
AWeb-Based Visualization and Animation
Platform for Digital Logic Design

Abdulhadi Shoufan, Zheng Lu, and Sorin A. Huss

Abstract—This paper presents a web-based education platform for the visualization and animation of the digital logic design process.

This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of

finite state machines. Various configurations of finite state machines can be selected to define the machine type, the state code, and

the flip-flop type. Logic minimization with the K-map approach and the Quine McCluskey scheme is also supported. The tools, denoted

as DLD-VISU, help students practice related topics in digital logic design courses. Also, instructors can use the tools to efficiently

generate and verify examples for lecture notes or for homework problems and assignments. DLD-VISU was designed relying on a

thorough investigation of related pedagogical aspects to define appropriate interactive graphical processes. The decision for a

web-based solution, on the one hand, was motivated by making the tools available, portable, expandable, and at the same time

transparent to the user. On the other hand, the advocated approach enables instructors to define access rules for their students to

assure that students cannot use the tools to solve assessed homework problems or assignments before submission deadline.

DLD-VISU supports self-assessment and reflects the student learning process using learning curves. The proposed platform was

evaluated both in form of students’ feedback as well as by analyzing the impact of using the tools on students’ performance.

Ç

1 INTRODUCTION

DIGITAL logic design (DLD) is a core course in several
undergraduate programs including electrical engineer-

ing, computer engineering, and computer science. DLD is
usually taught in the first or second year. This poses special
difficulties to students for four reasons. First, DLD is a com-
prehensive course with diverse topics that must be covered
to enable students to attend advanced courses such as com-
puter architecture and embedded systems. Second, a DLD
course is rich in new concepts, theories, and approaches,
which are not part of school education, as a rule. Thus, stu-
dents face these topics without any or with very limited
background. Third, solving DLD problems manually is
error-prone because of working with large numbers of 1’s
and 0’s. For instance, the state table used to design a small
finite state machine with four binary-coded states, four
input signals, and two output signals, has 64 lines and
10 columns with a total of 640 zeros and ones. Flipping any
of these bits by mistake may lead to an FSM circuit, that
doesn’t meet the specification. Finding this kind of error is
tedious and its correction may require a start from the
beginning. This doesn’t only cause frustration but also
deters many students from trying to solve advanced prob-
lems for practicing. Fourth, an essential aspect in digital
logic design is to learn how different design alternatives
result in different non-functional properties of the digital
circuit. For instance, to investigate the effect of the FSM

type, the state code, or the flip-flop type on the performance
or on the gate usage of a finite state machine, different
design alternatives for the same specification should be gen-
erated and compared. Given the complexity of generating
one design alternative, it is obvious that a comprehensive
evaluation of design alternatives is almost impossible.

Digital logic design has long been addressed in educa-
tion literature. Several papers can be found that focus on
DLD course construction [1], [2], [3], the usage of commer-
cial tools and hardware description languages (HDL) for
learning DLD [4], [5], and employing programmable logic
to enhance the effectiveness of DLD learning process [6],
[7]. Using HDL and commercial design tools as learning
technologies is very useful. However, these tools operate on
two ends of the design process and hide internal design
steps, which form the core learning outcomes in a typical
DLD course. For instance, a commercial synthesis program
can read an FSM specification in form of a state diagram or
HDL code and generate the corresponding circuit. The
question “How does this generation works”, which is in the
center of a DLD course, is not answered by these tools. Indi-
vidual contributions on the visualization and animation for
digital logic design can be found in the literature. This
related work will be discussed in Section 2.

In this paper we present a web-based tool, denoted as
DLD-VISU, for the visualization and animation of different
DLD topics. The main contribution of this tool to academic
learning consists in a consequent exploitation of relevant
pedagogical theories in conceiving the graphical animation
process. These theories known as Epistemic Fidelity, Cogni-
tive Constructivism, Dual Coding, and Individual Differen-
ces, specify the fundamental requirements for a successful
animation solution in the field of education.

Currently, DLD-VISU supports the design of combinato-
rial circuits using logic gates, multiplexers, decoders, and
look-up tables. The input function can be entered as a

� A. Shoufan is with the Department of ECE, Khalifa University,
Abu Dhabi, UAE. E-mail: abdulhadi.shoufan@kustar.ac.ae.

� Z. Lu and S.A. Huss are with the Department of Computer Science, Inte-
grated Circuits and Systems Lab, Technische Universit€at Darmstadt,
Darmstadt, Germany. E-mail: {zheng_lu, huss}@iss.tu-darmstadt.dee.

Manuscript received 20 Mar. 2014; revised 22 Aug. 2014; accepted 3 Sept.
2014. Date of publication 11 Sept. 2014; date of current version 16 June 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TLT.2014.2356464

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015 225

1939-1382 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Boolean function or as a truth table and can be minimized
using K-map or Quine-McCluskey algorithm. Additionally,
finite state machines can be synthesized step by step start-
ing from a state diagram. All the design steps are performed
under students’ interaction, so that intermediate values can
be verified. Different FSM configurations regarding the
machine type, the state code, and the flip-flop type can be
selected to test various design alternatives. DLD-VISU ena-
bles instructors to set access rules that define when students
can access which topic. This is important for instructors
who use graded homework problems and assignments as
assessment tools.

The paper is structured as follows. Section 2 reviews the
related work and details the contribution of DLD-VISU.
Section 3 describes the design concepts behind DLD-VISU.
Section 4 details the included learning topics. Section 5
describes some implementation aspects. Section 6 details
the tools evaluation and Section 7 concludes the paper.

2 RELATED WORK AND PAPER CONTRIBUTION

In this section we review related work on the visualization
and animation of digital logic design in the order of their
relevance to our work. Then we describe the innovation of
DLD-VISU and compare it with related work.

Stanisavljevic et al. presented recently a system for
digital logic design and simulation (SDLDS) [8]. The sys-
tem consists of three modules for design, simulation and
evaluation. The design can be carried out either starting
from a formal description or by instantiating and con-
necting library modules. Combinatorial circuits as well
as finite state machines of both Moore and Mealy types
are supported. A Boolean function is entered as a truth
table. The system then creates the canonical forms of the
function and draws the corresponding circuits using
AND and OR gates as well as inverters. Additionally,
the K-map approach is used to create the minimized
functions and draw the optimized circuits. A finite state
machine can be designed starting from state table that is
entered by the user.

In [9] a Windows-based tools suite, denoted as WinLogi-
Lab, is presented that supports interactive learning of the
design of combinatorial and sequential logic circuits. The
suite includes tools for number presentation and conver-
sion, the design of combinatorial circuits with logical gates,
Boolean function minimization using K-map and Quine-
McCluskey approaches, and the specification and simula-
tion of general purpose finite state machines.

HADES is a versatile simulation and visualization plat-
form for computer architecture based on Java applets [10].
HADES offers interactive simulations on the gate level and
it includes a state diagram editor. The user can select the
machine type, specify the inputs and the outputs of the
machine, and draw the state diagram. In [11], the authors
use the Flash technology to generate what they call Flash
notes for DLD topics such as the basic logic gates, simplify-
ing logical circuits, flip-flops.

Several simulators were presented for educational pru-
poses. For instance, LOG is a digital simulator for UNIX,
which was originally developed at UC Berkeley in the
1980s as a tool for teaching logic design. LOG is available

as part of the CHIPMUNK package [12]. Logisim is a Java-
based simulator of digital systems consisting of gates and
flip-flops [13]. LoGen uses dynamic HTML and PHP to
generate and simulate logic circuits on the gate level [14].
Other simulators available online include smartsim [15]
and easysim [16].

DLD-VISU is a tool for the visualization and animation of
digital logic design. Its main contribution consists in the def-
inition of a theoretical learning framework and the applica-
tion of this framework to a wide range of DLD topics, as
depicted in Fig. 1. The framework essentially relies on the
findings in the field of algorithm animation to generate
graphical processes for learning DLD. The motivation to
this approach is that most DLD topics can be described in
an algorithmic way. This is not only valid to the main
design processes for combinatorial and sequential logic, but
also to several intermediate steps such as function minimi-
zation using the k-map or the Quine-McCluskey scheme,
Boolean function implementation using multiplexers,
decoders, NAND gates, or NOR gates. Even individual
actions within these intermediate steps can be sophisticated
enough for the computer, so that an algorithmic description
is justified. One example for that is finding all the prime
implicants in a k-map. The biggest challenge for any DLD
visualization tool is to find an appropriate abstraction level
for the graphical processes that contributes to the learning
process effectively. This strongly relies on the instructor’s
experience in teaching DLD topics and her or his awareness
of the level of details most appropriate for topics’ presenta-
tion. This complies with the Epistemic Fidelity theory as
one of the five fundamental theories that we adopted to
build the DLD-VISU theoretical framework. This frame-
work will be detailed in the next section. We are not aware
of any learning technology that uses a similar approach
to produce graphics or graphical processes for DLD
visualization.

On the topical level, DLD-VISU focuses on the synthesis
of digital logic rather than on simulation. Thus, it is mostly
related to SDLDS [8] and WinLogiLab [9]. DLD-VISU sup-
ports various design aspects that are not covered by these
two solutions as can be seen in the comparison given in
Table 1. However, we should emphasize that the main
strength of DLD-VISU is not its topic coverage but the way
these topics are presented based on the proposed frame-
work. For instance, DLD-VISU is the only solution that
addresses the k-map minimization in the methodic way
that starts with determining all the prime implicants, iden-
tifying the core implicants, and writing the minimized
function as a sum of all core implicants and as many prime
implicants as necessary. These steps are addressed explic-
itly and with user interaction and self-assessment. Another
example is the implementation of Boolean functions using
NAND gates. DLD-VISU is the only tool that supports all
possible ways to enter the function, to minimize it, and to
implement it using AND and OR gates. Then, the AND
and OR gates are replaced by their NAND equivalent cir-
cuits and the redundant inverters are removed to obtain
the final circuit.

Furthermore, as a web solution DLD-VISU provides
two functions that are of high relevance to the educa-
tional process as will be detailed in the next section, see

226 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

Fig. 1. First, instructors can lock some topics for periods
where students need to deliver related homework solu-
tions. For that a user management system was intro-
duced that enables instructors to register their students
and to define appropriate access rules. Second,

instructors can access students’ learning curves and his-
tory. Accessing students’ learning curves helps instruc-
tors evaluate the learning level of students. The
students’ history can be used as a repository by the
instructor for the purpose of review and assessment.

Fig. 1. DLD-VISU theoretical framework and covered topics.

TABLE 1
Comparing DLD-VISU with SDLDS and WinLogiLab

Topic WinLogiLab SDLDS DLD-VISU

Formal entry of Boolean function Yes No Yes
Specifying the function form (DNF, KNF, non-standard, canonical) No No Yes
Design entry as a truth table Yes Yes Yes
Design entry as a K-map Yes No Yes
Minimization using K-Map Yes Yes Yes
Minimization using Quine-McCluskey Yes No Yes
Implementation using AND, OR gates and inverters Yes Yes Yes
Methodical implementation using NAND gates No No Yes
Methodical implementation using NOR gates No No Yes
Methodical implementation using multiplexers No No Yes
Implementation using decoders No No Yes
Implementation using LUTs No No Yes
Design of Moore and Mealy FSMs No Yes Yes
FSM entry as a state diagram Yes No Yes
Selecting or editing binary state code No Yes Yes
Selecting or editing one-hot state code No Yes Yes
Selecting or editing Gray state code No Yes Yes
FSM design using D-type flip-flops No Yes Yes
FSM design using T-type flip-flops No Yes Yes
FSM design using JK-type flip-flops No Yes Yes
Minimizing the state and the output equations No Yes Yes
Drawing the FSM state diagram No Yes Yes

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 227

3 DLD-VISU DESIGN CONCEPTS

DLD-VISU underlies a pedagogical design concept as well
as a web design concept. Both will be detailed in the
following.

3.1 Pedagogical Design Concept

Visualization and animation have long been used as means
for knowledge transfer. In university education, animation
gained special attention in learning algorithms since the
1970’s. The effectiveness of algorithm animation, however,
has always been arguable [17]. Hundhausen et al. identified
four theories about the effectiveness of algorithm animation
[18]. The Epistemic Fidelity theory relies on the assumption
that humans construct in their heads symbolic models for
the physical world and use these models for their reasoning
and action. Visualization and animation aim at a graphical
representation of an expert’s mental model. The effective-
ness of using animation depends on the fidelity of the match
between the graphical representation and the expert’s men-
tal model. The Cognitive Constructivism theory asserts that
passive viewing of the graphics may be not very helpful.
Instead, an active engagement in the visualization process is
essential to construct own understanding. The Dual Coding
theory assumes that coding the information both as graphics
and text promotes the most efficient and robust knowledge
transfer. The Individual Differences theory assumes that stu-
dents benefit from visualization differently and this depends
on their cognitive abilities and learning style.

DLD-VISU was designed taking these four theories into
consideration as detailed in the following. The first two the-
ories will be detailed in two separate sections. The last two
theories will be described together in one section.

3.1.1 Epistemic Fidelity

Designing a combinatorial or sequential circuit is a dynamic
process with various steps that operate on different data.
Our mental model for understanding this design process
relies on three principles: keeping overview, abstraction, and
traceability. Keeping overview is essential to find oneself in
the whole design process. Abstraction is a key principle to
focus on the current design step and not to be confused by
unnecessary details. Traceability helps students understand
the transition fromone step to another and identify the origin
of each Boolean term or value and each logic component gen-
erated through the design process.

Keeping Overview. DLD-VISU enables students to keep
track of the learned topic by displaying a progress chart for
the design process at the top of the animation window. The
progress chart shows all the steps of the design process and
highlights the current design step. Fig. 2 shows the progress
chart of the FSM design process with selecting the state code
as the current step. Some steps in the progress chart are com-
plex and consist themselves of several steps. In such a case a
progress sub-chart appears under the main chart upon arriv-
ing at the corresponding step. For instance, the progress

chart for implementing a combinatorial circuit includes four
main steps. The implementation step herein is complicated
when amultiplexer realization is desired. In this case, a prog-
ress sub-chart appears to show the details of function expan-
sion according to Shannon’s’ scheme, see Fig. 3.

Abstraction. DLD-VISU supports abstraction by selecting
an appropriate granularity for each animation step on the
one hand, and by presenting only necessary data in each
step, on the other. Too fine-grained steps would require
more clicks, which may cause inconvenience. Too coarse-
grained steps, in contrast, would demand that more data is
presented in the animation window. This may lead to
crowded pages and confusion. DLD-VISU displays in the
animation window as much information as necessary for
understanding the current design step. During the creation
of the state table in FSM design, for instance, the state dia-
gram is displayed so that students can verify each line in
the state table by investigating the state diagram. However,
during the derivation of the state equations, the state dia-
gram is not displayed anymore because state equations are
produced from the state table.

Traceability. Traceability is highly important for learn-
ing digital logic design. Remember that solving DLD
problems is error-prone as students have to deal with a
large number of Boolean terms and values. DLD-VISU
enables students to identify the source of each term or
value either by a stepwise generation of these terms and
values, by highlighting using colors, or both. For exam-
ple, when the prime implicants are derived from the K-
map depicted in Fig. 10, students can trace how each
implicant is determined not only with the aid of colors
but also by a gradual display of the minterm groupings
in the map and the related implicants.

3.1.2 Cognitive Constructivism

The Cognitive Constructivism theory assumes that the user
should be engaged in the animation process to attain the
desired learning outcome. Passive viewing is not helpful, as
a rule. DLD-VISU is an interactive tool that engages the stu-
dent at different stages of the design process. User interac-
tions in DLD-VISU can be categorized into two groups as
detailed in the following.

Design and animation interactions. Four interactions can be
identified in this group:

1) The design entry is the student’s responsibility. The
design can be entered as a Boolean function in differ-
ent forms, as a truth table, as a K-map, or as a state
diagram.

Fig. 2. FSM flowchart.

Fig. 3. Progress sub-chart example.

228 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

2) The student controls the design flow by selecting dif-
ferent configurations. For combinatorial logic design,
the user can select the design entry method, the logic
style, and the minimization approach. In the design
of FSMs, the user can select the machine type, the
state code, and the flip-flop type.

3) The student controls the animation process using
forward and backward buttons.

4) The student can use the mouse pointer to highlight
some graphical elements and show their belonging
for the sake of traceability.

Self-assessment interactions.1 Animation is a ”divide and
rule” approach that enables students to understand the
design process by investigating intermediate values and
final results. Given that, the question arises: How can
students make the best of an animation tool like DLD-
VISU? It is obvious that a passive observation of the val-
ues produced in the internal steps is pointless. Rather,
students should develop in their minds or on a piece of
paper an idea about the values expected from any step
before running it and then compare these values with
the actual values produced by the animation program.
We believe that this kind of self-assessment is essential
to make benefit from any animation solution. To facili-
tate self-assessment, DLD-VISU provides two techniques,
that will be explained using the example of creating the
state table within the design of a finite state machine:

1) The state table is used to specify the next state and
the output functions. Instead of displaying a full
table directly, DLD-VISU prompts the student to
enter some or all the values followed by a click on
a button called ”Verify”, see Fig. 4. Then, the state
table is displayed with all the correct values. The
values that were entered by the student are
highlighted by a green or a red background
depending on whether the entry was correct or
wrong, respectively. Values which were not
entered by the student are displayed without back-
ground color.

2) The rate of correct entries in this step is registered in
what we call the leaning curve. This curve captures
the success rate in doing some step over the time.
Fig. 5 shows that the student has edited a state table
five times with an increasing success rate. Note that

the different points on the learning curve do not nec-
essarily belong to same state table. When the mouse
cursor is moved over a point of the curve, additional
information about that point is shown in a rounded
rectangle, as can be seen in Fig. 5. Students may use
the learning curves to evaluate their learning prog-
ress and to manage their learning time more effi-
ciently by focusing on topics with poor learning
curves.

DLD-VISU includes a menu called My History with two
items: My Learning Curves and My Animations. The learning
curves are stored under My Learning Curves automatically.
Upon completing an animation process, students can save
all the design steps underMy Animations. This item includes
a table with reference to saved designs. The student can
reload any of these designs, e.g., for the purpose of compari-
son with other design alternatives. Fig. 6 shows an example
for an animation history table.

3.1.3 Dual Coding and Individual Differences

The Dual Coding theory assumes that the graphical visu-
alization must be supported by text to achieve effective
learning. DLD-VISU makes use of this theory and pro-
vides the users with succinct texts. The text can include
an instruction to do some action, a help statement, or an
error message. The Individual Differences theory assumes
that students benefit from visualization differently
depending on their cognitive abilities and learning styles.
DLD-VISU does not address this point directly as it has
no user-specific actions. However, through the ability to
control the animation process and to trace the design
steps, as well as the ability to enter the design by hand,
students can design circuits with different complexity lev-
els and can control the animation process in a way that
suits their cognitive abilities. For instance, a student can

Fig. 4. Self-assessment while creating the state table.

Fig. 5. Learning curve for state table setup.

Fig. 6. My animations history example.

1. In the current version, the self-assessment is built-in for K-map
and Quine-McCluskey minimization, for state code entry, and for the
creation of the state table in the FSM design.

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 229

work on a K-map with three or four variables depending
on her or his learning stage.

3.2 Web Design Concept

The design of DLD-VISU as a web solution was driven by
our intention to attain the typical advantages of a web appli-
cation, on the one hand. These advantages include availabil-
ity, portability, and update-ability. Students can access
DLD-VISU from any computer with an internet connection
using any web browser. DLD-VISU can be updated on the
server transparently to the user.

On the other hand, the proposed solution is intended to
accompany students taking a DLD course. We are aware
that some instructors do not welcome a learning technology
that enables students to generate problem solutions. Stu-
dents may use such technology to solve homework prob-
lems and assignments. To tackle this problem, DLD-VISU is
enhanced with a special Access Control System (ACS) that
differentiates between three types of users: Instructor, Stu-
dent, and Guest.

An instructor uses the web to register. Besides some
personal data, an instructor must enter his professional
email address and website. The system administrator
verifies the data usually through online search and sends
a confirmation along with log-in data to the instructor.
An instructor can then log in and perform one of
following:

1) An instructor can register one or more students that
attend her or his course using the web. For this pur-
pose the student name and email address must be
entered. Upon receiving the request, the system
automatically adds the students to the database
related to the corresponding instructor and sends
log-in data to them.

2) To assure that students cannot use DLD-VISU to
generate solutions for graded homework problems
or assignments, the instructor can lock different
topics using a list that we call the Access Control List,
see Fig. 7. The upper entry in the figure, for instance,
shows that students cannot use DLD-VISU to design
combinatorial logic using multiplexers in the time
period from the first to the 8th of May 2013.

3) An instructor can run all the animation functions of
DLD-VISU.

A student willing to use DLD-VISU has to send an
inquiry to her or his instructor. After getting log-in data,
students can log in and use the animation tools according to
the access control rules defined by the instructor. This indi-
rect registration approach aims at reducing the administra-
tive overhead which would be needed to verify that some
student really attends the course of a specific instructor.

Users who wish to use DLD-VISU without registration or
log-in can access the tools as guests. A guest, however, can
only run some built-in case studies.

4 VISUALIZATION AND ANIMATION IN DLD-VISU

This section details the visualization and animation pro-
cesses supported in the DLD-VISU Beta version. This
includes the design of the combinatorial logic and finite
state machines. Boolean function minimization using K-
map or Quine McCluskey algorithm is a part of the combi-
natorial logic design but can also be invoked separately.

4.1 A&V of Combinatorial Logic Design Process

A combinatorial logic circuit may be implemented using
gates, multiplexers, decoders, or look-up tables. DLD-VISU
partitions the design process of combinatorial circuits into
four steps, see the progess chart at the top of Fig. 8.

4.1.1 Function Entry

The student can enter the function either in a Boolean form
or as a truth table. Additionally, if K-map minimization is
used separately, students can fill in the K-map directly.
When a Boolean function is selected the student is requested
to choose the standard form, the canonical form, or the non-
standard form. If a standard form is selected the student
can select the disjunctive normal form (DNF) or the conjunc-
tive normal form (CNF). Then the Boolean function can be
edited using the same format given in the last line as an
example, see Fig. 8. Similarly the student can select the
canonical form (sum of minterms) and enter the function as
a list of minterm numbers such as F ¼ Smð0; 1; 4; 9Þ. The
non-standard form can include sums of products as well as
products of sums. Questions 2, 3 and 4 in Fig. 8 appear
dynamically depending on the answer given to each previ-
ous question. This helps students focus on one question at
one time point, which is in line with the abstraction concept
of DLD-VISU. Note that requesting students to answer the
above questions aims at making them familiar with the ter-
minology of Boolean algebra.

Fig. 7. Access control rules example.

Fig. 8. Design entry as a boolean function.

230 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

If a truth table is chosen to enter the function, then the
student is requested to enter the number of variables. Then,
a corresponding truth table is displayed in which all output
values are 0 by default. The student can click on the desired
table line to switch the corresponding output value between
0, 1, and X (Don’t care). While editing the truth table the cor-
responding Boolean function represented in the disjunctive
normal form and in the compact canonical form appears
under the table automatically, see Fig. 9.

4.1.2 Function Minimization

The minimization of logical functions is a main learning
outcome in any DLD course. Students should be kept
aware that a circuit, which implements a function with
less components, is more economic, more reliable, shows
better performance, and consumes less power. Minimiz-
ing logical functions using Boolean algebra is only practi-
cal for small functions with limited number of variables.
The K-map approach is popular for functions of up to
four variables. The Quine McCluskey algorithm is more
appropriate for functions of more variables. DLD-VISU
supports both approaches as will be detailed in the
following.

In the minimization step the student is requested to select
the minimization method. Depending on this selection a
progress sub-chart is displayed, see Fig. 10.

K-Map minimization. In the first step of K-map minimiza-
tion, the map is set up with the function minterms as
depicted in Fig. 10. Following, all the prime implicants are
determined. For self-assessment, students are able to edit
the implicants and verify their entries. The same applies to
the next step for determining the core implicants. Fig. 10
shows the animation window after completing all the mini-
mization steps, for space reasons. This figure depicts that
the student has entered three out of four prime implicants
in step 2, whereas the third entry is wrong. In steps 3 and 4
the student did not make any entries.

A prime implicant as a Boolean term is displayed in the
same color as the outline color of the corresponding

grouping on the map. The squares with orange back-
ground in the map highlight the minterms that are covered
by only one prime implicant, thus, justifying why this
implicant is a core implicant. For instance, the minterm
AB’C’D is only covered by the prime implicant AB’C’.
This is why AB’C’ is a core implicant which is highlighted
on the map by a bold outline. Prime implicants stay with a
thin outline such as B’C’D’.

Quine-McCluskey minimization. For functions of more
than four variables, identifying the implicants and the core
implicants using K-map can get tedious and error-prone.
The Quine-McCluskey method (QMC) is a tabular search-
based approach which makes it more suitable for minimiz-
ing large functions. QMC proceeds as follows. The first step
consists in finding all the implicants and is itself a multi-
step procedure as depicted in the example of Fig. 11. In an
initialization step, the function minterms are grouped
according to the number of 1’s and listed in blue color in the
second column of the table. This grouping according to the
number of 1’s accelerates the search for adjacent minterms
that follows in a successive way. The adjacent minterms
found in the second column are listed one by one in a new
column (Step 1), where the different bit is replaced by “-”.

Fig. 9. Design entry as a truth table.

Fig. 11. Minimization with Quine McCluskey: Finding prime implicants.

Fig. 10. K-Map minimization using prime and essential prime implicants.

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 231

Any minterm, for which an adjacent minterm is found, is
marked by a gray color. Upon completing the list in Step 1,
this list is searched for adjacent minterms, which are
inserted in a new column (Step 2). For that the sign “-” is
treated as a third bit value.

This procedure is repeated iteratively until no adjacent
minterms are available. The implicants correspond to the
remaining entries with blue color. In the second step the
core implicants are determined. This is done using a matrix
that shows which minterms are covered by each implicant.
In Fig. 12, for instance, the minterms m0 and m4 are only
covered by the implicant A’D’. That is why this implicant is
a core implicant. This is indicated by highlighting the check
sign “X” in the corresponding columns. In the last step the
minimized function is set up as the sum of all core impli-
cants and as many implicants as necessary to cover all the
minterms of the function.

4.1.3 Selecting Implementation Style

DLD-VISU supports the design of combinatorial circuits
with gates, multiplexers, decoders, as well as with look-
up tables and multiplexers which is typical in modern
FPGAs. Students can select one of these alternatives as
can be seen in Fig. 13. When logic gates are selected, stu-
dents can also specify the type and the size of the gates to
be used.

4.1.4 Implement Function

In this step, the minimized function is mapped to the combi-
natorial circuit using the selected components.

Implementation with gates. The implementation with AND
and OR gates is straightforward. Fig. 14 shows the

implementation of the function F ðA;B;C;DÞ ¼ A0B0C0D þ
AB0C0D0 þABCD0 with two-input AND and OR gates.

The implementation with NAND or NOR gates is more
complex and accomplished as a four-step process. This pro-
cess is explained in the following for the same function
above using two-input NAND gates.

1) First, the circuit is implemented with AND and OR
gates only. The resulting circuit will be the same as
the one given in Fig. 14.

2) Each AND gate is replaced by its equivalent NAND
circuit, which consists of two NAND gates. The first
NAND gate takes the inputs. Its output is connected
to both inputs of the second gate that realizes an
inverter. Similarly, each OR gate is replaced by its
equivalent NAND circuit which consists of three
NAND gates. Fig. 15 shows the result of this step.

3) In the next step, all the redundant inverter pairs are
found and marked as seen in Fig. 16. A redundant
inverter pair consists of two consecutive inverters.

4) Finally, the marked redundant inverter pairs are
deleted as depicted in Fig. 17.

Implementation with multiplexers. If multiplexers are
selected to implement the function, the Boolean function
is first expanded according to Shannon’s scheme. The
expansion relies on using the function variables as control
signals for the MUXs. The MUXs’ data inputs either stem

Fig. 12. Minimization with Quine McCluskey: Finding core implicants.

Fig. 13. Selecting the Implementation Logic Elements.

Fig. 14. Implementing a combinatorial circuit with AND and OR.

Fig. 15. Replacing AND and OR gates by their NAND equivalents.

232 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

from the outputs of previous MUXs or are connected to
the constant values 1 or 0. Currently only 2-1 MUXs are
supported by DLD-VISU. The function expansion accord-
ing to Shannon is displayed step by step followed by
drawing the corresponding multiplexer, see Fig. 18.

Implementation with decoders. DLD-VISU supports imple-
mentations with 3� 8 and 4� 16 decoders. If the function
has two or three variables, the circuit is built up using one
3 � 8 decoder. If the function has 4 variables, the circuit can
be implemented either using one 4� 16 decoder or two
3� 8 decoders. Functions of five variables are implemented
using two 4� 16 decoders. Fig. 19 shows how DLD-VISU
generates a decoder circuit for a four-variable function
using two 3� 8 decoders.

Implementation with look-up tables and multiplexer. DLD-
VISU supports implementations with 16-bit lookup
tables. Additionally, five-variable functions can be imple-
mented using two look-up tables and one multiplexer.
The goal of this implementation form is to introduce stu-
dents to SRAM-based field-programmable gate arrays
(FPGA).

4.2 A&V of Sequential Logic Design Process

DLD-VISU visualizes the design of finite state machines
in ten steps as was shown in the progress chart in Fig. 1.

Both Moore and Mealy machines are supported with
binary, Gray, and one-hot state code as well as D-type,
T-type, and JK-type flip-flops. Thus, a total of 18 design
alternatives can be visualized. For space reasons, how-
ever, the design steps described below takes only one of
these design alternatives into consideration. This design
alternative is a Moore machine, with binary-coded states
and D-type flip-flops.

4.2.1 State Diagram Entry

After selecting the FSM type, students can specify the
machine behavior as a state diagram. Fig. 20 shows an
example for an edited state diagram of a simple Moore
machine. Four buttons are available to enter the state dia-
gram. The properties of a state or a transition can be edited
in the boxes right to the state diagram.

State and transition properties differ depending on the
machine type. In a Moore machine, for instance, the state
has two properties: the state name and the output signals
that should be active in that state. Additionally, one state
can be marked as the start state, which the machine returns
to after reset. A transition has just one property, which is
the Boolean expression that represents the condition for that
transition. The Boolean expression can be the name of a sin-
gle input signal or a complex expression with several input
signals. To build such an expression in DLD-VISU, the char-
acters “!”, “*”, and “+” are used for inverting, AND, and
OR operation, respectively.

Fig. 16. Identifying redundant inverters.

Fig. 17. Deleting redundant inverters.

Fig. 18. Implementing a combinatorial circuit with multiplexers.

Fig. 19. Implementing a combinatorial circuit with decoders.

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 233

4.2.2 State Code Selection

The state code has an important effect on the behavior and
the resource usage of a FSM. One-hot code, for instance,
enables a relatively simple input and output logic. The
result is a higher-performance FSM, however, at the cost of
flip-flop usage. With DLD-VISU students can select and
enter the state code. Consequently, the state diagram is
regenerated, where the state names are replaced by the state
code, see Fig. 21. The correct state code table is also dis-
played so that the student can map the state code to the state
names. With the aid of background color, the student can
assess which entries are correct or wrong.

4.2.3 State Table Creation

From the state diagram with encoded states, the state table
can then be created as seen in Fig. 22. This figure also shows
that the student has entered some values for the next state
and the output signals. Correct and wrong entries are
marked by a green or red background color, respectively.

For traceability, the state diagram is also displayed in this
step. In Fig. 22, however, we cut out the state diagram, for
space reasons. From the following step on, the state diagram
will not be displayed anymore because the next steps are
accomplished based on the state table only. This complies
with the abstraction principle DLD-VISU is built on.

4.2.4 State Memory Design

This step simply consists in selecting the type of the flip-
flops that should be used to implement the state memory.
The number of generated FFs depends on the number of
states and the state code as can be seen in Fig. 23 for the
example FSM. The FSM general architecture shown in this

figure is displayed to keep overview of the current design
step by highlighting the corresponding component. In the
following, however, this architecture diagram will not be
shown again, for space reasons.

4.2.5 Design of Combinatorial Input Logic

The design of the input logic circuit is accomplished in three
steps (steps 5, 6, and 7 in the FSM progress chart, see Fig. 2):

In the first step the state equations are derived from the
state table. A state equation describes the next state as a
function of the current state and the input signals, see
Fig. 24. Using the mouse cursor, a table line and the corre-
sponding term in the equations can be highlighted for the
sake of traceability. Note that the column related to the out-
put signal is omitted in the table of Fig. 24. This is because
output signals do not affect the input logic. DLD-VISU hides
output signal columns in this step for the purpose of
abstraction.

In the next step the state equations are minimized. The
minimization is performed using the Quine Mc-Cluskey
algorithm implicitly, i.e., without animation. FSM design is
an advanced topic in digital logic design and it is assumed
that students at this stage are familiar with the design of
combinatorial logic including minimization.

Lastly, the combinatorial input circuit corresponding to
the minimized function is displayed gate by gate under
highlighting the corresponding term in the minimized state
equations for traceability, see Fig. 25.

4.2.6 Design of Combinatorial Output Logic

The design of combinatorial output logic is visualized in
three steps of the progress chart (steps 8, 9, and 10). These
steps are highly similar to the construction of the input
logic. Therefore, only the final circuit is shown here for brev-
ity, see Fig. 25. In the first step, the output equations are

Fig. 20. Editing state diagram for FSM design.

Fig. 21. State coding.

Fig. 22. State table creation.

Fig. 23. State memory design.

234 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

derived from the state table. An output equation describes
an output signal as a function of the current state in Moore
machines. In Mealy machines, an output signal is a function
of both the current state and the input signals. During deriv-
ing the output equations, therefore, DLD-VISU hides the
next-state columns in the state table for Mealy machines as
well as the input signal columns for Moore machines. In the
next step the output equations are minimized. Finally, the
combinatorial output circuit is displayed gate by gate to
obtain the overall FSM circuit.

5 IMPLEMENTATION

DLD-VISU was implemented using the integrated envi-
ronment SSH2, whereas SSH2 stands for Struts 2.0,
Spring, and Hibernate. Struts 2.0 is a framework to
develop JAVA EE web applications supporting the MVC
pattern. Using this pattern, the Model, i.e., the application
logic, is separated from the View, i.e., the HTML page
presented to the user, and the Controller which is respon-
sible for the data exchange between the view and the
model. Hibernate is an object-relational mapping (ORM)
library for the Java language, providing a framework for
mapping an object-oriented domain model to a traditional
relational database. Finally, Spring is an application
framework and a container for inversion of control (IoC)

that is used to manage Java objects via dependency injec-
tion. Spring reduces the coupling between the Controller
and the Model.

The interaction between the client and the server in DLD-
VISU shall be illustrated using the sequence diagram
depicted in Fig. 26. This diagram relates to the state coding
step depicted in Fig. 21 (without self-assessment) and shows
how the state code table is generated in nine steps.First,
when the user clicks on “Binary Code”, JavaScript generates
a request in the form of an action named “getBinaryCode.
action” and sends it to the server using the Ajax technique
and the jQuery library. Ajax enables a web application to
send data to the server and to get the response without
refreshing the current page. The action parameters include
the ID of the state diagram under consideration and the
name of the callback function written in JavaScript. The call-
back function is responsible for the display of the table in the
browser. DLD-VISU uses Tomcat as a web server. Upon
receiving the request, Tomcat calls the Struts 2 filter that
intercepts the request. Struts 2.0, then looks up the class
name “stateCodeAction” corresponding to the action label
in the configuration file “struts.xml” and sends the class
name to Spring. Spring, then, looks up the actual action class
“com.org.action.StateCodeAction” in the configuration file

Fig. 24. Generation of state equations.

Fig. 25. Output circuit.

Fig. 26. Client-server interaction to create a code table in the FSM design process.

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 235

“applicationContext. xml”. Spring creates a new action-
object “StateCodeAction”, and two model-layer objects
“fsmSerivce” and “nodeService”. The latter two model
objects are injected into the action object. Struts executes the
method of the new action object. In this example the method
is “getBinaryCode”. The model returns the execution result
to Struts, which is the code table in this case. Struts looks up
the success tag in the file “struts.xml” and forwards the
results to the JSP file specified in the success tag. The browser
gets the result from the JSP and calls the Ajax callback func-
tion that updates the part of pagewith the code table.

The view layer of the MVC pattern runs in the browser to
receive user entries and to generate the animation based on
the data sent by the server. For that JavaScript and the
JSXGraph library are utilized. JSXGraph is a cross-browser
library that is implemented in JavaScript completely.
JSXGraph supports both the Web Vector Graphic Language
VML (only Microsoft Internet Explorer before Edition 9.0)
and the Vector Markup Language SVG (other popular
browsers including Firefox, Chrome and Safari).

6 DLD-VISU EVALUATION

6.1 Students’ Survey

This section presents the results of a survey conducted with
179 students at Technische Universit€at Darmstadt against
the end of the semester, in which they took the DLD course.

Recall that DLD-VISU was realized based on four peda-
gogical theories, that describe the requirements for an effec-
tive animation solution. In the previous sections we tried to
highlight how these theories were mapped to concrete
aspects in the presented software solution. The goal of

students’ feedback is to see how far this mapping served its
purpose by asking questions related to their experience
with DLD-VISU.

For instance, Question 5 in Fig. 27 indirectly addresses
the abstraction concept in DLD-VISU. The answers to this
question shows that 54 percent of the students agree that in
an animation step only the data is presented which is neces-
sary to understand this step. Almost 39 percent gave, how-
ever, a neutral answer to the same question. The last
percentage was high enough for us to review our solution
and to improve its abstraction feature at several points,
which is an essential objective of the feedback system. The
traceability principle is addressed in Question 3 and stu-
dents gave similar answers as to the abstraction question.
Almost 78 percent of the students seem to have found their
way through the animation steps according to the answers
to Question 9. This indicates that DLD-VISU helped them
keeping the overview of the design process. Remember that
keeping overview, abstraction, and traceability are the three
principles, which reflect our instructional model.

Question 2 implies that students must be active in the
animation process by entering the design specification and
controlling the design process. Recall that the Cognitive Con-
structivism theory presumes user interaction for an effective
animation tool. Interestingly, almost all the students found
this kind of interaction as helpful or very helpful.

Almost half the students found that DLD-VISU is self-
explanatory according to Question 7. This confirms that the
textual instructions and messages were sufficient for this
part of students to use DLD-VISU without extra help. Add-
ing text to the graphic is essential for effective animation
according to the Dual Coding theory. The Individual

Fig. 27. Students feedback results.

236 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

Differences theory assumes that students benefit from visu-
alization differently depending on their cognitive abilities
and learning styles. Again, DLD-VISU does not define user-
specific actions but students, for instance, can try designs at
diffirent difficulty levels that fit their learning abilities. The
granularity of the animation step (e.g., should the entries of
a K-map diplayed all at once, line by line, or square by
quare?) is an important parameter that may be set by the
students according to their learning level. The need for such
an improvement in DLD-VISU can be seen from the
answers to Question 4. While 45 percent feel that the anima-
tion steps are too fine-granular because of the need to click
frequently, 30 percent have an opposite opinion.

Question 1 relates to the first impression which is
highly important for the acceptance of any e-learning
tool. We believe that, besides its advantage in the learning
process, the clear layout and the uncomplicated operation
of DLD-VISU have contributed to the positive or very
positive impression which 73 percent of the students had.
Question 8 shows that most students welcome on-line
learning due to various advantages including the flexibil-
ity and the lack of the need to download and install soft-
ware on the own computer. Only 37 percent of the
responsees experienced a performance issue in using
DLD-VISU as a web solution according to Question 9.

6.2 Impact on Students Performance

The survey presented in the previous section gives an
indirect evaluation of the effectiveness of DLD-VISU. At
that time the self-assessment system was not imple-
mented yet. Currently, the learning curves that record the
self-assessment results provide an efficient way to evalu-
ate DLD-VISU.

6.2.1 Evaluation in Fall 2013

In the previous semester, DLD-VISU was presented in the
classroom to 38 electrical and computer engineering stu-
dents taking the DLD course at the sophomore level. Inter-
ested students were asked to request access data by sending
an email to the instructor. Nineteen students were regis-
tered. However, out of these students only seven accessed
and used DLD-VISU. This low usage may be attributed to
the fact that we presented the tool very late in the semester,
specifically in the last week before the final exam. Each of
the seven students completed the K-map minimization pro-
cess for 4.8 functions in average. The overall success rate for
all students and all trials is 79.74 percent. In the final exam
all the students had to apply K-map minimization as a prob-
lem part with 5 marks. We found out that DLD-VISU users
solved this final-exam problem part with an average of
4.49 marks compared to 3.89 marks that non DLD-VISU
users achieved in average. Thus, DLD-VISU users per-
formed in this task 15.4 percent (100 � ð4:49� 3:89Þ=3:89)
better than the others. However, this improvement cannot
be seen as a net gain: we compared the overall performance
of the students and found out that the DLD-VISU users
have a higher average, however only by 5.1 percent.

6.2.2 Evaluation in Spring 2014

In this semester, we conducted an experiment to gain more
data on the effectiveness of DLD-VISU by answering the

following question: Given a specific minimization task,
what is the advantage of using DLD-VISU to perform this
task over the traditional manual approach? This question is
especially challenging: If a student starts solving the prob-
lem using DLD-VISU, then she or he would get immediate
feedback and see the correct solution so that a succeeding
manual solution of the same problem would not help in
assessment. Even if the student starts with the manual solu-
tion, she or he would gain experience with the function so
that solving it with DLD-VISU would be easier. For a valid
and fair comparison, therefore, we completely avoided that
a student solves the same problem twice.

For an in-depth understanding of the effectiveness of
DLD-VISU, furthermore, we gave minimization problems
of different difficulty levels. For that we specified the con-
cept of difficulty level as follows.

Difficulty Level. The difficulty level of the function mini-
mization problem using K-map increases with the following
factors.

1) The number of prime implicants NPI in the K-map.
When NPI increases, then the probability of over-
looking one or more prime implicants is higher.

2) The difference between the number of prime impli-
cants and the number of core implicants, which we
refer to as DPI�CI . A higher DPI�CI value indicates
the availability of more overlapped prime implicants
and, thus, the availability of more than one optimal
function. In contrast, if DPI�CI is zero, then there is
only one optimal function.

Based on this understanding, we specify the difficulty
level using the heuristic formula DL ¼ NPI þDPI�CI , or
DL ¼ 2NPI þNCI , where NCI is the number of the core
implicants.

Experiment execution. The experiment was conducted
with 49 students who had already took or were taking the
DLD course at the Technische Universit€at Darmstadt and at
Khalifa University, respectively. The experiment partici-
pants at both universities were familiar with the K-map
minimization approach and had a good understanding of
the related concepts minterm, implicant, prime implicant,
and core implicant. The students were asked to bring their
laptops to the class room and to make sure they have access
to the internet. One day before we registered the students in
the DLD-VISU system and we divided them into two
groups (Group A and Group B) with almost comparable
average performance in the course. At the start of the exper-
iment we reviewed the K-map approach and demonstrated
DLD-VISU for the first time. Students were tutored step-by-
step how to use DLD-VISU to minimize Boolean functions
and we made sure that all the students run one example
successfully, which was first detailed on the white board.
The K-map review and the DLD-VISU demo took almost
10 minutes. Each student had to minimize eight functions
(named F1 to F8), whereas the index in the function name
corresponds to its difficulty level. These functions are

1) F1 ¼ Smð0; 3Þ þ Sdð1; 2Þ
2) F2 ¼ Smð0; 1; 2; 3; 13; 14Þ þ Sdð12; 15Þ
3) F3 ¼ Smð0; 1; 2; 3Þ þ Sdð9; 11Þ
4) F4 ¼ Smð4; 5; 14; 15Þ þ Sdð7; 13Þ

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 237

5) F5 ¼ Smð4; 5; 7; 13; 14Þ þ Sdð9; 11; 15Þ
6) F6 ¼ Smð0; 1; 2; 7; 8; 9; 13Þ þ Sdð10; 11Þ
7) F7 ¼ Smð0; 2; 5; 10; 12; 15Þ þ Sdð8; 13Þ
8) F8 ¼ Smð0; 2; 10; 12; 13; 15Þ þ Sdð5; 8Þ
The 25 students of Group A had to minimize these func-

tions manually. The 24 students of Group B used DLD-
VISU to do the same. The functions had to be processed in
the order of their indexes. Manual solutions had to be deliv-
ered on paper. DLD-VISU solutions are evaluated automati-
cally and grades (success rates) are registered in the
learning curves, as it was detailed in Section 3.1.2. The
time amount needed to complete the manual solution or
the DLD-VISU solution by each student was recorded.

Results and analysis. Students had to determine all the
prime implicants and core implicants before writing the
minimized function. The manual solutions were graded
using the same pattern used in DLD-VISU to determine the
success rate. Table 2 shows the average performance of both
groups as well as the average time that was needed to com-
plete the respective task. The table shows that DLD-VISU
users completed the task in 19.5 percent less time and per-
formed almost 17.03 percent better than non DLD-VISU
users. Given the sample size of 49 students and the con-
straints, under which the experiment was conducted, these
values show a clear advantage in using DLD-VISU. Remem-
ber that the participants had no previous experience with
DLD-VISU in contrast to the manual solution. This doesn’t
only make the experiment results more significant, but it
also shows the ease of operation of the proposed tools.

Another aspect that can be investigated is the student
performance in relation to the difficulty level. Fig. 28 shows
the advantage of using DLD-VISU as a function of the diffi-
culty level. The curve points in this figure were determined
using the same formula used to calculate the advantage of
using DLD-VISU in Table 2, however, for each question sep-
arately. For instance, the average performance of DLD-VISU
users (Group B) in minimizing F3 was almost 14 percent
better than the performance of Group A. In spite of two
exceptions, the trendline of this function shows that the
advantage of using DLD-VISU increases with the difficulty
level. The effect of the increasing difficulty level seems to be
compensated by the improved learning level with every
trial due to the immediate feedback that students get from
DLD-VISU. We believe that this feature is especially impor-
tant for the acceptance of DLD-VISU. The two exceptions F5
and F7 may be associated with the way the experiment was
executed and with the selection of these functions itself. As
mentioned before, F5 was processed directly after F4.
However, F5 had accidentally a large similarity with F4, so

that both groups performed well in minimizing F5.
However, it should not be excluded that these exceptions
were —at least partially— caused by issues in the definition
of the difficulty level itself. Evaluating this aspect needs
more data, which will be a part of future work.

7 CONCLUSION

DLD-VISU was built based on a long experience in teaching
digital logic design and a critical view of effective methods
to present its different topics. The proposed software solu-
tion is a reflection of this experience under consideration of
important theories related to the effectiveness of algorithm
animation. We believe that this approach is of general value
in the field of learning technology and can be applied
beyond digital logic design. The presented results in terms
of students’ survey and experiments showed the effective-
ness of the tools. Informal discussions with the students
who tested the tools revealed strong enthusiasm for DLD-
VISU. Also, several instructors whom we talk to welcomed
the idea of DLD-VISU especially the detailed presentation
of the FSM design process. In addition to expanding its
functionality to include simulation and further topics, the
long-term plan is expand DLD-VISU to a course-based ani-
mation platform for different courses.

REFERENCES

[1] S. Steele and G. Balazs, “A course sequence for the teaching of dig-
ital systems,” IEEE Trans. Educ., vol. 9, no. 4, pp. 198–201, Dec.
1966.

[2] O. Adamo, P. Guturu, and M. Varanasi, “An innovative method
of teaching digital system design in an undergraduate electrical
and computer engineering curriculum,” in Proc. IEEE Int. Conf.
Microelectron. Syst. Educ., 2009, pp. 25–28.

[3] J. Amaral, P. Berube, and P. Mehta, “Teaching digital design to
computing science students in a single academic term,” IEEE
Trans. Educ., vol. 48, no. 1, pp. 127–132, Feb. 2005.

[4] G. Puvvada and M. Breuer, “Teaching computer hardware design
using commercial cad tools,” IEEE Trans. Educ., vol. 36, no. 1,
pp. 158–163, Feb. 1993.

[5] H. Abidin, M. Kassim, K. Othman, and M. Samad, “Incorporating
VHDL in teaching combinational logic circuit,” in Proc. 2nd Int.
Congr. Eng. Educ., 2010, pp. 225–228.

[6] Y. Zhu, T. Weng, and C. Cheng, “Enhancing learning effectiveness
in digital design courses through the use of programmable logic
boards,” IEEE Trans. Educ., vol. 52, no. 1, pp. 151–156, Feb. 2009.

[7] A. Zemva, A. Trost, and B. Zajc, “A rapid prototyping environ-
ment for teaching digital logic design,” IEEE Trans. Educ., vol. 41,
no. 4, p. 342, Nov. 1998.

[8] Z. Stanisavljevic, V. Pavlovic, B. Nikolic, and J. Djordjevic, “Sdlds-
system for digital logic design and simulation,” IEEE Trans. Educ.,
vol. 56, no. 2, pp. 235–245, May 2013.

[9] C. Hacker and R. Sitte, “Interactive teaching of elementary digital
logic design with winlogilab,” IEEE Trans. Educ., vol. 47, no. 2,
pp. 196–203, May 2004.

[10] N. Hendrich, “A java-based framework for simulation and teach-
ing: Hades-the hamburg design system,” in Proc. Microelectron.
Educ., 2000, pp. 285–288.

TABLE 2
Performance Out of 100 Marks & Processing Time for

Groups A and B

Approach No.

Participants

Performance Processing

Time

Group A Manual 25 Students 80.14 39.92 min
Group B DLD-VISU 24 Students 93.79 32.13 min
Difference 13.65 7.79 min
Advantage of using DLD-VISU 17.03% 19.5%

Fig. 28. Advantage of using DLD-VISU against difficulty level.

238 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 2, APRIL-JUNE 2015

[11] N. H. Yusof and R. Hassan, “Flash notes and easy electronic soft-
ware (EES): New technique to improve digital logic design
learning,” in Proc. IEEE Int. Conf. Elect. Eng. Inf., 2011, pp. 1–6.

[12] Chipmunk Documentation. (2014, Sep. 19). [Online]. Available:
http://www.cs.berkeley.edu/~lazzaro/chipmunk/describe/log.
html

[13] C. Burch, “Logisim: A graphical system for logic circuit design
and simulation,” J. Educ. Resources Comput., vol. 2, no. 1, pp. 5–16,
2002.

[14] S. Kubisch, R. Rennert, H. Pfueller, and D. Timmermann, “Logen-
generation and simulation of digital logic on the gate-level via
internet,” in Proc. 1st IEEE Int. Conf. E-Learn. Ind. Electron., 2006,
pp. 46–51.

[15] Smartsim. (2014, Sep. 19). [Online]. Available: http://smartsim.
org.uk/
downloads/manual/smartsim_user_manual.pdf

[16] Easysim. (2014, Sep. 19). [Online]. Available: http://www.
research-systems.com/easysim/easyman.pdf

[17] M. Tudoreanu and E. Kraemer, “Balanced cognitive load signifi-
cantly improves the effectiveness of algorithm animation as a
problem-solving tool,” J. Vis. Lang. Comput., vol. 19, no. 5,
pp. 598–616, 2008.

[18] C. Hundhausen, S. Douglas, and J. Stasko, “A meta-study of algo-
rithm visualization effectiveness,” J. Vis. Lang. Comput., vol. 13,
no. 3, pp. 259–290, 2002.

Abdulhadi Shoufan received the Dr-Ing degree
from the Technische Universitt Darmstadt,
Germany, in 2007. Currently, he is an assistant
professor of information security and ECE at
Khalifa University, UAE, and he leads the Secu-
rity Hardware Group at the Center for Advanced
Security Research Darmstadt (CASED), Ger-
many. His research areas include embedded
security and cryptographic hardware as well as
engineering education.

Zheng Lu received the BE degree from Beijing
Union University in 2001, and the MSc degree
from Technische Universit€at Darmstadt,
Germany in 2009. Since 2010, he is working
toward the PhD degree at Technische Universit€at
Darmstadt. His research areas include digital
logic design process and web-based interactional
education platform.

Sorin A. Huss received the Dr-Ing degree in
electrical engineering from Technische Uni-
versit€at M€unchen, Germany, in 1982. He worked
in the industry from 1982 until 1990 in different
positions at AEG Aktiengesellschaft in Ulm,
Germany. Since 1990, he has been a full profes-
sor in the Computer Science Department of
Technische Universit€at Darmstadt, Germany. He
was one of the founders and directors of the
CASED Center for Advance Security Research
Darmstadt. His current research interests are in

the areas of embedded system design methodology, HW/SW architec-
tures for IT security, and car-to-car communication systems.

SHOUFAN ET AL.: A WEB-BASED VISUALIZATION AND ANIMATION PLATFORM FOR DIGITAL LOGIC DESIGN 239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

