IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

JANUARY-MARCH 2009 37

Constraint-Based Validation
of Adaptive e-Learning Courseware

Mark Melia, Student Member, IEEE, and Claus Pahl, Member, IEEE

Abstract—Personalized e-learning allows the course creator to create courseware that dynamically adapts to the needs of individual
learners or learner groupings. This dynamic nature of adaptive courseware makes it difficult to evaluate what the delivery time
courseware will be for the learner. The course creator may attempt to validate adaptive courseware through dummy runs, but cannot
eliminate the risk of pedagogical problems due to adaptive courseware’s inherent variability. Courseware validation checks whether
adaptive courseware conforms to a set of pedagogical and nonpedagogical requirements. The validation of adaptive courseware limits
the risk of pedagogical problems at delivery time. In this paper, we present our approach to adaptive courseware validation using the
Courseware Authoring Validation Information Architecture (CAVIAr). We outline how CAVIAr captures adaptive courseware authoring
concerns and validates courseware using a constraint-based approach. We also describe how CAVIAr can be integrated with the state
of the art in adaptive e-learning and evaluate our validation approach.

Index Terms—Adaptive, courseware, validation, CAVIAr, modeling, interoperability.

1 INTRODUCTION

DAPTIVE or personalized courseware is courseware

which moves away from the “one size fits all”
paradigm of traditional courseware and instead looks to
adapt to the individual needs of learners in terms of their
learning goals, knowledge of a subject, and learning style,
among other things.

The construction of adaptive or personalized courseware
is a “complex, time-consuming and expensive task” [1].
Recent advances in dedicated tools, such as My Online
Teacher (MOT) [2] and the Adaptive Courseware Construc-
tion Toolkit (ACCT) [1], have raised the level of abstraction
that the course creator works at when creating adaptive
courseware. These tools go some way toward providing a
more intuitive interface for designing adaptive courseware,
but do not provide a method for validating the adaptive
courseware created. We propose validation to be a part of
the adaptive courseware construction process, an activity
that automatically checks newly constructed adaptive
courseware for a range of problems. The types of problems
that courseware validation detects include the incorrect
sequencing of learning resources, an instructional design
being applied incorrectly, or an inconsistency in the
adaptive courseware structure.

Adaptive courseware validation allows the course
creator to minimize the pedagogical problems that learners
must deal with when using immature adaptive courseware.
The literature notes the importance of postconstruction/
predelivery course validation or “course auditing” as an
essential part of a holistic course construction methodology
[3], [4]. We believe this to be even more important with

o The authors are with the School of Computing, Dublin City University,
Dublin 9, Ireland. E-mail: {mmelia, cpahl}@computing.dcu.ie.

Manuscript received 15 Sept. 2008; revised 27 Nov. 2008; accepted 9 Jan.
2009; published online 14 Jan. 2009.

For information on obtaining reprints of this article, please send e-mail to:
[t@computer.org, and reference IEEECS Log Number TLTSI-2008-09-0082.

Digital Object Identifier no. 10.1109/TLT.2009.7.

1939-1382/09/$25.00 © 2009 IEEE

adaptive courseware due to the additional complexity in its
design, making construction more complicated and harder
to validate manually.

Courseware evaluation typically makes use of learner
models in order to analyze learner interaction with the
courseware [5]. This approach mirrors recognized forma-
tive and summative evaluations of traditional courses [6],
[7]. Courseware validation is a predelivery activity and
must therefore validate courseware without the learner
model data that are generated at delivery time. Existing
courseware validation efforts attempt to overcome this
problem by simulating the learner’s interaction with
courseware [8], [9]. In this paper, we present a novel,
constraint-based approach to courseware validation. The
approach is based on software modeling technology that
allows for the formal definition of courseware and its
requirements. The course creator can then define a con-
straint-based validation model in terms of the courseware
requirements that must be true for the newly constructed
courseware. Our approach is driven by the validation needs
of adaptive courseware by allowing the explicit definition
of adaptation concerns such as the anticipated learner
models. Furthermore, our approach is not affected by the
complexity that adaptive decision points introduce to
personalized courseware.

To allow for the validation of adaptive courseware, in
Section 3, we define the Courseware Authoring Validation
Information Architecture (CAVIAr) using the Meta Object
Facility (MOF), an abstract language for defining modeling
languages such as the Unified Modeling Language (UML)
[10]. The CAVIAr abstract syntax can be constrained using
the Object Constraint Language (OCL). OCL is an OMG-
defined constraints language used to constrain MOF-based
models. It is based on set theory and logic [11]. In Section 4,
we outline the types of constraints that can be imposed on
the CAVIAr metamodels and how these constraints can
be used to validate adaptive courseware. In Section 5, we

Published by the IEEE CS & ES

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

38 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

demonstrate how CAVIAr courseware validation can
be integrated into existing courseware authoring tools. We
evaluate our approach to adaptive courseware validation in
Section 6, followed by a critical analysis of the state of the
art in courseware validation in Section 7. Our concluding
remarks are presented in Section 8.

We shall begin our discussion looking at the state of the
art in constructing adaptive e-learning courseware and
motivate the need for courseware validation.

2 CONSTRUCTING ADAPTIVE E-LEARNING
COURSEWARE

The widely accepted ADDIE model is a general-purpose
model for constructing courseware consisting of five
phases, Analysis, Design, Development, Implementation,
and Evaluation. Courseware validation fits into the ADDIE
model as a preimplementation (predelivery of the learning
material to the learner), postdevelopment activity.

Constructing adaptive courseware is not a trivial task, it
is a complex task which involves a variety of skills. In
constructing adaptive courseware, the course creator (or
team of course creators) must define how a given course-
ware will adapt to aspects of learning, such as an evolving
learner model, a subject domain, and/or an instructional
strategy in use. In general, the definition of adaptive
courseware involves defining where the course flow
branches based on some variable, for example, the learner’s
knowledge. These courseware flow branches are defined in
the courseware adaptivity logic. Defining the adaptivity at
the courseware level is generally done in a programming
language like syntax [1], [12], [13]. Adaptive courseware
authoring tools provide an intuitive user interface for the
course creator to define adaptivity, by raising the level of
abstraction the course creator works at.

The MOT system [14], developed at Eindhoven Uni-
versity of Technology, allows course creators to create
adaptive courses in Adaptive Educational Hypermedia
(AEH) using the LAOS system of layered models [15].
The LAOS model has two types of models—static and
dynamic. The static model describes the domain, and
course-oriented goals and constraints on a domain model.
The dynamic model defines adaptive rules using a
programming language like syntax. The adaptive rules
define the course flow branches and are defined using data
from the LAOS static models. As the MOT system is solely
an authoring system, the adaptive courseware must be
exported into an AEH delivery system such as AHA! [16] or
WHURLE [17].

The ACCT allows the course creator to design adaptive
courseware based on the principle of separating the “key
design elements of personalized e-learning” [1]. Adaptivity
is provided through the combination of models, each of
which addresses a key design element. To make the
definition of an adaptive courseware more intuitive, the
ACCT uses abstraction by providing design patterns for
courseware structure known as “Narrative Structures.”
Adaptive logic is defined in “Narrative Attributes,” which
define how a specific learning resource is selected to be
delivered to an individual learner.

The IMS Learning Design (LD) specification allows for
the definition of adaptive courseware, by defining learning

JANUARY-MARCH 2009

flow conditions on learning activities [18]. Constructing
courseware defined using IMS LD requires the course
creator to have an in-depth knowledge of the specification.
The COLLAGE tool allows the course creator to define IMS
LD adaptive behavior by raising the course creator level of
abstraction [19]. This is done by providing a catalogue of
Computer Supported Collaborative Learning (CSCL) de-
sign patterns that are implemented in IMS LD.

Adaptive courseware authoring tools raise the level of
abstraction that the course creator works at. Due to this, and
the level of complexity involved in defining adaptive
strategies through rules, the course creator may wish to
check that courseware to be delivered to learners is as
envisioned and required. The course creator may wish to
validate aspects of the courseware, such as:

e All topics covered in the courseware adapt to the
needs of every anticipated learner stereotype; for
example, learners with particular learning styles will
be directed to learning material that suits their style.

e The courseware adapts in some sort of standardized
way for all topics or for selected topics; for example,
when a learner has a knowledge level below a
specific threshold for compulsory topics, the learner
is directed to supplementary material.

e All topics in the courseware have a lecture explain-
ing the topic’s central concept.

e Topics in the courseware do not go over a certain
time limit regardless of how the courseware adapts.

Although some simple aspects of adaptive courseware

design can be manually checked by the course creator, such
as the type of Learning Objects (LOs) in a courseware topic,
it is time consuming and must be checked for each possible
permutation of learning paths through courseware. Some
more complex aspects of adaptive courseware design, such
as ensuring that the courseware adapts in some standar-
dized way, are much more difficult, if not impossible, to
check manually.

3 CAVIAR COURSEWARE CONSTRUCTION
CONCERN (C4) MODELS

The CAVIAr consists of a set of data models and a
validation model. The data models are used to capture the
courseware construction concerns used to define and
develop courseware [20]. This set of data models is known
as the CAVIAr Courseware Construction Concern (C4)
Models. The C4 models are as follows:

e Domain model—models the subject domain to be
covered by the courseware.

e Learning context model—consists of learner model
representations and domain pedagogic information.
This model is principally responsible for capturing
adaptivity concerns that are defined as anticipated
learner stereotypes in terms of the domain model.

e Learning resources model—defines the learning
resources used in courseware.

e Courseware model—courseware constructed by the
course creator.

Fig. 1 provides an overview of the CAVIAr and its
constituent models, defined in UML. The root CAVIAr

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 39

— <> CAVIATr <>—|

SR |
1
Learning Learning HE
Context Resource Courseware | Validation
Model Model Model Model
Validation
: C4 Models |

Model

Domain Model

Fig. 1. Overview of the CAVIAr models.

modeling element consists of a learning context model, a
learning resource model, a courseware model, and a
validation model. The domain model is part of the learning
context model.

The C4 models represent the courseware requirements
in the form of a learning context model, and the actual
courseware to be delivered to learners in the form of a
courseware model. The validation model is defined by
constraining the allowable courseware model definitions. To
do this, a constraint language is used to define constraints on
the courseware model abstract syntax definition. These
constraints are based on requirements data provided in the
learning context model. The validation model definition is
covered in detail in Section 4.

In the following sections, each C4 model is introduced.
This is done by first outlining the model’s purpose, and
then outlining the model in terms of its abstract syntax
defined in MOF.

3.1 The Domain Model

The sole purpose of the domain model in CAVIAr is to
express the curriculum knowledge structure, this being the
knowledge the courseware covers. It is worth noting that all
knowledge in the domain model does not have to be
covered by the courseware. The knowledge covered by the
courseware may be a subset of the knowledge outlined in
the domain model.

The CAVIAr domain model’s metamodel is defined in
MOF and is depicted in Fig. 2. The concept is the domain
model primary building block. Concepts are related to other
concepts by a ConceptRelationship. A concept relationship
has a direction from its source concept to its target concept.
There are two types of concept relationships derived from
the SKOS concept semantic relationships [21]. These are
defined in the enumeration ConceptRelationshipType:

e NARROWER—the source concept has a broader
semantic scope than the target concept. This allows
for a taxonomic relationship between concepts.

o RELATED—there is a semantic relationship between
two concepts. This relationship is symmetric.

3.2 The Learning Context Model

The learning context model defines domain pedagogic
information in terms of the domain model. The learning
context model is made up of:

e conceptual instructional constraints and
e learner stereotype definitions.

<<enumeration>>

ConceptRelationshipType

DomainModel

+NARROWER
+RELATED

+concepts
1..%*

Concept

<

+target
1

Synonym

+name: String
+source

+value: String

1

1..%* 1. .*

ConceptRelationship

+type: ConceptRelationshipType

Fig. 2. Domain model abstract syntax defined in MOF.

The conceptual instructional constraints specify sequen-
cing constraints, where knowledge of one concept is
necessary to understand another (e.g., addition must be
taught before multiplication).

A learner stereotype definition allows the course creator
to define learner groupings in terms of their learning goals
and assumed initial knowledge prior to starting the
courseware. The course goal and assumed initial knowledge
are defined as knowledge elements in terms of the domain
model. Knowledge elements are defined by a knowledge
level, a knowledge type, and a domain model concept.

In Fig. 3, we outline the learning context model’s
metamodel in MOF. One of the central elements of the
learning context is the Concept from the domain model, as
the learning context is defined on the domain model.

An additional relationship is defined on the domain
model, ConceptPreReq. This relationship allows the course
creator to define a prerequisite sequencing constraint
between two concepts. A ConceptPreReq relationship defines
a relationship between a concept and a KnowledgeElement,
where the prerequisite is satisfied when a learner has
obtained the knowledge defined by the KnowledgeElement. A
KnowledgeElement is defined with an attribute for the
knowledge type and the knowledge level, and references
a concept in the domain model.

The learning context model defines a learner stereotype
in terms of goals and presumed knowledge. The goals
describe a learner stereotype’s desired knowledge state and
presumed knowledge describes the expected knowledge of
the learner stereotype prior to taking the courseware. The
Goal and PresumedKnowledge model elements are types of
KnowledgeConstraint.

A central aspect to the learning context definition is the
KnowledgeElement, which is composed of a reference to a
concept, a knowledge type, and a knowledge level. Knowl-
edge types are defined as either “verbal information” or
“intellectual skills,” which are the two learning outcomes,
defined by Gagné et al. [22], that can be defined in terms of
domain model concepts. The knowledge level allows the
course creator to define the level of knowledge a learner
stereotype has in the associated concept, between 0 and 1,
where 1 is expert knowledge akin to scoring full marks in a
test on the associated concept and 0 indicating no knowl-
edge. The knowledge level indicates a level of a particular
type of knowledge.

A learner stereotype Is; is defined by a name and a set
of KnowledgeConstraints. The name is the stereotype

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

LearningStyle _o}LearningContextio

+theory: String
+name: String

JANUARY-MARCH 2009

DomainModel

from DomainModel |

KnowledgeElement

from Learning
Resource Model 0..* LearnerStereotype
\ Metadata +type: String

+constraints
0..*

PartOfRelationship

1..%

L {KnowledgeConstraint |<>_
+target A

/

+level: integer +C
+type: CompetencyType Concept
+target B
. +name: String
J+source
1
1..%

;|ConceptPreReq|

<<enumeration>>

CompetencyType

Goal

|PresumedKnowIedge|

+VERBAL_INFORMATION
+INTELLECTUAL_SKILLS

1

+source
1

Fig. 3. Learning context model abstract syntax.

identifier. There are two types of knowledge constraints
that can be defined on a learner stereotype, Goal and
PresumedKnowledge. PresumedKnowledge defines the knowl-
edge elements that the course creator believes the learner
stereotype to have prior to the initiation of the courseware.
The Goal knowledge constraints is a representation of the
knowledge state in terms of knowledge elements that the
learner must have after taking the courseware. The
PartOfRelationship allows for the construction of composite
goals. If a Goal gl is part of another Goal g2, the
LearnerStereotype has an overall goal that is a union of the
knowledge elements in the two goal sets gl U g2. Alter-
native goals are defined using the AltGoal construct, where
an AltGoal instance is associated with goals that are
alternatives of each other.

To illustrate how a learning context model is defined, we
have outlined an example in Fig. 4. In this example, a
learning context model is defined on a simple databases
domain model (in gray) that has two learner stereotypes
defined: CS_Students and General_Students. After taking the
courseware, all learners must understand ER_Modeling.
CS_Students must also understand either relational algebra
or relational calculus. We assume that all learners have
excellent knowledge on information systems. As can be

.

CSistudentsI

General_Students

m —)'presumedKnowledgell
0.8/intellectual_skills

0.8/verbal_information
[>(Information_Systems

A4

0.8/verbal_information

Fig. 4. Example CAVIAr learning context model with the domain model
in gray.

seen in the diagram, KnowledgeConstraints (i.e., goals1-3 and
presumedKnowledgel) link the stereotypes to concepts in
the domain model. The KnowledgeElement knowledge level
and type are captured in the relationship between a
KnowledgeConstraint and domain model Concept.

The learning context model also allows the course creator
to define the learning styles that he or she wants to use in
validation. Learning styles can then be associated with LO
metadata types. Capturing the anticipated learning styles
that will be used in the courseware allows for the validation
model to validate courseware in terms of how learning
styles are accommodated. This is a similar approach to the
integration of learning styles into adaptive strategies
defined by Stash et al. [23].

3.3 The Learning Resource Model

The learning resource model contains representations for
learning resources used in the courseware. The learning
resource representation is based on the IEEE LOM standard
[24], allowing for a direct mapping from LOM to the
learning resource model.

In Fig. 5, we outline an excerpt of the learning resource
model’s metamodel in MOF. As outlined in the figure, a
LearningResourceModel is composed of Resources. There are
two types of Resource: LO and Service.

|LearningResourceModeI

Q from courseware model |

1

+resources
(o

Resource

+id: String

Relation

+kind: RelationKind
3

from domain model

+classifications
1o -~

Concept Classification

+name: String +purpose: ClassificationType

Fig. 5. Excerpt of learning resource model abstract syntax.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 41

CoursewareModel

<<enumeration>>

+name: String

TopicRelationshipType

from LearningContextModel

1

greatprThan

+CONTAINS
+SEQUENCED_AFTER

+topics
1..*

|LearnerStereotype |

+source

Topic
P TopicRelationship

KnowledgeElement

from DomainModel |

+name: String
+Complete: boolean T
+aggregationLevel: int

+target 1. .%

+type: TopicRelationshipType

+level: integer
~ +type: KnowledgeType
+cC
Concept

+name: String

Resource

0..*

+learningResourcesComplete

+subTopicsComplete
0..*

+completionCriteria
0..*

TopicCompletionCriteria

+learningResourcesComplete: Resource[]

from LearningResourceModelbl

Fig. 6. Abstract syntax for courseware model defined using MOF.

The LO is associated with Metadata. The Metadata element
is composed of five types of LO metadata: Relation,
Classification, General, Educational, and Technical. All model-
ing elements contained in Metadata have attributes which
are used to describe the associated LO. The Classification
associates the LO with a domain model concept for some
purpose, where purpose is an attribute of the Classification
class. The Relation metadata relates a LO to other LOs.

3.4 The Courseware Model

The CAVIAr courseware model defines the structure,
content, and behavior of courseware. The main specifica-
tions for defining courseware are the ADL SCORM 2004
[25] and IMS Learning Design [18]. Here, we outline a
language for defining courseware that is independent of
(although inspired by) these specifications. This allows for
minimal disruption to CAVIAr-based courseware valida-
tion tools as the specifications mature.

Fig. 6 illustrates the courseware metamodel defined
using MOF. Courseware is principally made up of Topic
instances. A Topic has a name and an aggregationLevel,
where a name uniquely identifies the topic and the
aggqregationLevel allows for various topic granularity levels
(e.g., lesson, module). Topics are related to other topics via
a TopicRelationship. A TopicRelationship has a type. The type
is defined as a TopicRelationshipType. Topics can contain
other topics through the TopicRelationshipType—PART_OF.
Explicit topic sequencing definitions are specified using
the TopicRelationshipType—SEQUENCED_AFTER. The SE-
QUENCED_AFTER relationship specifies when one topic
must be covered before another Topic. Topics can
reference zero to many learning Resources.

An EntryLearner is a condition, associated with a Topic.
The condition must be true for a learner to enter the
associated topic. An EntryLearner consists of one Learner-
Stereotype and zero to many lessThan or greaterThan Knowl-
edgeElements. The LearnerStereotype defines a learner group
that can access the topic. For example, only the learners
in the “beginner” stereotype can access a given topic.
KnowledgeElements allow for additional EntryLearner condi-
tions to be defined based on a learner’s knowledge. For

+timeLimit: int
+subTopicsComplete: Topic []

example, there may be a topic that should only be covered
when the learner has achieved expert “verbal information”

knowledge in a related courseware concept.
The TopicCompletionCriteria allows the course creator to

express conditions for when the Topic is deemed complete.
For example, the course creator may only want the learner
to complete two out of three of the contained topics, a
TopicCompletionCriteria is expressed for each of the permu-
tations of completion. The TopicCompletionCriteria also
allows for a simple time limit on a Topic.

To illustrate how a courseware model can be defined, we

have outlined a simple example in Fig. 7. In this courseware
model, there are four topics (from database theory).
ER_Modeling and Relational_Modeling topics are contained
within the Databases topic. The topic ER_Modeling_Help is
contained within the ER_Modeling topic and contains
some supplementary material on ER modeling. The ER_Mo-
deling_Help topic has an EntryLearner condition, where only
CS_Students (computer science students) with verbal infor-
mation knowledge in the concept ER_Modeling less than 0.2
may enter the topic. This means that a CS_Student learner
struggling with ER Modeling will be delivered supplemen-
tary material on the topic. This demonstrates how simple
adaptive behavior is defined in a courseware model.

<<Concepts>s

ER_Modelling

.2/verbal_information

less-than
<<EntryLearners>>
cs_student
PART-OF PART-OF
stereotype = CS_Student
F|
|Re|ationaI7ModeIIing||ER_ModeIIing| ’
/
PART-OF A ,

|ER_ModeIIing_HeIp|/

Fig. 7. Example CAVIAr courseware model depicting a databases
courseware.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

JANUARY-MARCH 2009

Courseware validation

Courseware validation

pre-requisites validation

P

LO metadata
validation

Courseware attribute
validation

N

Derived attribute Direct attribute
validation validation

Courseware model

Necessary LOs
contained in

Learning context
validation

/I\

Domain model Learning context Courseware adaptivity
constraints constraints constraints

Courseware model
integrity based on
learning content

LO ordering Conceptual pre-requisite |earner stereotype
constraints constraints

courseware

Fig. 8. Classification of CAVIAr validation constraints.

4 ADAPTIVE COURSEWARE VALIDATION

Adaptive courseware validation works by defining con-
straints on the CAVIAr metamodels [26]. These constraints
must then be adhered to in all instances of the CAVIAr
metamodel—a CAVIAr model defined by the course
creator. The course creator can therefore define constraints
that must be true for an adaptive courseware model in
terms of the CAVIAr metamodel.

In determining the CAVIAr validation model, we can
split the types of validation constraints into three key
categories (see Fig. 8):

e Validation prerequisites. This type of validation does
not check for instructional features in the CAVIAr
model, but checks that data needed for validation
are available in the CAVIAr C4 models. The
validation prerequisites allows the course creator
greater confidence in validation. In the interest of
space, we will not look at this category of validation
in detail.

o CAVIAr courseware model validation. Validation based
solely on the courseware model.

o CAVIAr learning context validation. The learning
context model (Section 3.2) defines the adaptivity
and courseware requirements. Using this type of
validation, we can check these requirements.

To formally define courseware constraints and to allow
for automated constraint checking, constraints are defined
in OCL. OCL is quite a verbose language, designed for
software engineers. To raise the level of abstraction when
using OCL, we have defined several OCL functions that
define common operations for defining CAVIAr con-
straints. These are denoted in capital letters. In defining
OCL, we also assume that all data needed for validation are
available, for example, that all LOs in the courseware have
been sufficiently annotated with metadata.

This section concludes by illustrating how a validation
model can be defined to ensure that courseware uses a
particular instructional design.

4.1 Courseware Validation Based on the

Courseware Model
Courseware model validation looks to validate the course-
ware model in isolation from the learning context.

Validation based on the courseware model lends itself to
two types of validation:

o Courseware attribute validation. This type of validation
validates a courseware attribute against an exter-
nally defined value.

o Courseware model integrity based on courseware learning
content. Validates courseware model, ensuring it is
structured correctly for the learning content it
contains.

4.1.1 Validating CAVIAr Attributes against

External Values

This is the simplest type of validation the course creator can
define. It involves comparing an attribute of the courseware
model with an external value, or deriving an attribute value
from a defined set of courseware attributes and comparing
that to some external value. The external value is an
alphanumeric value. The comparison tests the relation
between that external value and the one from the course-
ware model using a relational operator.

An example case of this constraint is where the duration
of each LO in courseware can be no more than 30 minutes.
This type of rule might be used in an environment where
the learner’s time is an expensive resource. In order to
evaluate this, the duration of each LO must be evaluated to
be below the maximum specified time. The duration of the
LO can be found in the LO’s metadata, it is an attribute of a
LO’s technical metadata. In Listing 1, the invariant con-
strains this attribute to be less than 30 (minutes).

Listing 1. OCL rule that specifies LOs in CAVIAr cannot be
longer than 30 minutes in duration.

context Metadata

inv LO_violate_max_duration_time : technical.duration < 30

A variety of aggregated data can also be derived from
the courseware model for validation. In Listing 2, the LO
duration value is used to evaluate the duration of the
courseware as a whole. This involves specifying how to
evaluate the time of topics in courseware (getTopicTime())
and then specifying a courseware invariant which retrieves
the sum of all topic times in the courseware and ensures it is
less than the maximum courseware time.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 43

Listing 2. OCL constraint that evaluates the courseware
time from its contained LOs and specifies a maximum
courseware time of 1,000 minutes.

context Topic
def: getTopicTime(): Integer =
self.resources—>select (ocllsOfType (LO))
—>iterate(i; res:Integer=0| res = res+i.metadata.technical.duration)
+self .CONTAINED_TOPICS>>iterate (j;a: Integer=0|a= a+j.getTopicTime ())
context Courseware
inv max_courseware_time_exceeded :
self.topics—>iterate (i;res:Integer=0|res=res+i.getTopicTime()) < 1000

4.1.2 Courseware Integrity Based on Courseware
Learning Objects

We can check that the courseware use of LOs is correct
through OCL. An example of such an integrity check is to
ensure that if a LO in courseware references another LO, the
referenced LO is also in the courseware.

A more complex integrity check would involve checking
the sequencing of topics and ensuring that the sequencing
of topics is correct for LOs in the courseware. For example,
should the relation be of type RelationKind. BASED_ON, such
that LO, is BASED_ON LO,, the instructional designer can
ensure that LO, is sequenced first. This is done by defining
an OCL constraint which specifies there must be a
SEQUENCED_AFTER topic relationship between the topic
which contains LO, and that of LO, stating that the topic
containing LO, is sequenced first.

OCL can also be used to validate that each of the learning
styles in the learning context model is accommodated or
used to verify that LOs which suit a particular learning style
are only delivered to learners of that learning style. This is
done by verifying that entry learner conditions exist on
topics that contain LO types associated with a particular
learning style.

4.2 Validating Courseware Using the CAVIAr
Learning Context Model

In validating courseware using the CAVIAr learning
context model, our aim is to ensure that the courseware
covers the courseware requirements stated in the learning
context model.

We define three types of instructional constraints using
the learning context model:

e instructional constraints using the domain model
only,

e instructional constraints using the overall learning
context including the domain model and the learner
sterotype information in CAVIAr, and

e courseware adaptivity constraints—check entry lear-
ner constraints on topics define the correct persona-
lization strategy.

4.2.1 Domain Model Constraints

The courseware model is associated with a domain model
through LO metadata. Each LO in the courseware is
classified using domain model concepts. The association
between courseware topics and domain model concepts
can be used to examine the courseware model in the
context of the domain model. Validation rules can be
defined based on this association comparing the course-
ware model with the domain model. Here, we will look at

how OCL can be used to compare a courseware model
with its related domain model to determine the course-
ware model’s validity.

Conceptual relationships in the domain model define
how two concepts are related to each other. We can use
this relationship to derive instructional design rules that
can be validated against the courseware model. For
example, the domain model’'s NARROWER concept rela-
tionship can be used to define a sequencing constraint
between the courseware topics, which have LOs that are
related via the NARROWER relationship. The NARROWER
conceptual relationship is used in the instructional con-
straint defined in Listing 3, which specifies that all topics
covering more specialized concepts, must be sequenced
after topics covering broader domain model concepts.

Listing 3. OCL constraint which uses conceptual relation-
ship semantics to define an instructional constraint
where all topics covering broader concepts are se-
quenced before those more specialized.

context Topic
inv sequencing_conforms_to_domain_model: self.TOPIC_CONCEPTS
—>iterate (x:Concept; a:Set(Concept)=Set{}| a—=>union (x.NARROWER))
—self .SEQUENCED_AFTER
—>iterate (y:Topic; b:Set(Concept)=Set{}| b—>union(y.referencedResource))
—>select (ocllsTypeOf (LO)—>asSet ()
= Set{}

4.2.2 Validating the Courseware Model Using the
Learning Context Model

The learning context model allows us to define two types
of constraints:

o Conceptual prerequisite constraints. Conceptual se-
quencing constraints on the courseware domain
model, here we assume one common domain model
for all LO conceptual annotation.

e Learner stereotype constraints. Can be used to ensure
that the needs of the stereotype grouping are
covered in the courseware.

We define OCL invariant constraints to check the con-
structed courseware for the conceptual prerequisite relation-
ships specified in the CAVIAr learning context model.

The first invariant checks that, if there is a prerequisite
relationship between two concepts where concept ¢, is the
prerequisite of concept ¢, then ¢, will be covered in
the courseware before concept c.

To define this, in OCL, the course creator can create two
sets for each topic, the first containing all the prerequisite
concepts of the concepts covered by topic;, set P, and the
second set containing the concepts that will definitely
be covered prior to the learner getting to topic;, set C.
The second set is constructed by getting the concepts of
the topics that are related to the topic; through the
SEQUENCED_AFTER topic relationship and topic; is the
source. The difference of these two sets is then sought.
The difference of these two sets must be an empty set
(i.e., there are no concepts that are prerequisite concepts
and not covered by topics sequenced before the topic in
question, P — C = (). We have outlined this OCL invariant
in Listing 4.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

Listing 4. OCL to ensure that prerequisite concepts are
always sequenced before the topic that requires them.

context Topic
inv conceptual_prerequisite_rule: self.TOPIC_CONCEPTS
—>iterate (x:Concept; a:Set(Concept)=Set{}| a—>union (x.PREREQUISITE)))
—self .SEQUENCED_AFTER=>iterate (y: Topic; b:Set(Concept)=Set{}|
b—=>union(y.concepts))
= Set{}

The constraint in Listing 4 allows us to check the
sequencing of courseware is conceptually correct, but does
not take into account a learner’s prior knowledge. For
example, if the set resulting from the difference operation
resulted in one concept ¢;, where ¢, € P, ie., in the
prerequisite concept set, but is presumed knowledge of a
particular learner stereotype taking the course. The course-
ware should still be deemed valid for that learner
stereotype as the concept, although not covered prior to
the topic that needs it, is knowledge the learner is assumed
to already have, defined as set L.

In Listing 5, a generic approach to dealing with presumed
knowledge is taken (P —C)— L ={). The conceptual pre-
requisite constraint violation is sought first as in Listing 4,
then any violating concepts are compared against the
common assumed knowledge for all the learners to take this
courseware (i.e., union of all presumed knowledge for all
learner stereotypes). Only when there are still outstanding
concepts will the constraint conceptual_prerequisite_rule, in
Listing 5, be flagged as invalid.

Listing 5. OCL ensuring conceptual prerequisites are
sequenced before topics that require them and also that
assumed learner knowledge is acknowledged.

context CAVIAr
inv conceptual_prerequisite_rule: self.courseware.ALL_TOPICS
—>forAll(
(TOPIC_CONCEPTS
—>iterate (x:Concept; a:Set(Concept)=Set{}|a—>union(x.PREREQUISITE))
—SEQUENCED_AFTER
—>iterate (y:Topic; b:Set(Concept)=Set{}| b—>union(y.concepts))
—self.learningContext.ls—>iterate (x: LearnerStereotype;
a:Set(Concept)=self.learningContext.ls—=>first (). constraints
—>select (oclIsOfType (PresumedKnowledge))
—>iterate (i;res:Set(Concept)=Set{}|res—>including(i.competency.c)) |
X.constraints—=>select (0clIsOfType (PresumedKnowledge))
—>iterate (j;res2:Set(Concept)=Set{}|res2—=>including(j.competency.c))
—>intersection(a)
= Set{}
)

In the OCL constraint in Listing 6, we have defined an
invariant which ensures that all goal concepts for all
learners are covered somewhere in the courseware.

Listing 6. OCL invariant ensuring that the union of all
learner stereotype goal concepts are covered in the
courseware.

context CAVIAr

inv all_learner_goals_covered: self.learningContext.ls—=>
iterate (x:LearnerStereotype;
a:Set(Concept)= Set{} | x.constraints—>select(oclIsOfType(Goal))

—>iterate (i:Goal; res:Set(Concept)=Set{}|
res—>including (i.competency.c))
—>union (a)
— self .COURSEWARE_TOPICS=>iterate (j; b:Set(Concept)=Set{}|
b—>union (j . TOPIC_CONCEPTS))
= Set{}

This OCL rule constructs a set of all the goal concepts for
all the learner stereotypes. The way the invariant does this
is very similar to how the invariant in Listing 5 constructs a
set of the common prerequisite concepts. In this case, the
invariant iterates through each of the learner sterotypes and
adds any goal concepts to a set, set G. This set is then
returned and is compared with the set of all concepts
covered in the courseware, set C. If all the goal concepts are

JANUARY-MARCH 2009

covered by the courseware, the invariant is valid, i.e., the
invariant is valid iff G — C = 0.

4.2.3 Validating Courseware Adaptivity

As outlined in Section 3.4, CAVIAr provides for adaptivity
by allowing the course creator to specify an entry constraint
on topics in the courseware, where the entry constraint is
defined in terms of learner knowledge and stereotype
membership.

Courseware validation can be used to ensure that the
courseware can adapt to a variety of different types of
learners. For example, validation can check that each topic
has supplementary material for learners who fail to achieve
a set standard after delivery of the primary learning
material.

An example case might be where the course creator
wishes to check if there is additional learning material
available for a learner who is struggling with a concept. In
order to define this OCL constraint, we must firstly define
what a “struggling learner” is, and how support is
provided. For the purposes of this work, we define a
“struggling learner” as a learner who has taken a course-
ware topic that covers some concept and is deemed to have
a knowledge level of less than or equal to 0.3 in that
concept. We define support for this learner as the provision
of additional LOs, which cover the said concept and has a
low or very low semantic density.

To ensure that this type of adaptivity is provided, the
course creator needs to define a constraint to check for the
existence of two topics, both covering the same concept and
sequenced after one another, e.g., t; sequenced after ¢;. t;
has no entry requirements, while ¢, is only made available
to learners who are struggling on the topic concept. This
will ensure that there is material been made available for
each concept, covered in the courseware, where a learner is
struggling with that concept. We have defined this as an
OCL constraint in Listing 7.

Listing 7. OCL invariant ensuring the existence of support
material for learners struggling with a concept covered
in a topic.

context Topic
inv struggling_learner_supported:

let sameConceptTopic : Topic = self.SEQUENCED_AFTER
—>select (getTopicConcept()=self.getTopicConcept()—> first ()

in
self.sameConceptTopic. entryConstraint.lessThanCompetency . level <= 0.31
and
sameConceptTopic. resources
—>select (ocllsOfType (LO)). educational . SemanticDensity < Scale : :MEDIUM

4.3 Defining a Validation Model for an Instructional
Design Theory

Instructional design theories “offer explicit guidance on
how to better help people learn” [27] and can also be
applied to ensure that a form of learning occurs, such as
constructivism [28]. To illustrate how an instructional
design theory is validated using CAVIAr, we outline the
steps involved in validating that a given courseware uses
Reigeluth’s “Elaboration Theory” [29] correctly. Firstly, the
elaboration theory is broken down into instructional
principles, which must be true for the elaboration theory
to be in use. The elaboration theory is defined as
instructional principles in [29] as follows:

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 45

e Tasks are arranged from simple tasks to more
complex tasks, starting with the simplest real-world
version of the task moving to evermore complex
versions of the task.

e Ensure tasks are not too big or too small.

e Ensure that any supporting content needed for tasks
are available to the learner.

e Use the simplest version of tasks.

e Concepts are taught starting with the broadest
concept and proceeds to ever more narrower and
less inclusive concepts.

e DPrinciples are taught starting with the broadest
principle and proceeds to ever more narrower and
less inclusive principles.

Once the instructional design has been formulated as
instructional principles, we can then transform them into
instructional constraints in the context of the CAVIAr
model. We do this as follows:

e Division of CAVIAr courseware model into con-
cepts, tasks and principles as follows:

1. Each CAVIAr topic that delivers LO of type
“Experiment” is a principle.

2. Each LO, which is of type “Problem Statement”
or “Exercise” is a task.

3. All other CAVIAr topics are concepts, the
concept is the most specialized concept that all
LOs in the topic are related to.

e Sequence principles starting with the broadest
principle according to the domain model, and
progressively allow for the learner to see more
specialized principles.

e Sequence tasks so that the simplest tasks, associated
with the broadest domain concept, are sequenced
first and then allow for them to get progressively
more difficult.

e Sequence concepts according to the domain model,
where the broadest concepts are sequenced first and
then more specialized concepts.

When the course creator has specified the courseware
constraints in terms of CAVIAr models, the constraints are
then converted to OCL. The OCL validation model can then
be validated by an OCL checker.

In Listing 8, we have defined the OCL constraints
needed to validate the correct use of the elaboration theory
in a courseware.

Listing 8. OCL defining instructional constraints ensuring
correct application of elaboration theory.

context Topic
def: isTask() : Boolean = resources—>select (ocllsTypeOf(LO))
—>exist(metadata.educational . LearningResourceType
=LearningResourceTypes : : PROBLEM_STATEMENT
or e.metadata.educational.LearningResourceType
=LearningResourceTypes :: EXERCISE)

— — All concepts covered after the current topic address narrower concepts
inv topics_sequenced_according_to_ontology :
GET_ALL_CONCEPTS_ASSOC_WITH_TOPIC=>
iterate (x:Concept; res:Set(Concept)=Set{}| res—>union(x.NARROWER=>asSet ()))
—>iterate (i:Concept; res2:Set(Topic)=Set{}| res2—>union (i.CONCEPT_TOPICS))
—>iterate (j:Topic; res3:Set(Topic)=Set{}| res3—>union(j.SEQUENCED_AFTER))
—>contains (self))

— — easiest tasks no sequenced after constraint, all others have a

— — sequenced after constraint

inv task_sequencing:
self .LOWEST_DIFFICULTY_CONTAINED_TOPIC . SEQUENCED_AFTER. oclIsUndefined () and
self .CONTAINED_TOPICS—=>reject (self .LOWEST_DIFFICULTY_CONTAINED_TOPIC)
—>forAll (not SEQUENCED_AFTER. oclIsUndefined ())

5 INTEGRATION WITH THE STATE OF THE ART
IN ADAPTIVE COURSEWARE CONSTRUCTION

As we have mentioned, courseware validation is a course-
ware construction activity. Our approach to adaptive
courseware validation is neutral of a courseware construc-
tion methodology. To increase the value of adaptive
courseware validation, it can be integrated into an existing
courseware construction methodology. In this section, we
will outline how our courseware validation approach can be
integrated with the state of the art in adaptive courseware
authoring tools. This is done by mapping the authoring
tool’s internal data models, representing the courseware
construction concerns, to CAVIAr. In this section, we
provide details on how this can be achieved through model
transformation technologies.

The section begins by outlining what model transforma-
tions are and how they allow for interoperability between
CAVIAr and the state of the art in courseware authoring
tools. We then exemplify this by outlining how adaptive
courseware developed using the MOT can be validated
using CAVIAr.

5.1 Model Transformations

Model transformations allow for the transformation from
one model type to another model type using a declarative
transformation mapping defined between two metamodels.
A model transformation specification defines how meta-
model element(s) from one metamodel are mapped to
metamodel element(s) of another metamodel. Transforma-
tion mappings are subjective and mapping alternatives
could be defined by the course creator to replace the ones
expressed here.

In order to define a transformation from an adaptive
courseware specification to CAVIAzr, firstly, a metamodel
must exist for the adaptive courseware specification,
secondly, a mapping must be defined from the adaptive
courseware specification metamodel to the CAVIAr meta-
model, and thirdly, any CAVIAr model elements not
available through the adaptive courseware specification
must be provided by the course creator.

Transformations separate the integration concern from
the other concerns in courseware construction. This means
that should a courseware specification change or a new one
developed, the transformation just needs to be updated or
defined, respectively.

The course creator uses the transformation to generate
the CAVIAr models. Transformations are defined by model
transformation experts to be used by the course creator to
allow for interoperability from courseware specifications
and knowledge representation standards to CAVIAr.

5.2 Case Study: Integrating of MOT with CAVIAr

To validate our approach to CAVIAr integration, we have
tested it on AEH developed using the MOT tool, where
AEH can be viewed as small-scale adaptive courseware
delivered through hypermedia. We have chosen to
validate the AEH produced by MOT, as it is portable
and in a well-established AEH format, known as LAOS.
Interoperability between AEH produced by MOT and
CAVIAr is very challenging as there is a mismatch

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

between the specifications at the conceptual level. In [30],
we provide extensive details on how these difficulties
were overcome. In this paper, we will just outline the main
points of the integration.

The MOT tool uses the LAOS model for defining AEH.
Some preliminary work has been done in developing a
metamodel for LAOS. Static elements of the LAOS model
have been extracted for integration with AEH delivery
systems in the form of an XML schema, known as the
Common Abstraction Framework (CAF) [2]. We investi-
gated what was involved in firstly mapping CAF to
CAVIAr, and subsequently looked at mapping adaptive
rules in LAOS to CAVIAr.

A formal CAF metamodel was required for the transfor-
mation definition. This was generated from the CAF XML
schema. Tool support for this was provided by the Eclipse
EMF framework [31].

Once the CAF metamodel was defined, the transforma-
tion between the CAF and CAVIAr metamodels was
defined using a model transformation language [32].
Below, we outline the transformation mappings to each
CAVIATr model.

In order to define the CAVIAr domain model, we define
a mapping from the LAOS domain model concept map to
the CAVIAr domain model. In this transformation, the CAF
domain model concept is related to the CAVIAr domain
model concept. The conceptual composition relationship in
CAF, which relates two CAF concepts together, is trans-
formed to the CAVIAr ConceptRelationship class of type
NARROWER, where the contained concepts in LAOS are
“narrower” in scope to that of the containing concept.

The CAVIAr learning context model is defined using the
LAOS goal and constraint model definition. Mapping is
defined as follows:

e The LAOS goal and constraints model is trans-
formed into a single generic learner stereotype in
CAVIAr.

e LAOS lesson goals are transformed into CAVIAr
goals for the generic learner stereotype.

e Conceptual sequencing data in the LAOS lesson are
transformed to PRE_REQUISITE relationships be-
tween concepts in CAVIAr.

An explicit courseware model is not defined in the CAF
model but can be derived using the CAF’s domain model.
In LAOS, the domain model contains learning content in
concept attributes. We define a transformation mapping for
each concept in the CAF domain model to courseware
topics in the courseware model.

In defining the transformation from the CAF model to
the CAVIAr courseware model, we specify a 1:1 relation
between the concepts in CAF and the CAVIAr courseware
topics. CAF Concepts that are contained in other concepts
are transformed to CAVIAr topics which have a TopicRela-
tionship—PART-OF to the CAVIAr topic which has been
mapped from the CAF containing concept.

There is generally a direct mapping from the LO
metadata in courseware to the CAVIAr learning resource
model, due to the extensive use of the IEEE LOM standard
in the definition of the CAVIAr learning resource model. In
some AEH tools, LOs are not explicit units of instruction in

JANUARY-MARCH 2009

the courseware but are embedded in the domain model
attributes. This is the case in LAOS. The learning resource
model is therefore derived from the domain model
definition. To generate LOs from the LAOS, we transform
each conceptual attribute to an LO. The LO metadata are
automatically derived for each LO generated, using the
attribute type (e.g., title, conclusion) and the concept the
attribute is associated with.

In the CAVIAr courseware model, adaptive behavior is
principally provided by specifying restrictions on the
sequencing of topics and/or restrictions on learner profiles
that can access a topic. In LAOS, adaptive rules are defined
using an adaptive rule language known as LAG [12]. In [30],
we outline how the LAG adaptive rule abstract syntax is
used to create a MOF metamodel for adaptive rules. A
transformation mapping is then defined from the adaptive
rule metamodel to the CAVIAr courseware metamodel.

Once the LAG and CAF have been transformed into
CAVIAr C4 models, a validation model can be defined for
the AEH courseware as outlined in Section 4.

6 EVALUATION

In this section, we firstly evaluate the CAVIAr metamodel
assessing its soundness and completeness, and then assess
its expressiveness. After this, we evaluate our approach to
adaptive courseware validation—constraint-based valida-
tion. The feasibility of the approach is validated by
outlining details of a CAVIAr implementation, a course-
ware validation software tool. The subsequent sections
outline how this software tool was used to evaluate user
acceptance, performance, and usability of constraints-based
courseware validation.

6.1 CAVIAr Soundness and Completeness

In order to evaluate the CAVIAr metamodel, we wish to
establish its soundness and completeness. Guizzardi et al.
outline how this can be done by comparing the metamodel
to a well-established domain conceptualization such as an
ontology [33]. Guizzardi et al. define a modeling language
as sound when every modeling primitive has a representa-
tion in the ontology. They define a language as complete
when every concept in the ontology is represented in the
modeling language.

To establish the soundness and completeness of the
CAVIAr metamodels, we mapped each of the metamodels,
defined in CAVIAr, to a well-defined conceptualization
representing the metamodel’s course construction concern.
In Section 5, we have outlined the degree of soundness
and completeness of the CAVIAr domain model and
learning context model by mapping them to the LAOS
model, a well-established AEH specification for defining
AEH requirements.

As we have already noted, the LAOS model does not
represent courseware or LOs as found in CAVIAr. The
courseware model can be mapped to either the ADL SCORM
2004 [25] specification or the IMS LD [18] specification. In
our initial experiments, we have found that all elements in
the courseware model can be mapped to some modeling
element or group of modeling elements in both specifica-
tions. We can then conclude the CAVIAr courseware

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 47

metamodel to be sound. The completeness of the CAVIAr
courseware metamodel is undetermined. Further experi-
ment is required to establish if all combination of constructs
in the LD and SCORM specifications can be represented in
the CAVIAr courseware metamodel definition.

The IEEE LOM standard [24] was used as a domain
conceptualization for the LOs in the CAVIAr learning
resource model. The CAVIAr learning resource model is
based on the IEEE LOM standard. There is therefore a one-
to-one mapping of the elements in IEEE LOM to the
modeling elements defined in the CAVIAr metamodel. We
can therefore conclude that the learning resource model is
both sound and complete.

6.2 CAVIAr Expressiveness

In evaluating the constraint-based approach outlined in this
paper, we have carried out various case-study evaluations,
where instructional design theories and models have been
taken from [34] and defined in terms of a CAVIAr
validation model. Tests have demonstrated that CAVIAr
is expressive enough to capture the essence of instructional
design theories as well as core personalization strategies.
Sections 4.3 and 5 illustrate examples of such tests. By
expressing well-established instructional design theories as
CAVIAr constraints, we have shown our approach to be
capable of checking courseware for real-world problems.

6.3 Feasibility

To validate our approach, we have designed and imple-
mented a courseware validation tool, based on the Eclipse
Modeling Framework (EMF) [31] that allows for OCL-based
model validation and also model transformation through
the Atlas Transformation Language (ATL) [32]. CAVIAr
models are defined using EMF. An intuitive Graphical
Modeling Framework (GMF) user interface has been
developed for the course creator to view and edit the
CAVIAr models. Our tool allows for the importing of
SCORM 2004 and IMS LD courseware creating a CAVIAr
courseware model. Domain models can also be imported
from knowledge organization structures on the Semantic
Web such as SKOS [21]. The tool provides the course
creator with an intuitive-model-based interface with which
to inspect and edit the CAVIAr models generated from
import (transformation).

6.4 User Trials

In order to gauge the usefulness of CAVIAr validation, we
have demonstrated courseware validation, using the soft-
ware tool described in Section 6.3, to the course creator. The
demonstrations were conducted in a one-to-one tutorial-
type scenario. The CAVIAr validation model used had an
constraint for each of the types defined in Section 4. There
were 14 participants of the trial, all of whom have been
responsible for authoring or adapting accredited courses in
academia and/or industry. All considered themselves to be
familar or an expert with e-learning, while 71 percent
considered themselves familiar or expert in e-learning
authoring, 86 percent were familiar with personalized
e-learning, no participant considered themselves an expert.

The reaction to validation was very positive from all
participants, with 92 percent of participants believing that

validation exposed actual problems in the courseware. All
participants agree, with 57 percent strongly agreeing, that
they would be more confident in newly created courseware
once it had been validated.

Many participants saw key advantages to the model-
based validation, as validation constraints could be used to
ensure that a given courseware meets some specified
requirement, either for accreditation purposes or for
legislative requirements.

Model transformation was seen as a flexible technology
allowing for integration with the state of the art. Course
creators did not always agree with the mappings defined
but were satisfied with the option of altering the mapping
in the transformation definition.

6.5 Performance

CAVIAr courseware validation uses an OCL checker that
iterates through each model element instance checking if
imposed constraints are violated. The processing time of
CAVIAr is therefore dependent on the number of model
elements in the CAVIAr model. This can be compared with
other validation approaches where a learner’s progression
though courseware is simulated. These approaches are
outlined in Section 7. The processing time of these
approaches depend on the number of independent paths
in courseware, which can be very large for personalized
courseware. When conducting our user trials, we found that
57 percent of participants did not feel they were waiting a
long time for their validation results, while the remainder
gave a neutral answer.

6.6 Ease of Use

In the user trials, the definition of an OCL validation model
was identified as a key usability concern. To this effect, we
have raised the level of abstraction at which the course
creator creates a validation model by developing software
support for creating the validation model. This allows the
course creators to create an OCL validation model using an
intuitive domain specific modeling language [35]. Further to
this, we anticipate constraint models to be reused in a
similar fashion to LOs, limiting the need for the course
creator to define their own validation model.

7 REeLATED WORK

The use of logics for validating courseware has been
investigated by the ALICE project at the University of
Torino [9]. The project looks at a range of course
construction activities including course verification [36]
and construction [9].

Courses are represented using action theory, where each
course component is an action with preconditions and
postconditions. Traditional Al reasoning, such as temporal
projection, are used to check that all preconditions in the
action theory are respected.

Curricula models allow for restrictions and constraints to
be placed on possible learning resource sequences. Curri-
cula models are formalized using temporal constraints and
are independent of the learning resources, operating at the
knowledge level. For example, a possible constraint might

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.2, NO. 1,

be that knowledgeElement, must be learned before knowl-
edge element knowledgeElement, can be attempted. Using
linear-time temporal logic (LTL) to represent temporal
constraints allows for the verification of the curriculum.

The motivation behind Baldoni et al.’s work is to validate
Italian student study plans. A study plan is a list of courses
a student takes in University. Each year students may alter
their study plan. These alterations may have adverse effects
to the students overall learning goal.

Verifying compliance means that the curriculum respects
the constraints at the knowledge level represented using the
curricula model, constraints at the resource level repre-
sented using action theory, and that the curriculum allows
the learner to reach some goal state.

In order for logics to be a viable method for curriculum
construction and verification, the logic coding would have
to be hidden from the user. The work by Baldoni et al. looks
primarily at the sequencing of modules in a degree style
programme. Our work concentrates on the sequencing of
topics within a degree module, the granularity level is
smaller. Our work also looks to not only validate the
sequencing of topics in courseware, but looks at other
instructional concerns, as outlined in Section 4.

The Concept-based Courseware Analysis tool (CoCoA),
developed at Carnegie Technology Education, uses two
types of validation: typed items and advanced concept
roles [8].

Typed items allow for validation of the positioning of
particular teaching operations.

Advanced concept roles define a LO with regard to
prerequsite knowledge and knowledge outcome. A concept
has two types of prerequisites and two types of outcomes,
strong and weak. A strong prerequisite or outcome
indicates that deep knowledge of the concept referenced
is required for the specified learning item, while a weak
prerequisite or outcome indicates that only surface knowl-
edge of the concept referenced is required.

CoCoA checks only sequential learning paths through
learning material. This is done by simulating a learner’s
progression through the learning material. The tool then
generates a report once all simulations are complete This
report will indicate any “content holes,” where the learner
encounters an LO without having the necessary prerequsite
knowledge needed to use the LO.

CoCoA validation goes beyond just validating basic
course sequencing, the tool also has a variety of rules
relating the type and location of learning items to each
concept in a course.

CoCoA was prototypical in nature and as such there is
no consideration for TEL standards. Pedagogical problems
are defined by the CoCoA developer, there is no facility for
the course creator to manipulate the validation rules. This
caused problems with user acceptance [8]. CoCoA was not
developed using an extensible architecture which would
allow for the inclusion of unforeseen pedagogical rules in
the future. It also does not reflect the complexity of
validating the modern course as all courses validated using
CoCoA must be linear in nature with no branching points.

JANUARY-MARCH 2009

8 CONCLUSIONS

In this paper, we have defined CAVIAr, a formal modeling
framework used to express courseware in terms of its design
and its requirements. We illustrated how valid courseware
can be defined in terms of CAVIAr constraints using OCL.
Constraint-based validation of courseware is a novel
approach to courseware validation, where constraints are
defined on courseware modeling constructs. This differs to
the state of the art in validation, covered in Section 7, where
validation is based on a simulation of learner progression
through every possible learning path in a given courseware.
This can lead to computational problems where there are
many learning paths through courseware, such as that found
in personalized courseware. Our approach is better suited to
personalized courseware as it is not adversely affected by
many learning paths. This is because our approach validates
courseware in terms of its compositional structure rather
than the possible learning paths it represents.

Our evaluation of constraint-based validation shows that
course creators are more confident that adaptive course-
ware has been constructed correctly after validating it using
CAVIAr. Validation reduces the risk of delivering pedago-
gically unsound courseware to a learner due to errors in
personalization definitions.

We have also described how our approach to validating
personalized courseware is completely interoperable with
the state of the art in TEL and AEH specifications. This is
achieved using model transformation technology. Model
transformation technology is very flexible and can easily be
extended to incorporate new specifications or changes to
the existing ones.

At present, the CAVIAr constraints are represented in
OCL, a language designed for software engineers, not
course creators. We have outlined our work, creating a
simple model-based user interface for creating validation
constraints. We are also investigating the reuse of annotated
instructional constraints. This way, the course creator does
not, in general, have to define constraints but just looks for
them in a constraint repository. A further extension to this
would allow the grouping of instructional constraints into
instructional designs, allowing the course creator to work at
an even higher level of abstraction.

Validation, as presented in this paper, has been designed
for university-level courses of a technical orientation. This
type of course typically consists of lectures, tutorials, labs/
practicals, and supplementary learning material. We would
like to generalize our validation approach to consider other
e-learning opportunities, such as (semi-)automatically
generated courseware for self-learning. We would also like
to consider the dimension m-learning would present to
CAVIAr, such as considering the device the learner uses at
delivery time.

REFERENCES

[1] D.Dagger, “Personalised eLearning Development Environments,”
PhD dissertation, Univ. of Dublin, 2006.

[2] A. Cristea, D. Smits, and P. de Bra, “Towards a Generic Adaptive
Hypermedia Platform: A Conversion Case Study,”]. Digital
Information, vol. 8, no. 3, http://journals.tdl.org/jodi/article/
view/231/184, 2007.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

MELIA AND PAHL: CONSTRAINT-BASED VALIDATION OF ADAPTIVE E-LEARNING COURSEWARE 49

B3]

(4]

(5]

(o]

(71

(8]

]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

(21]
(22]

[23]

[24]
(23]

[20]

J.W. Samples, “The Pedagogy of Technology—Our Next Fron-
tier?” Connexions, vol. 14, no. 2, pp. 4-5, 2002.

P.V.Rosmalen, H. Vogten, R.V. Es, H. Passier, P. Poelmans, and R.
Koper, “Authoring a Full Life Cycle Model in Standards-Based,
Adaptive e-Learning,” |. Educational Technology and Soc., vol. 9,
no. 1, pp. 72-83, 2006.

J. Jovanovi¢, “Generating Context-Related Feedback for Tea-
chers,” Int’l |. Technology Enhanced Learning, vol. 1, nos. 1-2,
pp- 47-69, 2008.

W. Dick and L.M. Carey, “Formative Evaluation,” Instructional
Design: Principles and Applications, second ed., pp. 227-267,
Educational Technology Publications, 1991.

L.M. Carey and W. Dick, “Summative Evaluation,” Instructional
Design: Principles and Applications, second ed., pp. 269-311,
Educational Technology Publications, 1991.

P. Brusilovsky and]. Vassileva, “Course Sequencing Techniques
for Large-Scale Web-Based Education,” Int’l]. Continuing Eng.
Education and Lifelong Learning, vol. 13, nos. 1-2, pp. 75-94, 2003.
M. Baldoni, C. Baroglio, and V. Patti, “Web-Based Adaptive
Tutoring: An Approach Based on Logic Agents and Reasoning
about Actions,” Artificial Intelligence Rev., vol. 22, pp. 3-39, 2004.
D. Djuri¢, D. Gasevic, and V. Devedzic, “The Tao of Modeling
Spaces,”]. Object Technology, vol. 6, 2006.

J.B Warmer and A. Kleppe, The Object Constraint Language, second
ed. Addison Wesley, 2003.

AL Cristea and M. Verschoor, “The LAG Grammar for Authoring
the Adaptive Web,” Proc. Int’l Conf. Information Technology: Coding
and Computing (ITCC '04), vol. 1, pp. 382-386, Apr. 2004.

A. Berlanga and F.J. Garcia, “Towards Reusable Adaptive Rules,”
Proc. Int’l Workshop Adaptive Hypermedia and Collaborative Web-
Based Systems (AHCW 04), July 2004.

Al Cristea, D. Smits, and P. De Bra, “Writing MOT, Reading
AHA!—Converting Between an Authoring and a Delivery
System for Adaptive Educational Hypermedia,” Proc. Third Int’l
Workshop Authoring of Adaptive and Adaptable Educational Hyper-
media, http://wwwis.win.tue.nl/acristea/HTML/AIEDO05/5-10-
cristea4-.pdf, June 2003.

Al Cristea and A. de Mooij, “LAOS: Layered WWW AHS
Authoring Model and Their Corresponding Algebraic Operators,”
Proc. 12th Int’l World Wide Web Conf. (WWW "03), May 2003.

P. De Bra and L. Calvi, “AHA!: A Generic Adaptive Hypermedia
System,” Proc. Second Workshop Adaptive Hypertext and Hypermedia,
http:/ /wwwis.win.tue.nl/ah98/Proceedings.html, Eindhoven
University of Technology, June 1998.

A. Moore, TJ. Brailsford, and C.D. Stewart, “Personally Tailored
Teaching in Whurle Using Conditional Transclusion,” Proc. 12th
ACM Conf. Hypertext and Hypermedia (HYPERTEXT '01), pp. 163-
164, 2001.

H. Hummel, J. Manderveld, C. Tattersall, and R. Koper,
“Educational Modelling Language and Learning Design: New
Opportunities for Instructional Reusability and Personalised
Learning,” Int’l |. Learning Technology, vol. 1, no. 1, pp. 110-126,
2004.

D. Hernandez-Leo, E.D. Villasclaras-Fernandez, J.I. Asensio-
Pérez, Y. Dimitriadis, .M. Jorrin-Abellan, I. Ruiz-Requies, and B.
Rubia-Avi, “Collage: A Collaborative Learning Design Editor
Based on Patterns,” Educational Technology and Soc., vol. 9, no. 1,
pp- 58-71, 2006.

M. Melia and C. Pahl, “An Information Architecture for
Validating Courseware,” Proc. First Int'l Workshop Learning Object
Discovery and Exchange (LODE '07), Sept. 2007.

A. Miles and D. Brickley, “SKOS Core Guide,” Technical Report,
2005.

R. Gagné, W. Wager, K. Golas, and]. Keller, Principles of
Instructional Design, fifth ed. Wadsworth, 2005.

N. Stash A. Cristea, and P. DeBra, “Authoring of Learning Styles
in Adaptive Hypermedia: Problems and Solutions,” Proc. 13th Int’l
World Wide Web Conf. Alternate Track Papers and Posters (NWW Alt.
'04), pp. 114-123, 2004.

“LTSC WG12: Learning Object Metadata,” IEEE Learning Tech-
nology Standards Committee, 2002.
A. ADL, “SCORM 2004 Overview,”
scorm/index.cfm, 2004.

M. Melia, “Constraint-Based Validation of Courseware Using
Model-Driven Engineering,” PhD dissertation, Dublin City Univ.,
2009.

http://www.adlnet.gov/

(27]

(28]

(29]

(30]

[31]

(32]

(33]

[34]

[35]

(30]

C.M. Reigeluth, “What is Instructional-Design Theory and How Is
It Changing?” Instructional-Design: Theories and Models, A New
Paradigm of Instructional Theory, vol. 2, pp. 5-30, Lawrence Erlbaum
Assoc., 1999.

R.E Mayer, Designing Instruction for Constructivist Learning.
Lawrence Erlbaum Assoc., 1999.

C.M. Reigeluth, ed., “The Elaboration Theory: Guidance for Scope
and Sequencing Decisions,” Instructional Design: Theories and
Models, vol. 2, pp. 425-453. Lawrence Erlbaum Assoc., 1999.

M. Melia and C. Pahl, “Towards the Validation of Adaptive
Educational Hypermedia Using CAVIAr,” Proc. Sixth Int'l Work-
shop Authoring Adaptive and Adaptable Hypermedia (A3H '08), July
2008.

F. Budinsky, S.A. Brodsky, and E. Merks, Eclipse Modeling
Framework. Pearson Education, 2003.

F. Jouault and 1. Kurtev, “Transforming Models with ATL,” Proc.
Model Transformations in Practice Workshop (MoDELS ’05), Oct.
2005.

G. Guizzardi, L.F. Pires, and M. van Sinderen, “Ontology-Based
Evaluation and Design of Domain-Specific Visual Modeling
Languages,” Proc. 14th Int’l Conf. Information Systems Development,
pp. 691-705, 2005.

C.M. Reigeluth, Instructional Design: Theories and Models, vol. 2.
Lawrence Erlbaum Assoc., 1999.

U.T Janjua, “Model Based OCL Generation,” MS thesis, Dublin
City Univ., 2008.

M. Baldoni, C. Baroglio, V. Patti, and L. Torasso, “Reasoning
About Learning Object Metadata for Adapting SCORM Course-
ware,” Proc. Int’l Workshop Eng. Adaptive Web: Methods and
Technologies for Personalization and Adaptation in the Semantic Web
(EAW2 '04), pp. 4-13, Aug. 2004.

Mark Melia received the BSc degree in software
systems from the National College of Ireland. He
is currently working toward the PhD degree at
Dublin City University within the Software and
Systems Engineering Research Group. His
research interests are in the area of courseware
construction and courseware modeling. He has
published numerous papers on this topic. He is a
student member of the IEEE.

Claus Pahl is a senior lecturer and the leader of
the Software and Systems Engineering Re-
search Group at Dublin City University, which
focuses on Web technologies and e-learning
applications in particular. Dr. Pahl has published
more than 160 papers, including a wide range of
journal articles, book chapters, and conference
contributions on e-learning. He is on the editorial
board of the International Journal on E-Learning
and the International Journal of Technology-

Enhanced Learning, and is a regular reviewer for journals and
conferences in the area of software, Web, and learning technologies
and their applications. He has extensive experience in educational
technologies, both as an instructor using technology-supported teaching
and learning at the undergraduate and postgraduate level and as a
researcher in Web-based learning technology. The IDLE environment,
developed by him and his students, has been in use in undergraduate
teaching since 1999. He is a member of the IEEE.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 7, 2009 at 04:32 from |IEEE Xplore. Restrictions apply.

