a prediction subnetwork that
produces the missing-informative prediction using the propensity-adjusted imputations and the missing probabilities. To allow the
propensity scores to be inferred from data, we use the expectation-maximization (EM) algorithm to learn the imputation and propensity
subnetworks and incorporate a low-rank constraint via PARAFAC2 approximation. Extensive evaluation using the MIMIC-III and eICU
datasets demonstrates that PATNet outperforms the state-of-the-art methods in terms of binary data imputation, disease progression
modeling, and mortality prediction tasks.

Index Terms—Electronic health records, clinical risk prediction, disease progression modeling, missing data, binary data imputation,
propensity score, missing at random
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1 INTRODUCTION

E LECTRONIC Health Records (EHR) have been increas-
ingly available during the past decade. Consisting of

longitudinal health data about patient, including demo-
graphics, diagnoses, laboratory tests and medication pre-
scriptions, EHR data has triggered countless data-driven
researches on secondary use for predictive analysis [1], [2].
Disease progression modeling tries to capture the disease
developing process from historical records to predict future
risk [3], [4], [5]. Disease onsite risk prediction [6], [7] and in-
hospital mortality prediction [8], [9], [10] provide insights
for patient risk stratification and priority setting in the
allocation of limited medical resources.

In such predictive analysis tasks, it is common that
features like presence of diagnosis codes or prescriptions
are represented in binary format [7], [8]. However, the ob-
served records inevitably contain significant missingness
due to reasons like difficulties in performing diagnosis and
operational causes. What makes it even worse is that the
missingness is typically not completely at random in real
practice, which introduces observation bias. In other words,
the probability of observing a particular feature (ground
truth) varies among different features, patients, and time.
For example, patients with a fever generally have higher
chances to have the laboratory test of blood count per-
formed and recorded, but those without a fever are more
likely to have this laboratory test missing in the records [11].
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Besides, diagnosing some diseases may require laboratory
tests which are expensive or time-consuming. As a result,
the diagnosis records of those diseases may have higher
chances to be missing at the early stages.

Existing methods on predictive analysis using EHR typi-
cally ignore the missingness and observation bias by directly
conditioning their model predictions on the partial observa-
tions [7], [8], [12]. In this paper, we conjecture that ignoring
the observation bias would result in substantially degraded per-
formance, and we propose to estimate the complete data and
simultaneously train the predictive model using the esti-
mated complete data. Our conjecture is in line with recent
studies, where missing data could decrease the accuracy
and the reliability of clinical predictive analysis, and data
imputation is a promising way to alleviate this issue [11],
[13], [14], [15], [16]. However, despite the great effort and
encouraging results reported in the literature, it remains an
open challenge to impute binary EHR with observation bias
for predictive analysis due to several issues.

First, the majority of the existing data imputation meth-
ods are developed for continuous-valued data rather than
binary data [17], [18], [19], [20], [21]. They require a mask-
ing matrix to indicate which features are missing for each
subject, and mask out the missing values during learning.
Unfortunately, this is not possible for partially observed bi-
nary data due to the lack of explicit negative records [22]. In
other words, such binary data are mixtures of positive and
unobserved features, and it is unknown what unobserved
features in the data are the missing ones. For example,
in EHR, a diagnosis record with a value of one recorded
indicates that the diagnosis is confirmed by the clinician.
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But a value of zero only indicates that the diagnosis is not
recorded, and the disease diagnosis is in fact unknown as
it can be missing. So, the goal of binary data imputation is
to distinguish the missing positive features from the true
negative features.

Second, although a few binary data imputation tech-
niques have recently been proposed, they cannot well han-
dle the observation bias incurred by the not-completely-at-
random missingness. To alleviate such bias, one approach is
to estimate the probabilities of observing positive features in
the data, which are defined as the propensity scores. Existing
methods either assume that the missing is completely at
random with a constant missing probability [22], [23], or
rely on simple heuristics to determine the propensity scores
based on some basic statistical quantities of the data [24]. In
practice, however, the ground-truth propensity scores could
exhibit much more variations and such naive methods could
lead to suboptimal performance.

To summarize, the observation bias arising from varying
probabilities in observing different clinical features across
time and subjects should be considered in both data impu-
tation and predictive analysis when applied to binary EHR,
which has not been fully addressed by existing research.

To tackle this issue, we develop the Propensity-Adjusted
Temporal Network (PATNet), which is composed of three
subnetworks. Specifically, we use a Transformer-based im-
putation subnetwork to generate an initial imputation based
on historically observed features. To alleviate the obser-
vation bias, we utilize an LSTM-based propensity subnet-
work coupled with a low-rank approximation method called
PARAFAC2 to infer the propensity scores from historical
observations. Then, we compute the final imputation by
deriving the posterior distribution of the complete data
given the partial observations and the two subnetworks. To
conduct missing-informative prediction, we use the third
prediction subnetwork which takes the derived posterior es-
timation as well as the propensity scores as input and
generates the final prediction. Due to the lack of ground
truth, we cannot directly learn the propensity scores in
a supervised manner. We make use of the expectation-
maximization (EM) framework to learn the imputation and
propensity subnetworks. We evaluate the proposed model
using two publicly available EHR datasets. Extensive exper-
iments show that PATNet yields significantly more accurate
imputations for binary missing data for all levels of missing
ratios and observation bias. PATNet is also more robust
against higher missing ratios due to explicitly estimating
the propensity scores simultaneously. As a result of more
accurate imputation, PATNet obtains up to 23% relative
improvement for the disease progression modeling task and
12% for the mortality prediction task.

2 BACKGROUND AND RELATED WORK

2.1 Missing Data in Electronic Health Records
It has been widely recognized that EHR data contain sub-
stantial missing information, which could potentially un-
dermine the validity of conclusions drawn from EHR if
such missingness is not carefully addressed [25]. Depending
on their generation mechanisms, missing data can be di-
vided into three categories: missing-completely-at-random

(MCAR), missing-at-random (MAR) and missing-not-at-
random (MNAR) [26]. MCAR indicates that the probability
of a variable being missing is independent of itself and all
other covariates, i.e., being a constant across subjects, times
and features. MAR means that the probability of having a
missing variable is independent of the value of itself, but
could depend on other covariates. MNAR means that the
probability of missing data depends only on the values of
the variables subject to missing.

It is generally believed that missing data could have
negative impact on predictive analysis using EHR data
and data imputation is a feasible solution to tackle this
problem. For example, it is shown in a simulation study
that the point estimates of odds ratio (OR) for predictors
in a logistic regression are significantly over- or under-
estimated in the case of MAR. Even in MCAR, their con-
fidence interval becomes noticeably wider [25]. In several
clinical predictive studies including vesicoureteral reflux
and recurrent urinary tract infection prediction [14], septic
shock prediction [13], and heart failure prediction [15], it is
observed that missing data imputation in conjunction with
predictive modeling leads to improved prediction accuracy.

Irregular time series modeling has been gaining increas-
ing popularity and shown promising in tackling missing
data. Some representative models include T-LSTM [27],
HiTANet [12], mTAN [28], RAINDROP [29], Neural
ODEs [30], [31], and CATNet [32]. Such methods treat the
observed EHR data as data points irregularly sampled from
an underlying continuous time series. By directly capturing
the dynamics of the underlying time series over irregular
time intervals, the issue of missing values can be partially
alleviated.

2.2 Binary Data Imputation

A large portion of the EHR data are represented in binary
form, e.g., presence or absence of diagnosis codes, abnor-
mal laboratory tests and medication prescriptions. During
the process of collecting and recording the binary clinical
data, it is quite common that when a patient does not
have certain features (e.g., symptom/comorbidity) or the
patient is not asked about the features, the data fields are
left blank instead of labeled as negative [25]. Despite its
ubiquitousness, the issue of missingness in such binary data
is relatively under-researched, compared with the contin-
uous missing data imputation problem. Recently, several
low-rank models were developed to tackle the binary data
imputation issue. [23] applies the positive-unlabeled (PU)
classification method to complete binary data organized in
matrices based on low-rank constraints and [22] extends it
to handle binary temporal data with missing values. Both
assume that the missing is completely at random, and could
fail when applied to real-world data where observation bias
often exists (i.e., missing-not-completely-at-random). Also,
[22] is limited in modeling the underlying nonlinear and
complex temporal dependency of the temporal EHR data,
which could be crucial for accurate clinical data imputation.
[24] aims to alleviate the bias arising from missing-not-
completely-at-random in the application of recommender
systems. It utilizes the propensity scores to represent the
probability of observing present features and adjusts for
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them during training. However, it assumes that 1) the
propensity is proportional to frequency of features, and
2) the propensity of a feature is the same for all subjects.
Both assumptions may not hold for applications other than
recommender systems. Besides, it only handles static matrix
data but no temporal information can be utilized.

To summarize, developing data imputation methods that
accounts for the observation bias and underlying temporal
dependency remains an important and open challenge.

3 DATA OBSERVATION MODEL

Our binary EHR data contains medical records of N indi-
vidual patients. The partially observed records of the n-th
patient is represented as a sequence of multi-hot vectors
{x(n)

1 ,x
(n)
2 . . . ,x

(n)
Tn
}, where x

(n)
t ∈ {0, 1}J denotes the

observed binary clinical features of this patient at the t-
th time step (e.g., a clinical visit or one day in ICU), Tn
is the number of time steps of the n-th patient, and J
is the number of clinical features. At the t-th time step,
we denote the historical observation of the n-th patient
by H(n)

t =
{
x
(n)
1 , . . . ,x

(n)
t−1

}
, a sequence consisting of the

past observed clinical features. We denote the underlying
complete data by z

(n)
t ∈ {0, 1}J for the n-th patient at

the t-th time step. To characterize the observation bias, we
borrow the concept of propensity score from causal inference
literature [33], which is formally defined as follows.

Definition 1 (Propensity Score). For the n-th patient at the
t-th time step, the propensity score ρ(n)tj ∈ (0, 1) is defined
as the probability of observing the j-th feature if its ground
truth is positive, i.e.,

ρ
(n)
tj = p(x

(n)
tj = 1|z(n)tj = 1).

Depending on the prediction task, a target label y(n)

may be associated with the n-th patient. For example, in
mortality prediction, a binary in-hospital decease outcome
will be recorded as the target label; in disease progression
modeling, it is common to train the predictive model in an
autoregressive way, i.e., using the clinical features of the next
time step as labels for the current time step. Fig. 1 shows a
graphical comparison between the observation model of the
existing methods and that of our proposed PATNet. Existing
predictive models (left) for EHR ignore the observation bias
by treating the observed data as complete and assume that
the label is generated from the observations; therefore, they
directly condition their model prediction on the observa-
tions. Our model (right), in contrast, assumes that the obser-
vations are only a part of the latent complete data (z) that
are recorded according to their corresponding propensity
scores (ρ). The labels are generated from the complete data
instead of the partial observations. This observation model
motivates us to learn the latent complete data and the
propensity scores to make more informed predictions that
are conditioned on the complete data.

To ease the notations, we omit the patient index “(n)” in
the superscripts whenever it does not cause confusion.

4 PROPENSITY-ADJUSTED TEMPORAL NETWORK

Given the partial observation of the binary EHR data X,
our goal is to (1) estimate the latent complete data Z, and

Fig. 1. A graphical comparison between the observation model of the
existing methods (left) and that of ours (right) for EHR predictive anal-
ysis. Existing EHR predictive models do not consider the observation
bias and assume that the temporal features are generated in an autore-
gressive way and labels are generated from the observed features. On
the contrary, our model considers the observation bias by assuming that
the records only reflect a part of the complete data according to their
corresponding propensity scores, and the labels are generated from the
latent ground-truth features, instead of the partial observations.

(2) simultaneously predict their corresponding target labels
y using the estimated Z. In this section, we describe the
architecture of PATNet that is designed to achieve this goal.
Fig. 2 shows an overview of our proposed PATNet method.
It comprises three subnetworks. The imputation subnet-
work fimp takes the historical observation as input and
generates an initial imputation. The propensity subnetwork
fprop estimates the propensity scores subject to a low-rank
approximation based on the historical observations. Then,
the posterior probability of the ground truth is computed
by adjusting the initial imputation by the estimated propen-
sity scores. The prediction subnetwork then takes the
propensity-adjusted imputation and the propensity scores
as input to perform missing-informative predictions. We
introduce each component in detail below.

4.1 Imputation Subnetwork

The goal of the imputation subnetwork is to produce an
initial imputation based on the historical observations, i.e.,

x̃t := p
(
zt = 1|Ht

)
= fimp

(
Ht; Θimp

)
∀t, (1)

where Θimp denotes its parameters to be learned. In princi-
ple, any sequential modeling method can be used to param-
eterize fimp. In PATNet, we use a masked Transformer [34]
for the imputation subnetwork due to its advantages in
modeling long-term dependencies, which is particularly
important in modeling clinical data.

The binary observations before the last time step are
first encoded into an m-dimensional continuous space by
applying a linear transformation and adding the positional
encoding as follows:

et =
1

‖xt‖1
Wembxt + PEt t = 1, . . . , T − 1, (2)

where Wemb ∈ Rm×J is the embedding matrix and m is
the dimension of the embeddings. The positional encoding
PEt ∈ Rm is given by:

PE(t,2d) = sin(t/100002t/m),

PE(t,2d+1) = cos(t/100002t/m),
(3)

where d is the index of the embedding dimensions. The
embedded inputs are concatenated as the input to the first
Transformer layer, where a zero vector is inserted before
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Fig. 2. The framework overview of PATNet. It consists of three subnetworks: the imputation subnetwork, the propensity subnetwork, and the
prediction subnetwork. At each time step, the imputation subnetwork and the propensity subnetwork take the historical data as input and generate
as output the initial imputation and the low-rank propensity factors, respectively. A global factor matrix is multiplied to the propensity factors to
recover the propensity score estimations. The posteriors then are computed as the final estimation of the complete features at the corresponding
time step. The embedded posteriors and the propensity scores are concatenated as the input to carry out the missingness-informed prediction
using the prediction subnetwork. The propensity adjustment loss is minimized together with the prediction loss to drive the learning of propensity
scores.

the first time step to indicate that there is no historical
observation available for the first time step:

H0 = [0, e1, . . . , eT−1] ∈ RT×m, (4)

where [·] denotes concatenation. The imputation subnet-
work contains L identical layers. Each layer first transforms
the output from the previous layer (H0 for the first layer)
into query, key, and value matrices by linear transformations
as follows.

Q(l,i) = Hl−1W
Q
i ∈ RT×s l = 1, . . . , L,

K(l,i) = Hl−1W
K
i ∈ RT×s l = 1, . . . , L,

V(l,i) = Hl−1W
V
i ∈ RT×s l = 1, . . . , L,

(5)

where WQ
i ∈ Rm×s, WK

i ∈ Rm×s, and WV
i ∈ Rm×s

are the learnable projection matrices, i is the index of the
attention heads, l is the index of the layers, and s is the
dimension of each head. The embedding dimensions are
evenly split into I attention heads, i.e., s × I = m. Each
attention head computes its own output H̃(l,i) ∈ RT×s by:

H̃(l,i) = softmax

(
Q(l,i)K

>
(l,i)√

m
+ M

)
V(l,i) i = 1, . . . , I, (6)

where I is the number of attention heads and M ∈ RT×T

is the patient-specific masking matrix added to ensure that
no future information is used when making imputations at
each time step, with its entries given by:

Mij =

{
0 if i ≥ j
−∞ otherwise

. (7)

The final output of the l-th layer is then computed
by concatenating the outputs of all attention heads and

applying two fully connected layers with ReLU activation
function. Residual connections and layer norms are used in
between.

H̃l = LN
(
Hl−1 +

[
H̃(l,1), . . . , H̃(l,I)

])
,

Hl = LN
(
H̃l + ReLU

(
H̃lW1 + 1Tb>1

)
W2 + 1Tb>2

)
,

(8)

where LN denotes the operation of layer norm and 1T

denotes a T -dimensional vector of all ones.
Finally, we use the output of the last Transformer layer

to compute the initial imputation using a multilayer percep-
tron (MLP) followed by a sigmoid transformation:

[x̃1, . . . , x̃T ] = σ
(

MLP(Hl)
)
. (9)

4.2 Propensity Subnetwork
Due to the presence of observation bias as introduced in
Section 3 in real-world data, we need to also estimate the
propensity scores based on historical observations:

ρ̂tj := p
(
xtj = 1|ztj = 1,Ht

)
= fprop

(
Ht; Θprop

)
∀t. (10)

However, this is not possible without further assumption: if
the propensity score can take any arbitrary value, then we
cannot distinguish whether a feature with zero value in the
observation (xtj = 0) is because of low probability of being
observed (ρtj → 0) or it is because of negative ground truth
(ztj = 0). Similar issue exists in the application of positive-
unlabeled classification where the positive samples are se-
lected according to some propensity scores. [35] proposes to
learn the propensity scores using only a part of the features.
However, EHR data are usually of high dimensions, and it is
equally difficult to discover the feature set that determines
the propensity scores. As such, PATNet will make use of
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Fig. 3. The illustration of PARAFAC2 approximation of the propensity
scores. The sequence of the propensity scores of all patients in the train-
ing set are naturally represented by an irregular tensor P where its n-th
slice represents the propensity scores for the n-th patient. PARAFAC2 is
a low-rank approximation of the irregular tensor, where P(n) is approx-
imated by the patient-dependent temporal propensity weighting U(n),
patient-dependent static weighting S(n), and the patient-independent
propensity factors V.

all features available to infer the propensity scores, but we
impose a low-rank constraint to the estimation of propensity
scores. It has been shown that any sufficiently large and
even full-rank matrix generated from a bounded latent
variable model can be approximated by a low rank matrix
up to a small element-wise error [36]. Moreover, matrix
and tensor approximations have been shown particularly
promising in modeling EHR data in practice [10], [22], [37].
In PATNet, we estimate low-rank propensity scores using a
PARAFAC2 approximation combined with an LSTM model,
which are detailed below in turn.

4.2.1 PARAFAC2 Approximation of Propensity Scores

While low-rank constraints can be easily imposed by min-
imizing regularization terms like nuclear norm [38], [39],
they cannot be applied in our scenario due to the tem-
poral irregularity of clinical data: patients have different
numbers of visits or lengths of stays, making it impossible
to construct a regular tensor and regularize its nuclear
norm. Therefore, we use an irregular tensor to represent the
propensity scores and the PARAFAC2 as its low-rank ap-

proximation. We useP =
{

P(n) ∈ RTn×J
}N

n=1
to denote the

irregular tensor for the propensity scores, which comprises
a set of N matrices. P(n) is the n-th slice of it, representing
the temporal propensity scores of the n-th patient, and ρ(n)tj

is its entry indexed by t and j.
PARAFAC2 is a variant of tensor CP factorization [40]

that can be applied to irregular tensors by allowing temporal
weightings to vary between different patients while the low-
rank components of the input irregular tensor are shared
for all patients. Fig. 3 illustrates the logistic PARAFAC2
factorization [22] as an approximation of the propensity
scores that take values between zero and one. Formally, the
propensity scores of the n-th patient is approximated by:

P(n) ≈ P̂(n) = σ
(
U(n)S(n)V>

)
s.t. U(n)>U(n) = Φ ∀n, (11)

where P̂(n) is the low-rank approximation of the propensity
scores, σ(·) denotes the sigmoid function, U(n) ∈ RTn×R is
the temporal propensity weightings for the n-th patient and
R is the target approximation rank. Sn = diag (sn) ∈ RR×R

is the patient-specific and time-independent diagonal static
weighting matrix. V ∈ RJ×R is the propensity factors
that are shared for all patients. The invariance constraint

U(n)>U(n) = Φ is imposed to enforce uniqueness of the
approximations [37], [41], where Φ ∈ RR×R is invariant
for all patients. To enable the model to make predictions
for patients out of the training set, we learn a subnetwork
to produce the patient-dependent components U(n) and
s(n) based on observations. The factor matrix V is directly
learned as a part of model parameters and kept frozen
during test time.

4.2.2 Learning Patient-Dependent Propensity Weightings
Although PARAFAC2 has shown promising in multiple
domains [42], including healthcare [22], [37], [43], existing
PARAFAC2 methods are limited in modeling the underlying
temporal dependency by independently learning the tem-
poral weightings at each time step without considering his-
torical information. This could be suboptimal when applied
to infer propensity scores in our setting as the propensity
scores could strongly depend on past observations. Take
the diagnosis of an existing disease as an example, the
propensity score, i.e., the probability of recording the disease
in data, could be low at the beginning due to insufficient
information available for the doctors to diagnose; over time,
the propensity score may become higher, as other features
like laboratory test results are gradually observed. On the
other hand, if the diagnosis appeared once in the record, the
probability of misdiagnosing could be significantly reduced.
In other words, the propensity scores may be much higher.

To model such complex temporal dependency, we pro-
pose to use the long short-term memory (LSTM) model [44]
to parameterize the temporal propensity weightings. It sum-
marizes the historical information of each patient using a
hidden state ht at the t-th time step and produces the
temporal propensity weightings using an MLP, given by:

ut = MLP(ht) t = 1, . . . , T, (12)

[ht, ct] =

{
[0,0] if t = 1,

LSTM(xt, [ht−1, ct−1]) otherwise,
(13)

where ht and ct are the hidden states and the cell states of
the LSTM for the t-th time step. By stacking the temporal
weightings at all time steps, we obtain the temporal weight-
ing matrix by:

U(n) =
[
u

(n)
1 ; . . . ; u

(n)
Tn

]
. (14)

Then, we compute the time-independent propensity
weightings s(n) using an MLP with the average temporal
weightings over time as its input, by:

s(n) = MLP

(
1

T

T∑
t=1

ut

)
. (15)

In this paper, we consider the regular setting where
the intervals between time steps are fixed. Having said so,
PATNet can be generalized to irregular settings by replac-
ing the LSTM in Eq. (12) by a time-aware model, e.g., T-
LSTM [27]. Due to the difficulties in optimization with the
hard invariance constraint on the temporal weightings, we
follow the recent work [22] to minimize the following soft
uniqueness regularization term:

R =

N∑
n=1

µ

2

∥∥∥U(n)>U(n) − Φ
∥∥∥2

F
, (16)
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where we treat Φ as parameter to be learned during opti-
mization, and µ is a hyperparameter controlling the strength
of the regularization.

4.3 Propensity-Adjusted Imputations
Based on our data observation model defined in Section 3
and the Bayes’ rule, we can derive the posterior probability
of a feature in the latent complete data being positive, i.e.,
ztj = 1, given the observation and historical input by:

ẑtj :=q (ztj = 1|xtj ,Ht)

=1 [xtj = 1] p (ztj = 1|xtj = 1,Ht)

+ 1 [xtj = 0] p (ztj = 1|xtj = 0,Ht)

(a)
=xtj + (1− xtj)p

(
ztj = 1|xtj = 0,Ht

)
,

(17)

where 1 [·] is an indicator function, and (a) follows from
p (ztj = 1|xtj = 1) = 1. In Eq. (17), when a feature is
observed, its ground truth must be one. On the other hand,
when the feature is not observed, we compute its estimation
p
(
ztj = 1|xtj = 0,Ht

)
by:

p
(
ztj = 1|xtj = 0,Ht

)
=
p
(
ztj = 1|Ht

)
p
(
xtj = 0|ztj = 1,Ht

)
1− p

(
xtj = 1|Ht

)
=
x̃tj (1− ρ̂tj)
1− x̃tj ρ̂tj

. (18)

Eq. (18) shows that the propensity estimations play a role
of “downscaling adjustment” in computing Eq. (18), and the
effect of downscaling becomes heavier with increasing ρ̂tj .
This aligns with our intuition that propensity scores for the
missing features should be low in order to explain the miss-
ingness, or otherwise they would have been observed in the
data. Thus, we name imputation obtained by Eq. (17) the
propensity-adjusted imputations. We visualize its contour
plot in Appendix A, available in the supplemental materials.

Note that directly learning the network that produces zt
given the current and historical observations (xt and Ht) is
not feasible due to the lack of supervised information, i.e.,
ground-truth zt.

4.4 Missing-Informative Prediction
As shown in Fig. 1, we assume that the label associated with
each patient is generated from the complete data z rather
than the partial observations x. Besides, the missing data
in clinical setting is often informative as it could indirectly
reflect clinicians’ judgement of the health conditions of
patients at the time of data recorded. As an example [45],
missing cholesterol measurements during early visits to a
general practitioner (GP) may be because the GP considers
the cardiovascular risk too low to request for cholesterol
measurement. Therefore, PATNet produces the final predic-
tion based on the propensity-adjusted imputation in Eq. (17)
and the propensity scores estimated using Eq. (11-15).

To achieve this, we use another Transformer model
which has the same architecture as the imputation sub-
network’s. We first obtain a dense representation of the
propensity-adjusted imputations by reusing the embedding
layer in Eq. (2). Then we concatenate it with the estimated
propensity scores as the input to the Transformer model.
Formally, we have:

e′t =

[
1

‖ẑt‖1
Wembẑt + PEt, ρ̂t

]
∀t, (19)

ŷt = Transformer
([

e′1, . . . , e
′
t−1

]
; Θpred

)
∀t, (20)

where Transformer encapsulates Eq. (4-9). The embedding
matrix Wemb and the positional encoding PE are shared
with the imputation subnetwork, and Θpred denotes the
set of parameters of the prediction subnetwork. Our pre-
liminary study shows that allowing the predictive task
to influence the imputation subnetwork is not beneficial,
but instead it decreases the imputation performance, and
hence makes the prediction even worse. Thus, we block the
backpropagation to z as indicated in Fig. 2.

The goal of disease progression modeling (DPM) task is
to make predictions of the complete data of future events,
i.e., z, so we use the propensity-adjusted imputations at the
next time step as labels for training the prediction subnet-
work by minimizing the cross-entropy loss as follows.

LDPM =

N∑
n=1

Tn−1∑
t=1

ẑt+1 log ŷt + (1− ẑt+1) log (1− ŷt) . (21)

For the mortality prediction, patients are associated with
the binary labels at the end of their observation windows.
So we take the prediction at the last time step as the final
prediction and minimize the following loss function:

LMR =

N∑
n=1

yn log ŷTn + (1− yn) log (1− ŷTn) . (22)

4.5 Learning Algorithms

Due to the lack of ground-truth complete data, we cannot
directly learn the imputation subnetwork and the propen-
sity subnetwork. Thus, we adopt an iterative strategy to
learn the model. First, we learn the parameters of the im-
putation and propensity subnetworks via the expectation-
maximization (EM) algorithm [35], [46]. It iterates between
the E-step and the M-step where the former estimates the
posterior distribution of the hidden complete data, and the
latter maximizes the expected log likelihood of the models
given the estimation found in the E-step. We have presented
the estimation of the posterior distribution of zt in Eq. (17).
In the M-step, the expected log likelihood is maximized as
follows:

arg max
Θimp,Θprop

1

N

N∑
n=1

1

Tn

Tn∑
t=1

J∑
j=1

E
z
(n)
tj ∼q

(
z
(n)
tj =1|x(n)

tj ,H(n)
t

)L(n)
tj +R,

(23)
with

L(n)
tj = log p

(
z

(n)
tj , x

(n)
tj ,H

(n)
t , |Θimp,Θprop

)
∝ ẑ(n)

tj log p
(
z

(n)
tj = 1|H(n)

t ,Θimp

)
+
(

1− ẑ(n)
tj

)
log p

(
z

(n)
tj = 0|H(n)

t ,Θimp

)
+ ẑ

(n)
tj log p

(
x

(n)
tj |z

(n)
tj = 1,H(n)

t ,Θprop

)
,

(24)

where ẑ
(n)
tj is the estimation of the posterior distribution

given in Eq. (17), and R is defined in Eq. (16).
After the M-step, we freeze Θimp and Θprop, and update

the prediction subnetwork by minimizing LDPM or LMR
depending on the prediction task. Note that Θimp,Θprop
and Θpred all contain the embedding matrix Wemb. So it is
updated when maximizing the expected log likelihood and
minimizing the prediction loss.
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We iterate the E-step, M-step, and the predictive sub-
network update step to train the model until it converges.
Algorithm 1 summarizes the overall learning procedures.
The most computationally demanding component of PAT-
Net is the prediction subnetwork, where the Transformer
architecture is used, which is similar to that in HiTANet [12].
Therefore, the overall time complexity of PATNet remains
the same as that of HiTANet.

Algorithm 1: Learning Procedure of PATNet

Input: Binary EHR data {x(n)
1 , . . . ,x

(n)
Tn
}Nn=1;

1 Randomly initialize parameters Θprop,Θimp, and Θpred;
2 repeat
3 for each mini-batch do

/* E-step */
4 Estimate p

(
ztj = 1|xtj = 0,Ht

)
using Eq. (18);

5 Compute the posterior using Eq. (17):

ẑtj ← xtj + (1− xtj)p
(
ztj = 1|xtj = 0,Ht

)
;

/* M-step */
6 Compute the patient-dependent propensity

weightings U(n) and s(n) using Eq. (12–15);
7 Approximate the propensity scores by Eq. (11);
8 Update Θprop and Θimp by maximizing the

log-likelihood in Eq. (23) using gradient
descent;

/* Update predictive subnetwork */
9 Freeze Θprop and Θimp, update Θpred by

minimizing the predictive loss Eq. (21–22);
10 end
11 until converge or reach maximum number of iterations;

5 EXPERIMENTS AND RESULTS

5.1 Datasets and Experimental Settings
We evaluate PATNet using two real-world, large-scale,
and ICU-related datasets, MIMIC-III [47] and eICU [48].
MIMIC-III contains data related to over 40,000 patients who
stayed in the ICU units at Beth Israel Deaconess Medical
Center from 2001 to 2012. eICU contains data from a number
of critical care units throughout the continental U.S. in 2014
and 2015. We use the abnormal laboratory tests and the
medications collected during the ICU stays of the patients as
clinical features. For MIMIC-III, we rely on the abnormality
flag in the database for abnormal lab test results extraction.
Since neither the reference values nor the abnormality flags
are available for laboratory tests in eICU, we treat a labora-
tory test result as “abnormal” if the result value is smaller
than the 20-percentile or greater than the 80-percentile of
all records for the corresponding laboratory test item. For
both datasets, we extract adult patients having 20 to 100
time steps, and accumulate features recorded during every
consecutive eight hours as one time step.

Finally, we extract data of 13, 112 patients and 411 clin-
ical features from MIMIC-III and 10, 162 patients and 365
clinical features from eICU. The average number of time
steps of patients in MIMIC-III and eICU datasets are 20
and 16.7, respectively. For the disease progression model-
ing task, we use the data during the last 40 hours before
hospital discharge as the prediction window (held out for
evaluation), and use data between hospital admission and
the start of the prediction window to train the model. For
the mortality prediction task, we use the in-hospital death

as the labels. Patients are divided into training, validation
and test sets with ratios of 7:1:2 for both tasks. The details
of hyperparameter settings are summarized in Appendix C,
available in the supplemental materials.

5.2 Missing Data Sampling
To evaluate the performance of PATNet with observation
bias, we treat the extracted data as the complete data Z, and
manually hold out some positive features as the missing
data. We follow a similar procedure used by [49] to generate
the element-wise missing weights:

ρ̃
(n)
tj = (a>n w1 + b>t w2 + c>j w3)/3,

w1,w2,w3 ∼ U [0, 1]M , bt, cj ∼ N (0, 1)M ,

an ∼ N (µdn , 1)M (µ1 = 1, µ2 = 0, µ3 = −1) ,

where M is the dimension of the random variables an,bt

and cj , generated for the nth patient, the tth time step,
and the jth clinical feature, respectively. We set M = 10 in
all experiments. Patients are grouped into three clusters by
KMeans using the aggregated features over all time steps,
i.e.,

∑Tn

n=1 z
(n)
t , and dn represents the cluster index of the

n-th patient. Then, we transform their mean and standard
deviation to desired values to control the levels of missing
and observation bias, and finally sample the observations
by:

x
(n)
tj ∼ Bernoulli

(
z
(n)
tj ρ

(n)
tj

)
,

ρ
(n)
tj = 1− σ

(
ρ̃
(n)
tj −mean(ρ̃)

std(ρ̃)
∗ α+ β

)
.

We tweak α and β to control η = 1 − mean(ρ) and
γ = std(ρ), where the former is the mean value of the
final propensity scores, representing the expected missing
ratio. A larger γ indicates that the propensity scores of
different features at different time steps for different patients
spread out over a wider range, thus indicating a heavier
observation bias.

We generate datasets with five different levels of missing
(η = 0.2, 0.3, 0.4, 0.5, 0.6) and five levels of observation bias
(γ = 0, 0.1, 0.2, 0.3, 0.4). When γ = 0, the propensity scores
take constant value of 1 − η, which represents the scenario
of missing completely-at-random. The upper bound of γ is
close to 0.5 given its range. By inspecting the generated
propensity scores, most of the values of ρ are quite close
to either zero or one when γ = 0.4; therefore, we consider
γ = 0.4 the extreme case of heavy observation bias.

5.3 Evaluation of Missing Data Imputation
We first evaluate the imputation performance of PATNet.
We train PATNet using training sets with different levels of
missing and observation bias. Then we freeze the trained
model and generate the propensity-adjusted imputations ẑ
for the test set given their partial observations x. Similar
to the existing work [22], we use the Precision-Recall Area
Under Curve (PR-AUC) as the evaluation metric due to
the binary and imbalanced nature of the data. We measure
the PR-AUC score between the ground-truth z and the
imputations ẑ for each clinical feature and take the average
over all clinical features.
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Fig. 4. Imputation performance measured by PR-AUC score with increasing missing ratio under different levels of observation bias. For both MIMIC-
III and eICU datasets, PATNet consistently outperforms baselines and is the most robust model against increasing missing ratio.

5.3.1 Baselines
We compare the data imputation performance of PATNet
against the existing binary data imputation methods, includ-
ing:
• One-class MF (OCMF) [50] is a binary matrix factoriza-

tion/completion model based on sampling zero entries
as negative features.
• LogPar [22] is a binary data completion method based on

PARAFAC2 factorization. It assumes MCAR and enforces
local smoothness by a temporal variance regularization.
• Rel-MF [24] is a matrix-factorization model to learn rec-

ommender systems from binary data with MNAR. It as-
sume that the propensity scores are subject-independent
and proportional to the feature frequency.

Note that OCMF and Rel-MF do not handle multiple sub-
jects with temporal input, so we construct a single matrix as
their input by concatenating the observed temporal features
of all patients.

5.3.2 Results and Discussions
We visualize the PR-AUC scores of missing data imputation
for MIMIC-III and eICU datasets under different levels
of observation bias in Fig. 4a and Fig. 4b, respectively.
PATNet consistently outperforms all baselines in terms of
imputation for both datasets in all levels of missingness and
observation bias. Particularly, when the levels of missing-
ness and observation bias are both highest, PATNet still
obtains PR-AUC of 0.53 for MIMIC-III and 0.51 for eICU,
which shows 25.2% and 16% relative improvement against
the best performing baselines for MIMIC-III and eICU, re-
spectively. Besides, PATNet is the most robust model against
the missing ratio. For example, in MIMIC-III data with the
highest level of observation bias (γ = 0.4), the imputation
performance of PATNet only drops 25.8% (from 0.89 to 0.66)
as η increases from 0.2 to 0.6, which is the smallest among
all models. On the contrary, the second most robust model is
Rel-MF, which obtains a relative performance drop of 35.8%
(from 0.81 to 0.52). This demonstrates that by explicitly

TABLE 1
The propensity recovery error measured by mean absolute error (MAE)

when η = 0.4. Smaller values indicate more accurate recovery of the
latent propensity scores.

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

Constant 1 0.40±.003 0.40±.004 0.40±.006 0.42±.015
Constant ρ? 0.11±.001 0.16±.046 0.21±.078 0.23±.114
Rel-MF 0.23±.002 0.27±.005 0.33±.006 0.41±.006
PATNet 0.09±.005 0.13±.008 0.17±.009 0.17±.010

considering the propensity scores and inferring it as a part
of the model, PATNet achieves its goal of better handling
the observation bias. Rel-MF also considers the propensity
score and performs imputation based on the propensity
scores, making it the second-best performance when the
missing ratio or the observation bias is high for MIMIC-
III data. However, it does not infer the propensity score
from data during training, but rather use simple frequency
statistics to determine the propensity score prior the model
learning. The large gap between the performance of Rel-
MF and that of PATNet clearly demonstrates that such
heuristics is insufficient for complex data like EHR and leads
to suboptimal solutions. On the other hand, LogPar and
OCMF both assume that missing are completely at random,
which leads to the worst imputation performance for large
missing ratios and observation bias.

We further investigate how accurately we can estimate
the propensity scores. As pointed out by the literature in
the field of positive-unlabeled (PU) learning with selection
bias [35], the accuracy of estimating the propensity scores
plays an important role in reducing the bias of the estimator.
To empirically evaluate the capability of PATNet to recover
the propensity scores, we use the MIMIC-III dataset, set the
missing ratio to be η = 0.4, collect the propensity scores
estimated or constructed by different models, and compare
them with the ground-truth propensity scores using the
mean absolute error (MAE). Table 1 summarizes the results
obtained. Higher values indicate larger error in estimating
the propensity scores. When a model fails to adjust for
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the observation bias as reflected by a large propensity
recovery error, it could lead to worse imputation and de-
graded downstream prediction performance. The first row
of Table 1 is obtained by setting the propensity score to be
the constant one, i.e., ρ = 1. This setting is equivalent to
an assumption that the data is fully observed, namely no
missing data at all. The second row sets ρ = ρ?, where ρ? is
the mean value of the ground-truth propensity scores. This
corresponds to the assumption of missing-completely-at-
random (adopted by LogPar and OCMF) and the value of ρ?

represents propensity prior that a model assuming missing-
at-random would attain the best propensity recovery error.
The third and fourth rows correspond to the propensity
scores constructed by Rel-MF baseline and learned by our
proposed PATNet, respectively. The results show that PAT-
Net can recover the propensity scores much more accurately
than baselines and the existing heuristics. Although Rel-MF
considers the entry-wise propensity score, it pre-constructs
the propensity scores deviates too much from the ground
truth. This also explains the observation in Fig. 4a that Log-
Par outperforms Rel-MF even though the former assumes
missing completely at random.

5.4 Disease Progression Prediction
Predicting disease progression is a fundamental task that
could enable timely interventions to lower the risk of pa-
tients and improve the quality of care. In this section, we
evaluate the performance of PATNet for the disease pro-
gression modeling task. Given the historical data within the
observation window, the goal is to predict the clinical events
that will happen in the subsequent prediction window.

5.4.1 Baselines and Evaluation Metric
We compare the data imputation performance of PATNet
against the existing binary data imputation methods, includ-
ing:
• Long Short-Term Memory (LSTM) [44] is a sequential

prediction model which has been widely adopted in
clinical prediction tasks.
• RETAIN [6] is a predictive model tailored for EHR data.

It utilizes a recurrent neural network (RNN) model and
a two-level reverse time attention model for prediction.
• Dipole [7] is a diagnosis prediction model based on

attentional bidirectional RNN.
• Transformer [34] is a widely adopted sequential model-

ing method purely based on attention mechanism.
• HiTANet [12] is a hierarchical attention networks for

predictive analysis of EHR data, which achieves the state-
of-the-art performance for EHR prediction.
• CATNet [32] is an attention-based medical event predic-

tion model tailored for irregular binary electronic health
records data.
• ODE-LSTM [31] is a variant of LSTM with its hidden

state parameterized by the ordinary differential equation
(ODE) which handles the irregularity in time series data.
We measure the performance using the mean average

precision (mAP) which is defined as

mAP =
1

J

N∑
j=1

APj ,

where APj is the average precision for the j-th feature.

5.4.2 Results and Discussions
Fig. 5 visualizes the performance of disease progression
modeling under different levels of missing ratio and obser-
vation bias for MIMIC-III and eICU, respectively. We show
the mAP score of the first prediction step and the average
mAP score over the five prediction steps, along with the
relative performance drop when the missing ratios increase
for different levels of observation bias. The results show that
PATNet consistently outperforms the baseline models by a
large margin for both MIMIC-III and eICU datasets across
different levels of missingness and observation bias. In the
presence of mild and moderate observation bias, PATNet
obtains significant improvement over the best baselines. For
example, when γ = 0.1, PATNet improves the five-step av-
erage mAP over the best baseline model by up to 20.3% and
22.7%, for MIMIC-III and eICU, respectively. When γ = 0.2,
the relative improvements are even slightly enlarged to 21%
and 23%. When the observation bias further increase, it
becomes exceptionally challenging to accurately estimate
the propensity scores due to the extreme variance in the
missing data sampling process. Having said that, PATNet
still achieves up to 11% and 17% relative improvement
of the five-step average mAP score over the best baseline
for MIMIC-III and eICU, respectively. Another interesting
observation is that when γ = 0, meaning that no extra bias
is introduced in the missing data sampling process, PATNet
also outperforms all baseline models by a large margin. This
indicates that the effectiveness of PATNet in handling the
observation bias also applies to the bias that exists in the
raw data.

The bottom row of each sub-figure in Fig. 5 shows the
relative performance drop for each level of missing ratio
compared to the smallest one (η = 0.2). They clearly demon-
strate that PATNet is the most robust one, among all models
compared, against increasing missing ratio, when γ < 0.4.
In the extreme case where γ = 0.4, despite the narrowing
gap of the relative performance drop between PATNet and
baseline models, PATNet still obtains the smallest drop
when the missing ratio exceeds 0.4.

To gain more insights of the significant performance
boost, we divide the features into five groups evenly ac-
cording to their feature-wise observation bias and visualize
the distribution of the absolute performance gaps of each
group using box plots in Fig. 6. A positive performance
gap indicates that PATNet outperforms HiTANet. We also
plot a dashed red line representing a linear regression of
the median value of each group. The Pearson correlation of
the linear regression is 0.95 (with p-value of 0.012), showing
a strong positive correlation between the median values of
the absolute performance gap and feature-wise observation
bias. This shows that the performance boost obtained by
PATNet mainly attributes to improving the prediction per-
formance for features with heavy observation bias, implying
that PATNet is effective in adjusting for the observation
bias by estimating and modeling the propensity scores. We
visualize the performance gap for each individual feature in
Appendix B, available in the supplemental materials.

5.5 Mortality Prediction
We further conduct the mortality prediction to evaluate the
predictive power of the proposed model. Patients in MIMIC-
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(a) Disease progression modeling performance for MIMIC-III dataset
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(b) Disease progression modeling performance for eICU dataset

Fig. 5. The prediction performance of the disease progression modeling task obtained for MIMIC-III and eICU datasets. The upper rows of two
subfigures denote the mAP scores averaged over five prediction steps. The bottom rows of the subfigures show the relative performance drop
when the missing ratio increases compared with the lowest missing ratio, which reflects the robustness against increasing missing ratio. PATNet
consistently outperforms all baseline models. With mild to moderate observation bias (γ < 0.4), PATNet achieves the best robustness against
missing ratios. With extreme observation bias (γ = 0.4), the robustness of PATNet is not worse than baselines while achieving much higher
absolute performance scores.

0.072~0.103

0.103~0.134

0.134~0.164

0.164~0.195

0.195~0.226

Feature-wise Observation Bias

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

ol
ut

e 
Pe

rf
or

m
an

ce
 G

ap

r = 0.95
p = 0.012

Fig. 6. The box plot of average performance gaps of feature groups with
different feature-wise observation bias between PATNet and HiTANet for
MIMIC-III dataset when η = 0.4 and γ = 0.2. Each box represents a
feature group with its range of feature-wise observation bias annotated
in below the X axis. The red dashed line shows a linear regression of
the median value of the performance gaps. r = 0.95 is the Pearson
correlation coefficient of the linear regression and the p-value of p =
0.012 indicates the significance of the correlation.

III and eICU datasets are associated with labels indicating
their hospital discharge status (i.e., alive or expired). We
use the records within the observation window to train the
models and predict the in-hospital mortality. We use PR-
AUC as the evaluation metric.

Fig. 7 visualizes the mortality prediction results obtained
for MIMIC-III and eICU datasets. Due to the joint imputa-
tion of the missing data, PATNet consistently outperforms
all baseline models under all settings of observation bias and
missing ratios. In particular, PATNet outperforms the best
baseline by a large margin for MIMIC-III dataset with mild
to moderate observation bias. For example, when γ = 0.2,
PATNet achieves relative improvement up to 13% over
HiTANet, the state-of-the-art and best performing baseline
model. However, with extreme observation bias (γ = 0.4),
the performance gaps significantly narrows. We conjecture
that this is due to increasing difficulties in accurately esti-
mating the propensity scores and hence the missing data
imputation. Nevertheless, PATNet still demonstrates its su-
periority by achieving the best prediction PR-AUC scores
and the smallest variance. On the other hand, mortality
prediction for eICU dataset is much more challenging due
to more sparse observations: the prediction PR-AUC scores
obtained by all models are significantly lower than that
obtained for MIMIC-III dataset. Having said that, the results
show that PATNet also achieves the best prediction perfor-
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Fig. 7. The performance of mortality prediction task obtained for MIMIC-III and eICU datasets. PATNet outperforms all baselines for both datasets
under all levels of missing ratio and observation bias.

TABLE 2
Ablation study results (η = 0.4, γ = 0.2).

Disease Progression Mortality Prediction

MIMIC-III eICU MIMIC-III eICU

#1 HiTANet 0.36±.009 0.22±.003 0.66±.023 0.30±.014
#2 PATNet-1 0.37±.006 0.22±.003 0.68±.009 0.29±.013
#3 PATNet-ρ? 0.37±.007 0.23±.005 0.70±.007 0.30±.016
#4 PATNet-noLR 0.37±.003 0.23±.002 0.71±.010 0.29±.018
#5 PATNet-noMI 0.40±.003 0.26±.006 0.72±.003 0.31±.005
#6 PATNet 0.41±.004 0.26±.004 0.74±.011 0.32±.007

#7 HiTANet-C 0.42±.002 0.25±.001 0.74±.001 0.31±.001
#8 PATNet-C 0.44±.001 0.28±.002 0.75±.002 0.33±.002

mance for eICU dataset, implying that joint imputation of
missing data is beneficial for prediction tasks.

5.6 Ablation Study
5.6.1 Effectiveness of Each Component
To further understand the contributions of different com-
ponents to the overall performance gain, we conduct a set
of ablation studies. We set the missing ratio η to 0.4 and
the observation bias γ to 0.2, run PATNet with different
modifications, and measure the performance of the disease
progression prediction task and the mortality prediction by
the five-step average mAP score and the PR-AUC score,
respectively. Table 2 summarizes the results. For easy ref-
erence, we include the performance obtained by the best
performing baseline model, HiTANet, in Row #1. We also
run HiTANet and PATNet with complete data (no missing-
ness) and report their performance in Rows #7 (HiTANet-C)
and #8 (PATNet-C), respectively. They could serve as upper
bounds of the performance in the presence of missing data
during the ablation studies for easier comparison.

We first examine how much the missing data affects the
predictive analysis by setting the propensity score to con-
stant one in PATNet (PATNet-1). In this case, the propensity-
adjusted imputation ẑij shown in Eq. (17) reduces to the in-
put xij , which is equivalent to the assumption of no missing

data. Comparing Rows #1 and #2 of Table 2, we can see that
the performance of PATNet-1 becomes close to HiTANet,
which does not account for missing data. Further comparing
Rows #2 and #6, it is clear that by joint data imputation,
HiTANet significantly improves the performance for both
disease progression modeling and mortality prediction. The
marginal differences between #7 and #8 also suggest that
PATNet’s performance is quite close to HiTANet’s when the
data is complete, also confirming that the major source of
gain lies in the accurate imputation of the missing data.

PATNet performs missing data imputation by inferring
the low-rank propensity scores. So we further examine the
effect of inferring the propensity score and the role of
the low rank approximation of the propensity scores. We
replace the propensity subnetwork by a constant of the
average propensity score ρ? = 0.6 and train the rest of
the model (PATNet-ρ?). This corresponds to the assumption
that all features are missing with the same probability
which is time- and feature-independent. The comparison
between Rows #2 and #3 of Table 2 reveals that the missing-
completely-at-random assumption helps little for disease
progression modeling task. This shows that inferring the
propensity scores is the key for the performance improve-
ment in PATNet. Mortality prediction for MIMIC-III, on the
other hand, is less sensitive to the observation bias; there-
fore, up to 6% relative improvement can be observed. Yet,
it can be further boosted by another 5.7% via inferring the
propensity scores as shown in Row #6. We also remove the
low rank assumption by replacing the PARAFAC2 approx-
imation with an LSTM (PATNet-noLR). Row #4 of Table 2
clearly shows that the performance is almost identical to
PATNet-1 and PATNet-ρ?, indicating that the propensity
scores cannot be effectively inferred without the low-rank
assumption. Row #5 shows the results obtained by another
variant of PATNet where the missing-informative predic-
tion is removed (PATNet-noMI), i.e., only the propensity-
adjusted imputations are used to make predictions. It shows
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Observations (mortality prediction: 0.05) PATNet Imputations (mortality prediction: 0.96) Ground Truth (mortality label: 1)
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(a)
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(b)
Fig. 8. Examples of the partial observations and the imputations obtained by PATNet corresponding to two patients in MIMIC-III dataset. The rows
and columns are time points and clinical features, respectively. The examples show that PATNet can generate accurate imputations and improve
prediction performance.

TABLE 3
Comparison between PATNet and RelMF+HiTANet (η = 0.4).

γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

Mortality Prediction for MIMIC-III

HiTANet 0.68±.014 0.68±.005 0.66±.023 0.64±.024 0.61±.049
RelMF+HiTANet 0.68±.009 0.68±.012 0.66±.027 0.65±.025 0.62±.043

PATNet 0.75±.012 0.74±.012 0.74±.011 0.70±.012 0.65±.035

Mortality Prediction for eICU

HiTANet 0.31±.023 0.31±.017 0.30±.014 0.28±.015 0.28±.032
RelMF+HiTANet 0.32±.022 0.32±.017 0.30±.024 0.30±.017 0.29±.030

PATNet 0.32±.012 0.33±.014 0.32±.007 0.30±.017 0.29±.009

Disease Progression for MIMIC-III

HiTANet 0.38±.003 0.38±.002 0.36±.009 0.35±.011 0.32±.017
RelMF+HiTANet 0.36±.003 0.34±.005 0.31±.008 0.31±.015 0.28±.013

PATNet 0.42±.002 0.42±.001 0.41±.004 0.38±.007 0.34±.011

Disease Progression for eICU

HiTANet 0.22±.003 0.22±.002 0.22±.003 0.21±.006 0.20±.005
RelMF+HiTANet 0.21±.004 0.21±.009 0.20±.010 0.19±.012 0.18±.011

PATNet 0.26±.005 0.26±.003 0.26±.004 0.25±.005 0.23±.009

that utilizing the informative missing is beneficial in predic-
tive analysis, especially for the mortality prediction task.

5.6.2 Benefits of Joint Imputation and Prediction
An alternative and commonly adopted approach to handle
the missing data is to impute the missing values first and
make predictions based on the frozen imputations. To gain
deeper insights into the benefits of the proposed joint im-
putation and prediction method, we set the missing ratio η
to 0.4, impute the missing observations using RelMF which
is the baseline model with the best performance in binary
data imputation, and then separately training the HiTANet
model using the imputations. The results are presented in
Table 3. The mortality prediction is relatively less affected by
observation bias and RelMF+HiTANet slightly outperforms
HiTANet. However, observation bias has a much stronger
negative impact on the disease progression modeling task,
and RelMF+HiTANet yields worse results than HiTANet for
both datasets. This suggests that a two-phase imputation
could harm the performance in the presence of severe ob-
servation bias. Notably, PATNet outperforms the two-phase
approach by a large margin. This can be attributed to its
joint imputation and prediction methodology that enables
gradual enhancement of the accuracy of propensity score

estimation and the imputation during training, which is
partially driven by the predictive loss and in turn leads to
improved predictive performance.

5.7 Case Studies
We conduct case studies to gain more insights into the
performance improvement. Fig. 8 illustrates two examples
from the MIMIC-III dataset with the partial observations
(we set η=0.4 and γ=0.2 for the case study) and the im-
putations obtained by PATNet. The three plots in each
subfigure are the partial observations, the imputations, and
the ground truth of the held-out missing data, respectively.
The numbers above them show the predicted probabil-
ity of in-hospital mortality using the partial observations
and PATNet imputations, and the ground-truth mortality
labels. The figures show that PATNet generates accurate
imputations and greatly improves the mortality prediction
performance. Take Fig. 8a as an example. The most heavily
missing features include abnormal laboratory test results
of blood pH (100% missing), blood glucose (86% missing),
blood RDW (79% missing), blood hemoglobin (69% missing),
blood pO2 (74% missing) and blood pCO2 (88% missing).
All of them have been shown closely related to mortality
in ICU [51], [52], [53]. With these important predictors
heavily missing, the patient is predicted to have a mortality
probability of 0.05. Among these missing values, PATNet
successfully imputes 93% of the pH, 86% of the glucose, 100%
of the RDW, 100% of the hemoglobin, 90% of the pO2, and
75% of the pCO2. Thus, the patient with PATNet imputation
was predicted a mortality probability of 0.96, which is in
line with the ground-truth label. The example in Fig. 8b,
on the other hand, has several medication prescriptions
heavily missing (e.g., calcium gluconate, potassium chloride
and insulin). Without knowing that these medications are
used, the model outputs a mortality probability of 0.51 for
this patient. Again, PATNet successfully imputes at least
90% of these missing medication prescriptions. With this
information available to the predictive model, the output
of mortality probability prediction is lowered to 0.1.

6 CONCLUSION

In this paper, we introduce PATNet, a propensity-adjusted
temporal network for missing data imputation and predic-
tive analysis of partially observed binary electronic health
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records with observation bias. Unlike existing predictive
models that assume complete observation or missing data
that are completely at random, we explicitly take into ac-
count the observation bias arising from the not-completely-
random missingness by modeling and estimating the
propensity scores. We propose to learn a transformer-based
imputation subnetwork to generate an initial imputation
given historical observations and learn a propensity sub-
network coupled with a low-rank PARAFAC2 approxima-
tion to adjust for the observation bias incurred by vary-
ing missing probabilities. Finally, we train the prediction
subnetwork to produce the missing-informative predictions,
conditioning on the propensity-adjusted imputations and
the inferred feature-, time- and patient-dependent miss-
ing probabilities. We conduct extensive experiments using
two publicly available datasets, and the results show that
PATNet achieves better performance in data imputation
than existing binary data imputation methods. PATNet
also consistently outperforms the state-of-the-art predictive
analysis models in terms of disease progression modeling
and mortality prediction tasks. The ablation study confirms
that the performance improvement mainly attributes to the
consideration and estimation of the propensity scores. One
limitation of PATNet is that it assumes regular input and
does not tackle the issue of irregularly sampled observations
with varying time intervals. We will address this in future
work. Besides, we will also focus on further modeling the
relationship between the patients’ health states and the not-
at-random missing mechanism to enhance the imputation
and prediction performance in the presence of extreme
observation bias.
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