
Flexible Querying of Lifelong Learner Metadata

Alexandra Poulovassilis and Peter T. Wood

London Knowledge Lab, Birkbeck, University of London, UK
{ap,ptw}@dcs.bbk.ac.uk

Abstract. We propose combining query approximation and query re-
laxation techniques in order to support flexible querying of heterogeneous
data arising from lifelong learners’ educational and work experiences. A
key aim of such querying facilities is to allow learners to identify possible
choices for their future learning and professional development from what
others have done. With our approach, query results can be computed
incrementally, in polynomial time, and returned in order of increasing
“distance” from the user’s original query.

1 Introduction

Supporting the needs of lifelong learners is leading to research into new learner-
centred models of delivering learning resources and opportunities [19, 18] and
into the role of online support in providing careers guidance [3, 5]. In this di-
rection, the L4All system aims to support lifelong learners in exploring learning
opportunities and in planning and reflecting on their learning [6]. Consultation
early in the L4All project with groups of Further Education (FE) and Higher
Education (HE) learners found that careers advice is often patchy, especially
at critical decision points, that social networks and factors influence educational
and career choices, and that word-of-mouth recommendations play an important
role. There is also a link between careers guidance and learner retention, based
on correcting false assumptions and creating learners’ expectations that are in
line with the real-life experiences of others.

The L4All system allows users to create and maintain a chronological record
of their learning, work and personal episodes — their timelines. This approach is
distinctive in that the timeline provides a record of lifelong learning, rather than
learning at just one stage or period, and provides us with a tool to understand
social as well as educational factors that may influence career decisions and
educational choices.

Figure 1 illustrates a fragment of the data and metadata relating to a user’s
timeline (where sc denotes subclassOf). The episodes within a timeline have a
start and an end date associated with them (for simplicity, these are not shown
in Figure 1). Episodes are ordered according to their start date — as indicated by
edges labelled next. There are several types of episode, for example University
and Work in our example. Associated with each type of episode are several prop-
erties — for simplicity, we have shown just two of these, qualif[ication] and
job.

Occupation

Education Media Professional

Humanities Editor

Languages Associate Editor

Editor-in-ChiefTravel Service Occupation

English Studies Air Travel Assistant Journalist Assistant Editor

sc

sc
sc

sc

sc

sc

sc

sc

sc

sc

sc

j22 j23 j24BA English

type type type type

ep21 ep22 ep23 ep24

next next next

prereq

qualif job job job

University Work Work Work

type type type type

Fig. 1. A fragment of timeline data and metadata

A key aim of the L4All system is to allow learners to search over the timeline
data, and to identify possible choices for their own future learning and pro-
fessional development by seeing what others have done. In particular, [22, 21]
describe a facility for searching for “people like me” which takes users through
a three-step process in searching for timelines that may be relevant to them:
(i) The user specifies which attributes of their profile should be matched with
other users’ profiles, which acts as a filter of possible candidate timelines.
(ii) The user specifies which parts of their own timeline should be matched with
other users’ timelines, by selecting the required categories of episode. There are
some 20 categories of episode; some categories are annotated with a primary and
possibly a secondary classification, drawn from standard U.K. occupational and
educational taxonomies (see Figure 1 for an indicative fragment of such meta-
data). Each classification hierarchy may have up to four levels.
(iii) The user selects the “depth” of episode classification that should be taken
into account when matching their own timeline data with that of others, and se-
lects the similarity metric that should be applied. The metric can be one of four
alternatives: Jaccard Similarity, Dice Similarity, Euclidean Distance, and Needle-
manWunch Distance (see www.dcs.shef.ac.uk/~sam/stringmetrics.html).

Once the user’s definition of “people like me” has been specified, the system
returns a list of all the candidate timelines, ranked by their normalised similarity.
The user can then select one of these timelines to visualise in detail.

Although this facility certainly helps users to find and explore relevant time-
lines and episodes, it is rather rigid for a number of reasons: it offers a fixed

set of similarity metrics over the timeline data; it allows just a single level of
detail to be applied to the classifications of the selected categories of episode;
and the similarity matching is applied to all these categories of episode in the
user’s timeline and the target timelines. Thus, there is limited flexibility for users
to formulate their precise requirements for the timeline search, and to explore
alternative formulations of selected parts of their query.

This paper proposes new flexible querying techniques for supporting users’
search over the L4All database of timelines. We begin with a discussion of the
background and motivation for our approach in Section 2. In Sections 3 and 4 we
define the notion of ApproxRelax queries, which combine query approximation
and query relaxation capabilities: we first define the semantics of single-conjunct
ApproxRelax queries and we discuss the evaluation of such queries; we then
define the semantics of general ApproxRelax queries, discuss their complexity,
and present a polynomial-time algorithim for incrementally computing the top-k
answers to such queries. We give our concluding remarks in Section 5.

2 Motivation

We assume here a general semistructured data model comprising a directed graph
G = (V,E). Each node in V is labelled with a constant and each edge is labelled
with a symbol l drawn from a finite alphabet Σ. This general graph model
encompasses RDF/S data, except that it does not allow for the representation of
RDF’s “blank” nodes. Also, in this paper we assume that only a limited fragment
of the RDFS vocabulary is interpreted — rdf:type and rdfs:subClassOf —
which we abbreviate by type and sc.

In [12], we considered conjunctive regular path (CRP) queries [2] over our
general graph model (but without support for any interpreted vocabulary or
query relaxation). Such queries are of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m,
is a variable appearing in the body of the query, and each Ri, 1 ≤ i ≤ n, is a
regular expression over Σ.

The answer to a CRP query Q on a graph G is specified as follows. We find for
each conjunct (Xi, Ri, Yi), 1 ≤ i ≤ n, a relation ri over the scheme (Xi, Yi) such
that tuple t ∈ ri if there is a path from t[Xi] to t[Yi] in G whose concatenation
of edge labels satisfies the regular expression Ri. We then form the natural join
of relations r1, . . . , rn, 1 ≤ i ≤ m, and project over the variables appearing in
the head of the query.

Example 1. Suppose that Mary is studying English at university and wishes to
find out what possible future career choices there are for her by seeing what other
people who studied English at university have gone on to do. The following CRP
query Q0 can be formulated1:
1 In the concrete syntax of CRP queries, variable names are preceded with ‘?’. In

practice, we would expect such user querying requirements to be submitted via a

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
(?D,type,EnglishStudies),
(?E1,next+,?E2),
(?E2,type,Work),(?E2,job,?A),(?A,type,?P)

When Q is evaluated on a database that includes the fragment of timeline data
shown in Figure 1, the results returned include
(ep22,AirTravelAssistant)
(ep23,Journalist)
(ep24,AssistantEditor). ut

We see that amongst the answers returned is a tuple showing that someone
went on to become an Air Travel Assistant. Mary may judge this occupation
as not requiring specifically a degree in English, and she may wish to refine her
query in order to find out about future career choices that are dependent on
people having studied English at University.

The timeline in Figure 1 has an edge labelled prereq from ep23 to ep24. This
is an annotation created by the the timeline’s owner indicating that this person
believes that undertaking an earlier episode was necessary in order for them to
be able to proceed to or achieve a later episode. So Mary might instead pose
this query, Q1:

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
(?D,type,EnglishStudies),
(?E1,prereq+,?E2),
(?E2,type,Work),(?E2,job,?A),(?A,type,?P)

However, this will return no results relating to the example timeline of Fig-
ure 1, even though it is evident that this timeline does contain information that
would be relevant to Mary. This is because, in practice, users may or may not
create prereq metadata relating to their timelines. So it is desirable to provide
users with flexible ways of querying such timeline data.

Using regular expressions to query data has been much studied (e.g. [4, 2,
17, 20]), as have approximate query matching techniques (e.g. [7, 9–11, 14–16].
In [12], we studied a combination of these and showed that approximate matching
of CRP queries can be undertaken in polynomial time, building on techniques
from [9]. The edit operations we allowed in approximate matching of queries
were insertions, deletions and substitutions of edge labels, inversions of edge
labels (corresponding to reverse traversals of edges in the database graph), and
transpositions of adjacent labels, each with an assumed edit cost of 1. Query
results were returned incrementally to the user in order of their increasing edit
distance from the original query.

Here, we assume the same edit operations except that, for simplicity of expo-
sition, we exclude inversions of edge labels — we note though that the techniques
we describe extend straightforwardly to this more general case, and the query
complexity results still hold.

visual search interface (similarly to the current L4All Graphical User Interface) and
results to be presented in a visually appealing and easy-to-browse fashion.

Example 2. Consider query Q1 above. If Mary chooses to allow replacement of
the edge label prereq in her query by the label next, she can submit a variant
of Q1:

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
(?D,type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,type,Work),(?E2,job,?A),(?A,type,?P)

The regular expression prereq+ in the above query can be approximated by
the regular expressions next.prereq* and prereq.next.prereq*, both at edit
distance 1 from prereq+. This allows the system to return
(ep22,AirTravelAssistant)
to Mary, at an edit distance 1 from her original query Q1. Mary may judge
this result to be not relevant and may seek further results from the system,
at a further level of approximation. The regular expressions next.prereq* and
prereq.next.prereq* can both be approximated by next.next.prereq*, now
at edit distance 2 from Q1. This allows the following answers to be returned:
(ep23,Journalist)
(ep24,AssistantEditor)
Mary may judge both of these as being relevant, and she can then request the
system to return the whole of this user’s timeline for her to explore further. ut

The previous example took as input a starting timeline episode and explored
the possible future work choices. This next example additionally specifies an end
goal and explores how someone might reach this from a given starting point:

Example 3. Suppose Mary knows she wants to become an Assistant Editor and
would like to find out how she might achieve this, given that she’s done an
English degree. Mary might pose this query, Q2:

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
(?D,type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,job,?A),(?A,type,?P)
APPROX (?E2,prereq+,?Goal),
(?Goal,type,Work),(?Goal,job,?AG),
(?AG,type,AssistantEditor)

At distance 0 there are no results from the example timeline of Figure 1. At
distance 1 there are still no results. At distance 2, the following answers are
returned:
(ep22,AirTravelAssistant)
(ep23,Journalist)
the second of which gives Mary potentially useful information about how she
might become an Assistant Editor. ut

Example 4. Continuing with Example 3, suppose Mary now wants to know what
other jobs, similar to being an Assistant Editor, might be open to her. There

are many categories of jobs classified under the more general category Media
Professional. However, if Mary enters query Q2 above none of these jobs re-
lated to Assistant Editor will be matched by her query. What she would like to
pose instead (borrowing the “RELAX” syntax from [11]) is:

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
(?D,type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,job,?A),(?A,type,?P)
APPROX (?E2,prereq+,?Goal),
(?Goal,type,Work),(?Goal,job,?AG),
RELAX (?AG,type,AssistantEditor)

which would relax the concept Assistant Editor to its parent concept Editor,
matching jobs such as Assistant Editor, Associate Editor, Editor-in-Chief
etc. Mary could seek further relaxation of Editor to Media Professional,
which could return even more results. ut
Example 5. As a further extension, suppose another user, Joe, wants to know
what jobs similar being an Assistant Editor might be open to someone who has
studied English or a similar subject at university. Subject disciplines are again
classified, e.g. English Studies under Languages, which itself is classified under
Humanities. So Joe may pose the query

(?E2,?P) <- (?E1,type,University),(?E1,qualif,?D),
RELAX (?D,type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,job,?A),(?A,type,?P)
APPROX (?E2,prereq+,?Goal),
(?Goal,type,Work),(?Goal,job,?AG),
RELAX (?AG,type,AssistantEditor)

This would successively relax both the concept EnglishStudies and the concept
Assistant Editor, as well as in parallel approximating the two instances of the
regular expression prereq+. Query results would be returned in increasing overall
distance (relaxation and approximation) from the original query. ut

We explored query relaxation techniques for RDF/S queries in [11], but did
not consider combining this with query approximation. Here, we consider com-
bining query approximation with a restricted form of query relaxation, in order
to support the potentially complex querying requirements of lifelong learners
who are searching over heterogeneous timeline-related data. Specifically, given a
query conjunct of the form (X, type, c), we wish to allow it to be rewritten to
(X, type, csup), with some cost relax(c, csup), where csup is a superclass of c.

3 Single-Conjunct ApproxRelax Queries

In this section we introduce the notion of ApproxRelax queries comprising only
a single conjunct. In the next section, we define ApproxRelax queries in general,
of which the last two queries above are examples.

3.1 Single-conjunct Queries

We recall that our data model is that of a directed graph G = (V,E), where
each node in V is labelled with a constant and each edge e is labelled with a
symbol l drawn from a finite alphabet Σ.

A single-conjunct query consists of an expression of the form:

Z1, Z2 ← (X,R, Y)

where X and Y are constants or variables, R is a regular expression, and each
of Z1 and Z2 is one of X or Y .

A regular expression R over Σ is defined as follows:

R := ε | a | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ, “ ” denotes the disjunction
of all constants in Σ, and the operators have their usual meaning.

A path p in G = (V,E) from x ∈ V to y ∈ V is a sequence of the form
(v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = x, vn+1 = y and, for each
1 ≤ i ≤ n, vi

li→ vi+1 ∈ E. The path p conforms to a regular expression R if
l1 · · · ln ∈ L(R), the language denoted by R.

Given a single-conjunct query Q and graph G, let θ be a matching from
variables and constants of Q to nodes of G, that maps each constant to itself.
A tuple θ(Z1, Z2) satisfies Q on G if there is a path from θ(X) to θ(Y) which
conforms to R. The answer of Q on G is the set of tuples which satisfy Q on G.

3.2 Approximated single-conjunct queries

An approximated single-conjunct query consists of an expression of the form:

Z1, Z2 ← APPROX(X,R, Y)

where X, Y , R, Z1, Z2 are as in Section 3.1
The edit distance from a path p in G to a path p′ in G is the minimum cost

of any sequence of edit operations which transforms the sequence of edge labels
of p to the sequence of edge labels of p′ (for simplicity, in this paper we assume
that all edit operations have a cost of 1). The edit distance of a path p to a
regular expression R, denoted edist(p,R), is the minimum edit distance from p
to any path that conforms to R.

Given a matching θ from variables and constants of a query Q to nodes in
a graph G, the tuple θ(Z1, Z2) has edit distance edist(p,R) to Q, where p is a
path from θ(X) to θ(Y) which has the minimum edit distance to R of any path
from θ(X) to θ(Y) in G. Note that if p conforms to R, then θ(Z1, Z2) has edit
distance zero to Q.

We also note that the maximum edit distance of any simple path in G to R is
|R|+ |E| — this is because any simple path p can be accepted by an automaton

obtained from R by transitions labelled with ε that delete all the symbols that
appear in R, followed by transitions that add all the labels of p.

The approximate top-k answer of Q on G is a list containing the k tuples
θ(Z1, Z2) with minimum edit distance to Q, ranked in order of increasing edit
distance.

We refer the reader to [12] for details of how the approximate top-k answer
can be computed in polynomial time in the size of R and G. In brief, this is done
by (i) constructing an approximate automaton, M , that recognises all paths at
edit distance up to |R|+ |E| from R; (ii) forming the product automaton, H, of
M with the database graph G; and (iii) traversing H until the first k answers
have been produced. This evaluation can also be accomplished “on-demand”, by
incrementally constructing the edges of H as required, thus avoiding precompu-
tation and materialisation of the entire graph H — we refer the reader to [12]
for details.

3.3 Relaxed single-conjunct queries

A relaxed single-conjunct query consists of an expression of the form:

X ← RELAX(X, type, c)

where X is a constant or a variable, and c is a constant.
Assuming that the subgraph of G induced by edges labelled sc is a forest of

trees, the relaxation trail from a triple (X, type, c0) is the sequence triples

(X, type, c0), (X, type, c1), . . . , (X, type, cn)

such that (i) for every i ≥ 0, ci+1 is a superclass of ci and there is no other class
c′ that is distinct from ci and ci+1, and that is a superclass of ci and a subclass
of ci+1; and (ii) cn has no superclasses.

Given a matching θ ofX to nodes inG, the value θ(X) has relaxation distance
0 from c0 if it can be inferred that θ(X) has type c0, or relaxation distance i
from c0, for some 0 < i ≤ n if it can be inferred that θ(X) has type ci and does
not have type ci−1. We denote by rdist(θ(X), c0) this relaxation distance.

The relaxed top-k answer of (X, type, c) on G is a list containing the k val-
ues θ(X) with minimum relaxation distance to c, ranked in order of increasing
relaxation distance to c. Note that if X is a constant, then there can be at most
one answer.

To compute the relaxed top-k answer we first compute the reflexive, transitive
reduction of the subgraph of G that is induced by edges labelled sc. This can
be done “off-line” every time that this subgraph is updated by the insertion or
deletion of an edge labelled sc (at a cost of O(|V |3) [1]) and hence need not be
considered as part of query answering. We also assume that G contains all edges
labelled type that can be inferred. Again we assume that this is done “off-line”
every time that a new edge labelled type or sc is inserted or deleted (at a cost
of O(|V |3)).

The relaxed top-k answer of (X, type, c0) can then be computed by traversing
the relaxation trail from (X, type, c0): (X, type, c0), (X, type, c1), . . . , (X, type, cn),
for some n ≥ 0. During this traversal, we return all edges in G matching
(X, type, c0); we then return all edges matching (X, type, c1) but not (X, type, c0);
. . . ; all edges matching (X, type, ci) but not (X, type, cj) for j < i; and so forth,
until either k answers have been returned, or the relaxation trail for (X, type, c0)
has been completely traversed. This traversal and computation of matching edges
can be accomplished in time O(k · |E|2).

4 General ApproxRelax Queries

An ApproxRelax query Q is of the form
(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xj , Rj , Yj),

APPROX(Xj+1, Rj+1, Yj+1), . . . , APPROX(Xj+k, Rj+k, Yj+k),
RELAX(Xj+k+1, type, c1), . . . , RELAX(Xj+k+n, type, cn)

where j, k, n ≥ 0, X1, . . . , Xj+k+n and Y1, . . . , Yj+k are constants or variables,
R1, . . . , Rj+k are regular expressions, c1, . . . , cn are constants, and each Zi is one
of X1, . . . , Xj+k+n or Y1, . . . , Yj+k. In the concrete query syntax, the user may
specify the conjuncts in the body of an ApproxRelax query in any order, and
their ordering is immaterial to the query results.

Given a matching θ from variables and constants of Q to nodes in a graph
G, the tuple θ(Z1, . . . , Zm) has distance

α(edist(p1, Rj+1) + · · ·+ edist(pk, Rj+k))+
ρ(rdist(θ(Xj+k+1), c1) + · · ·+ rdist(θ(Xj+k+n), cn))

to Q, where each pi is the path from θ(Xj+i) to θ(Yj+i) which has the minimum
edit distance to Rj+i of any path from θ(Xj+i) to θ(Yj+i) in G, and the coeffi-
cients α and ρ are set according to the preferences of the user. For example, α
and ρ can be set to the same value if the same “cost” is associated with query
approximation and query relaxation, or to different relative values to penalise
one or the other more.

The top-k answer of Q on G is the list of k tuples of the form θ(Z1, . . . , Zm)
with minimum distance to Q, ranked in order of increasing distance to Q.

To ensure polynomial-time evaluation, we require that the conjuncts of a
query Q are acyclic [8] (the general problem of deciding if the natural join of
n relations is nonempty is NP-complete). This means that there is a join tree
T whose nodes are the conjuncts of Q such that, for every variable in Q, the
subgraph of T induced by the conjuncts containing the variable is connected.

Query evaluation of ApproxRelax queries is based on the hash ripple join al-
gorithm of Ilyas et al. [13]. For each query conjunct of the form (i) (Xi, Ri, Yi) or
(ii) (Xi, type, ci), we can use the techniques described in Sections 3.2 and 3.3 to
incrementally compute a relation ri. In case (i), ri has scheme (Xi, Yi, ED,RD)
where, for any tuple t ∈ ri, t[RD] = 0 and t[ED] is the minimum edit dis-
tance from Ri of any path from t[Xi] to t[Yi] in G. In case (ii), ri has scheme
(Xi, ED,RD) where, for any tuple t ∈ ri, t[ED] = 0 and t[RD] is the relaxation
distance of t[Xi] to ci.

Because the query Q is acyclic, we can construct a query evaluation tree E
for Q, which consists of nodes denoting join operators and nodes representing
conjuncts of Q. We initialise two hash tables for each node JN that denotes a
join operator. These tables will hold the results being incrementally computed
by the two children notes of the join operator, LN and RN . A “threshold” value,
TJN , for each node JN is initially set to 0.

Incremental evaluation of query Q proceeds by calling a recursive proce-
dure getNext starting with the root of the join tree. There are two versions of
getNext, one for when the evaluation tree node represents a join, shown below
and adapted from [13], and one for when it represents a single query conjunct,
as described in Sections 3.2 and 3.3.

In procedure getNext below, QJN is a priority queue associated with each
join node JN , into which result tuples are placed in order of increasing overall
distance value. The attribute ED of a result tuple u resulting from the join of
two tuples s and t holds the combined edit distance value of s and t. Similarly,
attribute RD of u holds the combined relaxation distance value of s and t. The
overall distance value of u is given by α(t[ED]) + ρ(t[RD]).

Procedure getNext(JN)

Input: node JN (corresponding to a join) in the query evaluation tree, with
children LN and RN

while empty(QJN) or (α(head(QJN)[ED]) + ρ(head(QJN)[RD])) > TJN do
determine next input IN // either LN or RN
t← getNext(IN)
if this is the first tuple retrieved from IN then

INtop ← α(t[ED]) + ρ(t[RD])

INbottom ← α(t[ED]) + ρ(t[RD])
TJN ← min(LNtop +RNbottom, LNbottom +RNtop)
insert t into the hash table for IN
probe the other hash table with t
foreach valid join combination u of t with s, say, do

u[ED]← t[ED] + s[ED]
u[RD]← t[RD] + s[RD]
enqueue(QJN , u)

return dequeue(QJN)

We see that the getNext procedure for a join node JN begins by choosing
from which of its two operands, LN or RN , to retrieve tuples. There are various
heuristics that might be used to decide this — see [13]. For input IN (either
LN or RN), INtop represents the distance value of the first tuple retrieved from
IN (i.e., the smallest distance in IN), while INbottom represents the distance of
the most recently retrieved tuple from IN . The threshold value TJN represents
the smaller of the two distances given by LNtop + RNbottom and LNbottom +
RNtop. These two values give the possible distances arising from joining the first

tuple of LN with the most recent tuple from RN , or vice versa, either of which
remains possible until the end of the getNext operation. The smaller of these
two distances gives the smallest possible distance for a join tuple that has yet to
be computed; in other words, no tuple that might result from the join of tuples
yet to be retrieved with tuples already retrieved or yet to be retrieved can have a
distance less than TJN . It is therefore safe to output a join tuple whose distance
is equal to TJN .

5 Concluding Remarks

Facilitating the collaborative formulation of learning goals and career aspira-
tions has the potential to enhance learners’ engagement with the lifelong learn-
ing process. The L4All system offers similarity matching over learners’ timelines
in order to identify possible choices for future learning and professional devel-
opment. Here, we have extended this idea by combining query approximation
and query relaxation techniques, in order to provide greater flexibility in query-
ing of heterogeneous timeline data. Using the techniques proposed here, users
would be able to specify approximations and relaxations to be applied to their
original search query, and the relative costs of these. Query results would be
returned incrementally by the system, ranked in order of increasing “distance”
from the user’s original query. We have presented a polynomial-time algorithim
for incrementally computing the top-k answers to such queries.

In practice, we expect that a visual query interface would be required, provid-
ing users with readily understandable options from which to select their query
formulation, approximation and relaxation requirements, and set the relative
cost associated with each query rewrite operation they have selected. An open
question is the degree of domain expertise that would be necessary to use effec-
tively such an interface, leading possibly to the design of different interfaces for
learners and for trained careers advisors. Our future work includes the design
and prototyping of such a query interface, or interfaces, the empirical evalua-
tion of our query processing algorithms over timeline data gathered from earlier
L4All user evaluation sessions, and the evaluation of the new querying facilities
with groups of lifelong learners at our institution and other partner FE and HE
institutions in London. At present, the L4All system stores all users’ timeline
data and metadata within a single RDF/S repository, and another direction of
future work would be to extend our query processing techniques to query linked
data repositories of timeline information.

References

1. A. Aho, M. Garey, and J. Ullman. The transitive reduction of a directed graph.
SIAM J. Comput., 1(2):131–137, 1972.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In Proc. Seventh Int. Conf. on
Principles of Knowledge Representation and Reasoning, pages 176–185, 2000.

3. C. Cogoi. Using ICT in Guidance: Practitioner Competencies and Training. Re-
port of an EC Leonardo project on ICT Skills for Guidance Counsellors. Bologna:
Outline Edizone, 2005.

4. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language sup-
porting recursion. In Proc. ACM SIGMOD Conf., pages 323–330, 1987.

5. L. Cych. ‘Social Networks’ in Emerging Technologies for Learning, Coventry. Becta,
pages 32–40, 2006.

6. S. de Freitas, I. Harrison, G. Magoulas, A. Mee, F. Mohamad, M. Oliver, G. Pa-
pamarkos, and A. Poulovassilis. The development of a system for supporting the
lifelong learner. British Journal of Educational Technology, 37(6):867–880, 2006.

7. P. Dolog, H. Stuckenschmidt, and H. Wache. Robust query processing for person-
alized information access on the semantic web. In Proc. 7th Int. Conf. on Flexible
Query Answering Systems, pages 343–355, 2006.

8. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 43(3):431–498, May 2001.

9. G. Grahne and A. Thomo. Approximate reasoning in semi-structured databases.
In Proc. 8th Int. Workshop on Knowledge Representation meets Databases, 2001.

10. G. Grahne, A. Thomo, and W. W. Wadge. Preferentially annotated regular path
queries. In Proc. 11th Int. Conf. on Database Theory, pages 314–328, 2007.

11. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Query relaxation in RDF. Journal
on Data Semantics, X:31–61, 2008.

12. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate answers
to semantic web queries. In Proc. 6th European Semantic Web Conference, pages
263–277, 2009.

13. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. The VLDB Journal, 13:207–221, 2004.

14. H. V. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-based queries. In Proc.
Fourteenth ACM Symp. on Principles of Databases Systems, pages 36–45, 1995.

15. Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Proc. Twen-
tieth ACM Symp. on Principles of Databases Systems, pages 40–51, 2001.

16. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A virtual
triple approach for similarity-based semantic web tasks. In Proc. 6th Int. Semantic
Web Conf., pages 295–309, 2007.

17. K. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic association
discovery. In Proc. 4th European Semantic Web Conference, pages 145–159, 2007.

18. R. Koper, B. Giesbers, P. van Rosmalen, P. Sloep, J. van Bruggen, C. Tatter-
sall, H. Vogten, and F. Brouns. A design model for lifelong learning networks.
Interactive Learning Environments, 13(1–2):71–92, 2005.

19. R. Koper and C. Tattersall. New directions for lifelong learning using network
technologies. British Journal of Educational Technology, 35(6):689–700, 2004.

20. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for
RDF. In Proc. 7th Int. Semantic Web Conf., pages 66–81, 2008.

21. N. van Labeke, G. D. Magoulas, and A. Poulovassilis. Searching for “people like
me” in a lifelong learning system. In Proc. 4th European Conf. on Technology
Enhanced Learning (EC-TEL’09) (to appear).

22. N. van Labeke, A. Poulovassilis, and G. D. Magoulas. Using similarity metrics for
matching lifelong learners. In Proc. 9th Int. Conf. on Intelligent Tutoring Systems
(ITS’08), pages 142–151, 2008.

