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Variational Counterfactual Prediction under
Runtime Domain Corruption

Hechuan Wen, Tong Chen, Li Kheng Chai, Shazia Sadiq, Junbin Gao, Hongzhi Yin

Abstract—To date, various neural methods have been proposed for causal effect estimation based on observational data, where a
default assumption is the same distribution and availability of variables at both training and inference (i.e., runtime) stages. However,
distribution shift (i.e., domain shift) could happen during runtime, and bigger challenges arise from the impaired accessibility of
variables. This is commonly caused by increasing privacy and ethical concerns, which can make arbitrary variables unavailable in the
entire runtime data and imputation impractical. We term the co-occurrence of domain shift and inaccessible variables runtime domain
corruption, which seriously impairs the generalizability of a trained counterfactual predictor. To counter runtime domain corruption, we
subsume counterfactual prediction under the notion of domain adaptation. Specifically, we upper-bound the error w.r.t. the target
domain (i.e., runtime covariates) by the sum of source domain error and inter-domain distribution distance. In addition, we build an
adversarially unified variational causal effect model, named VEGAN, with a novel two-stage adversarial domain adaptation scheme to
reduce the latent distribution disparity between treated and control groups first, and between training and runtime variables afterwards.
We demonstrate that VEGAN outperforms other state-of-the-art baselines on individual-level treatment effect estimation in the
presence of runtime domain corruption on benchmark datasets.

Index Terms—Causal Effect Estimation, Runtime Domain Corruption, Adversarial Domain Adaptation

✦

1 INTRODUCTION

In predictive analytics, causal inference is increasingly
important in guiding decision-making in high-stake do-
mains, such as healthcare [1], education [2], e-commerce
[3], etc. Normally, randomized control trial (RCT) is the
gold standard for estimating the causal effect. Given that
implementing RCTs is costly, time-consuming, and some-
times ethically intractable, various applications alternatively
turn to use the passively collected observational data to
perform causal inference in a data-driven fashion [4], [5], [6].
Denoting input variables as x, treatment as t, outcome as y,
the observational dataset with N samples {(xi, ti, yi)}Ni=1

commonly does not satisfy the RCT standard due to
unmeasured confounders and selection bias, which are two
prominent challenges in causal inference. Specifically, the
untestable unconfoundedness assumption assumes no un-
observed confounders. Unfortunately, such an assumption
cannot be satisfied in many cases, rendering the estimation
erroneous [7], [8]. Meanwhile, the selection bias between the
treated and control groups causes the imbalanced covariate
distributions, which could introduce undesirable spurious
effect due to the imbalance [5]. In the extreme case, it can
even violate the positivity assumption and result in non-
identifiable causal effect [9]. Thus, this issue further weakens
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the correctness of causal effect estimation.
An example to explain these two challenges is that,

if only the rich can afford drug A while the poor have
to use the cheaper drug B, then people’s financial status
could be a hidden confounder if unmeasured, resulting in
invalid estimation. If measured, it causes selection bias, and
the effectiveness of drug A and drug B cannot be validly
compared based on the skewed distribution of variables
due to people’s financial status. By addressing either of
the two challenges or both, several neural approaches [10],
[11], [12] are made available for causal effect estimation
with observational data. Despite a variety of methods that
tackle distributional imbalance caused by the selection bias,
such domain shifts are only restricted between the treated
and control groups that are both used for training, where
the runtime variables are assumed to be drawn from the
same distribution as the training data. In fact, domain shift
also widely exists between training and runtime data, e.g.,
when a model trained on one race is asked to perform
predictions on a different minority race, and it challenges
the generalizability of the trained model.

On top of that, the unavailable/missing variables and
corresponding countermeasures are also largely understud-
ied. For instance, real-world applications commonly have
medical diagnostic models learned with high-quality open
benchmarks, but in the deployment stage, not all end-
users are able to provide the same set of variables due to
accessibility issues (e.g., high-cost medical checks), privacy
constraints (e.g., historical treatments), and ethical concerns
(e.g., gender and race). In this paper, we refer to the co-
existence of the shifted and unavailable variables in the
inference data as runtime domain corruption.

Runtime domain corruption can be interpreted as one
step above observing domain/covariate shift during infer-
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ence, where the model not only faces changed covariate
distribution but also the ubiquitous missing values. In short,
in our definition, runtime domain corruption is caused
by the co-occurrence of domain shift and missing values.
Compared with domain shift, runtime domain corruption
more aggressively challenges the generalizability of the
trained counterfactual prediction model, because variables
deemed important in training might no longer be present
during inference, and the domain-invariant patterns are
unable to be mapped to those missing variables. Therefore,
a high corruption rate of runtime variables can make the
counterfactual predictor merely learned on full training data
incur large generalization errors. Though one can consider
discarding the unavailable variables in the training set,
the reduced variables may lead to an underfitting issue.
Also, for real-world deployment, it is impractical to assume
prior knowledge on which variables are corrupted during
runtime, especially considering the inaccessible variables
can differ among individuals (e.g., users may choose to
withhold different personal information).

This work focuses on causal inference using the
Neyman-Rubin potential outcome framework [13], [14] un-
der the runtime domain corruption circumstance. In this
work, we aim to learn a robust, causal, and domain-
invariant latent representation z of variable x, for which
the latent distributions across various domains are well-
balanced to counter the aforementioned three challenges,
i.e., unmeasured confounders, selection bias, and runtime
domain corruption, simultaneously. Our main contributions
are:

• We identify an important performance bottleneck for
causal inference methods, namely runtime domain
corruption that combines two largely unexplored
yet important settings: domain shift and unavailable
variables during runtime. In our paper, we propose
the first systematic investigation of it for causal effect
estimation.

• We derive the upper bound of the generalization
error by extending the in-sample causal inference to
the corrupted out-of-sample scenario. To efficiently
optimize the multiple Kullback-Leibler (KL) diver-
gence terms in our VAE-based model, we propose
a two-stage domain adaptation scheme, namely the
Variational autoEncoder Generative Adversarial Net-
work (VEGAN) for unifying multiple inter-domain
distances.

• We compare VEGAN to state-of-the-art baselines for
performing predictions on both in-sample covari-
ates and out-of-sample, corrupted runtime covari-
ates. The empirical results demonstrate our model’s
stronger robustness to runtime domain corruption.

2 RELATED WORK

Back in time, researchers have been seeking to approach
observational data-based causal inference from various per-
spectives. The re-weighting method, e.g., inverse probabil-
ity weighting (IPW), uses the propensity score [15], [16]
to mitigate the selection bias by re-weighting each unit’s
treatment outcome according to its estimated probability
of being assigned a treatment. However, such a method

strongly relies on the correctness of the estimated propensity
score. To alleviate this strong dependency, the proposed
doubly robust (DR) [17] method considers the outcome
regression together with IPW for re-weighing purposes. The
DR method tries to secure the causal effect estimation with
an additional “insurance” that comes from the correctness of
the outcome modelling which is in fact no one can assure.
In addition to re-weighting, other methods such as the non-
parametric tree-based model, e.g., BART [18] combines the
tree method and Bayesian inference. However, all the above-
mentioned methods mainly focus on estimating the average
treatment effect (ATE) and are not expressive enough to
handle the high-dimensional dataset for individual-level
estimations.

Nowadays, with the strong expressive power of deep
learning [19], [20], new algorithms are proliferating by
leveraging the deep learning framework to learn the de-
confounded latent representation on top of the observed
covariates and model the personalized treatment effect.
We relate our work to the representation learning branch
in causal inference, which is overlapped with the domain
adaptation field due to the unique counterfactual nature of
estimating treatment effect. The TARNet [10] builds a shared
feature extractor followed by a two-headed neural network
to model the outcomes for each type of treatment separately.
Its variants can incorporate the integral probability metric
(IPM), e.g., Wasserstein distance [21], and maximum mean
discrepancy (MMD) [22], to minimize the distance of the
learned latent covariate distribution between treated and
control groups to mitigate the selection bias. Following that,
a variational autoencoder (VAE) framed CEVAE model [11]
emphasizes handling the confounding problem by building
robust latent representation, and its performance is stated
to be more robust than many previous methods. Dragonnet
[12] leverages the neural net-enhanced propensity estima-
tion and the innovative targeted regularization for causal
effect estimation to achieve an asymptotic consistent ATE
estimator. In addition, other works such as GANITE [23]
and DeepMatch [24] adopt generative adversarial network
(GAN) [25] and build their own designated GAN learning
systems. Recently, many latent variable disentanglement
methods, e.g., DR-CFR [26], TVAE [27], TEDVAE [28], are
proposed to discover the disentanglement of the latent in-
strumental, risk, and confounding factors from the observed
covariates to better capture the selection bias. The unique
point of difference in our work is the additional consid-
eration of the runtime domain corruption situation where
the trained causal model’s performance could dramatically
decline when deployed to other environments.

In addition, it is noted that [9] integrate the Monte Carlo
Dropout [29] method to the state-of-the-art neural methods
and allow the upgraded models, e.g., BTARNET, BCEVAE,
to estimate epistemic uncertainty in high-dimensional con-
ditional average treatment effect (CATE) estimation, thus
to inform the decision maker to be vigilant when making
recommendations if the high uncertainty present. Their
method only considers the domain shift between the treated
and control groups during training, and it emphasizes mak-
ing no treatment recommendation if the epistemic uncer-
tainty exceeds a certain threshold. Hence, our work differs
from it as we focus on more accurate treatment effect es-
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timation when runtime domain corruption occurs during
inference stage. It should also be noted that some existing
works [30], [31], [32] have been proposed for treatment effect
estimation with missing values, where the core is to leverage
imputation algorithms to handle the missing values. Since
runtime domain corruption also includes domain shift, the
imputed target domain data could still deviate heavily from
the source domain, rendering those methods inaccurate in
such conditions. Furthermore, the imputation algorithm is
not capable of imputing accurately when the number of
missing values is large, it even becomes useless when the
attributes are completely missing at the distribution level
during the inference stage.

Lastly, we also relate our work to algorithmic fairness
topics, e.g., disparate learning processes (DLPs), in which
the ethically concerned, privacy-related features are not
available or impermissible to be used during runtime [33],
[34]. A similar approach to DLPs is a doubly-robust coun-
terfactual prediction model with additional handling of the
confounding problem during training [35]. However, it dif-
fers from the common causal effect estimation as it assumes
that one of the potential outcomes is a known constant for a
binary treatment, and is hence inapplicable to the problem
studied in this paper.

3 METHODOLOGY

3.1 Preliminaries

For simplicity, we consider binary treatment t of 1 or 0 to
denote the treated group and the control group, respectively.
The individual treatment effect (ITE) for a variable vector x
is defined as:

τ(x) = E[Y1 − Y0|x], (1)

where Y1 and Y0 are the unobserved potential outcomes
with treatment t = 1 and t = 0 respectively. As a common
practice in causal inference research, to validly identify
the true treatment effect τ(x) of instance x, we make the
following standard assumptions.

Assumption 1 (Stable Unit Treatment Value Assumption)
The SUTVA assumption [16] states that: a) The potential
outcomes for any unit do not vary with the treatment assigned
to other units. b) For each unit, there are no different forms or
versions of each treatment level, which leads to different potential
outcomes.

Assumption 2 (Unconfoundedness) Treatment assignment
is independent of the potential outcomes given the pre-treatment
covariate x, i.e., t ⊥ {Y0, Y1}|x.

Assumption 3 (Positivity) For every instance x ∈ X , we have
its corresponded treatment assignment mechanism p(t|x), such
that 0 < p(t = 1|x) < 1.

The assumptions further lead us to the proposition be-
low.

Proposition 1 (Identifiability) The causal effect is identifiable
if and only if the SUTVA, the unconfoundedness, and the positiv-
ity assumptions hold.

Proof 1 Under SUTVA and unconfoundedness, the ITE for in-
stance x is:

E[Y1 − Y0|x] =E[Y1|x]− E[Y0|x]
=E[Y1|X = x, t = 1]− E[Y0|X = x, t = 0]

=E[y1|X = x, t = 1]− E[y0|X = x, t = 0],
(2)

where y1 and y0 are the observed responses after the interventions
t = 1 and t = 0 have been taken, respectively. The last terms are
identifiable as we assume 0 < p(t = 1|x) < 1. The first equality
is by the operation of expectation, the second equality is based on
the unconfoundedness, and the third equality is by the expected
value of the observed outcomes {y1, y0} equals the unobserved
potential outcomes {Y1, Y0}.

3.2 Problem Definition
Let Ψ : X×{0, 1} → R be the hypothesis, our goal is to build
the treatment effect regression model Ψt(x, t) = E[yt|X =
x, T = t] with observed outcome yt based on the training
data, which can accurately recover the treatment effect for
test instance x∗, thus the causal effect for the test instance
x∗ can be estimated as Ψ1 − Ψ0. However, the untestable
unconfoundedness and selection bias challenges arise when the
observational dataset does not follow the RCT standard,
making the trained models Ψ1 and Ψ0 unable to accurately
reflect the true treatment outcomes for x.

We perceive the observed covariates of treated and
control groups from the conventional domain shift per-
spective, in which covariate x is a noisy measurement,
normally less informative and more confounded [36], [37],
than the domain-invariant latent representation z. There-
fore, the unconfoundedness changes from t ⊥ {Y0, Y1}|x to
t ⊥ {Y0, Y1}|z. In addition to the treated and control groups
from the in-sample set, this paper uniquely considers causal
effect estimation where the out-of-sample set is affected by
runtime domain corruption. In what follows, we formally
define the runtime domain corruption problem.

Definition 1 (Runtime Domain Corruption) We define each
variable vector x = [x1, x2, ..., xd] ∈ Rd as a non-zero con-
catenation of categorical features (i.e., encodings) and numerical
features. During training, all d entries xs, for 1 ≤ s ≤ d, are
available and assigned corresponding values. Then, during infer-
ence, runtime domain corruption occurs when: (1) the covariate
distribution shifts in the test domain: ptest(x) ̸= ptrain(x); and
(2) each vector x contains an arbitrary number of unavailable
variables xs′ , for 1 ≤ s′ ≤ d, which are all zeroed out by setting
xs′ = 0.

Rationale of zero-padding. Specifically, during runtime,
the unavailable features are not straightforwardly discarded
when performing prediction, instead, we pad zeros to en-
tries that correspond to missing variables such that the
dimensionality is kept unchanged. It is worth noting that,
during training, a non-zero property is maintained for ev-
ery instance x whose features are all available. This can
be easily achieved via standard preprocessing steps, e.g.,
rescaling/normalization for numerical features, and using 1
and -1 to respectively represent relevant and irrelevant cat-
egorical features in multi-hot encodings. Thus, using zero-
padding to mark unknown/corrupted variables during run-
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time is viable, because the semantics of zeros are exclusively
reserved for the unknown status of variables. Also, zero-
padding is a more feasible practice in real applications, as
each runtime instance x may have an arbitrary number and
combination of attributes missing, rendering it impractical
to train a specific latent feature extractor for each case. In
contrast, zero-padding is a more flexible and scalable ap-
proach for learning domain-invariant latent representations
with a shared feature extractor, where all zero-valued entries
of x will be filtered out during projection.

3.3 Target Domain Error Upper Bound

Shalit et al. [10] show that the accuracy metric for causal
inference – expected Precision in Estimation of Heteroge-
neous Effect (PEHE), denoted as ϵPEHE, is upper-bounded
by both the trained model error ϵF on factual outcomes
and the distance between treated and control distributions,
measured by integral probability metric (IPM). However,
as their derived upper bound for ϵPEHE does not consider
runtime domain corruption on out-of-sample variables, we
fill this gap by deriving the bound in Theorem 1.

Theorem 1 Let ϕ : X → Z be the invertible latent represen-
tation mapping function (a.k.a. feature extractor) with inverse
Φ. Let Ψ : Z × {0, 1} → R be the updated hypothesis that
maps latent variables z ∈ Z to each treatment’s outcome. Let
F = {f |f : Z → R} be a family of functions. The source domain
is the observational data for treated and control groups, and the
target domain is the runtime test/inference set with corrupted
variables. We derive the upper bound of target domain error (i.e.,
generalization error) as1:

ϵtrPEHE ≤ 2

[
ϵt=1

F + ϵt=0
F +Bϕ

(
IPMF (Pt=1

ϕ ,Pt=0
ϕ )

+
1

2
IPMF (Ptr

ϕ ,Psr
ϕ )

)]
,

(3)

where ϵtF denotes the factual training error, Pt
ϕ is the probability

measure within treatment group t in the training set, ϵtrPEHE and
ϵsrPEHE respectively indicate the target and source domain errors,
Ptr
ϕ and Psr

ϕ are probability measures which respectively denote
the covariate distributions in target domain and source domain,
and Bϕ is a bounded constant.

To prove Theorem 1, we first provide some preliminary
definitions.

Definition 2 Let F = {f |f : Z → R} be a family of functions.
The distribution distance measure – integral probability metric
(IPM) between the target and source distributions Psr and Ptr

over Z is defined as:

IPMF (Ptr,Psr) = sup
f∈F

∣∣∣∣∫
Z
f(z)(ptr(z)− psr(z))dz

∣∣∣∣ . (4)

Definition 3 Let ϕ : X → Z be the latent mapping, and let
Ψ : Z × {0, 1} → R be the updated hypothesis over the latent
space Z , the estimated ITE for variable x is:

τ̂(x) = Ψ1(ϕ(x), 1)−Ψ0(ϕ(x), 0). (5)

1. We follow some notation conventions set in [10] and [38].

Definition 4 The expected Precision in Estimation of Heteroge-
neous Effect (PEHE) of the causal model {ϕ,Ψ} with squared loss
metric L(·, ·) is defined as:

ϵPEHE(ϕ,Ψ) =

∫
X
Lϕ,Ψ(x)p(x)dx, (6)

where we denote L(τ̂(x), τ(x)) as Lϕ,Ψ(x) for notation simplic-
ity. The τ(x) is the true treatment effect defined in Eq. 1 and τ̂(x)
is the estimated one defined in Eq. 5.

Lemma 2 Let ϕ : X → Z be the invertible latent representation
mapping function with inverse Φ. Let Ψ : Z × {0, 1} → R be
the updated hypothesis. Let F = {f |f : Z → R} be a family
of functions. Assume we have Bϕ > 0 s.t. 1

Bϕ
Lϕ,Ψ(Φ(z)) ∈ F .

The tightness of target domain error w.r.t. the source domain one
is bounded by the distribution distance denoted by IPM:

|ϵtrPEHE − ϵsrPEHE|

=

∣∣∣∣ ∫
Z
Lϕ,Ψ(Φ(z))ptrϕ (z)dz−

∫
Z
Lϕ,Ψ(Φ(z))psrϕ (z)dz

∣∣∣∣
≤BϕIPMF (Ptr

ϕ ,Psr
ϕ ),

(7)

where ϵtrPEHE and ϵsrPEHE indicate target domain error and source
domain error respectively, Ptr

ϕ and Psr
ϕ denote covariate distribu-

tion in target domain and source domain respectively, and Bϕ is
a bounded constant.

Proof of Lemma 2 We denote the expected PEHE in Eq. 6 in
target domain and source domain as ϵtrPEHE and ϵsrPEHE respectively,
also tr and sr indicates the test set and training set where
ptr(x) ̸= psr(x) if domain corruption exists.

|ϵtrPEHE − ϵsrPEHE| =
∣∣∣∣∫

X
Lϕ,Ψ(x)ptrϕ (x)dx−

∫
X
Lϕ,Ψ(x)psrϕ (x)dx

∣∣∣∣
=

∣∣∣∣∫
Z
Lϕ,Ψ(Φ(z))ptrϕ (z)dz−

∫
Z
Lϕ,Ψ(Φ(z))psrϕ (z)dz

∣∣∣∣
=

∣∣∣∣Bϕ

∫
Z

1

Bϕ
Lϕ,Ψ(Φ(z))(ptrϕ (z)− psrϕ (z))dz

∣∣∣∣
≤
∣∣∣∣∣Bϕ sup

f∈F

∣∣∣∣∫
Z
f(z)(ptrϕ (z)− psrϕ (z))dz

∣∣∣∣
∣∣∣∣∣

=
∣∣BϕIPMF (Ptr

ϕ ,Psr
ϕ )

∣∣
=BϕIPMF (Ptr

ϕ ,Psr
ϕ ).

(8)

The first equality is by Definition 4, the second equality is by
change of variable, the first inequality is by the premise that
1
Bϕ

Lϕ,Ψ belongs to the function family F , the fourth equality
is by Definition 2, the last equality is by the property that IPM
is non-negative.

Proof of Theorem 1 Under the conditions of Lemma 2 and the
auxiliary theorem 1 in [10], thus conclude the proof of Theorem
1:

ϵtrPEHE ≤ϵsrPEHE +BϕIPMF (Ptr
ϕ ,Psr

ϕ )

≤ 2[ϵt=1
F + ϵt=0

F

+Bϕ(IPMF (Pt=1
ϕ ,Pt=0

ϕ ) +
1

2
IPMF (Ptr

ϕ ,Psr
ϕ ))],

(9)

where the first inequality is by Lemma 2 and the second inequality
is by the auxiliary theorem 1 from [10]. We align the function
family F to the one used in [10], as different choices of function
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family F will require different assumptions about the joint distri-
bution p(z, t, y1, y0), the representation mapping function ϕ, and
the hypothesis Ψ. Thus, we share the same bounded constant Bϕ.

In summary, the upper bound given in Theorem 1
suggests that, to bring down the target domain error ϵtrPEHE
during runtime, we are essentially minimizing: (1) the pre-
diction errors on observed outcomes; (2) the imbalance
between treated and control groups; (3) the discrepancy
between the training and test sets altogether. It guides our
algorithm design in general for runtime causal inference.
Note that if no domain corruption exists, which means
Ptr
ϕ = Psr

ϕ and thus IPM(Ptr
ϕ ,Psr

ϕ ) = 0, the runtime error
becomes identical to the source domain error ϵtrPEHE = ϵsrPEHE.

3.4 Variational Inference
Our solution is built upon the variational autoencoder
(VAE). To start with, in this section we introduce the mini-
mization of the factual error ϵF, the distribution disparity be-
tween treated and control groups first, and between training
and runtime domains afterwards.

3.4.1 Evidence Lower Bound
For modelling the observed treatment outcome y, we use the
maximum likelihood estimation (MLE) to approximate the
parameters. For simplicity, log is commonly used to decom-
pose the joint marginal likelihood p(y) into:

log p(y) =
N∑

k=1

log p(yk)

=
N1∑
i=1

log p(yi) +
N0∑
j=1

log p(yj),

(10)

where y = [y1, y2, . . . , yN ] is a vector hosting all N samples’
observations, N = N1 + N0, with N1 and N0 respectively
denoting the number of samples in treated and control
groups. Thus, to maximize the joint marginal log-likelihood
of observing y, we can maximize each individual log-
likelihood log p(y).

As we assume that there exists a latent representation
z and treatment t that causally determine the observed
treatment response yt, i.e., yt ∼ p(y|z, t) in a probabilis-
tic way, while the observed proxy x does not have any
causal relations but statistical correlations with y. Due to
the potentially high dimensionality of z, the marginal like-
lihood p(y) is intractable. Here, we apply the variational
methodology [39] to our scenario to tackle p(y) by estab-
lishing an encoder network ϕt to learn the posterior latent
representation zt ∼ pϕt

(z|x), and a decoder network Ψt to
estimate treatment response yt ∼ pΨt

(y|z, t). According to
the decomposed joint likelihood in Eq. 10, we can separately
derive the the evidence lower bound (ELBOt) for each of
the treatment group t in a similar manner used by [39] as
follows:

Nt∑
i=1

log p(yi) ≥ELBOt

=EPϕt
[log pΨt

(y|z, t)]−DKL(Pϕt
||Qz),

(11)

where Pϕt
and Qz are posterior and prior distributions

respectively over the latent space Z . DKL(·) returns the

Kullback-Leibler (KL) divergence between two distribu-
tions. As such, the task of maximizing the intractable
log p(yt) can be indirectly solved by pushing up its associ-
ated ELBOt, thus minimizing the factual error ϵtF. According
to the decomposition in Eq. 10, our objective is to maximize
the sum of two ELBOs for treated and control groups:

ELBO =
∑

t∈{0,1}

ELBOt. (12)

It is worth noting that, our derived bound ELBO can
be easily extended from our binary treatment setting to
scenarios that involve multiple treatments.

3.4.2 Treated/Control Domain Adaptation

According to the second term in Eq. 11, for t ∈ {0, 1},
we have both KL divergence terms that regularize the
posterior distribution Pϕt

and the prior distribution Qz, i.e.,
DKL(Pϕ1

||Qz) and DKL(Pϕ0
||Qz). By pushing up the ELBO

in Eq. 12, one can notice that both posteriors Pϕ1
and Pϕ0

are regularized to approach the same prior distribution Qz,
e.g., standard normal distributionN (0, 1). Thus, the domain
adaptation (DA) for both groups can be naturally achieved
to balance their latent distributions and counter selection
bias by adjusting the priors using the VAE framework. It is
worth noting that KL divergence is an unbounded asym-
metric distribution distance measure [40] which does not
belong to IPM, so we replace it with a bounded symmetric
distribution similarity measurement in Section 3.5 as a better
approximation.

3.4.3 Training/Runtime Domain Adaptation

In addition to the DA across treated and control groups
within the training set, we would also like to do DA
between the entire training and runtime sets to minimize
the tightness bound BϕIPMF (Ptr

ϕ ,Psr
ϕ ) given in Theorem

1 and thus alleviate runtime domain corruption. As such,
for a well-trained model, we aim to make the out-of-sample
performance as good as the in-sample performance, i.e., the
out-of-sample results would not deviate from the in-sample
ones drastically while keeping good in-sample performance.

Intuitively, if the VAE prediction framework is applied
to the full runtime test set {(xtrj , ttrj , ytrj )}N ′

j=1 on the target
domain, one can end up with an objective to be maximized
similar to the ELBOt presented in Eq. 11 as follows:

Γϕtr
t ,Ψtr

t
= EPtr

ϕt
[log ptrΨt

(y|z, t)]−DKL(Ptr
ϕt
||Qtr

z ). (13)

However, the label ytr and treatments ttr are appar-
ently unknown in practice, and such an objective cannot
be optimized. Since the only available information is the
runtime covariates which can be used to extract the domain-
invariant representation from DA, the second term in Eq. 13
can be utilised for such purpose with a mild modification.

Precisely, we alternatively walk around to minimize
the KL divergence between the runtime posterior Ptr

ϕ and
the entire training set posterior Psr

ϕ , namely DKL(Ptr
ϕ ||Psr

ϕ ),
where ϕ is a shared feature extractor. Thus, to achieve the
second-stage DA, our proposed ultimate evidence lower
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bound (ELBOulti) for the intractable joint log-likelihood p(y)
is:

log p(y) ≥ ELBO
≥ ELBOulti

= ELBO−DKL(Ptr
ϕ ||Psr

ϕ ).

(14)

3.5 Adversarial Learning

Thus far, we have three DKL(·) terms in our optimization
objective: two from the in-sample treated/control groups,
which align the posteriors to the same priorN (0, 1), and the
one from out-of-sample train/test adaptation that aligns the
posteriors of training set and runtime set. As the direct cal-
culation of KL divergence is computationally inefficient and
may even be infeasible with high dimensional data [41], [42],
we propose to implicitly minimize them and unify these
terms into a compact generative adversarial network (GAN)
[25] shown in Figure 1. Apart from that, optimizing the min-
imax game in GAN is equivalent to minimizing the Jensen-
Shannon divergence [25], which is a bounded symmetric
distribution similarity measurement [43]. Such technique
resonates with adversarial variational Bayes introduced
in [44], while our motivation and implementation differ
from theirs. Here, we present our Variational autoEncoder
Generative Adversarial Network runtime counterfactual re-
gression model, coined as VEGAN. In what follows, we
unfold the design details of VEGAN.

Firstly, we instantiate ϕ, the shared feature extractor
among xsrt=1, xsrt=0 and xtr. It includes Gϕ and the follow-
ing two multi-layer perceptrons (MLPs) that map all the
data from the original Rd into latent space Rl. Due to the
variational nature of the model, the j-th latent dimension
of individual i, denoted by xsri , is modelled by a Gaussian
distribution with its dedicated mean µij and variance σ2

ij as
follows:

psrϕ (zi|xi) =
l∏

j=1

N (µij , σ
2
ij), (15)

where mean µij and standard deviation σij are respectively
the j-th element of latent representations µi and σi. In
VEGAN, µi,σi ∈ Rl are denoted as:{

µi = MLPµ(Gϕ(xsri ))

σi = MLPσ(Gϕ(xsri ))
, (16)

which allows us to obtain the latent representation zi for the
subsequent DAs and inference.

Secondly, for the treated/control group DA, we propose
an adversarial way to implicitly reduce inter-domain distri-
bution distance. In this regard, Gϕ is essentially our gener-
ator for notation simplicity, and a discriminator Dδ is thus
designed to pair up the generator to facilitate adversarial
learning. The minimax game is designed as: the discrimina-
tor Dδ tries to differentiate the standard Gaussian sample
n ∼ N (0, 1) from zsr learned from the training sample;
in the meantime, feature extractor Gϕ tries to update the
latent representation zsr to make it indistinguishable from
n. When an equilibrium state is reached, the treated and
control domains are well adapted because both latent rep-
resentations zsr fall in the same distribution. Thus, the two
terms DKL(Pϕ1

||Qz) and DKL(Pϕ0
||Qz), are minimized in an

Algorithm 1 Optimization of VEGAN

1: Input: Train set {(xsri , tsri , ysri )}Ni=1, runtime variable
set {(xtrj )}N ′

j=1 (optional), hyperparameters (e.g., learn-
ing rate α), initialized neural networks’ parameters
{ϕ,Ψ1,Ψ0, δ, β};

2: while not converged do
3: Sample a mini-batch bm ∈ {bm}Mm=1 of size

|bm| = |bt=1
m |+ |bt=0

m |, with |bt=1
m | = |bt=0

m |, from
{(xsri , tsri , ysri )}Ni=1. Sample equal size instances from
standard Gaussian N (0, 1);

4: δ ← δ − α 1
|bm|

(∑|bm|
j=1 ∇δ logDδ(nj)

+
∑|bm|

i=1 ∇δ log(1−Dδ(ω
sr
i ))

)
;

5: if runtime domain corruption exists then
6: Randomly draw batch b

′

m from {(xtrj )}N ′

j=1 with
size |b′m| = |bm|;

7: β ← β − α 1
|bm|

(∑|bm|
i=1 ∇β logDβ(ω

sr
i )

+
∑|bm|

i=1 ∇β log(1−Dβ(ω
tr
i ))

)
;

8: end if
9: ϕ← ϕ− α

(
1

|bm|
∑|bm|

i=1 ∇ϕ logDδ(ω
sr
i )

+ 1
|bm|

∑|bm|
i=1 ∇ϕ log(1−Dβ(ω

sr
i ))

+ 1
|bm|

∑|bm|
i=1 ∇ϕ logDβ(ω

tr
i )

+
∑

t∈{0,1}
1

|btm|
∑|btm|

i=1 ∇ϕ log pΨt
(yi|ωi, ti)

)
,

10: Ψ1 ← Ψ1 − α
|bt=1

m |
∑|bt=1

m |
i=1 ∇Ψ1 log pΨ1(yi|ωi, ti = 1),

11: Ψ0 ← Ψ0 − α
|bt=0

m |
∑|bt=0

m |
i=1 ∇Ψ0

log pΨ0
(yi|ωi, ti = 0);

12: end while

adversarial way. As Figure 1 shows, the output pi = Dδ(wi)
is the scalar probability of being a Gaussian sample, where
wi = ηini + (1 − ηi)zsri with ηi ∈ {1, 0} labelling the i-
th sample from two buckets (1 for Gaussian samples, and
0 for training samples). Note that n is resampled for every
training instance i ∈ I , where I is the collection of instances
from the training set. In our supervised learning setting, we
have the cross-entropy loss for the discriminator Dδ(·):

l(wi) = ηi logDδ(wi) + (1− ηi) log(1−Dδ(wi)). (17)

Then, in an adversarial setting, the minimization of two
KL-divergence terms for treated/control domain adaptation
is replaced by the following:

min
ϕ

max
δ

EI [ηi logDδ(wi) + (1− ηi) log(1−Dδ(wi))]

⇐⇒ min
ϕ

max
δ

EN (0,1)[logDδ(n)] + EI [log(1−Dδ(zsri ))].

(18)

Analogously, for the train/runtime domain adaptation,
we design another discriminator Dβ(·) to form the second
GAN system between Gϕ(·) and Dβ(·), where Dβ(·) pre-
dicts the probability p′j of the sample j, where j ∈ J is
the collection of the test set, from the source domain (i.e.,
training set). The only difference from the first GAN system
is that, it takes the training sample as real while the runtime
sample is treated as fake. Thus, DKL(Ptr

ϕ ||Psr
ϕ ) is replaced by

the following:

min
ϕ

max
β

EI [logDβ(zsri )] + EJ [log(1−Dβ(ztrj ))]. (19)
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Fig. 1: Unifying the KL-divergences by GAN. The black flows between Gϕ and MLPs denote the internal link, as the
feature extractor is two-headed modelling the mean and standard deviation of the latent distribution. The pink flows
indicate second-stage domain adaptation between train and test sets.

Finally, to build the probabilistic model p(y|z, t), we
model each of the treatment classes through two separate
MLPs, namely Ψ1 and Ψ0 respectively, thus the general
representation of modelling the observed outcome y for
individual i is given as pΨt

(yi|zi, ti) = N (µ̂i, σ̂
2
i ), where

µ̂t,i = Ψti(z
sr
i , ti), and we follow [11] to set σ̂2

i = 1 for
simplicity.

In a nutshell, to promote a computationally efficient al-
gorithm, we propose to minimize the following loss function
L along with optimizing the minimax game together such
that the ELBOulti in Eq. 14 will be maximized:

min
ϕ,Ψ1,Ψ0

max
δ,β

{
EN [logDδ(n)] + EZsr [log(1−Dδ(z))]

+ EZsr [logDβ(z)] + EZtr [log(1−Dβ(z))] + L
}
,

(20)

where

L = −
(
EPsr

ϕ1
[log pΨ1(y|z, t = 1)] + EPsr

ϕ0
[log pΨ0(y|z, t = 0)]

)
.

(21)
We summarize our VEGAN model optimization scheme

in Algorithm 1. Please note that the notation changed ac-
cordingly as the reparameterization trick z = ω(µϕ,σ

2
ϕ, ϵ)

[39] is applied as a necessity to get the gradient ∇ϕ for the
feature extractor Gϕ. Also, the original minimax game in
Eq. 20 is adjusted to the double minimization tradition for
gradient descent.

4 EXPERIMENTS

In this section, we evaluate the proposed VEGAN frame-
work in dealing with the runtime domain corruption by
answering the following research questions (RQs):

• RQ1: How does VEGAN perform compared with
other state-of-the-art models?

• RQ2: How effective is the proposed dual-stage DA
in VEGAN?

• RQ3: Is VEGAN computationally efficient compared
to other VAE-based models?

• RQ4: As a classic solution to missing variables in
prediction tasks, is data imputation on par with VE-
GAN’s performance when handling runtime domain
corruption?

• RQ5: Is our proposed second-stage plug-in applica-
ble to other existing methods?

4.1 Experimental Setup

4.1.1 Datasets and Domain Corruption Simulation
We utilize two popular semi-synthetic datasets in the causal
inference literature, which are introduced below.

• Infant Health and Development Program (IHDP)
[45]. The IHDP dataset contains 25 covariates and 747
samples, assessing the effectiveness of early child-
hood interventions for low-birth-weight infants. To
evaluate the causal model, the treatment outcomes
are simulated according to [45]. In our test setting,
seven privacy-related features are selected as target
variables, i.e., {momage, sex, twin, b.marr, cig, drugs,
work dur}, which are corrupted at different corrup-
tion levels (CLs), where the CL denotes the severity
of the domain corruption ranging from 0% to 100%.
While the rest 18 features remain unchanged. This

TABLE 1: Tuned hyperparameters of VEGAN.
Module #Layers #Neurons Learning Rate Weight Decay

Gϕ 3 100
Ψ1 2 200
Ψ0 2 200 10−3 10−2

Dδ 2 100
Dβ 2 100
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is to mimic a typical runtime domain corruption
scenario where individuals provide none or falsified
privacy-related information for the trained model.
We test CL ∈ {5%, 12.5%, 20%, 33.3%, 100%} on
IHDP.

• Atlantic Causal Inference Conference (ACIC) 2019
[46]. The ACIC 2019 dataset is a high-dimensional
dataset of 200 covariates and 1,000 samples, which
are drawn from publicly available data and the
treatment outcomes are also simulated. In our test
setting, since there is no clear definition of sensitive
features, we treat all covariates as target variables for
runtime domain corruption. As such, we test CL in
{5%, 12.5%, 20%, 33.3%}, given that CL=100% will
wipe out all the covariates in ACIC.

Each of the dataset is randomly split with 3:1 ratio
for train and test. As per our definition, runtime domain
corruption entails both a shift in the covariate distribution
and missing values in the test set. To simulate the distribu-
tion shift, for each target feature xs ∈ xi, we perform the
following with the probability specified by each CL: (1) we
add noise drawn from Gaussian distribution N (µ̄, 0.1) to
xs if xs is continuous; (2) we flip its value if xs is binary. To
simulate the missing values, we scan each target feature xs

and drop it (via zero-padding) with probability CL. The two
corruption steps are performed independently on the same
test set.

4.1.2 Baselines and Evaluation Metrics
We compare VEGAN with nine causal inference baselines as
the following:

• TARNet [10] is a base deep learning framework with
a shared feature extractor and two decoders mod-
elling the treated and control effects, respectively.

• CFRWASS [10] is a variant of TARNet, with a la-
tent distribution balancing regularization (Wasser-
stein distance) to overcome the confounding bias
introduced by the imbalance between the treated and
control groups.

• CEVAE [11] is a variational autoencoder framework
which focuses on modelling the robust latent vari-
able to handle the confounding bias from a proba-
bilistic perspective.

• SITE [47] explores the importance of the local simi-
larity preservation as a constraint to improve ITE es-
timation, and proposes a deep representation learn-
ing method to help preserve the local similarity and
balance data distribution altogether.

• DragonnetBase [12] is based on TARNet, but it addi-
tionally provides an end-to-end procedure for pre-
dicting propensity score to adjust the confounding
bias when estimating the treatment effects.

• DragonnetTR [12] is built on top of DragonnetBase,
the updated model introduces the novel targeted reg-
ularization based on the non-parametric estimation
theory, which provides an asymptotic property with
a suitable downstream estimator.

• BTARNET [9] enhances the decoders of TARNet
with Monte Carlo dropout technique to quantify the
uncertainty when estimating the treatment effect.

• BCEVAE [9] takes CEVAE as a base model, and
incorporates the Monte Carlo dropout into its gen-
erative network for uncertainty quantification.

• TEDVAE [28] is a latent variable disentangle model
based on a three-headed variational autoencoder,
which tries to learn the disentangled latent instru-
mental, risk, and confounding factors, respectively,
from the observed covariates.

4.1.3 Implementation

Our model is implemented with PyTorch [48]. The hyper-
parameters are tuned according to the models’ performance
on validation set. Our tuned hyperparameters are shown
in Table 1, respectively. All the experiments are conducted
with RTX-3090 on Ubuntu 22.04 LTS platform where GPU
training is enabled, otherwise the 12th Gen Intel i7-12700K
12-Core 20-Thread CPU is used.

4.2 Performance Evaluation (RQ1)

4.2.1 Out-of-Sample Prediction under Runtime Domain
Corruption

IHDP Dataset. For predictions on the corrupted, out-of-
sample instances, we conduct the tests on the test set with
five corruption ratios CL ∈ {5%, 12.5%, 20%, 33.3%, 100%}.
Notably, CL = 100% represents an extreme case where all
the seven sensitive features are completely inaccessible dur-
ing runtime and only the remaining 18 variables are avail-
able for prediction. As Table 2 demonstrates, VEGAN yields
the second best performance when the domain corruption is
relatively restrained, and obtains the highest accuracy after
the corruption ratio increases to and beyond 20%. The best
baseline is CFRWASS when CL is low, but it overfits the train-
ing set significantly and thus does not generalize to a higher
domain corruption level, while VEGAN is more robust to
the stronger corruption on IHDP’s private variables.

ACIC. Since there is no clear definition for all 200 fea-
tures on ACIC 2019 dataset, we allow the corruption to take
place for all the features in ACIC dataset with a ratio of
CL ∈ {5%, 12.5%, 20%, 33.3%}. With this, we can mimic
situations where individuals can withhold an arbitrary com-
bination of variables in privacy-sensitive applications. Note,
that we omit CL = 100% in ACIC dataset as it will set all
variables to zero and thus make any predictions infeasible.
As a result, VEGAN outperforms all the other models for
out-of-sample prediction as shown in Table 3.

4.2.2 In-Sample Prediction without Runtime Domain Cor-
ruption

Besides the out-of-sample prediction under the run-time
corruption, we also investigate the traditional in-sample
inference, where there no corruption happens, i.e., there
is neither distribution shift nor missing variables. Table 4
and 5 show the in-sample prediction results on both CATE
and ITE estimation, for which our model performs the
best in estimating CATE while staying competitive for ITE
estimation on the IHDP dataset, and outperforms all the
other models on the ACIC dataset.
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TABLE 2:
√
ϵPEHE of out-of-sample prediction on IHDP dataset

with different corruption levels on private features.

Model 5% 12.5% 20% 33.3% 100%
TARNet 1.725± .17 2.216± .26 2.455± .26 3.524± .42 5.845± .76
CFRWASS 1.610 ± .15 2.070 ± .24 2.469± .27 3.503± .42 5.979± .85
SITE 1.794± .19 2.136± .25 2.488± .27 3.427± .43 5.531± .70
DragonnetBase 2.111± .24 2.272± .26 2.507± .28 3.190± .39 4.521± .60
DragonnetTR 2.023± .23 2.219± .25 2.516± .28 3.221± .40 4.760± .63
CEVAE 3.074± .37 2.910± .32 2.987± .35 3.672± .46 4.164± .53
BTARNET 2.375± .28 2.457± .29 2.566± .29 3.080± .39 4.229± .50
BCEVAE 2.506± .30 2.598± .32 2.783± .34 3.136± .39 4.170± .52
TEDVAE 2.232± .32 2.327± .34 2.582± .39 3.347± .41 4.453± .62
VEGAN 1.720± .16 2.099± .23 2.326 ± .25 2.954 ± .35 3.918 ± .47

TABLE 3:
√
ϵPEHE of out-of-sample prediction on ACIC

dataset with different corruption levels on all features.

Model 5% 12.5% 20% 33.3%
TARNet 0.813± .05 0.738± .04 0.798± .05 0.754± .04
CFRWASS 0.730± .04 0.655± .03 0.738± .04 0.644± .04
SITE 1.482± .08 1.361± .08 1.365± .09 1.586± .10
DragonnetBase 2.250± .02 2.192± .02 2.142± .02 2.063± .02
DragonnetTR 2.517± .02 2.456± .02 2.406± .02 2.342± .02
CEVAE 0.646± .02 0.629± .02 0.594± .02 0.581± .03
BTARNET 0.705± .02 0.652± .02 0.653± .02 0.671± .02
BCEVAE 0.495± .02 0.507± .02 0.492± .02 0.532± .01
TEDVAE 0.736± .03 0.702± .03 0.775± .03 0.674± .03
VEGAN 0.490 ± .01 0.493 ± .01 0.471 ± .01 0.455 ± .00

Fig. 2: Performance volatility ∆ of all models on ACIC dataset under different CLs.
4.2.3 Volatility Analysis
It is noted that when the domain corruption level climbs,
the fluctuations of prediction errors are small in magnitude
on ACIC 2019 dataset. To better quantify the advantage of
VEGAN under domain corruption on ACIC, we analyse
the deviation (∆) of each model’s performance between
in-sample and corrupted prediction tasks in Figure 2, i.e.,
∆ = 100%× |ϵin-sample− ϵcorrupted|/ϵin-sample. ∆ quantifies the
instability of the model, as we commonly rely on models ob-
tained with the training set and prefer lower generalization
errors. All models become more volatile as CL increases,
while VEGAN maintains an excellent stability with only
0.22% variation at corruption level 33.3% and achieves the
best accuracy in terms of

√
ϵPEHE.

4.3 Effectiveness of Second-Stage DA (RQ2)

As VEGAN’s main highlight is the second-stage adversar-
ial DA as a plug-in component, we conduct an ablation
study to compare the performance of VEGAN and VEGANI
on both datasets, where VEGANI is a degraded version
with the second-stage DA removed. The results in Figure
3 indicate that, when CL is low, both two models are
comparable. However, when CL goes higher, the advantage
of the second-stage plug-in becomes significant. Thus, with
our proposed second-stage DA, VEGAN is shown to have
higher generalization ability than VEGANI across different
scenarios.

4.4 Computational Efficiency & Stability of VEGAN
(RQ3)

One core motivation for utilizing GAN to replace the
straightforward KL divergence optimization is to preserve
training efficiency under high dimensionality. Hence, we
further test VEGAN’s efficiency by comparing its training

5
12

.5 20 33
.3 10

0

Corruption Level

2.0

2.5

3.0

3.5

4.0

4.5

5.0
PE

H
E

VEGANI VEGAN

(a) IHDP

5
12

.5 20 33
.3

Corruption Level

0.46

0.47

0.48

0.49

0.50

PE
H

E

VEGANI VEGAN

(b) ACIC

Fig. 3: Ablation study on second-stage adversarial plug-in
on VEGAN framework.

time (in seconds) per 100 epochs with CEVAE and VEGANI.
To ensure a fair comparison, the tests are performed on 12th
Gen Intel i7-12700K 12-Cores 20-Threads CPU on Ubuntu
22.04 LTS. Figure 4 shows that VEGANI, which can be
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Fig. 4: Computational efficiency comparison between CE-
VAE and our VEGAN framework.
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Fig. 5: Convergence of VEGANI and VEGAN on ACIC
dataset in terms of RMSE.

viewed as an amplified version of CEVAE with the introduc-
tions of GAN, has significantly faster training speed (over
6× speedup). Furthermore, the introduction of our second-
stage adversarial DA in VEGAN is still able to maintain high
computational efficiency, witnessed by over 4× speedup
over CEVAE.

As GAN is known to be unstable during training, We
provide the stability analysis in terms of prediction loss con-
vergence and equilibrium status between feature extractor
and discriminators. Figure 5 shows the models’ convergence
on root mean square error (RMSE) during training. It is
noted that a higher corruption level brings more challenges
in the adversarial training, but we observe an equilibrium
state in the majority of the cases. Taking the more chal-
lenging 33.3% CL in ACIC dataset as an example, both
discriminators (for treated/control and training/runtime
adaptations) can quickly converge to the equilibrium by re-
turning an average binary cross-entropy loss of 0.69, which

TABLE 4: ϵCATE and√
ϵPEHE of in-sample

counterfactual prediction
on IHDP dataset.

Model ϵCATE
√
ϵPEHE

TARNet 0.253 1.033
CFRWASS 0.265 0.992

SITE 0.256 1.016
DragonnetBase 0.342 1.591
DragonnetTR 0.357 1.524

CEVAE 0.329 2.604
BTARNET 0.335 1.913
BCEVAE 0.312 2.060
TEDVAE 0.341 2.210
VEGAN 0.239 1.394

TABLE 5: ϵCATE and√
ϵPEHE of in-sample

counterfactual prediction
on ACIC dataset.

Model ϵCATE
√
ϵPEHE

TARNet 0.214 0.808
CFRWASS 0.216 0.708

SITE 0.293 1.383
DragonnetBase 0.186 2.244
DragonnetTR 0.183 2.503

CEVAE 0.286 0.702
BTARNET 0.225 0.704
BCEVAE 0.165 0.502
TEDVAE 0.202 0.651
VEGAN 0.147 0.476

TABLE 6:
√
ϵPEHE of out-of-sample prediction on ACIC

dataset for baselines with imputation enhanced.

Model 5% 12.5% 20% 33.3%
TARNet* 0.807± .04 0.728± .04 0.783± .04 0.763± .04
CFRWASS* 0.722± .04 0.640± .03 0.710± .04 0.679± .04
SITE* 1.322± .08 1.210± .07 1.358± .08 1.268± .08
DragonnetBase* 2.232± .02 2.162± .02 2.097± .02 2.117± .02
DragonnetTR* 2.485± .02 2.407± .02 2.343± .02 2.393± .02
CEVAE* 0.626± .02 0.601± .02 0.577± .02 0.568± .03
BTARNET* 0.714± .02 0.647± .02 0.658± .02 0.689± .02
BCEVAE* 0.522± .02 0.497± .01 0.491± .02 0.511± .02
TEDVAE* 0.752± .02 0.712± .02 0.765± .02 0.682± .02
VEGAN 0.490 ± .01 0.493 ± .01 0.471 ± .01 0.455 ± .00

means the discriminators are completely deceived by the
feature extractors, and always give 0.5 probability for the
samples from each of the groups. As such, training VEGAN
in an adversarial setting is completely attainable.

4.5 Comparison with Imputation Method (RQ4)

As imputation is a natural choice to handle missing values,
we test the effectiveness of VEGAN against data imputa-
tion methods on ACIC’s corrupted out-of-sample test sets.
Specifically, we implement the imputation algorithm MICE
[49], which has been widely adopted in treatment effect esti-
mation [31], [32]. We denoted imputation-enhanced models
with “*” in Table 6. The results indicate that, when the
corruption rate is low, using imputation is generally helpful
for slightly increasing the prediction performance compared
to Table 3, but the improvements remain marginal and less
significant compared with VEGAN. In short, data imputa-
tion has very limited benefits under the domain corruption
setting. Furthermore, in scenarios where an attribute is
completely missing for all instances, it is infeasible to impute
this attribute based on its distribution within existing test
samples for prediction.

4.6 Applicability of Second-Stage DA to Other Base-
lines (RQ5)

To demonstrate the applicability of our proposed second-
stage adversarial DA plug-in to other state-of-the-arts, we
study its compatibility with the most representative baseline
TARNet. The experiments are conducted using the ACIC
dataset, and the results are presented in Table 7. We denote
the TARNet with adversarial plug-in as TARNet+. As the
results suggest, there is a transferable benefit to the other
baseline with our proposed second-stage adversarial plug-
in when the corruption level becomes higher, the benefit of
the second-stage domain adaptation will be enlarged. When
the adversarial plug-in is in use, it effectively helps TARNet
reduce prediction risks under runtime domain corruption as
the volatility of the TARNet+ is stabilized at around 2%.

5 CONCLUSION

This paper formalizes the runtime causal inference problem
under domain corruption, where novel strategies are pro-
posed to counter the imbalance between treated and control
groups and the inter-domain discrepancy between training
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TABLE 7: ITE error
√
ϵPEHE and variation ∆(%) of out-of-sample prediction on ACIC dataset with different corruption

levels when the second stage domain adaptation is applied to TARNet.

Model 5% 12.5%) 20%) 33.3%√
ϵPEHE ∆(%)

√
ϵPEHE ∆(%)

√
ϵPEHE ∆(%)

√
ϵPEHE ∆(%)

TARNet 0.813± .05 1.45 0.738± .04 2.12 0.798± .05 4.55 0.754± .04 6.34
TARNet+ 0.540 ± .01 2.21 0.545 ± .02 0.29 0.526 ± .02 1.90 0.554 ± .02 2.29

and inference domain. We further adopt adversarial learn-
ing to replace the direct calculation of KL-divergence to im-
prove computational efficiency. For our proposed approach
VEGAN framework with second-stage domain adaptation,
its performance exceeds other state-of-the-arts under the
runtime domain corruption setting in semi-synthetic and
full-synthetic benchmark datasets. In addition, the second-
stage adversarial plug-in is demonstrated as applicable to
the off-the-shelf models to reduce generalization errors.
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