2307.11772v3 [cs.IR] 13 Nov 2023

arxXiv

AutoAlign: Fully Automatic and Effective

Knowledge Graph Alignment enabled by Large

Language Models

Rui Zhang', Yixin Suf®&, Bayu Distiawan Trisedya, Xiaoyan Zhao, Min Yang, Hong Cheng,
g y y Y g g g
and Jianzhong Qi

Abstract— The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs
that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best
knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose
the first fully automatic alignment method named AutoAlign, which does not require any manually crafted seed alignments. Specifically,
for predicate embeddings, AutoAlign constructs a predicate-proximity-graph with the help of large language models to automatically
capture the similarity between predicates across two KGs. For entity embeddings, AutoAlign first computes the entity embeddings of
each KG independently using TransE, and then shifts the two KGs’ entity embeddings into the same vector space by computing the
similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually
crafted seed alignments. AutoAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that
AutoAlign improves the performance of entity alignment significantly compared to state-of-the-art methods. Our source code is
available at github.com/ruizhang-ai/AutoAlign.

Index Terms—knowledge base, entity alignment, attribute embeddings, knowledge graph, knowledge graph alignment, representation
learning, deep learning, predicate proximity graph, large language model

+

1 INTRODUCTION

Knowledge bases in the form of knowledge graphs (KGs)
have been used in many applications, including question
answering systems [1], dialogue systems [2], and recom-
mender systems [3]. Many KGs have been created sepa-
rately for particular purposes. The same real-world entity
may exist in different forms in different KGs. For example,
a village named Kromsdorf in Germany is a real-world
entity that exists in two different KGs, LinkedGeoData [4]
and DBpedia [5]. This entity is denoted in the form of
19d:240111203 in LinkedGeoData but in the form of
dbp:Kromsdorf in DBpedia. Usually, these KGs comple-
ment each other in terms of the number of entities each
KG contains, and the types of information related to each
entity. Therefore, we may merge two KGs into one with
more entities and richer information related to each entity.
To merge two KGs, a core task is entity alignment, which
is to identify every pair of entities from the two KGs that
correspond to the same real-world entity. Existing methods

R. Zhang is with Tsinghua University. E-mail: rayteam@yeah.net.

Y. Su is with The University of Melbourne. E-mail: yixin.su@outlook.com.

e BD. Trisedya is with Universitas Indonesia. E-mail:
b.distiawan@cs.ui.ac.id.

o X. Zhao, and H. Cheng are with The Chinese University of Hong Kong,
Hong Kong, China. E-mail: {xzhao, hcheng }@se.cuhk.edu.hk.

e M. Yang is with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, China. E-mail: min.yang@siat.ac.cn.

e [Qi is with The University of Melbourne. E-mail:

jianzhong.qi@unimelb.edu.au.

t'R. Zhang and Y. Su are co-first authors.
&2 Y. Su is the corresponding author.
Manuscript received XXXXXX XX, XXXX; revised XXXXXX XX, XXXX.

TABLE 1: Knowledge graph alignment example.

G1

(1gd:240111203, 1gd:population, 1595)

(lgd:240111203, rdfs:label, "Kromsdorf")
(1gd:240111203,geo:lat,50.9988888889)
(
(

1gd:240111203,1gd:alderman, "B. Grobe")
1gd:240111203,1gd:is_in,1gd:51477)

Go

(dbp:Kromsdorf, rdfs:label, "Kromsdorf™")
(dbp:Kromsdorf,geo:lat,50.9989)
(dbp:Kromsdorf,dbp:populationTotal, 1595)
(dbp:Kromsdorf, dbp: located_in, dbp:Germany)
(dbp:Kromsdorf,dbp:district,dbp:Weimarer)

Merged G

:population, 1595)
:label, "Kromsdorf")
:lat,50.9988888889>
:alderman, "B. Grobe")
:is_in,1gd:51477)
:district,dbp:Weimarer)

(1gd:240111203,
(1gd:240111203,
(1gd:240111203,
(1gd:240111203,
(1gd:240111203,
(1gd:240111203,

require significant manual work (e.g., manually crafted seed
alignments), and the performance of the alignment is low.
In this paper, we propose a novel method to this problem,
which is fully automatic and effective (i.e., the alignment
result is of high accuracy).

We use an example as shown in Table 1 to illustrate

https://github.com/ruizhang-ai/AutoAlign

Component 2: Entity Alignment
Computing entity embeddings such that:

€1gd:240111203 = €dbp:Kromsdorf
elgd:51477 ~ edbp:Germany

Component 1: Predicate Alignment
Computing predicate embeddings such that:

\ 4

Plgd:is_in =~ dep:located_in

Gl

<1gd:240111203, lgd:is_in, lgd:51477>

G2

<dbp:Kromsdorf, dbp:located_in, dbp:Germany>

Fig. 1: Components of knowledge graph alignment: predi-
cate alignment and entity alignment.

the entity alignment problem in detail. Typically, knowl-
edge or real-world facts in KGs are stored in the form of
triples, and a triple consists of three elements in the form
of (head, predicate, tail), where head denotes an entity and tail
denotes either another entity or a literal (attribute value) of
the head entity. Here, if tail is an entity, the triple is called
a relation triple and the predicate is called relation predicate;
if tail is a literal, the triple is called an attribute triple and
the predicate is called attribute predicate. Table 1 gives an
example of two subsets of triples from two KGs, denoted
by G and G, (we use prefixes 1gd: and dbp: to simplify
the original spell out). The head entities in these two subsets
refer to the same entity Kromsdorf, even though they are
in different forms, 1gd:240111203 and dbp:Kromsdorf.
We aim to identify such entities and give them a unified ID
such that both KGs can be merged together through them.
In Table 1, Gy denotes the merged KG with entities aligned,
where 1gd:240111203 is used as the unified ID for the
entity Kromsdorf which has a set of properties that is the
union of the sets of properties from both KGs.

As illustrated by the above example, to align entities, we
also need to have the corresponding predicates aligned (e.g.,
lgd:is_in and dbp:located_in). The task of knowledge
graph alignment is to have both entity alignment and pred-
icate alignment between two KGs. Recent KG alignment
methods are mainly based on representation learning [6].
Fig 1 shows the two critical components, predicate alignment
and entity alignment: (i) the embeddings of predicates that
represent the same relationship in the two KGs should
have similar embeddings in the aligned vector space, e.g.,
lgd:is_in and dbp:located_in should have close em-
beddings, and (ii) if entity e4, from G; corresponds to the
same real-world entity as entity ey, from Gy, then e, should
have similar embeddings to that of ¢4, in the aligned vector
space, e.g., 1gd:240111203 and dbp: Kromsdorf in Fig. 1

should have similar embeddings.

There are mainly two paradigms of KG embed-
ding, translation-based methods and Graph Neural Network
(GNN)-based methods. See [0] for a comprehensive sur-
vey. Translation-based methods [7]-[9] learn an embedding
space for each KG separately, then learn a transition matrix
to map the embedding space from one KG to the other.
The mapping relies on large numbers of seed alignments
(i.e., a set of manually crafted aligned triples from the two
KGs) to compute the transition matrix. The other paradigm,
GNN-based methods [10]-[12], aggregates information from
entities’ neighborhoods with the graph structure to compute
entity embeddings. Then they align the space of the two KGs
via manually crafted seed alignments, which is similar to
translation-based methods. Moreover, all the existing stud-
ies have focused only on entity alignment, whereas for pred-
icate alignment, they also rely on manually crafted seeds. In
summary, to our best knowledge, existing methods of both
paradigms rely on manually crafted seed alignments.

Relying on manually created seed alignments have sig-
nificant drawbacks: 1) Manually created seeds require care-
ful human curation and usually domain expertise, which
is expensive. For large datasets, a substantial number of
manual alignments are required, which is prohibitive. 2) The
portability of manually created seeds is poor. For each new
alignment task, we have to manually create seeds again.
3) Different annotators have different biases and manually
created seeds are error-prone, which results in manual seeds
of highly varying quality and hence uncertain quality of
alignment results.

To address the above problems, we propose a novel
method for KG alignment that is not only fully automatic
(i.e., not involving any manual seed alignments) but also
much more accurate in aligning entities and predicates (i.e.,
more effective). We name our method AutoAlign as it is
an automatic KG alignment method without needing the
human annotation of seed alignments. For predicate align-
ment, AutoAlign constructs a predicate-proximity-graph
to automatically capture the similarity between predicates
across two KGs by learning the attentions of entity types.
The predicate-proximity-graph construction is made auto-
matic by leveraging recent large language models (such
as ChatGPT and Claude) for aligning entity types of two
KGs. For entity alignment, AutoAlign computes the entity
embeddings of each KG independently using TransE, and
then shifts the two KGs’ entity embeddings into the same
vector space by computing the similarity between entities
based on their attributes. The learning process of the above
predicate alignment and entity alignment are jointly per-
formed, which yields the final aligned KG.

Specifically, to achieve predicate embedding alignment
without manually crafted seed alignments, we propose a
predicate-proximity-graph for approximately computing the
predicate embeddings, including both relation predicates
and attribute predicates, where each predicate is a vertex
that represents a relationship between entity types or lit-
eral types (instead of entities or literals). We create such
a graph by replacing the head entity and tail entity of
KG triples by their corresponding types, which are pro-
vided as rdfs:type relationship in the knowledge graph.
For example, we replace the triples (dbp:Kromsdort,

dbp:located_in, dbp: Germany> and <lgd :240111203,
lgd:is_in, 1gd:51477) with the triples (village,
dbp:located_in, country> and (village, lgd:is_in,
country), respectively. Using the predicate-proximity-
graph, AutoAlign can learn the similarity between predi-
cates from two KGs that represent the same relationships,
e.g., the predicates dbp:located_in and lgd:is_in.
Capturing predicate similarity in different KGs via a
predicate-proximity-graph has a few challenges. First, each
entity often has multiple types, which makes it difficult to
directly align the predicates through the entity types. For ex-
ample, the entity Germany may have multiple entity types
{thing, place, location, country} in a KG. Sec-
ond, different KGs may correspond to different sets of entity
types, e.g., in another KG, the entity Germany may have
entity types {place, country}. Hence, in the predicate-
proximity-graph, the head entity and the tail entity may
be replaced by multiple entity types. To address the above
challenges, we propose two algorithms for aggregating mul-
tiple types of an entity and highlighting the most distinctive
entity type (e.g., focusing more on country than on thing)
via pseudo-type embedding, which is a representation obtained
from aggregating multiple entity types” information accord-
ing to their importance. Such an approximate predicate
algorithm provides an automatic way of aligning predicates
between two KGs, which not only complements the latent
type information but also can be optimized by further joint
learning for better predicate embeddings.

To achieve entity alignment, we exploit attribute triples
and propose attribute character embeddings for capturing the
similarity between attributes; entities that have similar at-
tributes should also be similar. Before our work, there was
one study that has proposed an embedding for attributes
[13]. However, it only uses the attribute types for com-
puting embedding, which loses all the content information
of the attributes and is ineffective in capturing attribute
(dis)similarity. We are the first to propose attribute embedding
that is based on the textual contents of the attributes [14].
Capturing the similarity of attributes of two KGs attribute
similarity between entities in two KGs helps the attribute
embedding to yield a unified embedding space for two
KGs. This enables us to use attribute embeddings to shift
the entity embeddings of two KGs into the same vector
space and hence allows the entity embeddings to capture
the similarity between entities from two KGs.

With the above two components, we achieve the first
fully automatic method for KG alignment. The contribu-
tions of this paper are as follows.

C1: We propose AutoAlign, a fully automatic KG alignment
method that aligns two KGs with no seed alignments
required (neither predicate nor entity seed alignments).
Specifically, we propose automatic predicate alignment
algorithms, automatic entity alignment algorithms, and
a scheme to perform joint learning of entity, attribute,
and predicate embeddings.

C2: We are the first to propose attribute embedding based
on the textual contents of the attributes, which enables
automatic entity alignment.

C3: We propose an automatic predicate alignment al-
gorithm, enabled by two techniques: (i) we use a
predicate-proximity-graph powered by large language

3

models to capture predicates as relationships of entity
types, and (ii) we use pseudo-type embeddings that
aggregate multiple entity types in the proximity graph
as the vector representation for predicates.

C4: We conduct an extensive experimental study, which
shows that our method is highly effective while being
fully automatic. Compared to existing methods, which
all rely on manually crafted seeds, AutoAlign outper-
forms the best baseline by up to 10.65% in hits@10.

This paper is an extended version of our earlier confer-
ence paper [14]. There, we presented the basic idea of the at-
tribute character embeddings (C2). However, the method in
the previous paper [14] requires manually crafted predicate
alignments. Specifically, it uses edit distance to compute the
similarity score between predicates, and manual inspection
is required to remove false positives. In this journal exten-
sion, we have made substantial new contributions. First,
we propose novel algorithms to align predicates without
seed alignments including exploiting the most recent large
language models (C3). Second, we propose a scheme to put
all these components together and perform joint learning
of entity, attribute and predicate embeddings, achieving a
fully automatic KG alignment method (C1). Third, we have
conducted a much more comprehensive experimental study,
comparing with more baselines such as GNN-based ones,
and using more recent benchmarks with more realistic and
much larger datasets (C4).

2 RELATED WORK

This section discusses the related work, including knowl-
edge graph embedding methods and knowledge graph
alignment methods.

2.1 Knowledge Graph Embedding Methods

Knowledge graph embedding methods are to address KB
completion tasks [15], [16] that aim to predict missing
entities (i.e., head entity or tail entity) or relations (i.e.,
predicates) based on triples in a knowledge graph. Knowl-
edge graphs have garnered attention in various research
domains. [17] integrates external knowledge bases and cap-
tures dialogue semantics in end-to-end task-oriented dia-
logue systems. [18], [19] focus on capturing the relations
between entities in sentences using knowledge graphs.
[20], [21] leverage knowledge graphs for data-to-text gen-
eration. TransE [22], is a simple yet effective knowledge
graph embedding method. TransE represents a relation-
ship between a pair of entities as a translation between
the embeddings of the entities: a triple that consists of
(head, predicate, tail) denoted as (h,p,t) should
hold the property of h + p ~ t. This representation indi-
cates that the embedding vector of the tail entity approxi-
mately equals the embedding vector of the head entity after
a vector sum operation of the embedding vector of predicate
p. A scoring function f(h,t) = ||h+p —t||, is used to
measure the plausibility of a triple.There are subsequent
variants of TransE such as TransH [23] and TransR [24] by
capturing more complex relationships.

Another popular paradigm of KG embedding is via
graph neural networks [25]. Recently, graph embedding

based on Transfomers [26] have been proposed [27], [28].
These methods learn entity embeddings via information
propagation between nodes in a graph.

2.2 Knowledge Graph Alighment Methods

The embedding methods above aim to preserve the struc-
tural information of the entities, i.e., entities that share
similar neighbor structures in the KB should have similar
representations in the embedding space. The advancement
of such embedding methods motivates researchers to study
embedding-based entity alignment. Chen et al. [7] propose
MTransE, an embedding-based method for multilingual
entity alignment based on TransE. In the follow-up work,
Chen et al. [8] propose a generalized affine-map-based
method to improve the alignment method of MTransE for
handling various forms of invertible transformations. Sun et
al. [13] propose a joint attribute embedding method (called
JAPE) for cross-lingual entity alignment. JAPE improves the
alignment by capturing the correlations of attributes via the
attribute type similarity.

As the other popular paradigm for KG embedding,
many GNN-based entity alignment methods have been pro-
posed [10]-[12], [29]. To improve the performance of GNN
for entity alignment, existing methods [10] combine entity
embeddings and attribute type embeddings in the compu-
tation of GNN. AttrGNN [30] performs entity alignment
by focusing on attributes, values, and structures. UPLR
[31] effectively learns alignment information from pseudo-
labeled datasets containing noisy data. MHGCN [32] em-
ploys a multiview highway graph convolutional network
to consider entity alignment from different views. These
works share a common goal of leveraging different types of
information present in knowledge graphs to improve entity
alignment performance. However, our proposed method
stands out by being fully automated and leveraging both
predicate and attribute triples without requiring seed align-
ments or multiple views.

In summary, all these entity alignment methods require
manually crafted seed alignments. There has been no ex-
isting work on automatic predicate alignment. Due to the
significant drawbacks of using seed alignments, our work
focuses on automatic KG alignment methods. A recent sur-
vey [6] shows that translation-based methods outperform
GNN-based ones in accuracy and efficiency, and our method
AutoAlign is a translation-based one.

There are studies on cross-lingual entity alignment such
as [13], [33]-[35], which find various applications in e-
commerce. Recent studies [6] have shown that aligning KGs
originating from different sources but the same language
is another common setting with many real-life industrial
applications [36], [37]. In this paper, we focus on this latter
setting, which conducts monolingual KG alignment. More-
over, [6] has shown that translating two languages into one
and then performing monolingual alignment achieves sim-
ilar accuracy to what direct cross-lingual entity alignment
gets. Therefore, our method can also be applied to cross-
lingual entity alignment via the translation approach.

3 PRELIMINARY

We start with the problem definition. A knowledge graph
G consists of relation triples and attribute triples. A re-

4

lationship triple is in the form of (h,p,t), where p is a
relationship (predicate) between two entities h (head) and ¢
(tail). An attribute triple is in the form of (h, p, v) where v is
an attribute value of entity h with respect to the predicate p.

Given two knowledge graphs G; and G, the task of
entity alignment aims to find every pair (hi,ha) where
hi € Gi, ha € G, and hy; and hy represent the same
real-world entity. We use an embedding-based method that
assigns a continuous representation for each element of
a triple in the forms of (h,p,t) and (h, p,v), where the
bold-face letters denote the vector representations of the
corresponding element.

Our proposed method is built on top of a translation-
based embedding method. We first discuss translation-
based embedding methods and their limitations when being
used for entity alignment before presenting our method.

3.1 Translation-based Embedding Method

Given a relationship triple (h, p,t), a translation-based em-
bedding method, such as TransE [22], suggests that the
embedding of the tail entity ¢ should be close to the em-
bedding of the head entity h plus the embedding of the
relationship p, i.e.,, h + p =~ t. Such an embedding method
aims to preserve the structural information of the entities,
i.e., entities that share similar neighbor structures in a
knowledge graph should have similar representations in the
embedding space. We refer to the modeling of the structural
information as structure embedding and the modeling should
preserve the translation property of h+p ~t. To learn
the structure embedding, TransE minimizes a margin-based
objective function Jsg:

Tse= Y Y max(0,[y+ f(t) ~ (1)) O

t €T, tLET/
ft)=|h+p—tl, V)
T = {{h,p,t)|(h,p,t) € G} ®)

T ={(W,pt) [N € EYU{(hpt) [t €} (&)

Here, ||x||, is the L2-Norm of vector x, 7 is a margin
hyperparameter, 7, is the set of valid relation triples, and 7,/
is the set of corrupted relation triples (£ is the set of entities
in G). The corrupted triples are used as negative samples
created by replacing the head or tail entity of a valid triple
in 7, with a random entity.

The advantages of structure embeddings drive further
studies of embedding-based entity alignment. However,
a straightforward implementation of structure embedding
for entity alignment has limitations: the entity embeddings
computed on different KGs may fall in different spaces,
where similarity cannot be computed directly. Existing
methods [7], [9], [13] address this limitation by computing a
transition matrix to map the embedding spaces of different
KGs into the same space, as discussed earlier. However, such
methods require manually collecting a seed set of aligned
entities from the different KGs to compute the transition
matrix, which does not scale and is vulnerable to the quality
of the manually crafted seed aligned entities.

Next, we detail our method to address these limitations.

Gu =G1UGs

<1gd:240111203, lgd:population, 1595 >; < 1gd:240111203, rdfs:label, ‘Kromsdorf’ > ;
< dbp:Kromsdorf, rdfs:label, ‘Kromsdorf’ >; < dbp:Kromsdorf, dbp:population_total, 1595 >;
< dbp:Kromsdorf, dbp:located_in, dbp:Germany >; <Igd:240111203, Igd:is_in, 1gd:51477 >;

1. Predicate Embedding Module

- — — Predicate Embedding
Predicate Proximity Triples u p o u Transfer
<{village, ...}, lgd:is_in, {country,...} > hp lgd:is_in tp predicate
L, < {village, ...}, dbp:located_in, {country, ...} > embeddings
< {village, ...}, lgd:population, {integer, ...} >
< {village, ...}, rdfs:label, {string, ...} > + =
Transitivity rule 2. Attribute Embedding Module
m Attribute Character Embedding
- - Peeigazaiiizes Prafsilabel Ck € CpCy
Attribute Triple
< 1gd:240111203, rdfs:label, "Kromsdorf’ > —> <
< dbp:Kromsdorf, rdfs:label, ‘Kromsdorf’ > + - fa
3. Structure Embedding Module h update
Transitivity rule y C€lgd:24111203 ~ * S€lgd:24111203
' ; Structure Embedding
Relationship Triple 1 Selgd 24111203 Pladiisin - Lseigasiary
< lgd:240111203, Igd:is_in, 1gd:51477 >

< dbp:Kromsdorf, dbp:located_in, dbp:Germany > J

A

Fig. 2: Overview of our proposed AutoAlign method for entity alignment.

Fig. 3: Predicate graph of the similar relationship 1gd:is_in (left) and dbp:located_in (right) in two KGs. Each type
of dotted line represents the similar entity types in two predicate graphs.

4 PROPOSED METHOD

We give an overview of AutoAlign in Section 4.1. We then
explain the various components of AutoAlign, which in-
clude the predicate embedding module in Section 4.2, the struc-
ture embedding module in Section 4.3, the attribute embedding
module in Section 4.4, the joint learning scheme in Section
4.5, entity alignment in Section 4.6, and triple enrichment
in Section 4.7. We discuss the scalability of AutoAlign in
Section 4.8.

4.1 Overview of AutoAlign

AutoAlign has three core embedding modules: the predicate
embedding, the attribute embedding, and the structure em-
bedding. Fig. 2 gives an overview and shows the interaction
between the three modules.

In order to execute the embedding-based KG alignment,
it’s crucial to ensure that both predicate and entity embed-
dings of two KGs coexist in the identical vector space. To
meet this criterion, we start by simply making a union of the
two knowledge graphs, denoted as Gy = G1 U Ga. This put
all the triples from both KGs together in their original form.
Note that Gy is different from G, as the entities in Gy are

not aligned yet. We will obtain three types of triples from
Gu: predicate-proximity triples 7, relation triples 7,, and
attribute triples 7. In the set of predicate-proximity triples,
each predicate corresponds to a connection between entity
types. For instance, the set of predicate-proximity triples
may contain triples such as (village, dbp:located_in,
country) and (village, 1gd:is_in, country). These
triples help train a predicate embedding module (elaborated
in Section 4.2) to capture the similarity between predicates
from two KGs, such as dbp:located_inand 1gd:is_in.
This process not only generates a unified embedding space
for predicates but also captures their similarity between
the two KGs. Predicate embeddings are then utilized for
computing attribute and structure embeddings.

The structure and entity embeddings are obtained from
the set of relation triples 7, as discussed in Section 4.3,
and the attribute embedding, as discussed in Section 4.4,
leveraging the set of attribute triples 7,. Initially, due to
the unique naming schemes in each KG, entity embed-
dings from G; and G, exist in two different vector spaces.
However, we unify the attribute embeddings derived from
attribute triples 7, into a common vector space. This unifica-
tion is via the character embeddings learned from attribute

strings, which can manifest similarity despite their origin
from different KGs. The obtained attribute embeddings are
then utilized to align the entity embeddings into a common
vector space, thus enabling the entity embeddings to reflect
the similarity between entities across both KGs.

Upon acquiring the embeddings for all entities in G; and
Gs, the entity alignment module (explained in Section 4.6)
identifies every pair (h1, ha), with h; € G; and hy € Gy, that
has a similarity score exceeding a threshold £.

To bolster the effectiveness of AutoAlign, we implement
the transitivity rule to expand an entity’s properties, thereby
fostering a more resilient attribute embedding for gauging
entity similarities. This procedure is discussed in Section 4.7.

4.2 Predicate Embedding Module

The same predicates from two KGs typically connect
the same entity type, albeit in different surface forms.
Consider the example in Fig. 3, where the predicate
lgd:is_in in LinkedGeoData and the predicate
dbp:located_in in DBpedia connect three entity pairs.
In LinkedGeoData, the predicate 1gd:is_in connects
(1gd:240111203,1gd:240055406), (1gd:240055406,
1gd:473883922), and (1gd:473883922,1gd:51477).
Meanwhile, in DBpedia, the predicate dbp:located_in
connects (dbp:Kromsdorf, dbp:Weimarer_Land),
<dbp :Weimarer_Land,dbp: Thuringia>, and
(dbp:-Thuringia, dbp:Germany). Here, the entity pairs
from both knowledge graphs correspond to the same real-
world entity pairs. For instance, the head and tail entities
of the entity pair (1gd:240111203,1g9d:240055406)
and (dbp:Kromsdorf,dbp:Weimarer_Land) represent
a village named Kromsdorf and a district named Weimarer
Land, respectively. However, due to the distinct naming
schemes of the two knowledge graphs, entity embedding
methods may not capture this similarity. Applying an entity
embedding method to the raw knowledge graph could
result in the predicate embeddings of lgd:is_in and
dbp:located_in being placed in different vector spaces.

In our previous work [14], a semi-automatic predicate
alignment process was employed to tackle this challenge.
This involved renaming akin predicates from the two KGs
via a uniform naming scheme, thereby generating a shared
vector space for relationship embeddings. To pinpoint simi-
lar predicates across the two KGs, we leveraged string edit
distance and subsequently examed any false positives man-
ually. However, such a method presents limitations in real-
world applications, given its reliance on manual interven-
tion for aligning predicates, or creating ‘seed alignments’,
across the two KGs.

To address the above problem, AutoAlign introduces a
fully automatic predicate alignment procedure by learning
predicate embeddings from a predicate-proximity-graph of
two KGs. The predicate-proximity-graph replaces entities
with their corresponding entity types. Through learning
the graph, we can effectively identify predicate similarities
between two KGs without the need to manually compare
predicates’ surface forms. The automatic predicate align-
ment is detailed in Sections 4.2.1 and 4.2.2.

4.2.1 Predicate-proximity-graph Construction

A predicate-proximity-graph is essentially a graph de-
picting the relationships between entity types rather
than entities. Entity types indicate the broad categories
of entities, which automatically link different entities.
Even if some predicates have different surface forms
(e.g., lgd:is_in vs. dbp:located_in), we can effec-
tively identify them as being similar by learning the
predicate-proximity-graph. This is because the head/-
tail entities of these predicates usually have similar en-
tity types (e.g., (place, lgd:is_in, country), (place,
dbp:located_in, country)). To create the predicate-
proximity-graph, we start with Gy; the union of the two KGs’
triples in their original forms, and then replace each triple’s
head and tail entities with their respective entity types.
Next, the entity types are obtained through two steps: entity
type extraction and type alignment enabled by large language
models, which are described as follows.

1) Entity Type Extraction. We extract entity types by taking
the values of the rdfs : type predicate for every entity from
each KG. It's common for each entity to have multiple types.
For instance, the entity Germany might have several entity
types like place, location, country within a KG.
Furthermore, varying KGs may adopt different schemes of
entity types, e.g., in another KG, the entity Germany might
have entity types like place, country. To accommodate
these variations, within the predicate-proximity-graph, we
substitute both the head and tail entities of each triple
in a knowledge graph with a collection of entity types.
For example, we replace the triples (dbp:Kromsdorf,
dbp:located_in, dbp:Germany) with the triples
(Urromsdorf, dbp:located_in, Ugermany). Here, Uz is
a set of types for entity z, e.g., Ugermany= {thing,
place, location, country}].

2) Type Alignment enabled by Large Language Models.
After obtaining the entity types of the two KGs, we need
to perform an alignment between the entity types of two
KGs. This is because the types of two KGs may refer to
the same meaning but using different surface forms, e.g.,
person v.s. people. Therefore, we need to align such types
into one for the best effect of predicate-proximity-graph
training. In previous work, we manually align the types
since the number of the types is not large. With the recent
breakthrough of large language models such as ChatGPT
and Claude [38]-[40], we can eliminate such manual effort
and make it fully automatic.

Specifically, we use Claude?, which is a free and power-
ful large language model. We construct a prompt as input to
Claude as follows:

1. We provide the details of automatically obtain and align the entity
types from two KGs in Appendix A
2. https:/ /www.anthropic.com/index/introducing-claude

“Now you are an expert in linguistics and knowledge graphs.
I will give you two sets of words, indicating the entity types
from two knwoledge graphs. You need to identify all the word
pairs from the two sets that are synonyms. For example, if the
first set has the word “people” and the second set has the word
‘person’, you need to identify the two words being synonyms
and return me the pair (people, person). Now the following are
the two sets: Set 1: {people, music,...} Set 2: {person, thing,...}
Please return all the pairs that are synonyms from the two sets
reagarding entity types. Do not output the pairs if they are
exactly the same. Remember you only need to return the pairs,
each pair in one line. Each pair contain two types, one from
Set 1 and another from Set 2, in the format (typel, type2).”

The type set in Set 1 and Set 2 can be filled with the types
extracted from corresponding KGs, and the other contents
are fixed for any two KGs. We feed the prompt to Claude,
and it will return the pairs of types that are similar to each
other in the format of (typel, type2). After identifying typel
of G; is similar to type2 in Gy, we replace all the type2
by typel so that similar types are represented by the same
surface form, e.g., replace “people” with “person” so that
two KGs both use the type “person”. This way we obtain
type alignment without human intervention.

After extracting the entity types for each KG and align-
ing the extracted types enabled by LLMs, we obtain the
predicate-proximity-graph that has the same number of
triples as Gy, with each triple’s entity being replaced by
their types.

4.2.2 Module Learning

To capture the predicate similarity, the module should fo-
cus on the most distinctive entity types, e.g., emphasizing
country more than thing. We propose two ways for ag-
gregating multiple entity types: 1) weighted sum function,
and 2) attention-based function. In the experimental study,
we show that the attention-based function works better.

1) Weighted Sum Function: Given the entity type embed-
ding U, = (Zy,Z1,--- ,Zn) of entity type z € U, with M
types, we calculate the pseudo-type embedding u as follows.

k)0
a;T;

Here, the weight w; controls the distribution of Z;, which
is the vector representation of an entity type z in U,. To give
a larger weight to the most distinctive type, we use {;, which
is the level of specificity of an entity type in WordNet [41].
An entity type with a deeper level of specificity has a larger
value of [;, e.g., country has a deeper level of specificity
than thing. This way, the predicate embedding module can
emphasize the most distinct type. We normalize the weight
using three variables. The first is a;, which is the number
of attributes in U/,. The second is r;, which is the number
of occurrences of type z in a KG. Intuitively, an entity type
that appears in almost all entities, such as thing, is less dis-
tinctive, and the predicate embedding module should filter
this entity type to obtain a better predicate representation.
The third variable is k;, which is the number of KGs that
contain the entity type 2 to indicate the agreements between
two KGs on the entity type z. Lastly, we use softmax to

M
u= E w;Z;, w; = softmax <
i=0

7

transform the weights into probability distributions for each
type in U,.

2) Attention-based Function: In contrast to the most dis-
tinctive entity types, there may be some “noise” entity
types that contribute little when learning the meaning of
a predicate. For example, in the set of entity types for
entity Germany, Ugermany= thing, place, location,
country, the entity type thing € Ugermany may be less
relevant to the triple (dbp:Kromsdorf, dbp:located_in,
dbp:Germany). In this case, thing can be seen as a "noise”
entity type that is not essential for learning the representa-
tion of predicate dbp:located_in.

To better capture the importance of different entity types
for a predicate, we propose an attention-based algorithm,
which allows the module to adaptively evaluate the entity
type weight and ignore potential type noise. We calculate
the attention weight z; of the i-th entity type as:

z; = softmax (UL W.Z;) (6)

where W, denotes the trainable weight matrix of entity type
embedding Z;. The final pseudo-type embedding u is ob-
tained through a weighted sum of all corresponding entity
type vectors Z; representing different semantic meanings:

M
=0

where Z; is the embedding of the i-th entity type.

The pseudo-type embeddings computed by Equations 5
or 7 are used as the proximity entity embeddings, which are
used next to train the predicate embeddings as follows.

We use the pseudo-type embeddings up, and ug, to
represent the corresponding head entity and tail entity in the
predicate proximity triples 7,, respectively. We then com-
pute the predicate embeddings by minimizing the following
objective function:

Tee= Y. > max(0,[y+f(t,) — f(t)]) ®

tp€Tp t,ET,
fltp) =, +P—ug [, ©)

where t,, is a triple in the predicate-proximity-graph and ¢,
is a corrupted triple (i.e., for negative samples) generated
based on the predicate-proximity-graph. Here, uy, and ug,
can be obtained using the above two functions, Eq. 5 and
Eq. 7. We use AutoAlign-W and AutoAlign-A to denote
AutoAlign utilizing Eq. 5 and Eq. 7, respectively.

Note that the procedure discussed can be extended to
compute embeddings for attribute predicates by modifying
Eq. 9 to replace the entity types of the tail entity in relation
triples with the literal types (e.g., string, integer, and long
data type) of attribute values in attribute triples. Through
optimizing the objective function, AutoAlign cultivates a
unified predicate embedding space from two knowledge
graphs. This method empowers us to transition these em-
beddings into the learning of structure and attribute em-
beddings.

4.3 Structure Embedding Module

Our method of computing the structure embeddings is built
based on TransE. Although TransE typically assigns equiv-
alent weights to each neighbor when computing an entity’s

embeddings, we adjust TransE to give different weights to
an entity’s different neighbors. The underlying reasoning is
to assign higher weights to neighbors that are linked by
predicates already aligned, as they serve as a significant
indicator for entity alignment.

As illustrated in Table 1, we can categorize the predicates
of KGs into three groups. The first group comprises the
already aligned predicates, such as geo:1lat, geo:long,
and rdfs:label, which adhere to the predicate nam-
ing scheme convention’ in knowledge graphs. The sec-
ond group contains implicitly aligned predicates, such as
lgd:is_in and dbp:located_in. These predicates are
beneficial for entity alignment if we can identify the align-
ment between them. We address this issue with our pred-
icate embedding module (see Section 4.2). The final group
consists of non-aligned predicates, such as 1gd:alderman
and dbp:district. These predicates do not aid entity
alignment and are treated as noise.

To mitigate the influence of noise, we adjust TransE by
incorporating a weight factor o to govern the learning of
embeddings across the triples. As a result, the entity embed-
ding approach can sift out non-aligned triples grounded on
non-aligned predicates. To deduce the structure embedding
in AutoAlign, we aim to minimize the objective function
Jsg, which is adapted from Eq. (1), as follows:

Tsp = Z Z max (0,7 + o (f(t;) — f(t.))) (10)
tr€ T t,.€ T/
_ count(r)
T "

where 7, represents the set of valid relation triples, 7+’
denotes the set of corrupted relation triples, count(r) is the
occurrence count of relationship r, and |7 is the total num-
ber of triples in the merged KG GU'. Typically, the occurrence
count of already aligned and implicitly aligned predicates is
greater than that of non-aligned predicates (as aligned pred-
icates are present in both KGs, while non-aligned predicates
only appear in one of the KGs). Therefore, our weighting
algorithm enables the embedding method to learn more
effectively from the aligned triples. For instance, in the
triples shown in Table 1, the weight « assists the embed-
ding method in prioritizing relationships like rdfs:label,
geo:1lat, and geo:long (¢ = 2/12 for each of these
predicates) over relationships such as 1gd:alderman or
dbp:district (o = 1/12 for each of these predicates).

4.4 Attribute Embedding Module

For attribute embedding, we construe the attribute pred-
icate p as a transition from the head entity h to the
attribute value v. An attribute might be represented in
multiple forms across two KGs. For instance, 50.9989
versus 50. 9988888889 as an entity’s latitude, or "Barack
Obama" against "Barack Hussein Obama" as a person’s
name. We adopt a compositional function to code the at-
tribute value and establish the relationship of each compo-
nentin an attribute tripleash + p ~ f,(v). Here, f,(v) sig-
nifies a compositional function, and v denotes a sequence of
the characters of the attribute value v = {c1, ¢, ¢35, ..., ¢t }.

3. https://www.w3.org/TR/rdf-schema/

8

This compositional function compiles the attribute value
into a single vector, thereby associating similar attribute
values to a like vector representation. We present three
compositional functions as described below.

Sum Compositional Function (SUM): The first com-
positional function is defined as the sum of all character
embeddings of the attribute value.

falv)=c1+ca+cg+...+ct (12)
where ¢y, c2, ..., ¢y represent the character embeddings of
the attribute value. While this compositional function is
straightforward, it suffers from a major limitation: two
strings with the same character set but arranged in a dif-
ferent order will have the same vector representation (i.e.,
order invariant). For instance, two coordinates, "50.15"
and "15.05", will result in the same vector representation.

LSTM-based Compositional Function (LSTM). To ad-
dress the above problem, we propose an LSTM-based com-
positional function. This function uses LSTM networks to
encode a sequence of characters into a single vector. We use
the final hidden state of the LSTM networks as a vector
representation of the attribute value.

fa(v) :flstm(clac2vc3a-'~7ct) (13)
where fis¢m, is an LSTM network [42].
N-gram-based Compositional Function (N-gram).

LSTM-based compositional function handles the order in-
variant problem. However, it only considers the unigram
features of a string. To capture rich compositional infor-
mation of a string, we further propose an N-gram-based
compositional function as an alternative to the above two
compositional functions. Here, we use the summation of the
n-gram combination of the attribute value.

N ! nocs
R =3 (B

n=1

(14)

where NN indicates the maximum value of n used in the n-
gram combinations (N = 10 in our experiments), and ! is
the length of the attribute value.

To learn the attribute embedding, we minimize the fol-
lowing objective function Jcg:

Z Z max (0, [y + o (f(ta) — f(t))])

ta €T tLET!
fta) =h+p— fa()lly, To = {(h,p,v) € Gu}
T = {(W,p,v)| I € Eg} U {(h,p,v) |V € Au}

(15)

Here, 7, is the set of valid attribute triples from the
training dataset, and 7. is the set of corrupted attribute
triples (Ay is the set of attributes in Gy). The corrupted
triples are used as negative samples by replacing the head
entity with a random entity or the attribute with a random
attribute value. f(¢,) is the plausibility score computed
based on the embedding of the head entity h, the embedding
of the attribute predicate p, and the vector representation of
the attribute value computed using function f,(v).

4.5 Joint Learning of the Embeddings

AutoAlign jointly learns the predicate embeddings, the
structure embeddings, and the attribute embeddings. The
proposed method first trains over the predicate-proximity-
graph to yield the unified predicate embedding space. Au-
toAlign then uses these predicate embeddings to jointly
learn the structure and attribute embeddings. However, the
attribute embedding module yields a unified embedding
space for two knowledge graphs but lacks structure infor-
mation. On the other hand, the structure embedding module
may yield different embedding space for two knowledge
graphs. Thus, we use the attribute embedding hee to shift
the structure embedding hge into the same vector space by
minimizing the following objective function Jsras:

Jsr = Y, [1—cos(hse, hee)]

s€G1UG2

(16)

Here, cos(hge,hce) is the cosine similarity of vector hge
and hge. As a result, the structure embedding captures
the similarity of entities between two KGs based on entity
relationships, while the attribute embedding captures the
similarity of entities based on attribute values. The overall
objective function of the joint learning is:

J =Ipe +JIse + Jce + Tsim (17)

4.6 Entity Alignment

The existing embedding-based entity alignment methods
are supervised when obtain the resulting embeddings since
they need seed alignments to learn entity alignments from
two knowledge graphs. Unlike the existing methods, Au-
toAlign captures the similarity between entities from two
knowledge graphs by learning a unified entity embedding
space via predicate and attribute embeddings. AutoAlign
does not need seed alignments. Our joint learning embed-
ding scheme lets similar entities from G; and G, have close
vector representations. Thus, the resultant embeddings can
be used for entity alignment. We compute the following
equation for entity alignment.

hmap = argmax cos(hy, hy) (18)

h2€G2
Given an entity h; € G, we compute the similarity between
hi and all entities hy € Ga; (h1, hunap) is the expected pair
of aligned entities. We use a similarity threshold f to filter
the pairs of entities that are too dissimilar to be aligned.

4.7 Triple Enrichment via Transitivity Rule

In translation-based embedding methods such as
TransE, the embedding of an entity is learned by
aggregating information from its immediate neighbors
(i.e., one-hop neighbors). These methods may implicitly
learn the multi-hop relationships between entities via
information propagation after many training epochs.
However, the information propagation of the multi-hop
relationship is weak. On the other hand, the explicit
inclusion of multi-hop relationships (e.g., transitive
relationships) increases the number of attributes and
related entities for each entity, which helps identify the
similarity between entities. For example, given triples

9

<dbp:Emporium_Tower, :locatedlIn, dbp:London)
and <dbp:London, :country, dbp:England), we can
infer that dbp:Emporium _Tower has a relationship (ie.,
":locatedInCountry") with dbp:England. In fact,
this information can be used to enrich the related entity
dbp:Emporium_Tower. We treat the one-hop transitive
relation as follows. Given transitive triples (hy, p1,t1) and
(t1, p2, t2), we interpret p1.ps as a relation from head entity
hy to tail entity t,. Therefore, the relationship between
these transitive triples is defined as hy + (p1.p2) =~ t2. The
objective functions of the transitivity-enhanced embedding
methods are adapted from the Eq. (10) and Eq. (15) by
replacing the relationship vector p with p;.p2.

4.8 Scalability Discussion

AutoAlign has three main modules, predicate embedding
module, structure embedding module and attribute em-
bedding module; their most time-consuming operations are
to iterate through the corresponding training samples (i.e.,
the triples) on the proximity graph using Equation 9, the
relation graph using Equation 10, and the attribute graph
using Equation 15, respectively. The numbers of triples of
the three graphs are all upper-bounded by the total number
of edges (i.e., triples) in the two KGs, which we denote as
M. Therefore, the time complexities of the predicate em-
bedding module, structure embedding module and attribute
embedding module are all O(M). The triple enrichment via
transitivity rule modifies part of the triples without bringing
new ones, and does not increase the complexity. Therefore,
the time complexity of AutoAlign is still O(M).

As analysed by [6], translation-based methods [7], [22],
[43] typically have the same time complexity, O(M), since
their most time-consuming operations are to iterate through
all the training samples (i.e., triples) in the two KGs. GNN-
based models also have O(M) time complexity and require
loading the whole graph into memory due to the message
passing mechanism. Therefore, AutoAlign has the same
time complexity as state-of-the-art KG alignment methods.

We have conducted experiments to compare the running
time of AutoAlign to two recent baselines AttrGNN [30] and
UPLR [31]. We observe that the running time of AutoAlign
is twice that of AttrGNN and half that of UPLR. This is
acceptable and reasonable, which is consistent with our
complexity analysis above.

5 EXPERIMENTS

We evaluate AutoAlign from three different aspects. First,
we show the performance of AutoAlign in entity alignment,
which is the main task in this paper. Second, we show that
our predicate embedding module effectively aligns pred-
icates from different knowledge graphs. Third, we show
that the resulting embeddings of AutoAlign preserve the
structure information of knowledge graphs, enabling them
to be used in broader applications such as KG completion.

5.1 Datasets

We evaluate our method on the latest comprehensive bench-
mark for KG alignment, DWY-NB [6], which consists of
two datasets DW-NB and DY-NB. The two KGs of DW-NB
are subsets of DBpedia [5] and Wikidata [44], respectively.

TABLE 2: Statistics of the datasets for entity alignment.

Subset Unique | Predicates | Relationship | Attribute | Entity
entities triples triples types
DW-NB
DBpedia | 84,911 545 203,502 221,591 93
Wikidata 86,116 703 198,797 223,232 257
DY-NB
DBpedia | 58,858 211 87,676 173,520 50
Yago 60,228 91 66,546 186,328 61

The two KGs of DY-NB are subsets of DBpedia [5] and
Yago [45], respectively. Specifically, DW-NB has more than
84,911 unique entities and contains 50,000 aligned entities,
DY-NB has more than 58,858 unique entities and contains
15,000 aligned entities. 36% of the aligned entities have dif-
ferent entity names, which makes the datasets more realistic
and the entity alignment task more challenging. To compare
with baselines that require entity seeds. We randomly select
50% of the seed alignment as a test set, and the rest of them
are used as entity seeds. The statistics of the datasets are
summarized in Table 2.

5.2

We use grid search to find the best hyperparameters for
AutoAlign. We choose the embeddings dimensionality d
among {50, 75, 100, 200}, the learning rate of the Adam op-
timizer among {0.001,0.01,0.1}, and the margin v among
{1,5,10}. We train AutoAlign with a batch size of 100 and
a maximum of 400 epochs. We compare with represen-
tative state-of-the-art methods, and have used the hyper-
parameters suggested by their corresponding papers.

Implementation Details

5.3 Compared Methods

AutoAlign has two ways for aggregating multiple entity
types, weighted sum function and attention-based function
as described in Section 4.2.2. We use AutoAlign-W and
AutoAlign-A to represent AutoAlign with weighted sum
function and attention-based function respectively. Other
compared existing entity alignment methods are described
below.

MTransE [7] is the state-of-the-art embedding-based
alignment method built on top of TransE. MTransE learns
a transition matrix from seed alignments to yield a uni-
fied embedding space from two KGs. IPTransE [43] is
an improved version of TransE. IPTransE adopts two soft
strategies to add newly-aligned entities to the seeds to
mitigate error propagation. BootEA [22] models EA as a
one-to-one classification problem where the counterpart of
an entity is regarded as the label of the entity. It iteratively
learns the classifier via bootstrapping from both labeled and
unlabeled data. TransEdge [46] proposes an edge-centric
translational embedding method addressing the deficiency
of TransE in that its relation predicate embeddings are
entity-independent. JAPE [13] is another state-of-the-art
embedding-based entity alignment method built on top of
TransE. It combines the relation triples with masked at-
tribute triples. A masked attribute triple is an attribute triple
in which its object is replaced by its data type. MultiKE [47]

10

uses multi-view learning on various kinds of features. The
embedding module of MultiKE divides the features of KGs
into three subset views. Entity embeddings are learned for
each view and then combined. AttrE [14] is the first method
that makes use of attribute values and the only EA method
that needs no seed alignments. MuGNN [10] is the state-
of-the-art embedding-based entity alignment built on top
of GCN, which uses two GCN as different channels to
encode a KG. One channel is for completing missing links
in a KG, and the other channel is for filtering unneces-
sary entities. AliNet [11] learns entity embeddings by a
controlled aggregation of entity neighborhood information,
and shares similar neighborhood structures by considering
both direct and distant neighbors. KECG [48] aims to rec-
oncile the issue of structural heterogeneity between KGs
by jointly training both a GAT-based cross-graph module
and a TransE-based knowledge embedding module. GCN-
Align [49] is the first study on GNN-based EA, which learns
entity embeddings from structural information of entities
and exploits attribute triples by treating them as relation
triples. HGCN [50] explicitly utilizes relation representation
to improve the alignment process in EA. It incorporates the
relation information by jointly learning entity and relation
predicate embeddings. GMNN [51] formulates the EA task
as graph matching between two topic entity graphs. It uses
a graph matching module to model the similarity of two
topic entity graphs, which indicates the probability of the
two corresponding entities being aligned. RDGCN [52] uti-
lizes relation information and extends GCNs with highway
gates to capture the neighborhood structural information.
It differs from HGCN in that it incorporates relation infor-
mation by the attentive interaction. CEA [53] proposes a
collective EA method which considers the dependency of
alignment decisions among entities. It uses structural, se-
mantic, and string signals to capture different aspects of the
similarity between entities in the source and the target KGs,
which are represented by three separate similarity matrices.
MRAEA [54] considers meta relation semantics including
relation predicates, relation direction, and inverse relation
predicates, in addition to structural information learned
from merely the structure of relation triples. NMN [55]
aims to tackle the structural heterogeneity between KGs.
The method learns both the KG structure information and
the neighborhood difference so that the similarities between
entities can be better captured. AttrGNN [30] performs en-
tity alignment by combining attribute graph learning, value
graph learning, and structure graph learning, and selects
the best performance by comparing different combinations.
UPLR [31] constructs pseudo-labeled datasets containing
noisy data and leverage the graph attention nets to capture
the similarities between two KGs.

5.4 Entity Alignment Results

This experiment evaluates the performance of EA while
varying the amount of seed entity alignments used for
training from 10% to 50% of the total available set of
seed entity alignments (50,000 for DW-NB and 7,500 for
DY-NB). We fix the test set in all the settings for all the
models. That is, the baseline methods with different ratios
of seed alignments will have the same test set. This setting
ensures that the results in different settings are comparable

11

TABLE 3: The effect of the amount of seed entity alignments on EA performance in terms of Hits@k (%). The numbers with
bold/underlined indicate the highest/sub-optimal values in each group compared to baseline methods.

| Seed: 0% | Seed: 10% | Seed: 20% | Seed: 30% | Seed: 40% | Seed: 50%
Method | Hits@l Hits@10 | Hits@l Hits@10 | Hits€l Hits@10 | Hits@l Hits@10 | Hits@l Hits@10 | Hits@l Hits@10
DW-NB
T | MTransE N/A N/A 2.82 10.45 5.42 18.72 7.88 25.75 10.42 31.44 12.98 36.00
2 | IPTransE N/A N/A 5.98 13.45 7.54 18.78 12.90 24.61 16.32 32.86 23.54 35.98
"2 | BootEA N/A N/A 8.12 16.15 12.54 20.13 17.92 28.38 21.46 35.16 25.44 37.57
S | TransEdge N/A N/A 22.98 48.12 38.29 56.22 45.27 68.95 49.26 75.25 54.85 79.68
= | JAPE N/A N/A 4.62 7.87 8.62 14.43 12.57 19.96 17.20 27.32 19.91 30.63
é MultiKE N/A N/A 80.25 87.58 82.56 88.92 84.06 90.05 84.87 91.24 85.21 95.06
& | AttrE 87.98 95.80 87.98 95.80 87.98 95.80 87.98 95.80 87.98 95.80 87.98 95.80
AutoAlign-W 87.81 95.86 87.81 95.86 87.81 95.86 87.81 95.86 87.81 95.86 87.81 95.86
AutoAlign-A 88.73 96.91 88.73 96.91 88.73 96.91 88.73 96.91 88.73 96.91 88.73 96.91
MuGNN N/A N/A 13.49 37.79 20.96 49.28 26.92 56.77 31.09 61.43 34.41 64.96
AliNet N/A N/A 14.58 31.46 18.55 35.84 24.34 50.46 28.39 55.46 3531 58.22
KECG N/A N/A 18.95 34.17 24.32 40.78 30.24 48.66 35.29 52.12 39.40 62.31
5 | GCN-Align N/A N/A 12.40 30.18 20.04 41.56 24.76 48.52 29.02 53.43 31.80 56.20
¢ | HGCN N/A N/A 58.08 62.15 63.14 68.15 78.97 86.51 84.25 90.75 88.54 91.54
£ | GMNN N/A N/A 71.32 74.24 75.34 79.23 80.98 82.23 82.67 85.87 84.59 88.64
% RDGCN N/A N/A 59.22 62.98 64.22 68.98 79.02 87.12 85.34 90.45 88.21 93.23
G | CEA N/A N/A 50.13 52.31 63.25 64.12 80.32 84.21 84.34 85.54 86.58 88.34
MRAEA N/A N/A 53.75 54.74 64.58 66.12 81.54 85.97 83.54 86.02 84.06 87.55
NMN N/A N/A 51.45 59.78 68.21 72.54 84.03 88.21 85.65 90.54 88.69 95.46
AttrGNN N/A N/A 45.79 78.28 51.67 82.85 54.65 84.30 59.48 86.18 62.08 88.74
UPLR 0.34 1.62 0.34 1.62 0.34 1.62 0.34 1.62 0.34 1.62 0.34 1.62
DY-NB
T | MTransE N/A N/A 0.01 0.15 0.01 0.39 0.08 0.68 0.08 1.39 0.13 1.89
& | IPTransE N/A N/A 1.54 9.87 5.67 25.76 14.55 36.45 15.77 45.81 17.33 52.18
"2 | BootEA N/A N/A 2.15 14.19 8.47 38.15 15.77 48.32 17.22 57.15 19.24 58.14
S | TransEdge N/A N/A 22.98 47.50 37.85 64.85 48.98 72.15 58.95 76.54 62.49 78.54
= | JAPE N/A N/A 0.70 1.83 1.57 3.37 1.40 3.27 1.37 1.77 2.37 4.97
§ MultiKE N/A N/A 81.87 88.05 82.11 89.26 84.97 90.84 87.22 92.05 89.25 93.58
&= | AttrE 90.44 94.23 90.44 94.23 90.44 94.23 90.44 94.23 90.44 94.23 90.44 94.23
AutoAlign-W 90.42 94.35 90.42 94.35 90.42 94.35 90.42 94.35 90.42 94.35 90.42 94.35
AutoAlign-A 91.27 95.62 91.27 95.62 91.27 95.62 91.27 95.62 91.27 95.62 91.27 95.62
MuGNN N/A N/A 19.16 51.41 27.40 62.69 31.60 68.56 34.73 71.24 37.15 74.07
AliNet N/A N/A 13.54 28.53 14.25 31.69 25.39 58.31 28.98 56.12 34.59 64.12
KECG N/A N/A 11.19 23.65 14.89 27.25 20.95 34.48 22.81 35.44 2471 37.15
5 | GCN-Align N/A N/A 8.56 25.09 17.88 43.88 24.36 53.43 31.29 62.44 33.56 67.88
2 | HGCN N/A N/A 52.54 64.51 65.87 77.40 71.14 85.64 71.45 85.64 74.54 87.48
<€ | GMNN N/A N/A 62.34 70.34 64.32 67.34 75.57 77.47 78.65 82.65 82.34 85.62
% RDGCN N/A N/A 53.13 65.30 67.28 78.21 74.54 85.22 77.45 87.43 78.67 89.45
O | CEA N/A N/A 55.24 58.97 64.35 65.42 74.56 78.42 77.78 80.95 78.91 83.24
MRAEA N/A N/A 52.46 53.20 60.33 64.54 73.71 78.52 74.25 78.66 76.22 80.15
NMN N/A N/A 55.74 64.78 62.54 70.54 75.87 80.54 84.55 88.69 90.78 94.77
AttrGNN N/A N/A 77.21 88.03 79.44 89.76 80.16 90.19 81.31 90.84 83.98 91.95
UPLR 89.84 93.11 89.84 93.11 89.84 93.11 89.84 93.11 89.84 93.11 89.84 93.11

* Methods that use attribute triples are underlined. The rest tables and figures follow this convention.

* AttrE, AutoAlign-W and AutoAlign-A do not use any seed alignments.

and hence valid for evaluating the model performance. We
evaluate the performance of AutoAlign (note that it does not
need any seed alignments) using HitsQk(k = 1,10) (ie.,
the proportion of correctly aligned entities ranked in the top
k predictions). A higher value indicates better performance.

Table 3 shows the results on the DWY-NB benchmark
datasets [6]. Some of the results of the compared methods
are from [6]. Note that since our methods do not require
entity seeds, the results of our model (and UPLR, which also
does not require entity seeds) are the same for different seed
ratios. We observe that the two variations of AutoAlign,
AutoAlign-W and AutoAlign-A, are significantly better than
all the other methods. The performance of AutoAlign-A
is better than AutoAlign-W, which shows the importance
to capture both the distinctive and noisy entity types,
as done by AutoAlign-A. The underlined methods from
both translation- and GNN-based methods exploit attribute
triples. The methods that exploit attribute triples achieve
much better performance than the methods that do not.

When no seed is provided (Seed: 0%), the baselines that

require entity seeds simply cannot run, while our methods
can still get the great performance. When seeds are avail-
able, other methods can run but perform considerably worse
than our methods. For example, AutoAlign-A outperforms
the best performing baseline, MultiKE, by 10.65% in hits@10
in the DW-NB dataset (96.91 v.s. 87.58). The performance of
these methods get better with more seed alignments avail-
able, but they are still considerably worse than our methods,
especially when fewer seed alignments are available.

5.5 Ablation Study

We conduct ablation tests from two perspectives to evaluate
AutoAlign: the effect of attribute embedding module and
the effect of predicate embedding module.

5.5.1 Effect of Attribute Embedding Module

To evaluate the effect of using attribute triples, we create a
version of AutoAlign-W that does not use attribute triples
to compute the entity embeddings, i.e., it only uses relation
triples; we call this version AutoAlign-W*. Similarly, we
create a version of AutoAlign-A that does not use attribute

—

12

00
g 2 2l o DW-NB
2 28 H g8 DY-NB
= 2L _H e A P il
AutoAlign-W AutoAlign-W* AutoAlign-A AutoAlign-A* MultiKE
Fig. 4: The effect of attribute embedding module.
100 i N 100 NI s S
® 9| & 3 % 2 0 @ ® 90| » « % % S
2 £ 2 e
ol S50 DN AN 2 o e EIRCT N
I I I I I I
SUM LSTM N-gram SUM LSTM N-gram
DW-NB DY-NB
Oo Semi-automatic predicate alignment (AttrE)

[0 Proximity-graph-based predicate alignment (AutoAlign-W)
Proximity-graph-based predicate alignment (AutoAlign-A)

Fig. 5: The effect of predicate embedding module.

triples, which we call AutoAlign-A*. Figure 4 shows the
performance of the four versions of AutoAlign on the bench-
mark measured by Hit@1. We can see that the performance
of AutoAlign-W and AutoAlign-A are much higher than
that of AutoAlign-W* and AutoAlign-A*, respectively. This
shows that our idea of using attribute triples is highly
effective. We also put the performance of MultiKE in the
figure for comparison since MultiKE is the most accurate
one among other existing methods; the proportion of seed
entity alignments used for MultiKE is 30%. AutoAlign-W
and AutoAlign-A both outperform MultiKE.

We also show the effect of different attribute embedding
algorithms in Fig. 5. Here SUM, LSTM, and N-gram denote
three algorithms with different attribute embedding func-
tions, as described in Section 4.4. We see that the N-gram
compositional function gives the best performance. This is
because the N-gram compositional function better preserves
string similarity when mapping attribute strings to their
vector representations than the other two functions.

5.5.2 Effect of Predicate Embedding Module

To evaluate the effect of predicate embedding module pro-
posed in Section 4.2, we compare with the semi-automatic
predicate alignment module in our previously proposed
method AttrE [14]. From Fig. 5, we see that the predicate em-
bedding module helps our entity alignment method achieve
comparable performance in terms of hits@1.

The same predicate may be stored in different surface
forms in the KGs, e.g., one KG has the attribute predicate
birth_date while the other KG has the attribute predicate
date_of_birth. Previous methods exploit seed attribute
predicate alignments and seed attribute alignments to ad-
dress this difference. In comparison, our AutoAlign-W and
AutoAlign-A do not need manual intervention, and they
both yield competitive results. In particular, AutoAlign-A
achieves the best performance since it enriches the related
entity types information via the attention mechanism.

TABLE 4: The effect on the accuracy of downstream link
prediction task in terms of Hits@10 (%). The numbers with
bold/underline indicate the highest/sub-optimal values in
each group compared to baseline methods.

| DW-NB (seed) | DY-NB (seed)

Method

| (10%) (30%) (50%) | (10%) (30%) (50%)
AutoAlign-A 88.93 8893 8893 | 98.82 98.82 98.82
MultiKE 88.76 88.98 89.52 | 98.62 98.87 98.07
AttrE 88.50 8850 8850 | 9875 9875 98.75
AutoAlign-W | 8841 8841 83841 | 9866 98.66 98.66
TransE 8745 8745 8745 | 9842 9842 98.42
TransEdge 8527 8571 8640 | 9324 9354 9376
JAPE 83.24 8371 83.09 | 7503 7532 75.66
IPTransE 81.06 8123 8178 | 93.10 9355 93.91
BootEA 80.41 8090 81.66 | 9411 9454 94.85
MTransE 80.10 80.33 80.69 | 93.81 9431 94.74

5.6 Effect of the Alignment Method on KG embeddings

We evaluate the effect of AutoAlign on KG embeddings.
This section experiments on how the quality of the KG em-
beddings obtained from EA methods is affected compared
to the KG embeddings from pure KG embedding methods
(TransE for translation-based and GCN for GNN-based
methods) via downstream applications of KGs. Following
previous studies in EA methods [56], we conduct experi-
ments using a common downstream task link prediction for
this purpose, detailed as follows. The link prediction task
aims to predict ¢ given h and r of a relation triple. Specifi-
cally, first, a relation triple is corrupted by replacing its tail
entity with all the entities in the dataset. Then, the corrupted
triples are ranked in ascending order by the plausibility
score computed as h + r — t. Since true triples (i.e., the
triples in a KG) are expected to have smaller plausibility
scores and rank higher in the list than the corrupted ones,
hits@10 (whether the true triples are in the top-10) is used
as the measure for the link prediction task.

Table 4 shows the performance of link prediction on DW-
NB and DY-NB with 10%, 30%, and 50% of seed entity

alignments. The performance increases with the amount of
seed alignments but not significantly. As mentioned earlier,
the KG embeddings obtained from the KG alignment meth-
ods may not be optimized for downstream tasks. However,
AutoAlign-A still achieves high performance, always in top-
2 and top-1 in half of the cases, which shows that the learned
predicate embeddings can also project entities into a unified
embedding space.

6 CONCLUSION AND FUTURE WORK

We presented AutoAlign — the first fully automatic method
for KG alignment enabled by large language models. We
proposed attribute character embeddings and predicate-
proximity-graph embeddings powered by large language
models to compute a unified vector space for the entity and
predicate embeddings from two KGs. Experimental results
show that AutoAlign outperforms the competitors consis-
tently. Further results on knowledge graph completion show
that our joint learning of the entity, predicate, and attribute
embeddings can capture the similarity between entities and
predicates both within a KG and across KGs.

AutoAlign demonstrates the potential of leveraging
large language models to improve the performance of KG
alignment (e.g., requiring less manual work, and incorpo-
rating the knowledge stored in large language models).
In future work, we may investigate broader research do-
mains based on graphs or hypergraphs [57] that can benefit
from large language models enabled KG alignment. For
example, leveraging large language models to align KGs
with domain-specific graphs (e.g., feature graphs in recom-
mender systems [58], [59], region graphs in point of interests
learning [60]) to enrich their representation ability.

ACKNOWLEDGMENTS

This work is supported in part by NSFC Grant No.
U1936205 and by grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (No.
CUHK 14217622).

REFERENCES

[1] Q. Wu, C. Shen, P. Wang, A. Dick, and A. v. d. Hengel, “Image
captioning and visual question answering based on attributes and
external knowledge,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 06, pp. 1367-1381, 2018.

[2] S.Yang, R. Zhang, S. M. Erfani, and J. H. Lau, “Unimf: A unified
framework to incorporate multimodal knowledge bases intoend-
to-end task-oriented dialogue systems.” in IJCAI, 2021, pp. 3978-
3984.

[3] E Zhang, N.]J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in KDD,
2016, pp. 353-362.

[4] C. Stadler, J. Lehmann, K. Hoffner, and S. Auer, “Linkedgeodata:
A core for a web of spatial open data,” Semantic Web, vol. 3, no. 4,
pp. 333-354, 2012.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives, “Dbpedia: A nucleus for a web of open data,” in ISWC, 2007,
pp. 722-735.

[6] R.Zhang, B. D. Trisedya, M. Li, Y. Jiang, and J. Qi, “A benchmark
and comprehensive survey on knowledge graph entity alignment
via representation learning,” The VLDB Journal, pp. 1-26, 2022.

[7] M. Chen, Y. Tian, M. Yang, and C. Zaniolo, “Multilingual knowl-
edge graph embeddings for cross-lingual knowledge alignment,”
in IJCAI 2017, pp. 1511-1517.

[8] M. Chen, T. Zhou, P. Zhou, and C. Zaniolo, “Multi-graph affinity
embeddings for multilingual knowledge graphs,” in NIPS Work-
shop on Automated Knowledge Base Construction, 2017.

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

13

H. Zhuy, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via
joint knowledge embeddings,” in IJCAI, 2017, pp. 4258-4264.

Y. Cao, Z. Liu, C. Li, Z. Liu, J. Li, and T.-S. Chua, “Multi-channel
graph neural network for entity alignment,” in ACL, 2019, pp.
1452-1461.

Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, and Y. Qu,
“Knowledge graph alignment network with gated multi-hop
neighborhood aggregation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 222-229.

Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao, “Relation-
aware entity alignment for heterogeneous knowledge graphs,” in
IJCAI, 2019, pp. 5278-5284.

Z.Sun, W. Hu, and C. Li, “Cross-lingual entity alignment via joint
attribute-preserving embedding,” in ISWC, 2017, pp. 628-644.

B. D. Trisedya, J. Qi, and R. Zhang, “Entity alignment between
knowledge graphs using attribute embeddings,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 297-304.

R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in NIPS,
2013, pp. 926-934.

B. D. Trisedya, J. Qi, W. Wang, and R. Zhang, “Gcp: Graph encoder
with content-planning for sentence generation from knowledge
bases,” TPAMI, vol. 44, no. 11, pp. 7521-7533, 2021.

S. Yang, R. Zhang, and S. Erfani, “Graphdialog: Integrating graph
knowledge into end-to-end task-oriented dialogue systems,” in
ACL, 2020.

B. D. Trisedya, G. Weikum, J. Qi, and R. Zhang, “Neural relation
extraction for knowledge base enrichment,” in ACL, 2019, pp. 229-
240.

N. Ding, X. Wang, Y. Fu, G. Xu, R. Wang, P. Xie, Y. Shen, F. Huang,
H.-T. Zheng, and R. Zhang, “Prototypical representation learning
for relation extraction,” ICLR, 2021.

B. D. Trisedya, J. Qi, R. Zhang, and W. Wang, “Gtr-Istm: A triple
encoder for sentence generation from rdf data,” in ACL, 2018, pp.
1627-1637.

B. D. Trisedya, J. Qi, and R. Zhang, “Sentence generation for entity
description with content-plan attention,” in AAAI, vol. 34, no. 05,
2020, pp. 9057-9064.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in NIPS, 2013, pp. 2787-2795.

Z. Wang,]J. Zhang,]. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in AAAI, 2014, pp.
1112-1119.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in AAAI,
2015, pp. 2181-2187.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph trans-
former networks,” Advances in neural information processing systems,
vol. 32, 2019.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph
transformer,” in Proceedings of The Web Conference 2020, 2020, pp.
2704-2710.

X. Mei, X. Cai, L. Yang, and N. Wang, “Relation-aware heteroge-
neous graph transformer based drug repurposing,” Expert Systems
with Applications, vol. 190, p. 116165, 2022.

R. Ye, X. Li, Y. Fang, H. Zang, and M. Wang, “A vectorized rela-
tional graph convolutional network for multi-relational network
alignment.” in IJCAI, 2019, pp. 4135-4141.

Z. Liu, Y. Cao, L. Pan, J. Li, and T.-S. Chua, “Exploring and
evaluating attributes, values, and structures for entity alignment,”
in EMNLP, 2020.

J. Li and D. Song, “Uncertainty-aware pseudo label refinery for
entity alignment,” in The Web Conference, 2022, pp. 829-837.

J. Gao, X. Liu, Y. Chen, and E. Xiong, “Mhgcn: Multiview highway
graph convolutional network for cross-lingual entity alignment,”
Tsinghua Science and Technology, vol. 27, no. 4, pp. 719-728, 2021.
S. Mangrulkar, A. MS, and V. Sembium, “Multilingual semantic
sourcing using product images for cross-lingual alignment,” in
WWW, 2022, pp. 41-51.

Z.Huang, Z. Li, H. Jiang, T. Cao, H. Lu, B. Yin, K. Subbian, Y. Sun,
and W. Wang, “Multilingual knowledge graph completion with
self-supervised adaptive graph alignment,” in ACL, 2022.

[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. Ahuja, N. Rao, S. Katariya, K. Subbian, and C. K. Reddy,
“Language-agnostic representation learning for product search on
e-commerce platforms,” in WSDM, 2020, pp. 7-15.

Z.Zhang, J. Chen, X. Chen, H. Liu, Y. Xiang, B. Liu, and Y. Zheng,
“An industry evaluation of embedding-based entity alignment,”
in COLING, 2020.

W. Liu, J. Pan, X. Zhang, X. Gong, Y. Ye, X. Zhao, X. Wang, K. Wu,
H. Xiang, H. Yan et al., “Cross-platform product matching based
on entity alignment of knowledge graph with raea model,” WWW,
pp- 1-21, 2023.

L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681-694, 2020.

T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ili¢, D. Hesslow,
R. Castagné, A. S. Luccioni, E. Yvon, M. Gallé et al., “Bloom: A
176b-parameter open-access multilingual language model,” arXiv
preprint arXiv:2211.05100, 2022.

R. Thoppilan, D. De Freitas,]. Hall, N. Shazeer, A. Kulshreshtha,
H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language
models for dialog applications,” arXiv preprint arXiv:2201.08239,
2022.

C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press,
1998.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, pp. 1735-1780, 1997.

H. Zhuy, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via
joint knowledge embeddings.” in IJCAI 2017, 2017.

D. Vrandecic and M. Krotzsch, “Wikidata: a free collaborative
knowledgebase,” CACM, vol. 57, no. 10, pp. 78-85, 2014.

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2:
A spatially and temporally enhanced knowledge base from
wikipedia,” Artificial Intelligence, vol. 194, pp. 28-61, 2013.

Z.Sun, J. Huang, W. Hu, M. Chen, L. Guo, and Y. Qu, “Transedge:
Translating relation-contextualized embeddings for knowledge
graphs,” in International Semantic Web Conference. Springer, 2019,
pp. 612-629.

Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo, and Y. Qu, “Multi-view
knowledge graph embedding for entity alignment,” in IJCAI, 2019.
C. Li, Y. Cao, L. Hou, J. Shi, J. Li, and T. Chua, “Semi-supervised
entity alignment via joint knowledge embedding model and cross-
graph model,” in EMNLP 2019, 2019.

Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge
graph alignment via graph convolutional networks,” in EMNLP
2018, 2018.

Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Jointly learning en-
tity and relation representations for entity alignment,” in EMNLP
2019, 2019.

K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu,
“Cross-lingual knowledge graph alignment via graph matching
neural network,” in ACL 2019, 2019.

Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao, “Relation-
aware entity alignment for heterogeneous knowledge graphs,” in
IJCAI 2019, 2019.

W. Zeng, X. Zhao, J. Tang, and X. Lin, “Collective entity alignment
via adaptive features,” in ICDE 2020, 2020.

X. Mao, W. Wang, H. Xu, M. Lan, and Y. Wu, “MRAEA: an efficient
and robust entity alignment approach for cross-lingual knowledge
graph,” in WSDM 2020, 2020.

Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Neighborhood
matching network for entity alignment,” in ACL 2020, 2020.
Z.Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami, and C. Li,
“A benchmarking study of embedding-based entity alignment for
knowledge graphs,” in VLDB 2020, 2020.

W. Jiang, J. Qi, J. X. Yu, J. Huang, and R. Zhang, “Hyperx: A
scalable hypergraph framework,” TKDE, vol. 31, no. 5, pp. 909-
922, 2018.

Y. Su, R. Zhang, S. Erfani, and Z. Xu, “Detecting beneficial feature
interactions for recommender systems,” in AAAI, 2021, pp. 4357-
4365.

Y. Su, Y. Zhao, S. Erfani,]. Gan, and R. Zhang, “Detecting arbitrary
order beneficial feature interactions for recommender systems,” in
KDD, 2022, pp. 1676-1686.

Y. Zhao, J. Qi, B. D. Trisedya, Y. Su, R. Zhang, and H. Ren, “Learn-
ing region similarities via graph-based deep metric learning,”
TKDE, 2023.

14

Rui Zhang is a visiting Professor at Tsinghua
University. His research interests include big
data, data mining, and machine learning. Pro-
fessor Zhang has won several awards, includ-
ing Future Fellowship by the Australian Re-
search Council in 2012, Chris Wallace Award
for Outstanding Research by the Computing Re-
search and Education Association of Australasia
in 2015, and Google Faculty Research Award in
2017.

Yixin Su received his Master’s and Ph.D. de-
grees from the School of Computing and Infor-
mation Systems at The University of Melbourne.
His research interests include leveraging graph
neural networks to enhance feature interaction
modeling and collaborating filtering in recom-
mender systems.

Bayu Distiawan Trisedya is a Lecturer in the
Faculty of Computer Science Universitas In-
donesia. He was a Postdoctoral Research Fel-
low in the School of Computing and Informa-
tion Systems at The University of Melbourne
and RMIT University. He received his bachelor’'s
and Master’s degrees from Universitas Indone-
sia in 2009 and 2011, respectively. He received
his Ph.D. degree from The University of Mel-
bourne in 2021. His research interest is knowl-
edge graphs and natural language processing.

Xiaoyan Zhao is currently a PhD student with
the Department of Systems Engineering and En-
gineering Management, the Chinese University
of Hong Kong. She received the B.S. degree
from Wuhan University of Technology in 2019,
and M.E. degree from University of Chinese
Academy of Sciences in 2022. Her research in-
terests include natural language processing and
knowledge graph.

Min Yang is currently an Associate Professor
with the Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Science. She re-
ceived her Ph.D. degree from the University of
Hong Kong in February 2017. Prior to that, she
received her B.S. degree from Sichuan Univer-
sity in 2012. Her current research interests in-
clude machine learning, deep learning and nat-
ural language processing.

Hong Cheng is a Professor in the Department of
Systems Engineering and Engineering Manage-
ment at the Chinese University of Hong Kong.
She received her Ph.D. degree from University
of lllinois at Urbana-Champaign in 2008. Her
research interests include data mining, database
systems, and machine learning. She received
research paper awards at ICDE’07, SIGKDD’06
and SIGKDD’05, and the certificate of recogni-
tion for the 2009 SIGKDD Doctoral Dissertation
Award. She is a recipient of the 2010 Vice-

Chancellor's Exemplary Teaching Award at the Chinese University of

Hong Kong.

Jianzhong Qi is a Senior Lecturer in the School
of Computing and Information Systems at The
University of Melbourne. He received his Ph.D.
degree from The University of Melbourne in
2014. His research interests include machine
learning and data management and analytics,
with a focus on spatial, temporal, and textual
data.

APPENDIX A
AUTOMATICALLY OBAIN ENTITY TYPES

To construct the predicate-proximity-graph, we automati-
cally obtain the types of each entity by extracting them from
the SPARQL Query Editor (https://dbpedia.org/sparql).
Specifically, we obtain the types of entities through the
following steps:
o For each entity, e.g., Barack Obama, we convert it into
a DBpedia graph dataset format, e.g., http://dbpedia.
org/resource/Barack_Obama.
o Then, we search for the types of the entity through the

query:

PREFIX rdf: <\protect\vrule widthOpt\
— protect\href{http://www.w3.0rg
— /1999/02/22-rdf-syntax-ns#} {http
— ://www.w3.0rg/1999/02/22-rdf-
— syntax-ns#}>

PREFIX rdfs: <\protect\vrule widthOpt\
— protect\href{http://www.w3.0rg
— /2000/01/rdf-schema#}{http://www.
— w3.0rg/2000/01/rdf-schemat}>

PREFIX dbr: <\protect\vrule widthOpt\
— protect\href{http://dbpedia.org/
— resource} {http://dbpedia.org/
< resource}>

PREFIX dbo: <\protect\vrule widthOpt\
— protect\href{http://dbpedia.org/
<~ ontology}{http://dbpedia.org/
— ontology}>

SELECT DISTINCT ?obj WHERE {

<\protect\vrule widthOpt\protect\href{
— http://dbpedia.org/resource/
— Barack_Obama} {http://dbpedia.org/
— resource/Barack_Obama}> rdf:type ?
— obj

FILTER strstarts(str(?obj), str(dbo:))

}

The first four lines define the prefixes for the names-
paces used in the query. “rdf:” and “rdfs:” are standard
namespaces for RDF and RDF Schema, respectively.
”dbr:” and ”dbo:” are prefixes for the DBpedia resource
and ontology namespaces, respectively; the SELECT
clause specifies that we want to retrieve the distinct
values of the variable ”?0bj”, which represents the types
of which “Barack Obama” is an entity.

« Finally, we get a set of types that belongs to the entity,
e.g., Person, Politician, OfficeHolder, which will replace
the entity “Barack Obama” in the predicate-proximity-
graph.

o If we cannot obtain any type from the entity, we will
keep the entity as it is.

https://dbpedia.org/sparql
http://dbpedia.org/resource/Barack_Obama
http://dbpedia.org/resource/Barack_Obama

	Introduction
	Related Work
	Knowledge Graph Embedding Methods
	Knowledge Graph Alignment Methods

	Preliminary
	Translation-based Embedding Method

	Proposed Method
	Overview of AutoAlign
	Predicate Embedding Module
	Predicate-proximity-graph Construction
	Module Learning

	Structure Embedding Module
	Attribute Embedding Module
	Joint Learning of the Embeddings
	Entity Alignment
	Triple Enrichment via Transitivity Rule
	Scalability Discussion

	Experiments
	Datasets
	Implementation Details
	Compared Methods
	Entity Alignment Results
	Ablation Study
	Effect of Attribute Embedding Module
	Effect of Predicate Embedding Module

	Effect of the Alignment Method on KG embeddings

	Conclusion and Future Work
	References
	Biographies
	Rui Zhang
	Yixin Su
	Bayu Distiawan Trisedya
	Xiaoyan Zhao
	Min Yang
	Hong Cheng
	Jianzhong Qi

	Appendix A: Automatically Obain Entity Types

