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Abstract—In automated essay scoring (AES), scores are
automatically assigned to essays as an alternative to grading by
humans. Traditional AES typically relies on handcrafted features,
whereas recent studies have proposed AES models based on deep
neural networks to obviate the need for feature engineering. Those
AES models generally require training on a large dataset of graded
essays. However, assigned grades in such a training dataset are
known to be biased owing to effects of rater characteristics when
grading is conducted by assigning a few raters in a rater set to each
essay. Performance of AES models drops when such biased data
are used for model training. Researchers in the fields of educational
and psychological measurement have recently proposed item
response theory (IRT) models that can estimate essay scores while
considering effects of rater biases. This study, therefore, proposes a
new method that trains AES models using IRT-based scores for
dealing with rater bias within training data.

Index Terms—Automated essay scoring (AES), deep neural
networks (DNNs), item response theory (IRT), rater bias.

I. INTRODUCTION

IN various assessment fields, essay writing tests have

attracted much attention as a way to measure practical and

higher order abilities, such as logical thinking, critical reason-

ing, and creative thinking [1]–[5]. In essay writing tests,

examinees write essays about a given topic, and human raters

grade those essays based on a scoring rubric. However, grad-

ing can be an expensive and time-consuming process when

there are many examinees [2], [6]. In addition, grading by

humans is not always sufficiently accurate even when a rubric

is used because assigned scores depend strongly on rater char-

acteristics, such as strictness and consistency [7]–[14]. Auto-

mated essay scoring (AES), which utilizes natural language

processing (NLP) and machine learning techniques to auto-

matically grade essays, is one approach toward resolving this

problem.

Many AES methods have been developed over recent deca-

des, and these can generally be classified as feature-engineering

or automatic feature extraction approaches [2], [6]. The feature-

engineering approach predicts scores using manually tuned fea-

tures, such as essay length and number of spelling errors (see,

e.g., [15]–[18]). The advantages of this approach include

interpretability and explainability. However, this approach gen-

erally requires extensive effort in engineering effective features

to achieve high scoring accuracy for various datasets. To obviate

the need for feature engineering, automatic feature extraction

approaches based on deep neural networks (DNNs) have

recently attracted attention. DNNs, which have recently

achieved tremendous success in various domains, are a type of

machine learning model composed of multiple neural networks

designed to mimic the behavior of the human brain. Many

DNN-AESmodels have been proposed in the past few years and

have achieved state-of-the-art accuracy (see, e.g., [19]–[30]).

Those AES models generally require a large dataset of

essays graded by human raters as training data. When creating

a training dataset, essay grading tasks are generally shared

among many raters by assigning a few raters to each essay to

lower assessment burdens. However, in such cases, assigned

scores are known to be biased owing to the effects of rater char-

acteristics [9]–[12], [14], [31]–[35]. Performance of AES mod-

els drops when biased data are used for model training because

the resulting model reflects the bias effects [15], [36]–[38].

This problem has been generally overlooked or ignored, but it

is a significant issue affecting all AES models that use super-

vised machine learning models, including DNNs. Furthermore,

in practice, it is generally difficult to create a training dataset

without rater bias effects because to do so would incur high

costs for rater training and data quality confirmation.

In the fields of educational and psychological measurement,

statistical models for estimating essay scores while considering

rater bias effects have recently been proposed. Specifically,

they are formulated as item response theory (IRT) models that

incorporate parameters representing rater characteristics [7],

[13], [39]–[43]. Such models have been applied to various per-

formance tests, including essay writing tests. Previous studies

have reported that they can provide accurate scores by remov-

ing adverse effects of rater bias (see, e.g., [32] and [41]–[44]).

This study, therefore, proposes a new method that trains

AES models using IRT-based scores for dealing with rater

bias in training data. In our method, an IRT model is first
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applied to raw rating data to estimate scores that remove

effects of rater bias. Then, an AES model is trained using the

IRT-based scores. Because the IRT-based scores are theoreti-

cally free from rater bias effects, the AES model will not

reflect the bias effects. Our method is simple and easily

applied to various conventional AES models, and our experi-

mental results show that it effectively improves AES perfor-

mance. Moreover, this method is highly suited to educational

contexts and to low- and medium-stake tests because prepar-

ing high-quality training data in such situations is generally

difficult, owing to cost concerns.

Note that Aomi et al. [45] proposed another AES method

involving IRT. However, unlike our method, their method

does not address the problem of rater biases in training data

because their objective was to integrate the predicted scores of

multiple AES models to improve scoring accuracy.

II. DATA

We assume that a training dataset consists of essays written

by J examinees and essay rating data assigned by R raters.

Let ej be an essay by examinee j 2 J ¼ f1; . . . ; Jg and let

Ujr 2 K ¼ f1; . . . ; Kg represent a categorical rating assigned

by rater r 2 R ¼ f1; . . . ; Rg to ej. The rating data can then be

defined as

UU ¼ fUjr 2 K [ f�1g j j 2 J ; r 2 Rg (1)

with Ujr ¼ �1 denoting missing data. Missing rating data

occur because only a few raters in R can practically grade

each essay ej to reduce assessment workload.

Furthermore, letting V be a vocabulary list for essay collec-

tion EE ¼ fej j j 2 J g, essay ej 2 EE is definable as a sequence

of vocabulary words

ej ¼ fwjt 2 V j t ¼ f1; . . . ; njgg (2)

where wjt is the tth word in ej and nj is the number of words

in ej.
This study is aimed at training AES models using these data.

III. AES MODELS

This section presents a review of conventional AES models

based on the feature-engineering approach and the automatic

feature extraction approach.

A. Feature-Engineering Approach

The feature-engineering approach predicts scores using tex-

tual features, which are manually designed by human experts.

Typical features are essay length and number of grammatical

and spelling errors. This approach first calculates such textual

features from a target essay text and, then, typically inputs the

feature vector to a regression model and outputs a score.

This approach has long been used in various AES models

(see, e.g., [18] and [46]–[49]). E-rater [46], which has been

developed and used by Educational Testing Service, is a repre-

sentative feature-engineering approach model based on a linear

regression model. Another recent popular feature-engineering

approach model is the Enhanced AI Scoring Engine (EASE)

[47], which achieved high performance in the Automated Stu-

dent Assessment Prize (ASAP) competition on Kaggle. EASE

uses Bayesian linear ridge regression with several feature types,

including length-based features, part-of-speech-based features,

prompt-relevant features, and bag-of-words-based features.

Feature-engineering approach models generally require

training of regression models using a training dataset, although

e-rater uses empirically determined weights for the regression

model.

B. Automatic Feature Extraction Approach

As models based on the automatic feature extraction

approach, DNN-based AES models have attracted wide atten-

tion. Although many DNN-based models have been proposed in

the past few years (see, e.g., [19]–[29]), we introduce the most

popular model, which is based mainly on a recurrent neural net-

work (RNN) [20], and an advancedmodel based on bidirectional

encoder representations from transformers (BERT) [50].

C. RNN-Based Model

An RNN-based model [20] proposed in 2016 was the first

DNN-AES model. Fig. 1 shows the model architecture. This

model calculates a score for a given essay, which is defined as

a sequence of words, through the following multilayered neu-

ral networks.

1) Lookup Table Layer: This layer transforms each word

in a given essay into a D-dimensional word-embedding

representation, in which words with the same meaning

have similar representations. Specifically, letting wwjt be

a jVj-dimensional one-hot representation of wjt, and let-

ting AA be a D� jVj-dimensional embeddings matrix,

the embedding representation corresponding to wjt 2 ej
is calculable as the dot product AA � wwjt. Here, the one-

hot representation of a word is a vector with a length

equal to the size of the vocabulary and takes one for a

single position corresponding to the index of that word

and zero for other positions.

Fig. 1. RNN-based model architecture.
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2) Convolution Layer: This layer extracts n-gram-level fea-

tures using convolutional neural networks (CNNs) from

the sequence of word-embedding vectors by transform-

ing each word vector into another vector representation

that reflects dependencies among n-adjacent words.

Zero padding, an operation in which zeros are appended

to the beginning of a sequence, is applied to the output

sequence from this layer to preserve the word length.

This is an optional layer, often omitted in current studies.

3) Recurrent Layer: This layer transforms each output vec-

tor from the convolution layer to another vector repre-

sentation by using a long short-term memory (LSTM)

network, a representative RNN, to consider the context

of the target essay. A single-layer unidirectional LSTM

is generally used, but bidirectional or multilayered

LSTMs are also often used.

4) Pooling Layer: This layer transforms the output hidden

vector sequence of the recurrent layer Hj ¼ fhhj1; hhj2;
. . . ; hhjnjg (where hhjt represents the output hidden vector

of the recurrent layer for inputted word wjt) into an

aggregated fixed-length hidden vector. Mean-over-time

(MoT) pooling, which calculates an average vector

MMj ¼ 1

nj

Xnj

t¼1

hhjt (3)

is generally used because it tends to provide stable

accuracy. Other frequently used pooling methods

include the last pool, which uses the last output of the

recurrent layer hhjnj .

5) Linear Layer With Sigmoid Activation: This layer proj-

ects the output vector of the pooling layer to a scalar

value in the range [0, 1] by utilizing the sigmoid func-

tion as

sðWWMMj þ bÞ (4)

where WW is a weight matrix and b is a bias. Model

training is conducted by normalizing gold-standard

scores to ½0; 1�, but the predicted scores are linearly

rescaled to the original score range in the prediction

phase.

D. BERT-Based Model

BERT, a pretrained language model released by the Google

AI Language Team, has achieved state-of-the-art results in

various NLP tasks [50]. It has been applied to AES [28], [51]

and automated short-answer grading [52]–[54] since 2019 and

provides good accuracy.

BERT is defined as a multilayer bidirectional transformer

network [55]. Transformers are a neural network architecture

designed to handle ordered sequences of data using an attention

mechanism. Specifically, transformers consist of multiple

layers (called transformer blocks), each containing a multihead

self-attention and a positionwise fully connected feedforward

network. This unique architecture enables transformers to con-

sider relations among all pairs of elements in a sequence,

thereby capturing its context more accurately than an RNN

could. See [55] for details of transformers.

BERT is trained in pretraining and fine-tuning steps. Pre-

training is conducted on huge amounts of unlabeled text data

over two tasks, namely, masked language modeling and next-

sentence prediction. Masked language modeling predicts the

identities of words that have been masked out of the input

text, while next-sequence prediction predicts whether two

given sentences are adjacent.

Using BERT for a target NLP task, including AES, requires

fine-tuning (retraining), which is conducted from a task-spe-

cific supervised dataset after initializing model parameters to

pretrained values. When using BERT for AES, input essays

require preprocessing, namely, adding a special token [CLS]

to the beginning of each input. BERT output corresponding to

this token is used as the aggregate hidden representation for a

given essay [50]. We can, thus, score an essay by inputting its

representation to a linear layer with sigmoid activation, as

illustrated in Fig. 2.

E. Problems in Model Training

To use these supervised machine-learning-based AES mod-

els, they must be trained using a large dataset of essays that

were graded by human raters. Note that BERT is a pretrained

model, but it too requires fine-tuning using a graded essay

dataset. For model training, the mean square error (MSE)

between predicted and gold-standard scores is generally used

as the loss function. Specifically, letting yj be the gold-stan-

dard score for essay ej and letting ŷj be the predicted score,

the MSE loss function is defined as

1

J

XJ

j¼1

ðyj � ŷjÞ2: (5)

When only one rater is assigned to each essay, the gold-

standard score yj is the rating for essay ej given by a single

rater assigned from a set of raters R. When multiple raters

grade each essay, as is assumed in this study, the gold-

Fig. 2. BERT-based model architecture.
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standard score is usually determined by averaging multiple

rater scores as

yj ¼ 1

Rj

X

r2R;Ujr 6¼�1

Ujr (6)

where Rj represents the number of raters assigned to essay ej.
However, such simple scores depend strongly on rater charac-

teristics, as discussed in Section I. The accuracy of an AES

model drops when such biased data are used for model train-

ing because the trained model inherits bias effects [15], [36]–

[38]. In educational and psychological measurement research,

IRT models that can estimate essay scores while considering

effects of rater characteristics have recently been proposed [7],

[13], [39]–[42]. The main goal of this study is to train AES

models using IRT-based unbiased scores. The next section

introduces the IRT models.

IV. IRT MODELS

IRT [56], a test theory based on mathematical models, is

widely used in educational testing. The primary purpose of a

test theory is to estimate examinees’ abilities from testing data,

which generally consist of binary or polytomous scores that the

examinees received on test items. IRT estimates examinees’

abilities while considering the characteristics of the test items,

including item difficulty and discrimination, by using probabi-

listic models called IRT models, whereas classical test theory

typically estimates abilities based on a simple total or the aver-

age score.

A. Polytomous IRT Models

Traditional IRT models are applicable to two-way data con-

sisting of scores that examinee receive on test items. For

example, the generalized partial credit model (GPCM) [57], a

representative polytomous IRT model, defines the probability

that examinee j receives score k for test item i as

Pijk ¼
exp

Pk
m¼1 Daiðuj � bi � dimÞ

� �
PK

l¼1 exp
Pl

m¼1 Daiðuj � bi � dimÞ
� � (7)

where uj is the latent ability of examinee j, ai is the discrimi-

nation parameter for item i, bi is the difficulty parameter for

item i, and dim is the step difficulty parameter denoting diffi-

culty of transition between scores m� 1 and m in the item.

D ¼ 1:7 is the scaling constant used to minimize the differ-

ence between the normal and logistic distribution functions.

Here, di1 ¼ 0, and
PK

m¼2 dim ¼ 0 is given for model

identification.

The key feature of IRT models, including GPCM, is that

they represent the probability of each observed score as a

function of latent examinee ability and item characteristics.

The parameters of ability and item characteristics can be esti-

mated from a collection of such observed scores. IRT models

generally provide more accurate estimates of ability compared

with classical test theory because they can estimate examinee

ability while considering the effects of item characteristics.

However, traditional IRT models ignore rater factors; there-

fore, they are not applicable to rating data from multiple

raters, as assumed in this study. Extension models that incor-

porate parameters representing rater characteristics have been

proposed to resolve this limitation [13], [39]–[43].

B. IRT Models With Rater Parameters

This study introduces one of the newest models, namely, the

generalized many-facet Rasch model (GMFRM) [42], [43].

The GMFRM defines the probability that rater r assigns score
k to examinee j’s essay for a test item (e.g., an essay task or a

prompt) i as

Pijrk ¼
exp

Pk
m¼1 Daraiðuj � br � bi � drmÞ

� �
PK

l¼1 exp
Pl

m¼1 Daraiðuj � br � bi � drmÞ
� � (8)

where ar is the consistency of rater r, br is the severity of rater

r, and drm represents the strictness of rater r for category m.

Formodel identification,
PI

i¼1 logai ¼ 0,
PI

i¼1 bi ¼ 0, dr1 ¼ 0,
and

PK
m¼2 drm ¼ 0 are assumed. The GMFRM is expected

to be robust for a large variety of raters [42], [43] because

it can consider various types of rater bias effect, as

described in the next section.

This study, therefore, assumes the application of a GMFRM

to rating data UU in training data. Note that, in general, AES

models are independently trained for each essay task. There-

fore, rating data UU are defined as two-way data in Section II.

When the number of tasks is fixed to one in the GMFRM, the

above mentioned model identification constraints make ai and

bi ignorable; therefore, (8) becomes

Pjrk ¼
exp

Pk
m¼1 Darðuj � br � drmÞ

� �
PK

l¼1 exp
Pl

m¼1 Darðuj � br � drmÞ
� � : (9)

This equation is consistent with the conventional GPCM,

regarding the item parameters as the rater parameters. Note

that uj in (9) represents not only the ability of examinee j, but
also the latent unbiased scores for essay ej, because only one

essay is associated with each examinee.

The unbiased essay scores uj in the model can be esti-

mated from observed essay rating data UU while considering

rater bias effects in a manner similar to that of the traditional

GPCM, which can estimate examinee abilities while consid-

ering the effects of item characteristics. IRT models with

rater parameters, including GMFRM, have been widely used

for various performance tests, including essay writing tests

and speaking tests, not only to realize an accurate ability or

score estimation but also to analyze effects of various bias

factors, such as rater bias (see, e.g., [8]–[13], [35], [41]–[43],

and [58]).

C. Rater Biases

The GMFRM given as (9) can consider rater biases induced

by differences in the following three common rater character-

istics [1], [9]–[11], [31], [35], [37], [59]–[61].
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1) Consistency: The extent to which the rater assigns simi-

lar ratings to essays of similar quality [9].

2) Severity: The tendency to give consistently lower rat-

ings than that are justified by the essays [9].

3) Range Restriction: The tendency to overuse a few rat-

ing categories [9], [10], [31]. The central tendency (a

tendency to overuse central categories) and the extreme

response tendency (a tendency to prefer endpoints of

the response scale) are special cases of range restriction.

To show how these characteristics are represented in the

GMFRM, Fig. 3 depicts item response curves (IRCs) of the

GMFRM, which are drawn by plotting the probability Pjrk in

(9) for four raters with the different parameters presented in

Table I. In Fig. 3, the horizontal axis shows the latent score uj
and the vertical axis shows the probability Pjrk. These IRCs

show that essays with lower (higher) uj tend to obtain lower

(higher) scores.

The GMFRM represents rater consistency as ar, with lower

values indicating smaller differences in response probabilities

between rating categories. This can be confirmed in Fig. 3

comparing raters 1 and 2, who have different consistency lev-

els. Fig. 3 suggests that scores given by a rater with a lower

consistency parameter will be strongly biased because they

tend to assign different ratings to essays with similar qualities.

In the GMFRM, rater severity is represented as br. The IRC

shifts to the right as this parameter value increases, indicating

that raters with high br tend to consistently assign low scores.

In Fig. 3, the IRC for rater 3 with a high br value shifts to the

right overall. This indicates that scores given by raters with

high or low severity are biased.

The GMFRM represents the range restriction characteristic

as drm. When drðmþ1Þ and drm are closer, the probability of

responding with category m decreases overall. Conversely, as

the difference drðmþ1Þ � drm increases, the response probability

for category m increases. In Fig. 3, rater 4 has a smaller dr3 �
dr2 value and relatively larger dr4 � dr3 and dr5 � dr4 values.

Thus, in the IRC, response probabilities for category 2 decrease,

whereas those for categories 3 and 4 increase, representing a

range restriction characteristic with overuse of categories 3 and

4 while avoiding category 2. A strong range restriction charac-

teristic causes biased rating data because it means the rater’s

score distribution differs extremely from the other raters.

The GMFRM can estimate the latent essay scores uj while

considering these rater bias effects. Note that the GMFRM can-

not directly represent several rater biases, including differential

rater functioning and rater drift [62], [63], although it can cap-

ture various rater characteristics, as described previously.

D. IRT Parameter Estimation

The model parameters in (9) can be estimated from rating

data UU . As the parameter estimation method for traditional IRT

models, marginal maximum likelihood estimation using an

expectation maximization algorithm has been widely used [64].

However, for complex models such as the GMFRM, expected a

posteriori (EAP) estimation, a type of Bayesian estimation, is

known to provide more robust estimations [41], [65]. The

GMFRM, therefore, uses EAP estimation based on the No-U-

Turn (NUT) sampler algorithm [66]. The NUT sampler is a

Markov chain Monte Carlo (MCMC) algorithm that improves

greater efficiency as compared with the Metropolis-Hastings-

within-Gibbs sampler [40], a conventional MCMC algorithm

for IRT models [67]. The estimation program for the GMFRM,

which is implemented in RStan [68], [69], was previously pub-

lished in [43]. Following the original GMFRM paper, we

assume the standard normal distribution Nð0:0; 1:0Þ as a prior
distribution for uj, logar, br, and drk. In addition, we calculate
the EAP estimates using parameter samples obtained from

2000–4000 periods.

V. PROPOSED METHOD

As described above, the main idea of this study is to train

AES models using IRT-based scores uu ¼ fuj j j 2 J g to deal

with rater bias in training data. In the proposed method, we can

Fig. 3. IRCs of four raters with the different parameters presented in Table I.

TABLE I
PARAMETERS FOR FOUR RATERS WITH DIFFERENT CHARACTERISTICS

UTOANDOKANO: 767



use any regression-based AES model, including those intro-

duced in Section III.

A. Model Training

Training of the proposed method occurs in the following

two steps.

1) Estimate the IRT scores uu from the rating data UU . This

study uses an MCMC algorithm for this estimation, as

described in Section IV-D.

2) Train AES models using the IRT scores uu as the gold-

standard scores. Specifically, the MSE loss function for

training is defined as

1

J

XJ

j¼1

ðuj � ûjÞ2 (10)

where ûj represents the AES’s predicted score for

essay ej. Note that the gold-standard scores must be

rescaled to the range ½0; 1� for training when a DNN-

based AES model is used because it uses the sigmoid

activation in the output layer. In IRT, 99.7% of uj fall

within the range ½�3; 3� on the logit scale, because a

standard normal distribution is generally assumed. We,

therefore, apply a linear transformation from the logit

range ½�3; 3� to ½0; 1� after adjusting scores lower than

�3 to �3 and those higher than 3 to 3.
Because IRT-based scores uu are estimated while

removing rater bias effects, a trained AES model based

on this method will not reflect bias effects.

B. Score Prediction

In the prediction phase, the score for new essay ej0 is calcu-
lated in the following two steps.

1) Predict the IRT score uj0 from a trained AES model.

Then, linearly rescale it to the logit range ½�3; 3� when
a DNN-based AES model is used.

2) Calculate the expected score Ûj0 , which corresponds to

an unbiased original-scaled score of e0j [32], given uj0
and rater parameters as

Û 0
j ¼

1

R

XR

r¼1

XK

k¼1

k � Pj0rk: (11)

The expected score Û 0
j can be used as a predicted

essay score of the proposed method.
The proposed method can also predict each rating, although

this prediction is not the main objective of this study. Specifi-

cally, rating of rater r for essay ej0 can be predicted based on

the IRT model given uj0 and rater parameters as

Ûj0r ¼
XK

k¼1

k � Pj0rk: (12)

VI. EXPERIMENTS

This section describes evaluations of the effectiveness of

the proposed method through actual-data experiments.

A. Actual Data

Our experiments use the ASAP dataset, which is widely

used as benchmark data in AES studies. This dataset consists

of essays on eight topics, written by students from grades 7 to

10. There are 12 978 essays, averaging 1622 essays per topic.

However, this dataset cannot be directly used to evaluate the

proposed method, because despite its essays having been

graded by multiple raters, it contains no rater identifiers.

We, therefore, employed other raters and asked them to

grade essays in the ASAP dataset. We used essay data for the

fifth ASAP topic, because the number of essays in that topic is

relatively large (n ¼ 1805). We recruited 38 native English

speakers as raters through Amazon Mechanical Turk and

assigned four raters to each essay to decrease rater workloads.

The rater assignment was conducted based on a systematic

links design [70]–[72] to achieve IRT-scale linking. As a result,

each rater graded around 195 essays. We asked the raters to

grade following the same assessment rubric as that used for cre-

ating the original ASAP dataset. The rubric is a holistic rubric

(a single-criterion rubric used to assess overall essay quality)

with five rating categories. The average Pearson’s correlation

between the rating scores collected in this experiment and the

original ASAP scores was 0.675.

B. Analysis of Rater Biases

To confirm what differences in rater characteristics exist,

Table II shows descriptive statistics of rating data for each

rater and rater parameter estimates in the IRT model defined

by (9). Table II shows that these descriptive statistics and the

IRT-based rater parameters vary across raters, which reflects

that the raters have different rating behaviors. As examples,

Fig. 4 depicts the IRCs of raters 3, 16, 31, and 34. The hori-

zontal axis shows the latent score uj, and the vertical axis

shows the response probability of the rater for each category.

According to Table II and Fig. 4, the characteristics of each

rater can be interpreted as follows.

1) Rater 3 has average levels of consistency and severity.

Furthermore, the appearance frequency distribution of

the rating categories is similar to the averaged one

shown in the last row of Table II. This rater can, thus,

be considered as having a standard rating characteristic.

2) As the score appearance frequency and the IRC show,

rater 16 tends to prefer extreme scores (1 and 5), as

compared with the other raters. This is a typical exam-

ple of the extreme response tendency, where a rater

tends to overuse the extreme rating categories while

avoiding the middle categories.

3) Rater 31 shows a high average score value and a low

rater severity value. This rater tends to overuse high

scores (4 and 5), as shown in the IRC. This suggests

that this rater is extremely lenient overall.

4) Rater 34 has a low consistency value ar. In this rater’s

IRC, the differences in response probabilities among

categories are small as compared with raters with high

consistency levels, such as Rater 3. This rater, thus, has

a stronger tendency to assign different ratings to essays
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with similar quality. Such raters generally lower the

assessment accuracy because their ratings do not neces-

sarily reflect the true essay quality.

As these examples show, we can confirm that the rating
characteristics differed among the raters.

To quantitatively examine whether consideration of all

three rater characteristics assumed in the GMFRM is effective,

we conducted a model comparison experiment. In that experi-

ment, we compared information criteria among the GMFRM

and their restricted versions. We used the following three

models as restricted versions.

1) Consistency-Fixed Model: It is a model in which ar is

restricted to one for all raters r 2 R, meaning that all

raters share the same consistency level.

TABLE II
DESCRIPTIVE STATISTICS AND IRT PARAMETERS FOR EACH RATER, CALCULATED FROM ACTUAL DATA

Fig. 4. IRCs of four representative raters found in actual-data experiments.
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2) Severity-Fixed Model: It is a model in which br is

restricted to zero for all raters r 2 R, meaning that all

raters share the same severity level.

3) Threshold-Fixed Model: It is a model in which drm is

changed to dm for all raters r 2 R, meaning that no differ-

ence in range restriction characteristics exists among

raters.

We also compared the GMFRM with a many-facet Rasch
model (MFRM) [73], which is the most popular IRT model
that incorporates rater parameters. Although the MFRM
has several forms, this experiment used the simplest one,
which is equivalent to a GMFRM in which ar is restricted
to one and drm is changed to dm for all raters. Note that
the consistency-fixed model defined above is also equivalent
to another form of MFRM.

As information criteria, the Akaike information criterion

(AIC) [74], the Bayesian information criterion (BIC) [75], the

widely applicable information criterion (WAIC) [76], and the

widely applicable Bayesian information criterion (WBIC) [77]

are often used. The AIC and the BIC are applicable when maxi-

mum likelihood estimation is used to estimate model parame-

ters, whereas the WAIC and the WBIC can be used with

Bayesian estimation using MCMC or variational inference

methods. Because this study uses Bayesian estimation based on

MCMC, as described in Section IV-D, this experiment uses the

WAIC and theWBIC. The model minimizing these criteria val-

ues is regarded as the optimal model.

Table III shows the results, with bold text indicatingminimum

scores and underlined text representing second smallest scores

for each criterion. According to the results, the criteria value

increases when one of the three rater characteristic parameters is

removed from the GMFRM, except for the WBIC for the thresh-

old-fixed model. The results suggest that the three characteristics

vary among the raters although the difference in the range restric-

tion might be relatively small. Furthermore, the GMFRM outper-

formed the MFRM on both criteria, suggesting that the GMFRM

ismore suitable for the data.

The analysis described in this subsection demonstrates that

consideration of rater bias is required to realize a robust AES,

because the assessment characteristics differed among raters.

C. Model–Data Fit and IRT Score Estimates

The model comparison experiment described above demon-

strates that the GMFRM is more suitable compared with its

restricted models and the MFRM. However, we should also

check the goodness of the model–data fit for the GMFRM

itself. To examine the model–data fit, we used a posterior pre-

dictive p-value (PPP-value) [78], which is commonly used to

evaluate model–data fit in Bayesian frameworks [79], [80].

Specifically, we calculated a PPP-value for the GMFRM by

using an averaged standardized residual (a traditional metric

of IRT model fitness under a non-Bayesian framework) as a

discrepancy function, in a manner similar to that in [80] and

[81]. The PPP-value takes around 0.5 for a well-fitted model

but takes extreme low or high values, such as those less than

0.05 or higher than 0.95, for a poorly fitted model. As a result,

the PPP-value of the GMFRM was 0.57, which is near 0.5,

suggesting that the model is well fitted to the data.

Furthermore, to check how accurately the GMFRM esti-

mated the latent score uj, we calculated the posterior standard

deviation (SD), which is the Bayesian analog of the standard

error. Fig. 5 shows the results. In the figure, the horizontal

axis shows the point estimates of uj, the vertical axis shows

corresponding posterior SD values, and each plot indicates an

essay. Because the standard normal distribution is assumed

for the IRT scores as described earlier, the estimated uj values

were distributed around zero in the figure. The averaged poste-

rior SD value was 0.338, which should be acceptable, espe-

cially in educational contexts or low- and medium-stake tests,

because it corresponds to only about 5% of the logit range

[�3, 3] where 99.7% of uj falls statistically.

As described in this section, in practice, it is preferable to

check the model–data fit and the estimation errors for IRT

scores when an IRT model is applied to rating data at the first

step of the training process in the proposed method.

D. Evaluating Robustness of Score Prediction

This section evaluates whether the proposed method can

provide more robust scores than can the conventional AES

models, even when the rater assignment for each essay in the

training data changes. The experimental procedures, which

were inspired by those used in previous studies examining

IRT scoring robustness [32], [33], [41], [44] and outlined in

Fig. 6, are as follows.

1) We estimated rater parameters in the IRT model by an

MCMC algorithm using all rating data.

Fig. 5. IRT score estimates and corresponding posterior SD.

TABLE III
INFORMATION CRITERIA FOR THE GMFRM AND COMPARATIVE MODELS
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2) We created a dataset consisting of essay rating pairs by

randomly selecting one rating for each essay from the

ratings assigned by multiple raters. We repeated this

data generation ten times. Hereafter, the lth generated

dataset is represented as UU 0
l (l 2 f1; . . . ; 10g).

3) From each dataset UU 0
l, we estimated IRT scores

(referred to as uul) given the rater parameters obtained in

Procedure 1) and, then, created a dataset UU 00
l consisting

of essay-IRT-based score pairs.

4) Using each dataset UU 00
l , we applied a fivefold method to

train AES models and to obtain predicted scores û̂ul for

all essays. Specifically, in each step of the fivefold

method, we trained an AES model using 80% of essays

and predicted scores for the remaining 20% of essays.

We repeated the step five times to obtain predicted

scores for all essays.

5) We calculated metrics for agreement between the

expected scores calculated by (11) given û̂ul and those

calculated given û̂ul0 for all unique l; l0 2 f1; . . . ; 10g
pairs (10C2 ¼ 45 pairs in total). As agreement metrics,

we used mean absolute error (MAE), root-mean-square

error (RMSE), Pearson correlation coefficient, accu-

racy, Cohen’s kappa, and linear weighted kappa. Note

that we calculated the accuracy, kappa, and weighted

kappa by rounding the expected scores.

6) We calculated average metric values obtained from the

45 pairs.

Better agreements—namely those with high accuracy,
kappa, weighted kappa, and correlation and low MAE and
RMSE values—indicate that the method outputs stable
scores even when the rater assignment in the training dataset
is changed, meaning that it is robust for different raters.

We conducted a similar experiment using conventional AES

models without the IRT model. Specifically, using each dataset

UU 0
l created in Procedure 2), we predicted essay scores from an

AES model through the fivefold method as in Procedure 4). We

then calculated the six agreement metrics among the predicted

scores obtained from different datasetsUU 0
l andUU

0
l0 for all unique

l; l0 2 f1; . . . ; 10g pairs and averaged the metric values.

We also conducted Student’s t-test for the averaged agree-

ment metrics between the proposed method and the conven-

tional method.

These experiments were conducted with several AESmodels.

We used EASE [47] as a feature engineering-based model,

because as mentioned in Section III-A, it is known to provide

high performance. As DNN-based automatic feature extraction

models, we examined several variants of RNN-based models

introduced in Section III-C and the BERT-based model intro-

duced in Section III-D. Table IV summarizes settings for the

RNN-based model variants. These models were implemented in

Python with the Keras library. The hyperparameters and dropout

settings were determined following [20], [50], and [55]. Specifi-

cally, for RNN-based models, we set LSTM hidden-variable

dimensions to 300, the mini batch size to 32, and the maximum

epochs to 50. Word-embedding dimensions were set to 50, and

the number of vocabulary words was set to 4000. We used drop-

out regularization to avoid overfitting, with dropout probabilities

for lookup-table-layer output and pooling-layer output set to 0.5.

We set the recurrent dropout probability to 0.1. We used the

Adam optimization algorithm [82] to minimize the MSE loss

function over the training data. For the BERT model, we used a

base-sized pretrained model and fine-tuned given the mini batch

size of 32 andmaximum epochs of three.

Fig. 6. Outline of the robustness evaluation experiment.

TABLE IV
VARIANTS OF RNN-BASED AES MODELS
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Table V shows the results. In Table V, bold text indicates

better agreement between the proposed method and the con-

ventional method. The table shows that the proposed method

significantly improves agreement metrics compared with the

conventional models in all cases. These results indicate that

the proposed method provides stable scores when the rater

assignment for each essay in the training data is changed, thus

demonstrating that it is highly robust against rater bias.

Table V also shows that EASE provided the best agreement

among the AES models in almost all cases. However, this

does not necessarily mean that the proposed method with the

EASE model provides the best performance. Section VI-F

presents a detailed discussion of this point.

E. Evaluating the Accuracy of Rating Predictions

As described in Section V-B, the proposed method can pre-

dict each rating Ujr while considering the rater characteristics.

If the proposed method works appropriately, the accuracy of

the rating prediction is also expected to be improved. This

subsection, therefore, evaluates this accuracy. The experimen-

tal procedures for the proposed method, shown in Fig. 7, are

as follows.

1) We applied Procedures 1)–3) in the previous experiment.

2) In Procedure 4) of the previous experiment, we pre-

dicted each rating using (12) instead of calculating the

expected score using (11).

3) We calculated the six agreement metrics between the

predicted ratings and the gold-standard ratings in UU 0
l.

4) We repeated this ten times and calculated the averaged

agreement values.

Similarly, the experimental procedures for the conventional

method are as follows.

1) We conducted Procedures 1) and 2) in the previous

experiment.

2) Using a dataset in fUU 0
1; . . . ; UU

0
10g, we predicted essay

scores using the conventional AES method without con-

sideration of rater effects through the fivefold method as

in Procedure 4) in the previous experiment.

3) The remaining procedures were the same as Proce-

dures 3) and 4) for the proposedmethod described above.

To evaluate differences in the averaged agreement metrics

between the proposed and conventional methods, we con-

ducted Student’s t-test for each metric.

Table VI shows the results, with bold text indicating higher

performance between the proposed and conventional methods.

Comparing the DNN-AES models, Table VI indicates that the

use of MoT pooling achieved higher performance than the use

Fig. 7. Outline of rating prediction accuracy evaluation.

TABLE V
RESULTS OF ROBUSTNESS EVALUATION

High accuracy, kappa, weighted kappa, and correlation and low MAE and RMSE indicate high performance.
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of last pooling. The table also shows that the CNN did not

effectively improve accuracy. These tendencies are consistent

with a previous study [20]. In addition, the BERT provided

the highest accuracy, which is also consistent with current

NLP studies [50]–[54]. EASE too provided good performance

but was inferior to some DNN-AES models.

The results also show that the proposed method provided

sufficiently higher performance than the conventional method

in almost all cases. The IRT-based scores reflect essay quali-

ties more accurately than do the observed raw ratings, because

rater biases are removed. Use of the IRT-based scores, thus,

makes it easier for the AES models to capture relations

between textual information and scores. In addition, the pro-

posed method can predict each rating while considering rater

characteristics, whereas the conventional method ignores

them. These are reasons why the proposed method improved

rating prediction accuracies.

As an alternative approach to predict each rating as in this

experiment, a clustering-based method [14] has been pro-

posed. The idea of this method is to predict each rating after

estimating the raters who are assigned to each essay when we

lack information about which rater graded which essay within

the training data. When we know an actual rater assignment,

our method is expected to provide higher accuracy because it

can use this information directly. Although, unlike our

method, this method cannot predict scores that mitigate rater

bias effects, a comparison of rating prediction accuracy will

be performed in a future work.

F. Discussion

The experimental results presented in Sections VI-D and VI-

E show that a DNN-AES model with higher robustness tends to

provide higher rating prediction accuracies. However, the

EASE model shows a different tendency. Specifically, EASE

presented the best agreement values in the first experiment, but

not in the second experiment. To discuss this point in more

detail, we calculated the average and SD of the output scores

obtained from each AES model. The Avg. and SD columns in

Table VII show the results.

Table VII shows that EASE presented the smallest SD values

among the AES models for both the proposed and conventional

methods. A decreased SDmay facilitate increasing agreement in

AES predictions when rater assignments in the training data

change, but this does not necessarily increase agreement

between predicted and gold-standard scores. We can, thus, inter-

pret the different performance of EASE in the two experiments

as being due to the small SD. This analysis suggests that a

method with high performance in both experiments is better.

Tables V and VI suggest that BERT is the best model, because it

provided high performance in both experiments.

Table VII shows that the proposed method resulted in

smaller SD values than did the conventional method for all

AES models. The main reason for this is that the proposed

method mitigated the effects of extreme and aberrant ratings.

Note that although a decreased SD may increase agreement in

the first experiment, as described above, the proposed method

provided higher performance than did the conventional method

in both experiments. This suggests that the decreased SD in the

proposed method, induced by mitigating the rater effects,

improves the overall AES performance.

TABLE VI
RESULTS OF RATING PREDICTION ACCURACY EVALUATION

High accuracy, kappa, weighted kappa, and correlation and low MAE and RMSE indicate high performance.

TABLE VII
STATISTICS OF OUTPUT SCORES
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We next analyze in more detail the output scores of the pro-

posed and conventional methods when changing rater assign-

ments in the training dataset. For this analysis, Figs. 8 and 9

show output scores from the proposed and conventional BERT-

based models, respectively. Here, we selected the BERT-based

model because it showed high performance in both experiments.

Figs. 8 and 9 plot output scores for the first 15 essays as obtained

using each dataset, with horizontal axes showing the essay index

j and vertical axes showing the score value. Set l in the legend

indicates correspondence to the lth dataset. These figures indi-

cate that scores output from the conventional method tended to

vary when dataset rater assignments changed, whereas the pro-

posed method successfully reduced such fluctuations. This can

be confirmed especially for essays 3, 13, and 14 in the figures.

To quantitatively evaluate this point, we calculated the SD of

output scores for each essay obtained when using the ten data-

sets. Concretely, letting Û 0
lj be the output score of an AESmodel

for essay ej when the lth generated datasetUU
0
l is used, the SD for

the jth essay, sj, was calculated as the SD of scores Û̂U
0
j ¼

fÛ 0
lj j l 2 f1; . . . ; 10gg. We, then, calculated the average value

of the SD sj. The averaged sj value �s becomes large if the out-

put scores for the same essay vary when rater assignments in the

training data change. The �s column of Table VII shows the

results, which indicate that the proposed method provides a

smaller �s in all cases. We also applied Student’s t-test to com-

pare �s between the proposed and conventional methods for each

base AES model. The results showed that �s values in the pro-

posed method were significantly smaller than those in the con-

ventional method in all cases (p < 0:001). This analysis

demonstrates that the proposed method can remove the effects

of rater biases, thereby improving the robustness of AES.

VII. CONCLUSION

In this article, we proposed a new method that trains AES

models using IRT-based unbiased scores to mitigate dependence

of AES model performance on the characteristics of raters grad-

ing essays in training data. Through experiments using an actual

dataset, we demonstrated that the proposed method provides

more robust essay scores compared with conventional AES

models. We also showed that the proposed method improved

rating prediction accuracy. The proposed method is simple and

easily applicable to various existing AES models, but it effec-

tively improves the performance of AES models. As described

in Section I, our method is also highly suited to situations where

high-quality training data are hard to prepare, including educa-

tional contexts.

In future studies, we plan to evaluate the effectiveness of

the proposed method by using various datasets. For example,

large-scale experiments using crowdsourcing platforms might

provide useful and detailed findings for discussing how reli-

able crowd workers’ ratings are and what kinds of workers we

should hire for essay rating tasks. Furthermore, we would like

to conduct the same experiments in this article but with essay

data on other topics from the ASAP dataset. The fifth ASAP

topic this study used was a source-based essay writing task, in

which the written essays were relatively short. Compared with

topics having a higher degree of freedom or those for which

the essays are longer, an accurate essay score prediction is rel-

atively easy for this topic. Meanwhile, the differences in rating

behavior among raters might be larger for other such topics

because the variety of the subject matter in the essays is

greater. We expect that the existence of larger rater biases will

further demonstrate the effectiveness of the proposed method.

Another topic for future study is developing an end-to-end

training procedure of the proposed method. This study sepa-

rately trained an IRT model and an AES model. However,

end-to-end training is expected to further improve perfor-

mance, because the IRT-based score uj can be more accurately

estimated using both rating data and textual essay information.

Implementing a function to check the quality of predicted

scores is another future research direction because we are some-

times interested in knowing the reliability or confidence level of

scores predicted by AES. Furthermore, taking advantage of the

unique property of the proposed method, namely, its high

interpretability in terms of rater biases, another future direction

is to analyze how rater biases affect the behavior of AESmodels,

for example, by using an explanation model, as in [83].
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