
Tag-Based Collaborative Filtering
Recommendation in Personal

Learning Environments
Mohamed Amine Chatti, Simona Dakova, Hendrik Thüs, and Ulrik Schroeder

Abstract—The personal learning environment (PLE) concept offers a learner-centric view of learning and suggests a shift from

knowledge-push to knowledge-pull approach to learning. One concern with a PLE-driven knowledge-pull approach to learning,

however, is information overload. Recommender systems can provide an effective mechanism to deal with the information overload

problem in PLEs. In this paper, we study different tag-based collaborative filtering recommendation techniques on their applicability

and effectiveness in PLE settings. We implement 16 different tag-based collaborative filtering recommendation algorithms, memory

based as well as model based, and compare them in terms of accuracy and user satisfaction. The results of the conducted offline and

user evaluations reveal that the quality of user experience does not correlate with high-recommendation accuracy.

Index Terms—PLE, recommender systems, collaborative filtering, offline evaluation, user evaluation

Ç

1 INTRODUCTION

ONE of the core issues in technology enhanced learning
(TEL) is the personalization of the learning experience.

There is a shared belief among TEL researchers that TEL
models require a move away from one-size-fits-all models
toward a learner-centric model that puts the learner at the
center and gives her the control over the learning experience.

In recent years, the concept of personal learning
environment (PLE) has been widely discussed among
TEL researchers, as a natural and learner-centric model
that supports the self-directed learning process by sur-
rounding the learner with the environment that matches
her needs best. PLE-driven TEL approaches have been
proposed as an alternative to traditional learning manage-
ment system (LMS)-driven TEL initiatives. While an LMS
adopts a knowledge-push model and is concerned with
exposing learners to content and expecting that learning
will happen, then a PLE takes a knowledge-pull model.
Learners can create their very own environments where
they can pull knowledge that meets their particular needs
from a wide range of high-value knowledge sources [1].
One concern with a PLE-driven knowledge-pull approach
to TEL is information overload. It, thus, becomes crucial to
examine some mechanisms that would help learners to
cope with the information overload problem. This is where
recommender systems (RSs) can play a crucial role to
foster self-directed learning.

Several researchers have stressed the importance of
recommender systems in PLEs and TEL environments in

general. Verbert et al. [2], for instance, state that recommen-
der systems offer a promising approach to facilitate both
learning and teaching tasks, by identifying suitable learning
resources from a potentially overwhelming variety of
choices. Drachsler et al. [3] note that direct measures like
ratings and tags given by users allow identify paths in a
learning network, which are faster to complete or more
attractive than others. Buder and Schwind [4] explore the
potentials of recommender systems for learning from a
psychological point of view. The authors note that commer-
cial recommender systems need adaptations to facilitate
learning and discuss potential adaptations both with regard
to learners as recipients of recommendation and learners as
producers of data by contributing annotations, tags or
rating. The authors further stress that recommender systems
provide (and require) user control, thus facilitating self-
directed learning, as it is the case in PLEs.

There is a large number of recommender systems that
have been deployed in TEL settings [5]. However, relatively
little significant work around the evaluation of recommen-
der systems has been undertaken. Until today, the evalua-
tion of recommender systems gives emphasis to rather
technical measures (e.g., accuracy, coverage, performance in
terms of execution time) although the importance of
including user-related evaluation methods (e.g., effective-
ness, efficiency, satisfaction) has been highlighted [5], [6].
Moreover, an implementation of different recommendation
algorithms within a single recommender system to compare
them against each other is missing in the TEL recommen-
ders literature.

It has been observed that in PLEs, learners rarely share
the same or similar learning resources due to the fact that
they follow their individual interests and preferences. Thus,
recommendation in PLE should rely on the activities and
the metadata (e.g., tags) generated by the learners [7]. In this
paper, we consider using the tagging information and
incorporating it into traditional collaborative filtering (CF)

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013 337

. The authors are with Informatik 9 (Learning Technologies), RWTH Aachen
University, Ahornstr. 55, D - 52056 Aachen, Germany.
E-mail: {chatti, dakova, thues, schroeder}@cs.rwth-aachen.de.

Manuscript received 19 Oct. 2012; revised 15 Mar. 2013; accepted 17 June
2013; published online 24 June 2013.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2012-10-0140.
Digital Object Identifier no. 10.1109/TLT.2013.23.

1939-1382/13/$31.00 � 2013 IEEE Published by the IEEE CS & ES



recommendation methods to provide recommendation of
learning items in a PLE. We focus on tag-based collabora-
tive filtering recommendation methods and provide a
thorough offline and user evaluation of different related
techniques that can provide a basis for their further
application and research in TEL environments.

2 RECOMMENDER SYSTEMS

Recommender systems can provide a potential solution to
overcome the problem of information overload. Generally,
recommender systems aggregate data about user’s behavior
or preferences to draw conclusions for recommendation of
items she most likely might be interested in. Technically,
recommender systems are classified into the following
classes, based on how recommendations are made [8]:

. Collaborative filtering. The user will be recommended
items that people with similar tastes and preferences
liked in the past. The fundamental idea is that if
users x and y rate two items similarly or have similar
behaviors they will act on other items similarly. In
CF, an item is considered as a black box, and user
interactions with the item are used to recommend an
item of interest to the user. To suggest items to a
user, we either find similar users and recommend
items liked by these users (user-based analysis), or
we find items similar to an item of interest (item-
based analysis).

. Content-based recommendation (CB). The user will be
recommended items based on the content of items
the user preferred in the past.

. Hybrid recommendation. These methods combine
collaborative and content-based methods. Hybrid
RS overcome the limitations of CF and CB systems
and are able to provide more accurate recommenda-
tions but at the cost of the complexity to build them.

3 COLLABORATIVE FILTERING RS

We will focus further only on the collaborative filtering
recommendation techniques as they are the main interest
for this paper. The existing collaborative RS can be
classified in two categories: memory-based and model-based
CF techniques. Memory-based CF algorithms make rating
predictions or recommendations based on the user’s past
ratings. For this purpose, the whole user-item rating
database is used to predict the unknown rating of particular
item. In contrast to memory-based CF methods, model-
based CF algorithms use the collection of ratings to learn a
model, which is then used to make rating predictions.
Furthermore, the existing research distinguishes between
user-based and item-based CF approaches, depending on
whether the similarity is computed between users or items.
The most popular approaches to compute similarity or
weights between users or items are vector cosine-based
similarity and correlation-based similarity. A comprehen-
sive survey for CF techniques is presented in [9].

A big advantage of CF recommendation is that there is
no information about the item itself needed [10]. CF treats
an item as “black box” and the recommendation does not

depend on the domain or the language of the application.
This is also beneficial for rich media data recommendation.
Another major advantage is the fact that CF relies on user
interaction. Thus, CF is able to reflect how the preferences
change over time. This is a plus in comparison to content-
based recommendation approaches, where the content
remains the same even over a period of time [10]. Moreover,
CF techniques can guarantee the discovery of new items
and, thus, increase the user satisfaction.

Despite the advantages of CF Recommendation, there
are several shortcomings. These include, for example, the
cold start, sparsity, scalability, and Gray Sheeps problems [9].
Moreover, as traditional CF recommender systems consider
only the rating information, this results in the loss of
flexibility [11].

To overcome the limitations of traditional CF recom-
mendation, a significant amount of research has been done
recently in trying to generate recommendations by harnes-
sing the interactions in social media as they can reveal
further user preferences. Formally, these approaches intro-
duced a new type of RS, namely social recommender
systems (SRS).

4 SOCIAL RECOMMENDER SYSTEMS

Social recommender systems address the issues of tradi-
tional recommendation by taking advantage of the social
data about a user, i.e., his tagging behavior, relationships,
membership in communities, likes, comments, votes, book-
marks, and so on. This data implicitly represents preference
about certain items or additional contextual data for rich
media. Augmenting the traditional collaborative or content-
based recommendation with this information can lead to
significant improvement.

4.1 Characteristics of SRS

The crucial step in SRS is to decide which social data to
exploit and how to use it to achieve better quality of
recommendation. Regardless of which social information is
used, SRS share few common characteristics:

. Third dimension. Exploiting the social data requires
adding a third dimension to the two-dimensional
user-item matrix. For instance, for the systems
using the social tagging information we need
to add the connection of tags to users and items.
This increases the complexity of the prediction/
recommendation computation.

. Temporal factors. Unfortunately, the lifespan of social
data is very limited as the users’ interests tend to
change quickly over time. Time is considered as
an important factor when building social recom-
mender systems.

. New entities of recommendation. While traditional
systems are able to suggest only items, using a third
dimension in recommendation makes it possible for
SRS to recommend also other types of entities—for
example, users, tags, or communities.

4.2 Tag-Based SRS

Tag-based SRS leverage the tagging behavior of the user
to generate useful recommendations. Recognizing the

338 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013



importance of tags, a large number of SRS harness the tags
of collaborative tagging systems. Alag [10] recapitulates
why user-generated tags are useful: they use terms that are
familiar to the user; they bring out the concepts related to
the item; they can capture a semantic value associated with
an item even though not mentioned directly in the content;
and they can offer useful collaborative information about
the user and the item. In TEL context, several researchers
stressed the importance of tags in TEL environments.
Vuorikari et al. [12], for instance, investigate the importance
of tags in “tag ecologies” and show that tags can enrich and
add value to multilingual controlled vocabularies. The
authors further conclude that tags can become a useful
source of metadata for learning repository owners, and help
them better understand users’ needs and demands. In
another study in a context of European learning resources
exchange, Vuorikari and Ochoa [13] state that tags could be
used to facilitate the discovery of educational resources
across country and language borders.

Hsu and Chen [14] define three categories of user-
generated tags:

. Topic description. This group of tags represents
implicitly the topic of the target item. For this
reason, the tags are highly correlated to the content
of the bookmarked item.

. Function related. This type of tags can conceptually
describe the function of a resource—for example,
blog. Such annotations can be related to other tags
but in terms of content relevance they play no role.

. Personal use. This category of tags reflects the user’s
attitude to a particular item. Because of the depen-
dency on the user’s reflection, they are less relevant to
the content.

Similarly, Sen et al. [15] offer a classification of user-
generated tags in three similar groups: factual, subjective or
personal. They have concluded that the first group refers
to “high-quality tags” that capture important concepts
about a given item, while the other two are less preferred
by the users.

As keyword annotations seem to be a comprehensive
way to relate a user to items, incorporating them in
recommender systems is a promising step for boosting the
performance and quality of recommendation. From a
recommendation perspective, the above presented tag
categorization indicates that mining folksonomies [13] to
discover user interests can be useful. Making use of factual
tags can also help in organizing the items in topic clusters
and suggesting relevant content based on the user
preferences. On the other hand, using the second and
third type of tags can increase the diversity of the
suggestions. Moreover, tags can enrich the RS with
additional information and, hence, improve the quality of
recommendations with respect to relevance, coverage and
diversity, as well as the user experience. Additionally,
using tags to represent the user’s preferences, we can even
introduce recommendation for systems where rating
information is not available. Furthermore, tag-based pro-
files can result in better user similarity calculation and in
identifying more neighbors, thus achieving a more precise
and complete recommendation [16], [17], [18]. Another

benefit of tags is the fact that they can capture the changing
user preferences over time and this can easily be updated
in his profile by simply adding the new tags. Hence, the
personalization of recommendation will adapt according to
the changing preferences.

5 TAG-BASED CF RECOMMENDATION

Although recommender systems are increasingly applied in
TEL, there is relatively little research on recommender
systems in TEL that rely on tagging information. In TEL
systems, tags are often used to annotate learning resources
[2], [5]. In a recent survey of TEL recommender systems,
Manouselis et al. [5] discuss few examples of systems that
apply tag and rating data for recommendation to overcome
the cold-start problem of the recommender system. These
approaches, however, mainly use classic CF recommenda-
tions based on the rating information. In another study,
Verbert et al. [2] explore the extent to which implicit
feedback of learners (e.g., tags) can be used to augment
explicit feedback ratings to improve recommender perfor-
mance in the TEL domain. As a potential solution for the
data sparsity problem, the authors apply a standard CF
recommendation on several data sets (e.g., MACE and
Mendeley data sets) that include tags that are provided by
users on learning resources [2]. In this experiment, the
tagging information is just used to rank items to the user in
order of decreasing relevance. In sum, state-of-the-art tag-
based recommenders in TEL combine rating and tagging
information. To our knowledge, there are no TEL recom-
menders that rely solely on tagging information.

In other application areas (e.g., e-commerce, artificial
intelligence), the evaluation of several algorithms devel-
oped to use the tagging information for recommendation
has shown that tag-based recommendation can improve the
performance and quality of the recommendation in com-
parison to the traditional recommender systems [19], [20],
[21], [11]. In the next sections, we discuss important state-of-
the-art tag-based CF recommendation approaches that
could be applied in a TEL context.

Unlike the classic collaborative recommendation, incor-
porating tags extends the <user, item> relation into a three-
dimensional relation <user, item, tag>. Moreover, as users
can give more than one tag to each item, the user-item
matrix becomes a three-dimensional tensor [22]. Tso-Sutter
et al. [20] suggest to solve the three-dimensional problem by
projecting the <user, item, tag> relation into three two-
dimensional matrices: <user, tag>, <item, tag>, and <user,
item>. For this purpose, the standard user-item rating
matrix was augmented once horizontally with the user-tag
tag matrix as pseudo items and once vertically by the item-
tag matrix as pseudo users. On each extended matrix, a
user-based and, respectively, item-based collaborative
filtering is performed. By fusing the results from both
predictions a list of top-N items is generated.

Similarly, Wang et al. [22] decompose the tensor into
user-tag and item-tag matrices and use them to find latent
topics among users/items and to cluster these according to
their neighborhood. The outcome is a predicted score based
on the ratings of similar users, as well as the similarity to
other items.

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 339



Zhou et al. [11] also split the tensor to solve the three-
dimensional complexity. Their approach includes probabil-
istic factor analysis by utilizing both the rating and the
tagging information. They propose a unified matrix factor-
ization model on the three two-dimensional matrices: the
user-item rating matrix, the user-tag, and the item-tag
tagging matrices.

All examples above [20], [22], [11] utilize rating informa-
tion. They all share the same technique to deal with the
complex three-dimensional relation <user, item, tag>: split-
ting the folksonomy tensor, combining the low-dimensional
matrices in a unified model or separately using them for
neighborhood formation, and generation of top-N items lists.

However, most social tagging systems do not have
explicit rating data and they cannot build the traditional
user-item rating matrix. To overcome the lack of rating
information, most researchers (e.g., [21], [23], [19], [24])
build an implicit binary user-item matrix, where each entry
indicates if a user has bookmarked or annotated an item. In
the next sections, we discuss the related work in the area of
purely tag-based CF recommendation according to the main
categories in CF, namely memory based and model based.

5.1 Memory-Based Techniques

Liang et al. [21] propose a memory-based tag-based CF
approach that incorporates not only similar tagging
behavior and number of items tagged in common but also
if two users annotated a common item in a similar way.
The authors present a user-based and an item-based
alternative of their algorithm. In terms of precision and
recall, the presented approach outperformed both the user-
based and the item-based traditional CF, as well as the
mentioned earlier tag-aware method of Tso-Sutter et al.
[20]. Additionally, the item-based approach has consider-
able better precision and recall in comparison to its user-
based counterpart.

Firan et al. [23] investigate CF recommendation for
music by building different tag-based user profiles. The
first type of profile relied on indirect signals, where the list
of tags is extracted from the tracks that the user listens to.
The second type of algorithm considered directly the tags
a user has used. The proposed recommendation algorithm
was evaluated in a study where the main objectives were
to inspect: 1) the accuracy quality, meaning how well a
recommended item fits the user’s music preferences, and
2) the degree of novelty of the item. The authors used a
normalized discounted cumulated gain as an evaluation
metric. Compared to the traditional user-based CF as
baseline, all tag-based CF algorithms using the different
tag profiles performed worse. The authors stated that this
is due to a strong tag ambiguity and identified it as a
direction for improvement.

5.2 Model-Based Techniques

The algorithms in this section build different models and
use them to provide recommendation.

The first approach uses a classification data mining
method. Ji et al. [19] consider three two-dimensional input
matrices; i.e., a user-tag, user-item, and a tag-item matrix.
The algorithm consists of a candidate tag set (CTS)
generation step followed by a top-N recommendation

generation step based on a naive Bayes classifier. The
algorithm was evaluated on a data set from Del.icio.us by
splitting it in training and test sets, and measuring the
average recall. It was observed that the performance
improves with the increasing size of neighbors k, as well
as with the increasing size of the CTS w. The best result,
8.839 percent, was achieved for k ¼ 50 and w ¼ 70. The
authors also compared their algorithm to traditional user-
based and item-based CF and concluded that for a small
number of recommended items (<35) the tag-based
approach outperforms the traditional ones. The authors
noted that further improvements were needed to effectively
deal with “noisy” tags.

The second model-based approach applies topic cluster-
ing of items as a solution to the synonymy problem of tags
(i.e., two different tags have a similar meaning). The idea
bases on the assumption that co-occurring tags will be
interpreted as belonging to the same topic. Therefore,
Nakamoto et al. [24] perform topic clustering of items by
using expectation maximization (EM) clustering method.
Then, each item is represented by a topic domain vector,
where each entry gives the probability that the item k
belongs to the topic j. The probability is calculated based on
all tags annotating the item k. The algorithm proved that it
can recommend items even for new users with few
bookmarks. The proposed approach was evaluated by
comparing it to three other algorithms: 1) based only the
topic domain, 2) using the most popular tags of the
currently viewed item, and 3) matching the topic domain
vector of the viewed item to the bookmarks of all users with
commonly shared items. The proposed algorithm per-
formed best by achieving a precision of 0.594.

5.3 Comparison of Existing Approaches

In the preceding sections, we have presented the details of
seven representative tag-based CF recommendation algo-
rithms. Three of them [20], [22], [11] incorporate also rating
information and the other four [21], [23], [19], [24] rely
solely on tagging information. All algorithms decompose
the original three-dimensional folksonomy into two-
dimensional matrices. Typically for the CF recommenda-
tion, the most often used data mining technique is nearest
neighborhood formation. As a similarity metric, the
majority of approaches utilize the cosine distance.

From an evaluation perspective, all proposed algorithms
were evaluated on popular data sets. Regarding the
baseline methods used for comparison, it can be observed
that most evaluations aimed to prove that using or
incorporating tag information into traditional CF will
improve the quality of recommendation and, thus, the
focus has been on whether the proposed approach will
outperform traditional CF recommendation approaches or
not. As far as the evaluation methodology is concerned,
there are predominant offline evaluations where the
classification accuracy of the recommended top-N items is
examined. None of the discussed research has used more
than one evaluation methodology.

5.4 Envisioned Progress beyond the State of the Art

In this paper, we aim at providing recommendation of
learning items (i.e., resources, services, and peers) in a PLE.

340 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013



We focus on tag-based CF recommendation that rely solely
on the tagging information. Our approach differs from the
state-of-the-art approaches in both the baseline methods
used for comparison and the evaluation methodology. We
will investigate, compare, and contrast a wide range of tag-
based CF recommendation methods, memory as well as
model based. And, we will apply two different evaluation
methodologies, namely an offline evaluation by measuring
the accuracy quality of the recommendation and a user
evaluation to check whether the user satisfaction correlates
with the measured high accuracy of the recommendation.
Based on both evaluation methods, we aim at highlighting
the best tag-based CF algorithms for personalized recom-
mendation supporting learners in discovering new quality
learning items in their PLEs.

6 CONTEXT OF THE STUDY

This study was conducted based on a data set generated
within the PLEM1 environment. PLEM is a personal
learning environment that supports learners in creating a
personalized space, where they can easily aggregate,
manage, tag, and share learning items. A learning item in
PLEM can be a link to a learning service, learning expert, a
learning community, or a learning resource collection [25].
PLEM is an online service that has been used by, for
example, students at RWTH Aachen University and
Technical University Sofia as well as secondary school
pupils at the European School Mol in Belgium [26]. The
PLEM data set currently include 83 users, 773 items, and
1,059 tags. We enhanced PLEM with a recommendation
engine to recommend learning items based on the tagging
behavior of the learner.

The aim of the study is to experiment with different
tag-based CF recommendation algorithms, memory based
as well as model based, in a PLE context. In the case of
memory-based tag-based CF we use the k-nearest neigh-
bor method (kNN). For the model-developing algorithm,
we focus on the following approaches: dimensionality
reduction, probabilistic classification, clustering, and asso-
ciation rule mining. Further, we consider for most
algorithms to perform user-based and item-based CF.
For the user and item similarity computation, we utilize
the cosine similarity metric.

6.1 Tools and Technologies

This section summarizes the tools and technologies used
for implementing our approach. The PLEM system has
been developed using Java programming language, Spring
in the back end, and Google Web Toolkit for the front-end
interface. The tag normalization and stemming task takes
advantage of the Apache Lucene’s SnowballAnalyzer
[27]. For executing the data mining tasks, we leveraged
the Weka API.2 We use Weka v3:7, development version,
as well as two separate packages: LatentSemanticAnalysis
1.0.1 and OpticsandDBScan 1.0.1. Since Weka does not
support the cosine similarity measure, we extended the
EuclideanDistance class of Weka and implemented a

subclass CosineDistance to compute a cosine distance
metric: 1� cosðu; vÞ, where cosðu; vÞ is the cosine similarity
between two users/items u and v. Building a recommen-
dation module with Weka requires the following four
basic steps [10]:

1. Attributes generation creates the list of attributes that
characterize the data set. In PLEM, these are the user
tags used for the annotation of a given item.

2. Training set generation builds the data set used for
learning the data patterns.

3. Learning the predictive model specifies the classifier
or clusterer to be used for building the respective
model.

4. Recommendation for the active user by using the
learned predictive model performs the recommen-
dation generation.

Our implementation of all recommendation algorithms
follows the above-described steps.

6.2 Data Generation and Preprocessing

The data generation and preprocessing task is performed in
three main steps. First, we generate the list of attributes
based on the user tags in the system. The second step is
generating the user profiles, or, respectively, the item
profiles. The third step builds upon the data from the
previous two steps to create the training data set for Weka.

6.2.1 Tag Normalization and Stemming

As mentioned, the first step is to create a list of attributes.
For this purpose, we query the database for all tags that are
used in PLEM to annotate items. Once all tags are
normalized and stemmed using Lucene’s SnowballAnalyzer,
we build the list of attributes. In all algorithms, the first
attribute is an ID used to identify a user or item instance.
The remaining attributes represent tags from the stemmed
tag list. Most algorithms require numeric values. The
Apriori algorithm [28], however, needs nominal values
{0, 1}, where 1 indicates the presence and 0 the absence of a
tag in a transaction.

6.2.2 Tag Profiles

The second step is to build user or item tag profiles. To
build the profiles, we investigate the frequency of tag
applications of a particular tag.

User profiles are created as follows: for each user u, a
tag frequency vector is created. This vector indicates how
often u applied the tag t. For this purpose, all tags of user
u are queried from PLEM’s database, stemmed, and
added to a list. For each stemmed tag tstem, we compute
a frequency score as the number of its occurrences in the
stemmed list. Finally, the pair <tag; frequency> is added
to user’s u tag vector.

The item profiles contain information about the tags that
are used to annotate an item i. For each item i, we create a tag
frequency vector, similar to the approach used in user
profiles. All tags applied on item i are extracted from the
database, stemmed, and added to a list. For each stemmed
tag tstem, we compute how frequently it occurs in the
stemmed list and add the pair<tag; frequency> to the item’s
i tag vector.

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 341

1. subprogra.informatik.rwth-aachen.de:8180/PLEM/.
2. http://www.cs.waikato.ac.nz/ml/weka/.



6.2.3 Input Data Set Generation

The third step is to generate the input data set for Weka. In
total, our chosen algorithms use five different data sets. We
list shortly the generation procedure for all of them below:

. User-tag frequency data set, A. Create an empty data
set. Take the list of numeric tag attributes and the
collection of all user profiles. For each user profile,
create an Instance object. Set the ID attribute to the
ID of the user. For each tag attribute: if the selected
user has applied the tag, set the attribute value to the
frequency from his tag vector; otherwise 0. Finally,
add the Instance to the data set.

. Item-tag binary data set, Q. First, an empty data set is
created. The data set Q takes a list of numeric
attributes and the collection of all item profiles. For
each item profile, create an Instance object. Set its ID
attribute to the item’s ID. For each tag attribute: if
the selected item has been annotated by this tag, set
the attribute value to 1; otherwise 0. Finally, add the
Instance to the data set.

. Item-tag frequency data set, M. Create an empty data
set. For data set M, get a list of numeric tag attributes
and the collection of all item profiles. For each item
profile, create an Instance object. Set the ID attribute
to be the ID of the item. For each tag attribute: if the
selected item has been annotated with this tag, get its
frequency from the tag vector and set the attribute
value to it; otherwise 0. Finally, add the Instance to
the Instances collection.

. User-tag binary data set (nominal attributes), B. Create
an empty data set. For the data set B, take a list of
nominal tag attributes and the collection of all user
profiles. For each user profile, create an Instance
object. Set the ID attribute to the ID of the user. For
each tag attribute: if the selected user has applied the
tag, set the attribute value to 1; otherwise 0. Finally,
add the Instance to the Instances collection.

. Item-tag binary data set (nominal attributes), L. Create
an empty data set. Take a list of nominal attributes
and the collection of all item profiles. For each item
profile, create an Instance object. Set the ID attribute
to be the ID of the item. For each tag attribute: if
the selected item has been annotated by this tag, set
the attribute value to 1; otherwise 0. Finally, add the
Instance to the Instances collection.

All frequency data sets are normalized before feeding them
to the respective data mining algorithm of Weka. With
the description of all required input data sets, we conclude
the section of data generation and preprocessing. Next, we
present all implemented algorithms that use the generated
training data sets.

6.3 Recommendation Generation

In this study, we implemented 16 different tag-based CF
recommendation algorithms: two memory based and
14 model based using different classification, clustering,
association, or dimensionality reduction models. All data
mining methods that require similarity computation in
term of distance between two instances of the data set use
the cosine distance function. Fig. 1 gives an overview of

all implemented recommendation algorithms. In total,
there are five categories of algorithms: k-nearest neighbor,
latent semantic analysis for dimensionality reduction,
naive Bayes classification, clustering, and Apriori associa-
tion rule mining. All approaches, except the classification
ones, are implemented both in their user-based and item-
based alternatives. In the following sections, we outline
each proposed algorithm. For reasons of space, we do not
give the implementation details of the algorithms in terms
of pseudocode.

6.3.1 Algorithm 1: User-Based kNN CF

The main assumption behind the k-nearest neighbor
approach is that users with similar tagging behavior will
share the same learning interests. The more their tags
overlap, the more interests these users will have in
common. Consequently, we can recommend the items of
the similar users to the active user, given that he has not
saved those items yet. kNN is an instance-based learning
approach. This approach is also called lazy learning,
because its training phase is simply storing all instances
from the data set. Given a particular point of the data set,
the task of the algorithm is to find the k closest points, the
nearest neighbors, from the training data [28]. The distance
between two instances is determined by the cosine distance.
For the kNN discovery, performed by Weka’s Linear-
NNSearch, we input the user-tag frequency data set A and
the number of k similar users we want to have. In case that
the search reveals similar users, we get their items, remove
those known by the target user u. Each candidate item
receives one vote from each neighbor who has tagged it.
Finally, the top-N item list for target user u is generated
from the candidate item list by sorting the received votes.

6.3.2 Algorithm 2: Item-Based kNN CF

The item-based nearest neighborhood CF method aims to
overcome the difficulty of finding similar users. The user’s
tagging behavior reflects the diverse and highly individual
interests. Items, on the other hand, tend to be annotated
according to the concepts they represent. It is more probable
that one can find items sharing the same topic. For the
neighborhood computation, the item-tag frequency M data
set is given as input to Weka. For each target user u, it
computes the k neighbor items that are most similar to each
of the user’s u items. Each new candidate item receives one
vote. If an item is already in the candidate set, we increment

342 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013

Fig. 1. Overview of the implemented algorithms.



its voting with 1. Given all candidate items, the top-N
recommendation list is built.

6.3.3 Algorithm 3: User-Based LSA kNN CF

To overcome the problems of synonymy and polysemy of
tags as well as the high dimensionality and sparsity of the
data set in the memory-based CF approaches, dimension-
ality reduction techniques can be applied. We used latent
semantic analysis (LSA), a text mining technique that
transforms the set of terms (e.g., words, tags) in a linear
combination of these terms that represents a concept. The
main assumption is that co-occurring terms belong to the
same latent topic and they are similar in their meaning. In
LSA, a low-rank approximation is performed on the
original data. It is based on the mathematical technique
singular value decomposition (SVD). SVD is a matrix
factorization approach. The resulting matrix is a lower
dimensional space where the attributes represent the
concepts learned, while the original similarity between the
instances is preserved [28].

The initial step of our user-based LSA kNN CF algorithm
is to find the latent topics in the data set, based on the co-
occurrence of tags in the original user-tag frequency data set
A. For this purpose, we utilize Weka’s LatentSemanticAna-
lysis. The low-rank approximation of the full data requires a
rank r parameter that specifies the proportion of total
singular values to be used. Once we have established the
LSA attributes of the lower dimensional semantic space A0,
the nearest neighborhood search is performed on this data
set. The further steps of candidate items discovery and the
generation of the top-N items follow the same logic as in
Algorithm 1.

6.3.4 Algorithm 4: Item-Based LSA kNN CF

Analogous to the previous approach, we define its item-
based nearest neighbor CF counterpart based on the item’s
dimensionality reduced space. We transform the original
item-tag frequency data set M into the lower dimensional
M 0 by the latent topics emerging from the annotations of
learning items. Once LSA is performed, the k most similar
items to the target user u items are selected. Given the
ordered set of all candidate items, the top-N recommenda-
tion list is built, as described in Algorithm 2.

6.3.5 Algorithm 5: User-Based kNN CF with CTS

Generation and Naive Bayes Classification (NBC)

This approach is based on the idea that a user can have a
latent preference for the tags of his similar users [19]. The
algorithm is divided in two steps. In the first step, we
extract the tags from the k-nearest neighbors of the target
user u. Then, we compute the predicted value of user u
preference for a tag t as the sum of the tag frequency of the
k-nearest neighbors of user u for tag t weighted by the
cosine similarity between the target user u and his k-nearest
neighbors. The w most highly ordered tags are then put in a
candidate tag set. In the second step, by applying
probabilistic classification, we can recommend to the target
user u those items that have the highest probability to be
annotated by the tags from CTS. For the classification task,
we train Weka’s naive Bayes classifier [29] using the item-
tag binary data set Q, assuming that each item tag vector

represents one class of items. In other words, the occurrence
of given tags can be characteristic for one class of items.

6.3.6 Algorithm 6: User-Based LSA kNN CF with CTS

Generation and Naive Bayes Classificiation

This algorithm is an adapted version of Algorithm 5, using
LSA for dimensionality reduction. Due to the power law
distribution of tags, it is possible that we cannot identify
similar users when calculating the cosine similarity on the
entire user-tag data set. Therefore, in the first step of this
algorithm, we perform the k-nearest neighborhood dis-
covery on the lower dimensional space A0, the result of the
application of LSA on the original user-tag frequency data
set A. If the like-minded users are determined on the basis
of collaboratively shared latent topics, it can be possible
that the CTS contains more appropriate tags for the target
user u.

6.3.7 Algorithm 7: User-Based k-Means Clustering

Using Weka’s SimpleKMeans clusterer [29], we build groups
of users based on the user-tag frequency matrix A. The
parameters for the clustering process are: the number of
clusters k, the maximum number of iterations, and the seed.
The seed is used for random number generation, and this
number is used for the initial assignment of instances to
clusters. We can calculate the recommendation for each
user, using the obtained assignments of users to clusters. As
long as a user u is not the only member of a cluster m, we
get the items of his neighbors in m and recommend those he
has not seen yet.

6.3.8 Algorithm 8: User-Based EM Clustering

Unlike the k-Means clustering approach that assigns a user
strictly to one cluster, in the expectation maximization
approach [29], a user can belong to several clusters with a
certain probability. We consider a probability threshold of
80 percent when assigning a user u to a cluster m. Therefore,
for the target user u, we obtain first if he was clustered to
any cluster with probability above 80 percent. If this is not
the case, we cannot provide any recommendation. Other-
wise, we get his neighbor users from the cluster he was
assigned to and generate the items unfamiliar to user u as
his candidate item set. In the last step, we recommend the
top-N items for the target user u. Similar to k-means, the
input parameters for the cluster learning phase are the user-
tag frequency matrix A, the number of cluster k, the
maximum number of iterations, and the seed value.

6.3.9 Algorithm 9: User-Based Density-Based

Clustering

With the help of Weka’s DBSCAN [28], [30] we build
clusters of users that are highly dense in the user-tag space
A. For this purpose we specify " as the neighborhood
radius of an instance and minPoints as the minimum
number of points to be found in this radius to assign the
instance to the present cluster. As usual, the metric for
measuring the distance between two points is the cosine
distance function. Given the constructed clusters, for a
target user u we check if he is assigned to a cluster. If this
is the case and there are other users in the cluster, we get

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 343



the items of these other members as candidates and
remove the ones already seen by user u. The top-N items
are then generated and recommended.

6.3.10 Algorithm 10: User-Based Hierarchical Clustering

The user-based hierarchical clustering algorithm creates a
hierarchical decomposition (a tree of clusters, dendrogram)
[29] of the given set of users. The closeness of two users is
defined by the cosine distance. Once the hierarchy is
learned, we specify the number of clusters k we want to
have. Then, we find all the users within the cluster the
target user u has been assigned to. Finally, the top-N items
are computed and recommended to the user u.

6.3.11 Algorithm 11: Item-Based k-Means Clustering

Based on the item-tag frequency data set M, we build k item
clusters, using Weka’s SimpleKMeans clusterer. For each
item i of the target user u, we obtain the neighbor items from
the cluster m the item i was assigned to as recommendation
candidates. From the list of candidate items, we generate the
top-N items to be suggested to the user u.

6.3.12 Algorithm 12: Item-Based EM Clustering

The EM clustering on the item-tag frequency data set M
assigns one item i to a cluster m with a certain probability.
We iterate over all items of the target user u. If an item i is
clustered successfully with a probability more than 70 per-
cent to a cluster m containing other items, we add to the
candidate item set of the user u those items that are new for
him. The top-N items are then recommended to the user u.

6.3.13 Algorithm 13: Item-Based Density-Based

Clustering

For a specified " as the neighborhood radius of an instance
and the minimum number of points to be found in this
radius, Weka’s DBSCAN builds clusters of items that are
highly dense in the item-tag space M. For each item i of the
target user u, we do the following: we estimate the cluster
assignment for item i if any. Unless there are no other items
in this dense cluster m, we get the neighbor items of i inside
m and put them into the candidate item set, given they are
unknown to user u. The top-N items in the candidate item
set are then recommended to the user u.

6.3.14 Algorithm 14: Item-Based Hierarchical Clustering

Given the item-tag frequency data set M, we build
hierarchical groups of items. For each item i of the target
user u, we get the assigned cluster m. If user u has not seen a
neighbor item from cluster m, this item is added to the
candidate item set. From the candidate item set, we then
generate the top-N items and recommend them to the user u.

6.3.15 Algorithm 15: User-Based Apriori Rule Mining

In this algorithm, we use the association rule mining
approach [29]. We assume that each user represents a
transaction while the tags he uses are the items of this
transaction. We apply the Apriori algorithm [28] on the
user-tag binary data set B after defining a minimum
support, a minimum confidence, and the number of rules
that should be learned. When all rules are found, for each
user u we perform the following steps: for each rule whose

head contains tags of the user u, we get the tags from the
body of the rule that are new for u. We query the database
for all items that are annotated by these tags and add them
to the candidate item list. The target user u is then
recommended the top-N items in the candidate item list.

6.3.16 Algorithm 16: Item-Based Apriori Rule Mining

This algorithm is very similar to Algorithm 15. The only
difference is that the association rules are learned from the
item-tag binary data set L.

7 EVALUATION RESULTS

In the following sections, we present the evaluation details
of the different tag-based CF recommendation algorithms
outlined above. The data set we have used in our
experiments is the PLEM data with 83 users, 773 items,
and 1,005 tags in their stemmed version. The constructed
user-tag matrix is a 83� 1;005 matrix with a sparsity level of
0.9823, and the item-tag matrix is a 773� 1;005 matrix with
a sparsity level of 0.9968. The sparsity level is defined as the
relation 1� nonzero entries

total entries [31]. We apply two different
evaluation methodologies, namely an offline evaluation
and a user evaluation.

7.1 Offline Evaluation

We conducted an offline evaluation to gauge the perfor-
mance of all the proposed algorithms. This process required
additional experimental tuning of the parameters of all used
data mining techniques.

7.1.1 Evaluation Methodology and Metrics

To evaluate the accuracy of the 16 proposed algorithms, we

have measured three evaluation metrics for each approach:

precision, recall, and F1 score. Each recommendation was

set to generate a list of top N ¼ 10 items most likely to be

interesting for a given target user. We use the complete data

set as testing data for evaluating the different tag-based

CF approaches. We compute the true positive (TP) items in

the top-N items. The TP rate is the number of recommended

top-N items that appear also in the set of already saved

items Iu of the target user u. The precision for user u is

calculated as precisionðuÞ ¼ jTopNu\Iuj
TopNu

, while the recall is

given by: recallðuÞ ¼ jTopNu\Iuj
Iu

. The precision of a recom-

mendation algorithm X is averaged over the sum of the

precisions for all users k:

PrecisionðXÞ ¼
Pk

n¼1 precisionðuÞ
k

� 100: ð1Þ

Similarly, the average recall of approach X is computed as

RecallðXÞ ¼
Pk

n¼1 recallðuÞ
k

� 100: ð2Þ

Due to the conflicting nature of the previous two
evaluation metrics [31], we further consider their harmonic
mean—the F1 score: F1 ¼ 2�PrecisionðXÞ�RecallðXÞ

PrecisionðXÞþRecallðXÞ .

We performed extensive experimental tuning for all
proposed algorithms by utilizing these three metrics
together with the rate of recommendation misses; i.e., the

344 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013



number of users to whom the algorithm was not able to
provide a recommendation. The goal was to estimate the
optimal input parameter(s) for each algorithm. We then
compared the performance of the proposed recommenda-
tion algorithms. Finally, from each CF recommendation
category we selected those algorithms providing the best
recommendation and deployed them for the user evaluation.

7.1.2 Comparison of Algorithms

Considering the obtained best input parameters for each
approach, Fig. 2 depicts the performance of all 16 proposed
algorithms. In general, the item-based variants of the
different categories of algorithms outperformed the user
based, with exception for the Apriori approach. The Item-
Based Hierarchical Clustering achieved the best performance.
We believe, however, that this is only due to overfitting the
model. If we compare the item-based clustering techniques
for the same number of clusters k (k ¼ 200), the Item-Based
k-Means Clustering approach takes the lead with an F1 score
of 31.64 percent. It is followed by the Item-Based kNN CF
with an F1 score of 20.51 percent. From the other
techniques, the Item-Based LSA kNN CF and the User-Based
k-Means Clustering achieve also good precision and recall.
The worst recommendation performance was observed for
the association rule mining approaches, as well as for some
of the user-based clustering techniques (i.e., EM, DBSCAN,
and hierarchical clustering). Association rule mining
approaches did not perform well due the lack of frequent
tag item sets as a result of the different tagging behavior of
the users. The relative bad performance of some of the
user-based clustering techniques can be explained by the
fact that users have different tagging interests and, thus, do
not use the same tags to annotate the same items. In fact, in
our experiment, the user distribution among clusters
results in 1-2 big clusters, a few clusters with just 2-3 users,
and most of the users, especially in the User-based DBScan
case, were assigned to single clusters. The algorithm could
not make recommendation to those users as there are no
other users in their clusters.

Fig. 3 gives a summary of best performing algorithms
and their respective input parameters. Algorithms 2, 4, 5, 6,
7, 11, and 15, marked in blue, represent the approaches that

have been selected for the user evaluation. The aim was to
select one algorithm per category. The selection criteria
were two: first, high value for the F1 score, and, second,
minimum number of recommendation misses. For the
category of classification methods, we have selected both
algorithms, as approach 6 suggests an improvement for
Algorithm 5, originating from Ji et al. [19].

7.2 User Evaluation

The offline evaluation aimed to compare different tag-based
CF recommendation algorithms and to select those that can
offer the best recommendation accuracy based on three
evaluation metrics: precision, recall, and F1 score. However,
as mentioned earlier, these metrics do not measure the user
satisfaction with the recommended items. The quality of
user experience often does not correlate with high recom-
mendation accuracy measured by these metrics [32]. Thus,
we conducted a user evaluation on the seven selected
recommendation approaches, as discussed in the previous
section. We evaluated the recommendation module in
PLEM with students and teaching assistants in the
“Advanced Learning Technologies” course offered at
RWTH Aachen University in Spring 2012. The participants
were asked to collect, manage, and tag learning items
related to the topics of eLearning and web technologies. A
screenshot of the PLEM recommendation user interface is
shown in Fig. 4.

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 345

Fig. 2. Evaluation of the proposed recommendation algorithms in terms
of precision, recall, and F1 score.

Fig. 3. Summary of best performing algorithms and the respective input
parameters.

Fig. 4. Recommendation section in PLEM.



7.2.1 Online Questionnaire

For capturing the user experience with the recommendation
module in PLEM, we created an online questionnaire. The
questions were separated in three main groups. The first
section covered demographic and general information. The
second group of questions aimed to gather insight about
previous knowledge and experience of the participants with
recommender systems. The third section was devoted to
evaluate each of the even selected recommendation algo-
rithms (see Table 1). It examines how the respondents
perceive the recommendation quality and usefulness of the
different algorithms. We have leveraged the framework
ResQue, developed by Pu et al. [32] for user-centric
evaluation of recommender systems. The model consists
of 13 constructs that contain in total 60 questions divided
into four main categories: user perceived qualities, user
beliefs, user attitudes, and behavioral intentions, as depicted
in Fig. 5. The users are asked to answer on a 5-point Likert
scale, where 1 equals to “strongly disagree” and 5 to
“strongly agree.” We have selected six sample questions,
reworked and adapted them to gauge recommendation in a
learning context. This resulted in a list of seven questions as
given below:

1. Q1—Ability to recommend. The system is able to
provide recommendation for me. (Y / N)

2. Q2—Accuracy. In my opinion, the system is able to
recommend to me 1-3 / 4-6 / 7-10 interesting or
relevant learning items.

3. Q3—Novelty. The learning items recommended to
me are novel and still interesting.

4. Q4—Diversity. The learning items recommended
to me are diverse (not all of them are similar to
each other).

5. Q5—Context compatibility. The recommended learn-
ing items take my tag preferences into consideration.

6. Q6—Perceived usefulness. I feel supported in finding
learning items that I like with the help of the
recommendation.

7. Q7—Attitude. Overall, I am satisfied with the
recommendation.

7.2.2 Discussion of User Evaluation Results

Questionnaires were sent to 15 evaluators. Altogether, five

females and 10 males from different nationalities tested the

recommender system. The evaluators were students and

teaching assistants from computer science at the age range

24-34 years. The spectrum of profiles based on gender, age,

nationality is summarized in Fig. 6.
Most of the evaluators (67 percent) have had prior

experience with recommender systems. However, in regards

to trust only (47 percent) of the respondents feel confident

with such systems. Fig. 7 summarizes these results.
Further, we were interested in the testers’ experience

specifically with tag-based recommendation: 67 percent

agreed to be familiar with it, while 27 percent disagreed.

Lastly, the majority of users consider it useful to have

recommendations in learning environments based on

the behavior of like-minded learners (see Fig. 8).
The main aim of the user evaluation was to gauge the

user satisfaction with the recommendation results. In the

following, we focus on the perceived quality and usefulness

of the best performing seven recommendation algorithms

346 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013

TABLE 1
Selected Algorithms for User Evaluation

Fig. 5. Constructs of the evaluation framework ResQue [32].

Fig. 6. User profiles.

Fig. 7. Users’ experience and trust in recommender systems.



from our offline evaluation (see Table 1). We analyse the
results per question basis for all approaches. A summary of
the average scores per question and per algorithm are given
in Fig. 9, based on the 5-point Likert scale where 1 indicates
“strongly disagree” and 5 “strongly agree.”

The first question (Q1—Ability to recommend) investi-
gates if the proposed recommendation algorithms are able
to make any suggestions for the target users. All techniques
have a success rate above 80 percent. The algorithms that
fail in providing suggestions to all users are the User-Based
LSA kNN with CTS Generation and NBC and the User-Based
k-Means Clustering. All other approaches have successfully
recommended items to all evaluators. Further, we have
observed that the number of tags in the user profile does
not relate to the fact whether a user will receive a
recommendation or not. The system could recommend
items to participants that have used less than 10 tags.

However, in regards to the percentage of accurately
suggested items (Q2—Accuracy) the number of applied
tags do play a role. Most users with less than 25 applied
tags receive less relevant items. The larger the tag set of one
user, the more relevant items are recommended. From
Fig. 9, we can observe that the outstanding approaches are
the User-Based Apriori and User-Based kNN with CTS
Generation and NBC. The proposed alternative for the
last algorithm using LSA (Rec 4), as well as the User-Based
k-Means Clustering suggest the least interesting items to
the user. Another observation we made is that the Item-
Based k-Means Clustering algorithm can always offer at least
one to three relevant items.

Following, we evaluated the ability of the proposed
recommendation algorithms to provide novel and attrac-
tive items to the users (Q3—Novelty). The User-Based LSA
kNN with CTS Generation and NBC and both the user-based
and the item-based clustering methods (Rec 5 and 6) had
the worst performance, while the User-Based Apriori and the
User-Based kNN with CTS Generation and NBC received the
highest scores.

In terms of diversity (Q4—Diversity), the Item-Based LSA
kNN CF and the association rule mining approach achieved
the best scores. The Item-Based k-Means Clustering is the
algorithm that offered minimal diversity in recommenda-
tion. This is not surprising as clustering aims to group similar
items, thus diversity within a cluster cannot be achieved.

The users were asked to evaluate to what extent the
provided recommendation incorporate their tag preference
(Q5—Context Compatibility). The Item-Based LSA kNN CF,
the User-Based Apriori, and the User-Based Clustering

achieved the best acceptance. The User-Based LSA kNN
with CTS Generation and NBC algorithm is the only
algorithm below the average with a score of 2.8.

Another important aspect for us is how the participants
perceive the support that the recommendation algorithms
offer in the context of learning Q6—Perceived Usefulness.
With a significant lead of 3.8 score, the User-Based Apriori
seems to be the best recommendation approach that helps
in the discovery of quality items for learning purposes.
Second best, scores the Item-Based LSA kNN CF. All other
algorithms shared similar perceived usefulness.

Lastly, we analyzed the overall satisfaction of the user
with the recommendation provided by all seven algorithms
Q7—Attitude. Not surprisingly, the leader in terms of
accuracy, novelty, and perceived usefulness; i.e., the User-
Based Apriori algorithm, received the best score, followed by
the Item-Based LSA kNN CF that performed best in regards
to diversity and consideration of users’ tag preferences. The
User-Based k-Means Clustering and the Item-Based kNN CF
algorithms received ranks 3, and, respectively, 4. Both
classification approaches and the Item-Based k-Means Clus-
tering received the same score of 3.0.

In conclusion, according to the evaluators, the best
recommendation is achieved by association rule mining of
users’ tags, as well as by item-based CF on a lower
dimensional semantic space. Independent of the specific
approach, the good overall satisfaction with all techniques
proves that tag-based collaborative filtering has high
potential for recommendation tasks in PLEs.

7.3 Offline versus User Evaluation

The results from our user evaluation confirmed the claim of
Pu et al. [32] that the quality of user experience with
recommender systems does not meet the high accuracy
performance measured by metrics, such as precision and
recall. In our evaluation, the User-Based Apriori algorithm
that achieved a low F1 score of only 4.85 percent in the
offline evaluation was rated by users as the best recom-
mendation algorithm. And, the evaluators were less
satisfied with the recommendation of the Item-Based k-Means
Clustering algorithm, which ranked first in the offline
evaluation. According to the measured precision and recall,
the Item-Based LSA kNN CF and the User-Based k-Means
Clustering algorithms ranked third, respectively, fourth in
the offline evaluation. However, the evaluators found their
recommendation as more useful than the Item-Based kNN CF

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 347

Fig. 8. Familiarity with tag-based recommendation and attitude toward
recommendation in learning.

Fig. 9. Summary of results per question and algorithm.



algorithm, which had the second place in the offline
evaluation. Fig. 10 depicts the ranking of the seven best
performing algorithms in descending order according to the
findings from our offline and user evaluation.

The evaluation results show that it is inappropriate to
rely solely on offline evaluation to gauge the effectiveness of
tag-based recommender systems. We believe that user
evaluation methods are more suitable when assessing the
recommendation quality of tag-based collaborative filtering
algorithms in PLEs. The perceived usefulness of recom-
mended items depends on the learners’ subjective opinion
and background knowledge. Statistically measured accu-
racy does not correlate with the individual understanding
of relevant and interesting items. Most probably, this is due
to the fact that tags are instruments of natural language and
hold semantics that cannot be captured completely by
recommendation algorithms.

8 DISCUSSION AND FUTURE WORK

The results of the evaluation in this experiment revealed
that the Item-Based k-Means Clustering was the best perform-
ing algorithm in the offline evaluation whereas the user-
based Apriori algorithm was ranked first in the user
evaluation. The major finding in this study is that the
offline evaluation of recommender systems does not always
correlate with their user evaluation. However, due to the
small sample size (83 users, 773 items, and 1,005 tags), it is
not possible at this stage of research to generalize that the
Item-Based k-Means Clustering and User-Based Apriori
are always the best performing algorithms in tag-based
CF recommendation tasks. To draw similar conclusions, it
is necessary to apply the recommendation techniques
used in this study on other (educational) data sets, such
as Delicious, MACE, ReMashed, Mendeley, and PSLC
DataShop [33].

From a recommendation point of view, there are several
directions for improvement. First, we can enhance the way
the user profiles are built. For example, we can ignore tags
that occur rarely. Second, we can improve also the item
profiles. This can be done by extracting tags for a given
item from third-party services like del.icio.us. Further-
more, the problem of polysemy and synonymy of tags can
be reduced by leveraging a dictionary like WordNet,
Wikipedia, or Freebase to compute whether two tags are
semantically similar.

It is important to note that the data set used in our study
was generated within the PLEM environment. The methods
of the study can, however, be applied in other (TEL)

environments, where users manage and tag items. From a
technical perspective, this should be possible because the
recommendation methods that we implemented in this
experiment just require as input a user-tag matrix and an
item-tag matrix that can easily be built from any available
tag-based data set.

9 SUMMARY

In a PLE-driven approach to learning, there is a crucial need
for recommendation methods to help learners find quality
knowledge nodes (i.e., information and people) that can
populate their PLEs. In this paper, we investigated the
application of tag-based CF recommendation methods to
recommend learning items in PLEs. We implemented and
experimented with 16 different tag-based CF algorithms,
memory based as well as model based. We conducted an
extensive offline and user evaluation to contrast and
compare the different algorithms in terms of accuracy and
user satisfaction. The results of the evaluation carried out
confirm that the quality of user experience does not
correlate with high-recommendation accuracy measured
by statistical methods.

REFERENCES

[1] M.A. Chatti, M. Jarke, and M. Specht, “The 3P Learning Model,”
J. Educational Technology and Soc., vol. 13, no. 4, pp. 74-85, 2010.

[2] K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, R.
Vuorikari, and E. Duval, “Data Set-Driven Research for Improving
Recommender Systems for Learning,” Proc. First Int’l Conf.
Learning Analytics and Knowledge (LAK ’11), pp. 44-53, 2011.

[3] H. Drachsler, H. Hummel, B. van den Berg, J. Eshuis, W.
Waterink, R. Nadolski, A. Berlanga, N. Boers, and R. Koper,
“Effects of the Isis Recommender System for Navigation Support
in Self-Organized Learning Networks,” J. Educational Technology
and Soc., vol. 12, no. 3, pp. 115-126, 2009.

[4] J. Buder and C. Schwind, “Learning with Personalized Recom-
mender Systems: A Psychological View,” Computers in Human
Behavior, vol. 28, no. 1, pp. 207-216, 2012.

[5] N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel, and R.
Koper, “Recommender Systems in Technology Enhanced Learn-
ing,” Recommender Systems Handbook, L.R.P.B. Kantor, F. Ricci, and
B. Shapira, eds., pp. 387-415, Springer, 2011.

[6] N. Manouselis, H. Drachsler, K. Verbert, and E. Duval, Recom-
mender Systems for Learning. Springer, 2013.

[7] F. Mödritscher, “Towards a Recommender Strategy for Personal
Learning Environments,” Proc. First Workshop Recommender Sys-
tems for Technology Enhanced Learning, vol. 1, no. 2, pp. 2775-2782,
2010.

[8] G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions,” IEEE Trans. Knowledge and Data Eng., vol. 17,
no. 6, pp. 734-749, June 2005.

[9] X. Su and T.M. Khoshgoftaar, “A Survey of Collaborative Filtering
Techniques,” Advances in Artificial Intelligence, vol. 2009, article 4,
http://www.hindawi.com/j.s/aai/2009/421425/, Jan. 2009.

[10] S. Alag, Collective Intelligence in Action. Manning Publications Co.,
2009.

[11] T.C. Zhou, H. Ma, I. King, and M.R. Lyu, “TagRec: Leveraging
Tagging Wisdom for Recommendation,” Proc. Int’l Conf. Computa-
tional Science and Eng. (CSE ’09), vol. 4, pp. 194-199, 2009.

[12] R. Vuorikari, M. Sillaots, S. Panzavolta, and R. Koper, “Are Tags
from Mars and Descriptors from Venus? A Study on the Ecology
of Educational Resource Metadata,” Proc. Eighth Int’l Conf.
Advances in Web Based Learning (ICWL ’09), pp. 400-409, 2009.

[13] R. Vuorikari and X. Ochoa, “Exploratory Analysis of the Main
Characteristics of Tags and Tagging of Educational Resources in a
Multi-Lingual Context,” J. Digital Information, vol. 10, no. 2,
http://journals.tdl.org/jodi/index.php/jodi/article/view/447,
2009.

348 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 4, OCTOBER-DECEMBER 2013

Fig. 10. Comparison of the ranking of algorithms from the offline and
user evaluation.



[14] M.-H. Hsu and H.-H. Chen, “Tag Normalization and Prediction
for Effective Social Media Retrieval,” Proc. IEEE/WIC/ACM Int’l
Conf. Web Intelligence and Intelligent Agent Technology, vol. 1,
pp. 770-774, 2008.

[15] S. Sen, J. Vig, and J. Riedl, “Tagommenders: Connecting Users to
Items through Tags,” Proc. 18th Int’l Conf. World Wide Web,
pp. 671-680, 2009.

[16] D. Parra-Santander and P. Brusilovsky, “Improving Collaborative
Filtering in Social Tagging Systems for the Recommendation of
Scientific Articles,” Proc. IEEE/WIC/ACM Int’l Conf. Web Intelli-
gence and Intelligent Agent Technology, pp. 136-142, 2010.

[17] D. Zeng and H. Li, “How Useful Are Tags? An Empirical Analysis
of Collaborative Tagging for Web Page Recommendation,” Proc.
IEEE ISI 2008 PAISI, PACCF, and SOCO Int’l Workshops Intelligence
and Security Informatics, pp. 320-330, 2009.

[18] A.K. Milicevic, A. Nanopoulos, and M. Ivanovic, “Social Tagging
in Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions,” Artificial Intelligence Rev., vol. 33, no. 3,
pp. 187-209, 2010.

[19] A.-T. Ji, C. Yeon, H.-N. Kim, and G.-S. Jo, “Collaborative Tagging
in Recommender Systems,” Proc. 20th Australian Joint Conf.
Advances in Artificial Intelligence (AI ’07), pp. 377-386, 2007.

[20] K.H.L. Tso-Sutter, L.B. Marinho, and L. Schmidt-Thieme, “Tag-
Aware Recommender Systems by Fusion of Collaborative Filter-
ing Algorithms,” Proc. ACM Symp. Applied Computing (SAC ’08),
pp. 1995-1999, 2008.

[21] H. Liang, Y. Xu, Y. Li, and R. Nayak, “Tag Based Collaborative
Filtering for Recommender Systems,” Proc. Int’l Conf. Rough Sets
and Knowledge Technology, vol. 5589, pp. 666-673, 2009.

[22] Z. Wang, Y. Wang, and H. Wu, “Tags Meet Ratings: Improving
Collaborative Filtering with Tag-Based Neighborhood Method,”
Proc. Workshop Social Recommender Systems (SRS ’10), 2010.

[23] C.S. Firan, W. Nejdl, and R. Paiu, “The Benefit of Using Tag-Based
Profiles,” Proc. Latin Am. Web Conf. (LA-WEB ’07), pp. 32-41, 2007.

[24] R.Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, H. Kato, and
Y. Inagaki, “Reasonable Tag-Based Collaborative Filtering for
Social Tagging Systems,” Proc. Second ACM Workshop Information
Credibility Web (WICOW ’08), pp. 11-18, 2008.

[25] M.A. Chatti, Anggraeni, M. Jarke, M. Specht, and K. Maillet,
“PLEM: A Web 2.0 Driven Long Tail Aggregator and Filter for
E-Learning,” Int’l J. Web Information Systems, vol. 6, no. 1, pp. 5-
23, 2010.

[26] D. Verpoorten, C. Glahn, M.A. Chatti, W. Westera, and M. Specht,
“Self-Reported Learning Effects of a Tagging Activity Carried out
in a Personal Learning Environment (PLE) by Secondary-School
Pupils,” Int’l J. Cross-Disciplinary Subjects in Education, vol. 2, no. 1,
pp. 276-284, 2011.

[27] E. Hatcher and O. Gospodnetic, Lucene in Action. Manning
Publications Co., 2004.

[28] X. Amatriain, A. Jaimes, N. Oliver, and J.M. Pujol, “Data Mining
Methods for Recommender Systems,” Recommender Systems Hand-
book, F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor, eds., pp. 39-
72, Springer, 2011.

[29] I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.

[30] D. Breitkreutz and K. Casey, “Clusterers: A Comparison of
Partitioning and Density-Based Algorithms and a Discussion of
Optimisations,” technical report, http://eprints.jcu.edu.au/
11999/, 2008.

[31] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-Based
Collaborative Filtering Recommendation Algorithms,” Proc. 10th
Int’l World Wide Web Conf. (WWW ’10), pp. 285-295, 2001.

[32] P. Pu, L. Chen, and R. Hu, “A User-Centric Evaluation Framework
for Recommender Systems,” Proc. Fifth ACM Conf. Recommender
Systems, pp. 157-164, 2011.

[33] K. Verbert, N. Manouselis, H. Drachsler, and E. Duval, “Data Set-
Driven Research to Support Learning and Knowledge Analytics,”
Educational Technology and Soc., vol. 15, no. 3, pp. 133-148, 2012.

Mohamed Amine Chatti received the diploma
degree in computer science from the Univer-
sity of Kaiserslautern, Germany, in 2004 and
the PhD degree in computer science from the
RWTH Aachen University, Germany, in 2010.
He is an assistant professor of computer
science in the Learning Technologies Group
(Informatik 9) at the RWTH Aachen University,
Germany. His research focuses on web
information systems, technology-enhanced

learning, and knowledge management.

Simona Dakova is working toward the master’s
degree in computer science at the RWTH
Aachen University.

Hendrik Thüs received the diploma degree in
computer science from the RWTH Aachen
University in 2010. He is working toward the
PhD degree with the Learning Technologies
Research Group (Informatik 9) of the RWTH
Aachen University, Germany, where he is a
research assistant. He focuses on mobile learn-
ing in different context situations and on the
generation of user profiles according to their
usage of media.

Ulrik Schroeder is a professor of computer
science at the RWTH Aachen University. He
heads the Learning Technologies Research
Group. He is also the head of the Center for
Innovative Learning Technology (CiL) and the
director of the school laboratory for computer
science (InfoSphere) at RWTH Aachen Univer-
sity. His research interests include assessment
and intelligent feedback, mobile learning, gender
mainstreaming in education, and computer
science teachers education.

CHATTI ET AL.: TAG-BASED COLLABORATIVE FILTERING RECOMMENDATION IN PERSONAL LEARNING ENVIRONMENTS 349



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


