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On the supervision of peer assessment tasks: an
efficient instructor guidance technique

Jerónimo Hernández-González, and Pedro Javier Herrera

Abstract—In peer assessment, students assess a task done by
their peers, provide feedback and usually a grade. The extent to
which these peer grades can be used to formally grade the task
is unclear, with doubts often arising regarding their validity. The
instructor could supervise the peer assessments, but would not
then benefit from workload reduction, one of the most appealing
features of peer assessment for instructors.

Our proposal uses a probabilistic model to estimate a grade
for each test, accounting for the degree of precision and bias
of grading peers. The grade that the instructor would assign to
a test can help enhance the model. Our main hypothesis is that
guiding the instructor through supervision of a peer-assessed task
by pointing out to them which test to evaluate next can lead to
improvement in the validity of the model-estimated grades at an
early stage. Moreover, the instructor can decide how many tests
to grade based on their own criteria of tolerable uncertainty, as
measured by the model.

We validate the method using both synthetically generated
data and real data collected in an actual class. Models that link
the roles of the student as grading peer and as test-taker appear
to better exploit available information, although simpler models
are more appropriate in specific conditions. The best performing
technique for guiding the instructor is that which selects the test
with the highest expected entropy reduction. In general, empirical
results are in line with the hypothesis of this study.

Index Terms—Peer assessment, Workload management, Prob-
abilistic graphical models, Active machine learning

I. INTRODUCTION

NEW methodologies have impacted all practices and struc-
tures of formal education. A well-studied evaluation

methodology is peer assessment, where students evaluate
each other’s assignments (tests or any other activities) and
provide feedback. Students need to be involved and take on
a new role: they not only need to show their knowledge
and skills in task solving, but for this new role, they also
need to develop alternative skills to perform fair evaluations
and provide constructive feedback. Peer assessment has been
shown to promote learning and to have many positive effects
on students [1]. However, its adoption is still limited [2].

As part of peer assessment, students may be required to
provide a grade for the assignment. When peer-assessed grades
are available, a dilemma [3] arises: can these grades be
aggregated to calculate a final grade for the assignments? The
aggregation is usually some simple kind of average. Instructors
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and students [3] have often questioned the validity of aggre-
gated grades, which has restricted the use of peer assessment
for evaluation. This, together with the extra workload required
to manage the process, are common arguments explaining the
limited adoption of peer assessment. In our work, we focus
on peer assessment for grading and address these two main
concerns simultaneously. Thus, the research question of this
study is: Can a computational method be designed to allow
instructors to supervise and weigh up peer-assessed grades
with the objective of estimating valid final grades while at
the same time minimizing their intervention?

We present a methodology that models the peer-assessment
task, considering students’ features and grades. Building on
previous works [4], [5], we use probabilistic graphical models
(PGM) [6], a type of model noteworthy for its interpretability.
A Bayesian modeling enables (i) automatic peer-assessed
grade aggregation for final grades, (ii) measuring the uncer-
tainty associated with the model and the grades, and (iii)
answering queries such as what can be done to reduce the
uncertainty of the model. Identifying and requesting specific
pieces of information to improve the model is the basic idea
of active machine learning [7], which inspires this work. We
aim to reduce the uncertainty of the peer-assessment model.
Thus, we could use the model to identify the tests that involve
the highest uncertainty. Our methodology selects tests one-
by-one, requires the instructor to evaluate them and uses the
instructor’s grade to refit the model. Each model refit reduces
the uncertainty and, eventually, will reach a value tolerable for
the instructor. This assumes that the instructor provides the real
grades and that the instructor’s tolerable level of uncertainty
can be reached (long) before they have supervised all the tests.
If this is the case, our methodology potentially alleviates the
workload of the instructor, which is convenient when the class
is large or many peer-assessment tasks are carried out.

The main contribution of this work is a novel compu-
tational methodology that guides instructors in supervising
peer-assessment tasks used for grading. Our proposal provides
enhanced confidence in the aggregated grades while leaving
the final decision of how many tests to review to the instructor.
That is, it achieves a compromise between the reliance on peer-
assessed grades and the effort that the instructor dedicates to
supervising the task. To our knowledge, no similar method-
ology has been proposed before this in the related literature.
We present a thorough analysis of the method and its various
technical building blocks, namely:

• the model that describes the peer-assessment task; based
on two state-of-the-art PGMs [5], we analyze up to five
models with diverse underlying assumptions.

• the criterion for choosing the next test suggested to the
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instructor to evaluate; we compare up to five selection
criteria, from baselines that only use the available data,
to complex model-based techniques.

Real data collected from an extended-response exam at the
university educational level is used for validation. Synthetic
data is also used to explore different realistic experimental
scenarios and identify those where the proposed methodology
is useful. Surveys of instructors’ and students’ views on the
potential use of our method suggest plausible acceptance.

This document is structured as follows. First, we review
the state of the art. Then, we present our methodology,
including graphical models and selection techniques. Next, the
experimental design is explained, and results are presented and
discussed. To finish, we identify possible threats to the study’s
validity and suggest action plans, and draw some conclusions.

II. STATE OF THE ART

A. Peer assessment
This study is concerned with peer assessment, defined by

Topping [8, p. 250] as “an arrangement in which individuals
consider the amount, level, value, worth, quality, or success
of the products or outcomes of learning of peers of similar
status”. It is usually considered to be a technique for for-
mative assessment, that is, a formative act where students
(and instructors) identify the present knowledge and skills
achieved [9], [10], which allows them to determine the way
forward. Formative assessment requires the involvement of
the students [9], [11], which is an essential element of
peer assessment too. Similarly, Harlen and James [9] defined
formative assessment in terms of feedback, which is the
key strength of peer assessment according to Falchikov and
Goldfinch [1]. The benefits for students of peer assessment
have been well studied; it promotes learning and produces a
positive impact on student training [1], actually exceeding the
impact that might be expected from instructor assessment [8].
Other advantages include the opportunity to read their peers’
solutions to the test and reflect upon them, the demystification
of tests and evaluation, a boost in self consideration, as
well as emotional benefits [12]–[16]. Most of the students
find the feedback useful. Detractors request more specific,
justified and constructive comments [17]. The benefits for the
instructor include a rise in student engagement, as well as
logistical benefits, principally the reduction of time spent in
assessment [12]. However, researchers noted that preparation
of the task and feedback support to students is key for the
success of this methodology [18]–[20]. Among other things,
students are usually provided with a rubric, i.e., a list of the
criteria for assessing the test and degrees of achievement for
each criterion, from poor to excellent [21]. The importance of
a good rubric is studied in [22], proposing evaluation of the
rubrics and reformulation of their high-variance items to im-
prove peer-assessed grades. Peer assessment has been applied
in all levels of formal education [23], from primary education
to university [20], [24]–[28], and in informal education such
as MOOCs [5], [22], [29]. It is usually combined with self-
assessment [12], [22], where students assess themselves.

B. Modeling the assessment

The conventional practice of measuring the level reached
by the student at a specific point in time for notification or
teaching monitoring is known as summative assessment [9].
Despite its limited role in daily learning, it is fundamental in
the overall education system. In this context, the level reached
by students is usually recorded and reported as a numeric or
ordinal grade. Abundant research in educational measurements
has explored how to assign quantitative values to students
based on data gathered in class: from analyses based on
classical statistical theory to more or less complex models
that aim to capture students’ latent characteristics such as
ability, progress or performance [30]. Several major statistical
frameworks have been tested [30], such as generalizability
theory, factor analysis, differential item functioning, cognitive
diagnostic modeling, hidden Markov models, Bayesian knowl-
edge tracing [31], structural equation modeling [32], latent
class analysis [33], the popular item response theory [34], or
Bayesian networks [35]. Many of these statistical frameworks
are assimilable to each other; e.g., hidden Markov models can
be seen as a type of Bayesian network (BN), which in turn are
PGMs with a specific graph type and factorization [6]. These
models are useful for assigning grades to the level reached
by students which, in the context of summative assessment,
are commonly used for notification. However, modeling can
also provide actionable diagnostic information thus enabling
formative assessment. Indeed, quantitative grades can be a
valuable indicator of achieved skills, provided the grades and
the associated feedback are made available promptly [35].

C. Modeling the assessment with PGMs

In this work, we focus on BNs or, in general, on PGMs.
With a solid mathematical background, PGMs use an in-
terpretable graph to encode the (conditional) dependencies
between variables and determine a factorization of the joint
distribution. Usually in educational research, the graph is
drawn with expert domain knowledge and the model param-
eters are learned from data [35], although the structure can
also be learned completely from data. Mislevy et al. [36] used
BNs for managing uncertainty regarding students’ knowledge
and skills, exploiting the observable evidence about student
behavior and task specification. Recently, they published a
book on BNs for educational assessment [35] covering topics
ranging from basic theory related to graphical models and
Bayesian statistics, to model building and learning approaches.
Another early BN-based modeling system was Andes [37],
designed to help university students learn physics. It used
BNs composed of domain-general and task-specific parts to
perform students’ knowledge tracing and predict their actions
during problem-solving. Authors emphasized the ability of
BNs to represent cognitive and pedagogical hypotheses for
student modeling, although they also remarked on the need
to test and refine these hypotheses through extensive em-
pirical studies. To this end, many techniques are available
for BNs checking or criticism: mutual information, model
fit metrics, posterior predictive model checking, etc. [38],
[39]; however, no consensus exists about the most appro-
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priate procedure. In a recent review of BNs for educational
assessment, Culbertson [38] categorized the state-of-the-art
models into three degrees (Low/Medium/High) of detail in
which students’ cognitive processes are modeled. He identified
open challenges like graph development (confronting discrete
and continuous variables, identification of misspecification,
etc.), parameter recovery (e.g., determining the amount of
data/student numbers required for model calibration), or item
selection. Our work addresses questions within at least the two
latter topics.

Previous works usually take a Bayesian approach. Given
initial beliefs (e.g., about students’ knowledge), these can be
updated with new data as it arrives [36]. Levy [40] provided a
formal and high-level explanation of the differences between
frequentist and Bayesian statistics, and their implications in
the context of modeling in the educational domain. He em-
phasized that the Bayesian approach is particularly useful
with small samples or when data arrives over time. Setting
the model hyperparameters (initial beliefs) is commonly the
primary concern. When no prior knowledge is available, so-
called uninformative priors can be used. However, it has been
reported that systems are not very sensitive to the specific
values of the hyperparameters [37] and that collecting more
data is the only way to improve the model.

D. Modeling peer assessment with PGMs
There are many BNs proposed in the literature for modeling

the peer-assessment task, the complexity of which varies in
order to capture more or fewer factors affecting the learning
process. Piech et al. [5] proposed three models that capture
the bias1 and precision of each student, both as test-taker and
as peer-assessor, coupling the performance of each individual
within both roles (assuming that competent students are more
precise as peer-assessors). Tests that are graded using an
ordinal scale (discrete values with a given order between
them) have been modeled too [41]. For multiple-choice tests,
Bachrach et al. [4] proposed a model that accounts for student
knowledge and item difficulty2, and infers the probability
that the student knows the answer to each question. Shalem
et al. [43], considering interaction with multiple instructors,
modeled the student’s ability, the instructor’s competence, and
the question difficulty. Others extended the Piech et al. [5]
key models to use assessor’s deviation grades [44], ordi-
nal grades [45] or understanding ordinal grades as censored
data [46], as well as to account for other factors such as social
interactions between students [47], cognitive diagnosis-derived
student competency [48], or student effort expended [46].
We study the first and third models of [5] in the context
of our methodology (explained in Sect. III-B1) and analyze
their underlying hypothesis by contrasting them with simpler
models. The second model in [5], a dynamic BN which
considers a sequence of peer-assessment tasks, is omitted
because analyzing the temporal dimension falls outside the
scope of this study.

1In a large study in MOOCs, Kulkarni et al. [22] found that, on average,
peer-assessed grades are 7% higher than the ones assigned by instructors.

2de Alfaro and Shavlovsky [42] claim that errors are more due to hard-to-
grade questions than to student imprecision.

E. Dynamic graphical models

Dynamic BNs incorporate the temporal dimension in the
model, accounting for the transition between time slices. Each
time slice is a sub-graph that models a specific time. All
time slices use the same variables and relationships between
them, reducing the size of the network [37]. Sub-graphs are
usually connected via edges among factors from adjacent
time slices [38]. This type of modeling is known to have
potential in ongoing assessment, and evidence shows that the
validity of peer-assessed grades generally increases as the
course progresses [22]. However, DBNs lack penetration in
the field [49]. In fact, choosing a parametric form for students’
knowledge as a function of time is currently understudied [38].
In his position paper, Reichenberg [49] provided a theoretical
introduction to DBNs with practical examples. He identified
several directions of future research on the use of DBNs for
assessment. Many of them are related to the added complexity
(compared to atemporal BNs) of modeling throughout time
and challenging traditional hard assumptions in the transition
between hidden states. Although DBNs are not considered in
this study, our proposal applies to any BN (dynamic or not).

F. Crowdsourcing training data: an equivalent problem

Combining the contribution of many people to avoid indi-
vidual bias and access social knowledge is known as crowd-
sourcing [50]. Due to conceptual similarities, many ideas
that crowd-learning models incorporate also apply to peer-
assessment modeling. In machine learning, crowdsourcing has
been mainly used to collect labels for training data. Extensive
literature exists [51]–[53] on aggregating a consensus label
from the inaccurate annotations provided by multiple peo-
ple. Founding studies modeled workers’ reliability [52], [53],
whereas others such as [54], [55] also considered instance
difficulty, workers’ competence or bias.

G. Active learning for assessment models

Modeling enables informed decision-making. When the
answer or actions derived from these decisions can be used
to improve the model, we are conducting active machine
learning [7]. Active learning from crowds [56], [57] poses a
dynamic scenario where decisions are made as the crowdsourc-
ing task goes on, including deciding which part of the dataset
requires more supervision [58], [59], who should be asked
for a specific piece of information [60], etc. Items may be
selected to minimize the expected posterior entropy, although
this computation might be expensive in the case of continu-
ous variables. It also suffers from the cold-start problem as
little data is initially available for model learning [30]. In
the educational domain, these ideas have been exploited for
computerized adaptive testing when selecting an individualized
set of elements appropriate for each test-taker [61]. It is
claimed [61] that this approach better gathers knowledge about
students’ skills, leading to higher-validity estimations. BNs
have been used in this context for a long time; e.g., Millán
et al. [62] proposed a BN with a fixed structure composed
of observed nodes (answers to given questions) and latent
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variables representing the concepts of the subject at different
granularity levels, as well as practical guidelines to set up the
model parameters. In a class with multiple instructors, it has
been used to match students and instructors so that students
maximize their probability of passing a test [43]. Our focus is
on assisting instructors; we should select the test with the real
grade that would involve the maximum uncertainty reduction
in the model if it was known.

III. METHODOLOGY

In this section, we describe the learning environment, i.e.,
peer assessment, and the procedure proposed to guide instruc-
tors in the supervision of the task.

A. Learning environment

This proposal complements peer assessment, where students
engage in the evaluation of their classmates and themselves.
Students are first test-takers, and then assessors or graders.

The usual dynamics consist of an activity or test completed
independently (and, usually, individually) by students. Subse-
quently, students are given a (set of) tests carried out by their
classmates to assess. That is, each student usually performs
several assessments. This, in turn, implies that each student
receives multiple assessments from different classmates. The
instructor decides under which criteria the tests are assigned to
students for peer assessment. It is common practice to provide
instructions, for example, in the form of a rubric [21], to
guide students in the evaluation task. With clear guidelines,
students will read, understand and assess their classmates’
answers to the test. Students are expected to make a qualitative
assessment and provide valuable feedback on correct and
need-improvement answers. Although initially peer assessment
was not conceived for quantitative assessment or grading,
instructions (using the very same rubric) can be provided to the
student to transform their qualitative assessment into a grade.

We study the use of peer assessment for grading. Each
student provides, apart from feedback, a single continuous
grade per assessed test. The peer-assessed grades can be
used to calculate a single final grade for each test. A simple
approach is to assign the average value of the peer-assessed
grades. However, lack of supervision, among other issues,
raises many concerns in the teaching community. A different
approach combines peer- and instructor-assessed grades, with
the former representing a small percentage of the final grade.
Nevertheless, in this case, the instructor evaluates all the tests,
without any workload reduction. Our proposal opens an inter-
mediate scenario enabling instructor workload lowering. With
the model, our method aggregates the instructor- and peer-
assessed grades and provides uncertainty estimates. It guides
instructors on the selection of the tests to grade to ensure
maximum uncertainty reduction in the model. If the instructor
decides not to intervene, our method behaves similarly to
a simple average of the peer-assessed grades. But the main
benefit of our proposal is that it allows instructors to only
grade a few tests until they reach an uncertainty estimation
that they consider acceptable.

Fig. 1: Grades assigned by peers (orange dots), with mean
value (blue crosses) and standard deviation (blue vertical
lines), and instructor’s grade (red diamonds) to the 16 students.

1) Participants and real data: For the present study,
real data was collected from a class in a university master’s
degree. Sixteen students (J = 16) took an extended-response
exam consisting of three questions to elaborate on theoretical-
practical concepts of the subject’s content. All the participants
were informed of the use of the anonymized data in the present
study and agreed to it. All the material used for the testis
available on the webpage associated with this study3.

Three peers (G = 3) assessed each test. Each student
carried out three peer assessments. The distribution of tests for
peer assessment was randomized and checked to avoid closed
groups. The peer-assessment task was carried out in a context
of anonymity (double-blind). A rubric with the evaluation
criteria was provided to students for standardization. The
instructor used the same rubric to evaluate all the tests. Thus,
assuming that instructors provide the real grades, ground
truth grades are available for the analysis of our proposal.
The collected grades are graphically displayed in Figure 1
where, for each test, the three peer-assessed grades and the
instructor’s grade are shown, with a measure of the mean
and standard deviation of the peer-assessed grades. Figure 1
shows that peer-assessed grades tend to overestimate the
instructor’s grades (the numerical grades are available in the
supplementary material). In some cases (e.g., students 1 or
13), all the peers consistently overestimated the grade by a
large margin. In most of the cases, although overestimated,
the real grade lies in one standard deviation from the mean of
peer-assessed grades.

B. Procedure

The proposed methodology guides instructors through the
supervision of a peer-assessed task to grade students’ work.
Without any intervention, the final grade is usually the average
of the peer-assessed grades, which many instructors criticize
due to lack of validity. If the instructor evaluates and grades all
the tests, the peer-assessed grades make no contribution and
there is no benefit for the instructor. This technique proposes
an intermediate scenario: it provides estimates for the final
grades using a model that is enhanced with the instructor’s

3https://jhernandezgonzalez.github.io/supp pa pgms.html
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Algorithm 1 Pseudo-code for the proposed procedure.

Require: J,M, z
1: Initialize model M with peer-assessed grades, zvu
2: S := {1, . . . , J} {Set of unsupervised tests.}
3: while instructor wants another one and not completed do
4: Select next test to grade, j ∈ S
5: Instructor revises and assigns grade sj to that test
6: With sj , update model M and model uncertainty h
7: S := S\{sj} {Remove j from unsupervised list.}
8: print Current uncertainty h. Continue (y/n)?
9: end while

grades as they review the tests. Model uncertainty measures are
provided to help instructors decide how many tests to evaluate.

The procedure is applied when the peer-assessment task is
completed and the instructor has not evaluated any test. It
proposes a test to evaluate to the instructor, who provides a
grade for it. The method will answer with an estimation of
the remaining tests’ grades, the model uncertainty, and, when
asked by the instructor, a new test to evaluate. It is composed
of a set of decisions and steps, namely:

1) To choose (design) and assemble a probabilistic model
of the peer assessment activity (see Section III-B1).

2) To decide how the next test that the instructor needs to
supervise will be selected (see Section III-B3).

3) To update the model after each instructor evaluation and
estimate the grades of those tests not yet evaluated by
the instructor (see Section III-B2).

4) To stop when the instructor supervises all the tests or
decides that the uncertainty involving the model’s grade
estimates is tolerable, using their own criteria.

After this, we provide empirically evidenced guidelines on
decisions at 1 and 2. Algorithm 1 describes our methodology
as a composite of these steps.

1) Probabilistic graphical models for peer assessment: As
the instructor grades tests, the instructor’s and peer-assessed
grades can be compared and the abilities of the students as
peer-assessors can be estimated. In this study, PGMs [6] are
used to model students’ abilities and performance, and the
peer-assessment relationships between students. A PGM is a
mathematical tool that allows for encoding conditional depen-
dencies between random variables using a graph. A set of
factors parameterizes the probability distribution. Specifically,
we use Bayesian networks, a type of PGM with a directed
acyclic graph and the conditional probability distributions of
each variable given its parents in the graph as factors.

Among the different PGMs proposed for peer assessment in
related literature, in this work we inspect two models proposed
by [5] and test their underlying assumptions by comparing
them with simpler models. The proposal of new PGMs for
this task falls outside the scope of this work.

In the first model considered, PG1 in [5] (Figure 2),
variables are represented by circular nodes. The observed
variables (in our case, only zvu) are shaded, while the rest are
latent variables. The parameters of the prior distributions of
the model are represented by Greek letters and dashed lines.
Each outer indexed box indicates that the variables it groups

τv

bv zvu

su

α0

β0

γ0

µ0

η0

u ∈ {S}

v ∈ {Su}

(a)

for v ∈ {S}:
τv ∼ G(α0, β0)
bv ∼ N (0, 1/η0)

for u ∈ {S}:
su ∼ N (µ0, 1/γ0)

for u ∈ {S}:
for v ∈ {Su}:

zvu ∼ N (su + bv, 1/τv)

(b)

Fig. 2: Model PG1 [5]: (a) graph and (b) associated generative
process. Each student, as peer-assessor, has individual preci-
sion and bias (τv and bv , resp.). As a test taker, they get a real
(unknown) grade, su. The grade assessed by peer v for student
u depends on the actual performance of student u (su), and
the precision τv and the bias bv of student v as peer-assessor.

sv

zvubv

suγ0

µ0

η0

θ0

θ1

u ∈ {S}

v ∈ {Su}

(a)

for v ∈ {S}:
bv ∼ N (0, 1/η0)

for u ∈ {S}:
su ∼ N (µ0, 1/γ0)

for u ∈ {S}:
for v ∈ {Su}:
zvu ∼ N (su+bv, 1/(θ1 ·sv+θ0))

(b)

Fig. 3: Model PG3 [5]: (a) graph and (b) associated generative
process. Each student, as peer-assessor, has individual bias,
bv . As a test taker, they get a real (unknown) grade, su. The
grade assessed by peer v for student u depends on the actual
performance of student u (su), and the bias as peer-assessor
bv and the performance sv as test-taker of student v. sv and
su are copies of the same variable for different students.

are repeated as many times as the index indicates. S is the
total set of students, and Su is the subset of students that peer-
assess student u’s work. This model assumes that each student
shows their own level of precision and bias as peer-assessor,
modeled by random variables τv and bv , respectively. It also
assumes that, if we knew the real grade su of student u, the
grade assessed by peer v could be estimated given the bias bv
and some variability inversely proportional to the precision τv .

A second model, PG3 in [5] (Figure 3), is considered. It
explicitly models a key observation: peer-assessors are also
students who took the test. This model assumes that the real
grade of a student’s test su is a reliable indicator of their
precision as peer-assessors. Students also have, in their role
as peer-assessors, their own bias term, bv . Thus, if we knew
the real grade su of student u, the grade assessed by peer v
could be estimated given their bias bv and some variability
inversely proportional to the real grade sv obtained by the
peer-assessor v in the same test. Although shown duplicated
in Figure 3, su and sv represent the same variable: the real
grade of a student (u or v) in the test.
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In this work, we assume that the real grades su are the
ones provided by the instructor, which might not always hold
in a real class. The other model proposed in [5] (PG2) is
not considered. It requires several peer-assessed tests with the
same class group to reuse acquired knowledge across tests, a
scenario outside the scope of this study.

2) Bayesian approach: There is limited information on the
peer assessment framework. Only a small set of peer-assessed
grades4 is usually available. However, our models (Figs. 2
and 3) aim to learn students’ characteristics to enable more
robust estimations of the final grades, and data is required to do
so. Instructors have long experience in grading their students
and extensive prior knowledge about their behavior. Bayesian
statistics allow us to use this prior knowledge as a reasonable
starting assumption that counterbalances our current set of
peer-assessed grades [6]. We codify these initial beliefs in
the form of a priori probability distribution on the model
parameters. At this time, the hypotheses about the shape of
these parameters can be explicitly codified.

Bayesian inference consists of updating the initial beliefs
with the information gathered from the observed data. One
of its advantages is that it produces a probability distribu-
tion5(posterior distribution) on the possible values of each
parameter, which allows modeling the uncertainty around it.

Although PGMs allow efficient performing of inference,
as the complexity of the model increases, exact inference
becomes unfeasible. Approximate inference is the best alter-
native. It provides an answer to the query as a probability
distribution that is close to the distribution that would actually
answer the question. Approaches based on optimization (e.g.,
variational inference) or sampling (e.g., MCMC or Gibbs sam-
pling) stand out. We use MCMC sampling from STAN [63],
a software for statistical modeling and inference that does not
require deriving a learning method for each specific model.

3) Selection criteria: A key element of our procedure is the
technique that guides instructors in the choice of the next test
to evaluate (line 4 in Alg. 1). It is reasonable to consider that
an appropriate selection criterion would introduce information
that enables the maximum reachable reduction of uncertainty.
In our case, this is the real grade of the test that most reduces
model uncertainty. Looking for a globally optimal solution for
the supervision process (a whole ordered sequence of tests to
supervise) requires the grades assigned by the instructor to be
known in advance. In this work, the next test to supervise is
selected at each step, and in this way, all our selection criteria
can be considered as heuristics since we do not provide any
guarantee that the composition of step-by-step decisions builds
up to the global optimal solution.

Many techniques have been proposed in the context of
active learning from crowds: different forms of entropy [56],
[57], potential information gain [64], [65], uncertainty models
based on the annotations or the learned model [56], [65],
minimum variance [65], completely random strategies [56] or

4Although one could ask each student to peer-assess all other students’ tests
to gather more data, that is not fair for students and it is definitively not in
line with the formative objective of peer assessment.

5Unlike the frequentist approach, where data is used to estimate a specific
value for the model parameters.

Fig. 4: Two steps of GpD criterion. The left figure displays
student-instructor distances (red labels) as the instructor has
only graded student #5’s test. On the right, after the instructor
grades the furthest student’s test (#7), distances are updated.

deterministic round-robin [57], [64]. Most of these techniques
can be adapted to our problem. Partially inspired by such work,
we have tested the following techniques, which use available
data and the model in different ways:

a) Random selection (RND): The simplest alternative is
entirely random selection of the next test to supervise. This
does not use any source of information, but it could be close
to the way an instructor acts in an unguided real scenario.

b) Graph distance (GpD): We can draw a graph that con-
nects students using graded-by/grader-of relationships. Con-
sidering the general idea that information in a PGM flows
through the network, the student that is furthest away from
the instructor is impacted the least by the new information
provided by the instructor. Thus, another straightforward base-
line would be to select next the student who is furthest away
from the instructor in the graph. See Figure 4 for a graphical
example. There are multiple algorithms to find the distance
between two nodes in a graph, and thus the student that is
furthest away from the instructor. In this work, we measure
distance in terms of the smaller number of edges that one
needs to traverse to reach the target node from the source.

c) Grade variance (GdV): Each test is usually peer-
assessed by multiple classmates. The variance among the peer-
assessed grades can be understood as the degree of disagree-
ment among peers. One could assign the tests to the instructor
in decreasing-variance ordering, and thus the instructor will
first examine those tests with the greatest divergence between
the peer-assessed grades. These measurements are displayed
in Figure 1 for our real dataset.

Following this approach comes with its own assumptions.
Whereas a large variance can be fairly accepted as suspicious,
a low variance is understood as correctness. This is hardly
realistic. Peer assessments are subjective and students might
agree to assign a specific grade to each other, or popular
students can get their grades inflated. Anonymity over the
whole peer-assessed task can alleviate these potential issues.

d) Posterior marginal variance (PMV): As we use
Bayesian inference, when the instructor supervises a new test
and provides the grade, the probability distributions on each
of the rest of the non-evaluated tests can be updated. The
variance of the marginal distribution of each student’s grade
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can be understood as the uncertainty associated with that
test’s grade. Note that in our models, the grades are modeled
as normal distributions, and in this case entropy (a measure
of uncertainty) and variance are directly coupled. With this
technique, the next test suggested to the instructor will be the
one with a higher posterior marginal variance in the model.

Unlike the previous technique, this relies on the model and
this implies that the selection of the instructor in each step can
modify the suggestion to the instructor in the next steps.

e) Maximum expected entropy reduction (MER): One
could argue that the model is not used properly (or even not
at all) by the previous techniques. From an information gain
viewpoint [65], we aim to answer the question: “which is
the test that the instructor needs to supervise next in order
to reduce the total uncertainty in the model the most?”.

We can calculate the entropy of the conditional posterior
distribution of the yet-unknown grades, S, given that we claim
to know the value r of one of them, sj : h(S\{sj})sj=r. But,
when we need to make the decision, we really do not know
r. Thus, we resort to probabilistic estimates considering all
possible values r ∈ R for sj (marginalization of sj):

hsj (S) =

∫
r∈R

p(sj = r) · h(S\{sj})sj=r (1)

where R represents the set of all possible values of sj , which
in this study is a grade in the range from 0 to 10: R = [0, 10].

Thus, we can calculate the expected entropy hsj (S) for all
the tests not yet supervised, sj ∈ S. Then, we would just
need to suggest as the next test the student’s test j that has
associated a lower expected entropy, i.e., the one that promises
the greatest reduction in the uncertainty in the model. In other
words, it chooses the test that, once graded by the instructor,
is expected to lead to a better estimate of the grades of the
rest of the tests as yet unsupervised.

This is arguably the technique that best answers the question
that leads the supervision procedure. However, it comes with
a high price in terms of computational complexity6.

To sum up, we consider 5 different selection techniques.
First, a randomized approach is used to establish a baseline.
We also include two approaches that use different types of data
(GpD, which considers the relationships among students in the
task, and GdV, which considers the peer-assessed grades), but
they do not use the model for making the decision. Thus,
we call them data-based approaches. Finally, two model-
based approaches are included (PMV, which considers the
uncertainty in the current estimates of the real grades, and
MER, which estimates the maximum reduction of uncertainty
if the instructor’s grade of a certain test were known).

IV. EMPIRICAL STUDY WITH SYNTHETIC DATA

Here we attempt to evaluate the viability of our proposal
and test the suitability of the various models and techniques
considered. To this end, two sets of experiments have been
carried out. First, the results of a set of experiments performed

6In our implementation, the grades are discretized as
{[0, 5], (5, 6], (6, 7], (7, 8], (8, 9], (9, 10]} during the calculation of Eq. 1 to
alleviate the computational cost.

TABLE I: Parametrizations of PG3 for synthetic data gen-
eration. Models 0 to 3 produce differences between real and
peer-assessed grades in [−2.5, 2.5]. Models 4 to 7 reproduce
the differences of Figure 1, in [−0.75, 2.6]. These differences
may come from individual bias⋆, independent imprecision†,
imprecision derived from lack of knowledge◦, or from all
combined◁. Other parameters are fixed to produce real grades
around µ0 = 7.5 with a standard deviation of 1 (γ0 = 1).

Models
Parameter 0⋆ 1† 2◦ 3◁ 4⋆ 5† 6◦ 7◁

θ0 12 0.8 0.01 0.04 15 1.1 0 0.1

θ1 0.0 0.0 0.11 0.14 0.0 0.0 0.15 0.2

η0 0.9 100 100 1.2 1.1 100 100 1.45

ρ0 0.0 0.0 0.0 0.0 1.2 1.2 1.2 1.2

with artificial data generated synthetically are presented in this
section. Using synthetic data allows us to explore a much
broader range of hypothetical (but reasonable) scenarios and
evaluate the proposal and its different components in those
conditions. Second, data from a controlled experiment in a real
environment is used to evaluate the proposal in Section V.

A. Experimental design

Synthetic peer-assessed grades used in this set of exper-
iments are generated to test different hypotheses. On the
one hand, two possible scenarios for peer-assessed grades
dispersion are explored: (i) differences between peer-assessed
grades and real (unknown) grades are distributed normally in
the interval [−2.5, 2.5], assuming peers that over- and under-
estimate grades in the same proportion, and (ii) differences
normally distributed in the interval [−0.75, 2.6], assuming
peers that tend to overestimate grades in a larger proportion.
The interval used in the latter case is calculated from the
grades of the real dataset (Figure 1). On the other hand, we
consider various hypotheses to explain the dispersion of peer-
assessed grades. That is, we assume in distinct experiments
that the differences between peer-assessed grades and real
(unknown) grades are caused by (i) peer-assessors’ individual
bias, (ii) peer-assessors’ independent lack of precision, (iii)
peer-assessors’ lack of precision derived from their lack of
knowledge, or (iv) all three sources combined. In combination,
up to 8 different hypothetical cases have been considered.
We also use STAN for sampling the synthetic data from an
enhanced PG3 model, where an extra parameter ρ0 represents
a systemic bias, and thus bv follows a normal distribution,
bv ∼ N (ρ0, 1/η0). A complex data generation model allows
us to accommodate all the assumptions and simulate realistic
scenarios, as reality is always more complex than operating
models. Parameter values have been selected by hand to
simulate the 8 hypothetical cases (see Table I).

The two models presented in Section III-B1, PG1 and PG3,
have been used to model the peer-assessment tasks, as well
as three simplifications. We use a simplified model PG1st
where a single precision element is shared by all the students
(in their role as peer-assessors), τv = τv′ ,∀v, v′ ∈ {S}. We
restrict the expressiveness of PG1 even further with another
model, PG1stb, where the bias element is also shared by all
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Fig. 5: Influence of the number of peer-assessments in terms of RMSE and Kendall’s τ (by rows) when using different models
(by columns). Performance evolution is shown as the instructor progresses in the supervision (from no test to all of them)
where each line represents a different number of peer assessments per test, G ∈ {1, 2, 3, 5, 7, 10}. Results are averaged over
all selection techniques and generative models and parameter J = 32 is fixed.

the students, bv = bv′ ,∀v, v′ ∈ {S}. Similarly, we use a model
PG3sb where the bias element is also shared by all the stu-
dents. These last three simpler models will help us understand
whether the data available in a peer-assessment task is enough
to learn Piech et al. [5]’s models or whether more compact
models are better suited for this task. The five techniques
for selection of the next test to supervise (Section III-B3)
have been considered: random selection (RND), graph distance
(GpD), grade variance (GrV), posterior marginal variance
(PMV), and maximum expected entropy reduction (MER).

Different class sizes have been simulated, J ∈
{8, 16, 24, 32, 40, 48, 56}, as well as different numbers of peer
assessments per test, G ∈ {1, 2, 3, 5, 7, 10}. Only realistic
configurations (where G < J) have been considered. The most
informed selection technique, MER, has only been applied
in experiments with J ≤ 24 due to computational resource
limitations. In total, 7240 experiments have been conducted
in this exploratory design. Each experiment has been repeated
10 times to deal with the randomness of the synthetic data
generation process. For the sake of clarity, all the plots show
only averaged results, which allowing observation of the trend
as the instructor advances in the revision.

To assess and compare the different techniques and models,
we use the root mean square error (RMSE) and Kendall’s
rank correlation coefficient (Kendall’s τ ) [66]. RMSE is non-
negative and measures the divergence between the ground truth
values and their estimations, where a value of 0 identifies a
perfect estimation. Kendall’s τ is a rank correlation measure
that, ignoring the actual values, compares two samples in that
the values of both would be ordered similarly. It tends to 1
when the relative position of the students in the ordering of
both samples (the real and estimated grades) is similar and
tends to −1 when the order is rather the inverse. A value of
0 is expected when comparing two random samples. Whereas

RMSE will help us identify how far our estimates differ from
the ground truth, Kendall’s τ tells us whether our estimations
are actually giving a higher grade to whoever did better.

B. Results

The results presented below show different aspects of our
empirical study to analyze the proposal’s key elements.

In Figure 5 the evolution of the performance of the method,
using the 5 models considered, is shown as the revision
process carried out by the instructor progresses, paying special
attention to the number of peer assessments per test (G ∈
{1, 2, 3, 5, 7, 10}) for a class of J = 32 students. In general,
performance improves as the number of peer assessments per
test increases. The difference is larger between tests with
smaller numbers of peer assessments, and it seems to approach
an upper bound as large values (G = 7 or 10) are used. The
behavior with PG1 and PG1st is very similar and slightly
better than that with PG1stb. Performance with PG3 is
initially very unreliable but, as 20−25% of the tests have been
revised by the instructor, the behavior of the method using
this model slightly outperforms PG1-based approaches. A
similar unstable start is observed for PG3sb, but this is unable
to achieve a competitive performance until very late in the
revision process when many peer assessments are available.

Figure 6 shows the evolution of the performance of the
method as the revision process goes on for different class
sizes (J ∈ {8, 16, 24, 32, 40, 48, 56}). To be able to show the
evolution for different class sizes, we plot it as a percentage
of the total number of students in each experiment. It assumes
a reasonable number of peer assessments per test (G = 3),
and for the sake of simplicity only shows results for PG1 and
PG3 models, as others follow the same trends. No difference
is observed regarding class size. As before, PG3 shows an
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Fig. 6: Influence of the class size in terms of RMSE and
Kendall’s τ (by rows) when using PG1 and PG3 models (by
columns). Performance evolution is shown as the instructor
progresses in the supervision (from no test to all of them)
where each line represents a different class size, J ∈ {8, 16,
24, 32, 40, 48, 56}. Results are averaged over all selection
techniques and generative models. Parameter G = 3 is fixed.

initial unstable period which is quickly closed before 20−25%
of the tests have been revised by the instructor.

Regarding the influence of the selection criterion that guides
instructors in the supervision, performance differences are very
slight: MER, and PMV, to a lesser extent, appear to stand
out in some scenarios (see a graphical description of these
results in the supplementary material). Figure 7 shows the
pairwise correlations between the order of tests suggested
to instructors for revision when using different models. For
the sake of simplicity, only results when following PMV and
MER selection techniques are shown. GrV is deterministic
(based exclusively on data) and shows full correlation for all
the pairs of models, whereas RND is not expected to show
any correlation due to complete randomization. GpD turns
out to behave similarly to PMV. It can be observed that,
when following PMV (or GpD), only spurious correlations
are obtained between models. One could expect to observe a
certain degree of correlation between models that are alike.
Only MER shows this behavior: PG3-based models have a
strong correlation between them, also PG1-based models, as
well as a noticeable correlation between PG1st and PG3.

Finally, Figure 8 shows the behavior of the method when
using the different models under specific generative assump-
tions. A standard class size of J = 24 students and G = 3 peer
assessments per test are used. When data generative models
only use bias as the source of differences between instructor
(s) and peer-assessed grades (z), PG1stb and PG3sb show
the worst performance as the models consider a single bias
term common to all the students. PG3 and PG1 show a
robust performance, but the best model in this scenario is
PG1st, which basically models bias and a single precision
term common to all the students. When generative models use

Fig. 7: Correlation between the order of tests suggested by
PMV (left) and MER (right) criteria when modeling with the
five different models across the whole set of experiments.

(lack of) precision as the single source of s−z divergences, the
differences between models are reduced, although the simplest
models (PG1stb and PG3sb) show the best performance.
Similar behaviors are observed when all students share the
same precision term, or when each one has their own. When
both bias and (lack of) precision are used as sources of s− z
differences, the more complete model PG3 stands out. The
initial unstable period of PG3 (shorter) and PG3sb (larger)
is observed in all the cases, although the latter looks different
when measured by RMSE or Kendall’s τ .

C. Discussion

Many insightful ideas can be extracted from the results
concerning the behavior of the proposed method.

Primarily, it appears that class size has limited influence on
the performance. According to Figure 6, the same proportion
of tests revised by the instructor guarantees similar perfor-
mance on the estimation of the remaining ones with different
class sizes. This behavior, observed for all the models used,
suggests that our proposal would apply to classes of any size,
with a foreseeable workload for the instructor proportional to
the class size.

As could be reasonably expected, the larger the number
of peer assessments per test, the better the performance of
the method. More data leads to better estimations in all the
models used. This behavior is clearly observed in Figure 5.
Similar behaviors have been previously reported, for example,
by Conati et al. [37, p. 401], who claim that better performance
can be obtained by “requiring students to display more of
their thinking.” This fact would motivate instructors to seek as
many peer assessments as possible during the task. However,
the workload of peer-assessing a test for a student, together
with the time that it takes, is an obvious limitation on the
number of peer assessments per test. It is the instructor’s
responsibility to estimate the number of tests that each student
should peer assess without placing too much extra burden
on them, possibly producing adverse effects such as loss of
motivation, less exhaustive assessments, or even harm to the
formative value of this evaluation methodology. In the real
case study analyzed in this work (Sections III-A1 and V),
each student performed and received 3 assessments.

In a data scarcity situation such as a peer-assessment
task, simpler models can be learned more robustly. Thus,



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. X, NO. X, AUGUST 20XX 10

Fig. 8: Model performance when data is synthetically generated following different assumptions (Table I), by column. Measured
in terms of RMSE and Kendall’s τ (by rows), performance evolution is shown as the instructor progresses in the supervision
(from no test to all of them). Results are averaged over all selection techniques and parameters G = 3 and J = 24 are fixed.

we compare PG1 and PG3 with 3 simplifications (in terms
of the number of parameters), namely, PG1st, PG1stb and
PG3sb. PG1-based models produce good estimations even
with a small proportion of tests supervised by the instructor.
The behavior of PG1 and PG1st is very similar across the
whole empirical study, and the only observed difference is
in experiments where the generative model clearly benefits
PG1st (see Fig. 8), which only models a bias element per
student and a global precision term shared by all of them.
The behavior of PG1stb (it only learns a global bias and
precision term) is slightly different: it is generally overtaken by
the other two versions of PG1 (clearly when the generative
model relies on individual biases), and only shows slightly
better performance when the generative model fixes a general
bias term. With these results, it seems reasonable to limit the
model by using a single precision term, but using a single bias
term might be too restrictive. In other words, students tend
to over/underestimate the grade of their peers differently, but
they all are similarly consistent with their own biases. PG3-
based models have an initial unstable period during which
they are outperformed by PG1-based models. This period in
the case of PG3 lasts until the instructor has supervised not
more than 20 − 25% of tests. After this adjustment period,
their performance can even surpass that of PG1-based models.
However, in the case of PG3sb, this period is so long that it
may hardly involve a workload reduction for the instructor.
It is reasonable to expect instructors to supervise at least
25% of the tests to enhance validity, as previous evidence
suggests [42]. In this sense, PG3 is a competitive alternative to
PG1 and PG1st. The failure of PG3sb might be related to the
apparently unrealistic assumption of using a single common
bias term for all the students, also observed with PG1stb.

Finally, the role of the selection technique appears limited
in this empirical study. The differences between experiments
that follow different selection techniques are negligible in
most of the cases. The performance when following GrV,

PMV or MER selection techniques is usually better than when
using RND or GpD, which are indistinguishable between
them. The correlation plots (similar to Fig. 7, but omitted
for simplicity) show in both cases that no correlation exists
between models (RND is fully randomized, and GpD hardly
depends on an initial random selection). Exploring the furthest
student first, in terms of graph distance, does not contribute to
overcoming RND. GrD is deterministic once the peer-assessed
grades are available, and thus, the correlation plot does not
reveal anything about its performance. Surprisingly, PMV’s
correlation plot shows only spurious correlations between
models. Only MER shows a partially predictable behavior,
with a correlation plot that stresses the similarities of the path
followed by PG1-based and PG3-based models. This and the
slightly better performance of MER (in the supplementary
material document) would suggest that this is arguably the
most appropriate selection technique for our proposal.

V. EMPIRICAL STUDY WITH REAL DATA

Now we test our proposal with real data (Section III-A1).

A. Experimental design
For this analysis, peer-assessed grades for a test performed

by J = 16 students are available. Each test received G = 3
grades. The instructor’s grades are available too, {sj}Ji=1. This
last piece of information is key as it allows us to carry the
analysis out with the (assumed) ground truth information.

Similar to the previous experimental setting, five models
(PG1, PG3, and their simplifications PG1st, PG1stb and
PG3sb) and five selection techniques (RND, GpD, GrV, PMV
and MER) are tested. Each experiment is repeated 10 times
to deal with the randomness of some selection techniques
(in some cases, only the first selection). Average results are
shown, in terms of RMSE and Kendall’s τ , the metrics that
we use to measure performance.
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Fig. 9: Analysis of the influence of the selection technique per model on real data. Each subfigure shows the performance of
five selection criteria (lines) in terms of RMSE and Kendall’s τ (by rows) for five different learned models (by columns). The
evolution of the metric is shown as the instructor evaluates more tests. Parameters J = 16 and G = 3 are fixed.

B. Results

Two different views of the analysis with real data are
shown in Figures 9 and 10. Following a similar layout, two
rows of subfigures show performance in terms of RMSE and
Kendall’s τ . In Figure 9, we group by model to compare
the different selection techniques. In Figure 10, we group by
selection technique to compare model performance.

The behavior of the procedure when using PG1 and PG1st
is similar, although the best selection criteria with PG1 is
PMV, and GrV with PG1st. The model leading to the worst
behavior of the procedure is PG1stb. With it, the performance
limitations of MER and GrV are noticeable (mainly in terms of
RMSE). A similar performance drop is observed between PG3

and PG3sb, with MER and GrV especially impaired when
using single bias modeling assumption. Note that for PG3sb,
sometimes RND is the best selection criterion. Experiments
with PG3 (and with PG3sb in terms of RMSE) show initially
very poor performance, but with competitive behavior attained
quickly once the instructor has revised a few tests. In fact,
when using the MER (or GrV) criteria, the best performance
is reached earliest (with the fewest revised tests).

When grouped by selection technique, the procedure be-
haves similarly if the RND or GpD criteria are applied. The
behavior when following PMV is also quite similar, although
some differences are observed (e.g., PG1 is benefited). Under
these criteria, modeling with PG1 or PG1st would be the
best decision, although PG3 is also competitive after several
evaluations of the instructor. PG3sb and PG1stb are the worst
models for all the selection techniques, almost always, in terms
of both RMSE and Kendall’s τ . The behavior varies the most
across models when following GrV or MER selection criteria.
Under these criteria, PG3 stands out as the model that leads
to the best results, followed by PG1st and PG1.

C. Discussion

These experiments with real data show larger differences
when all the models and selection techniques are compared.

The behavior of the method when using the different models
diverges, as can be seen in Figure 9. PG1 and PG1st show
similar behaviors, although the leading selection technique
in each case is different. In fact, PG1st outperforms PG1

when following 4 out of 5 selection techniques (see Fig. 10),
including GrV and MER. This strengthens the hypothesis
behind PG1st in a data-scarce scenario such as ours: all the
students have their own bias and diverge from it randomly in
the same way. Those models that consider a single/common
bias term for all the students, PG1stb and PG3sb, show
the worst performance, mainly in terms of RMSE. In line
with experiments in synthetic data, at least in this real case
study, the single-bias assumption appears to be too unrealistic.
Both PG3-based models again show the initial adjustment
period before the instructor has supervised up to 20 − 25%
of the tests. After this adjustment period, PG3 stands out
as the best model when following MER and GrV selection
techniques, with a performance improvement compared to
other models of about 35%. These results, consistent with
others from the previous Section IV, support the modeling
decision that connects students’ roles of test-taker and peer-
assessor, assuming that whoever does it well when being
evaluated, also does well as a peer assessor.

Unlike the empirical study with synthetic data (Sec. IV),
in this case, there are considerable differences between the
selection techniques. Procedure behavior is very similarly
when following the RND and GpD selection criteria (and even
with PMV) across all five models (see Fig. 10). This common
behavior was already observed in the previous Section IV, and
it could be arguably attributed to the near-random behavior
of these selection techniques (see Fig. 7). The GrV and
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Fig. 10: Analysis of the influence of the model per selection criteria on real data. Each subfigure shows the performance of five
models (lines) in terms of RMSE and Kendall’s τ (by rows) for five different selection criteria (by columns). The evolution
of the metric is shown as the instructor evaluates more tests. Parameters J = 16 and G = 3 are fixed.

MER selection techniques induce large differences between
models. In both cases, PG3 stands out (after its adjustment
period), followed by PG1st and PG1 (in that order). Finally,
PG3sb and PG1stb never show competitive performance. One
might think that the differences between these results and
those of Section IV are due to unrealistic synthetic data or
similar issues. However, the results from this section should
be analyzed with caution as they come from a single task.

All in all, the most robust configuration of our proposal
would be to use the PG3 model following the entropy-based
selection technique, MER. In this case, it must be stressed that
to overcome the adjustment period of this model, the instructor
should review at least 20−25% of the tests. It is worth noting
that de Alfaro and Shavlovsky [42] found while analyzing the
use of an online platform for peer assessment that instructors
spontaneously decided to supervise roughly 30% of the tests.
Alternatively, the use of the PG1st model following GrV also
shows a competitive performance, with even better results in
the initial steps.

VI. THREATS TO VALIDITY

This study assumes that both instructors and students can
potentially benefit from the proposal: a workload reduction
for instructors, and increased validity of aggregated grades
for both. We used anonymous questionnaires for checking
whether these assumptions are realistic and to gather opinions
of both groups (the form and raw results are available on
the associated webpage). We gathered 45 and 22 answers
from instructors and students, respectively. According to in-
structors’ perceptions, the expected validity of peer-assessed
grades increases by 0.82 points (on a scale from 1 to 5)
using our method. This increase reaches 1.17 points when
asking only those instructors who have previously used peer
assessment. Among students, the expected validity increase is

0.68 and 0.46 points, respectively. Over 60% of instructors
would use peer assessment for grading but only 9% would
rely completely on peer-assessed grades. 51% of instructors
prefer supervising the task when using peer assessment for
grading. All in all, 76% of instructors appear open to using the
method (chiefly, after learning how it works). 64% of students
appear open to peer assessment and 59% accept the use of peer
assessment for grading (mainly with instructor supervision).
The main concerns are a lack of trust in classmates (“some-
times it is not about the peers’ malicious intention, it is just a
matter of lack of ability or commitment”) and the feeling of
carrying out a task (assessment) that should be the instructor’s
responsibility. In contrast, 73% are open to the use of our
method if it is explainable and controlled by the instructor
(“aggregation should not be completely automatized”). These
opinions gathered appear to reveal an overall positive opinion
toward the benefits of using a method such as ours.

In this study, the instructor’s grade is assumed to be the
real grade, which is not necessarily true. This limitation could
be addressed by enlarging the models with separate random
variables for the instructor and real grades. All our models use
a single numerical grade per test. We could check how our
methodology combines with other models that allow lower-
granularity grades (e.g., grade per rubric item) and categor-
ical or ordinal grades [41], [45]. Our Bayesian approach
involves the selection of priors. The hyperparameters are set
to uninformative values, or they could be set to summary
statistics of the available data. Previous works claim that these
models could be not so sensitive to the specific values of
the hyperparameters [37]. A specific study is necessary to
claim so for our method. The selection technique MER, which
appears to outperform the rest, cannot be used extensively
due to its large computational cost. Alternative approximate
inference techniques such as variational inference should be
explored. Moreover, the selection of the two evaluation metrics
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(RMSE and Kendall’s τ ) arguably fulfills our initial intention
of displaying different views (quantitative and qualitative) of
the results. Experimental results are different regarding both
metrics but consistent, which supports our selection.

The empirical study with real data analyses a middle-sized
class. Although our synthetic-data experimental results suggest
that our method is not class-size dependent, other sizes should
be tested. It was performed in a university class. A larger study
is required to test whether these results generalize to other
classes at the same level and at other educational levels. The
peer-assessed test was an extended-response exam consisting
of three questions. A specific study should investigate whether
these results generalize to a broader range of exam types.
The rubric employed needs to be adjusted for the students, as
peers and instructors may interpret them differently [22]. After
the rubric is used, it should be revised using, for example,
Kulkarni et al.’s methodology [22]: (i) testing the validity
of the peer-assessed grades at a rubric-item granularity, and
(ii) improving the wording of the low-validity items. The test
was carried out in the context of anonymity. A larger study
could test our methodology when this condition does not hold
and preference relationships between students bias the peer-
assessed grades. Presumably, our method will require models
that account for social interactions [47].

Regarding the study with synthetic data, the performance
of our technique could have benefited from the use of models
that match the data generation process. Empirical results with
real data provide initial evidence against the occurrence of this
threat. However, it is undeniable that the configuration of the
data generation process follows the real data characteristics.
A larger study should consider other artificial scenarios, for
example, using popularity models to simulate specific students
being treated differently in peer assessment tasks.

VII. CONCLUSIONS

This paper presents a method to assist the instructor in the
supervision of a peer-assessment task. It combines a Bayesian
probabilistic graphical model to model the peer-assessment
task, and a selection technique to suggest to the instructor
which task they should evaluate next. The estimation of the
uncertainty associated with the model enables a selection
criterion based on minimum expected uncertainty, and the
early cessation of the supervision in line with the instructor’s
own tolerable uncertainty criteria. It is well-known that peer
assessment has a positive impact on student training and our
procedure might help spread its adoption, given that it leads to
a reduction in instructors’ workload and provides confidence
in the form of mathematically well-founded grade estimates.
Finally, any difficult decision is always made by the instructor.

The proposed methodology has been validated with syn-
thetic and real data. Graphical models carrying different mod-
eling assumptions and different selection techniques (from
simple to elaborated) have been studied. Results appear to
indicate that students have their own bias but indistinguishable
precision, and that whoever does it well as a test taker, does
well as a peer assessor. The selection technique that stands out
estimates the uncertainty as if the real grade of each test was

known and suggests the one with the largest estimated entropy
reduction. However, a computationally-cheap and competitive
alternative is to follow the order given by the variance of
the peer-assessed grades. Two surveys carried out among
instructors and students, respectively, show promising potential
acceptance of the use of our methodology.
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[2] S. San Martı́n Gutiérrez, N. Jiménez Torres, and E. J. Sánchez-Beato,
“La evaluación del alumnado universitario en el Espacio Europeo de
Educación Superior,” Aula Abierta, vol. 44, no. 1, pp. 7–14, 2016.

[3] C. Brindley and S. Scoffield, “Peer assessment in undergraduate pro-
grammes,” Teach. High Educ., vol. 3, no. 1, pp. 79–90, 1998.

[4] Y. Bachrach, T. Minka, J. Guiver, and T. Graepel, “How to grade a test
without knowing the answers- a Bayesian graphical model for adaptive
crowdsourcing and aptitude testing,” in Proc. of 29th ICML, 2012.

[5] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller, “Tuned
models of peer assessment in MOOCs,” in Proc. of 6th EDM, 2013.

[6] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[7] B. Settles, “Active learning literature survey,” University of Wisconsin
Madison, Tech. Rep. no. 1648, 2009.

[8] K. J. Topping, “Peer assessment between students in colleges and
universities,” Rev. Educ. Res., vol. 68, no. 3, pp. 249–276, 1998.

[9] W. Harlen and M. James, “Creating a positive impact of assessment on
learning,” in Proc. of An. Mtg. AERA, 1996, pp. 2–12.

[10] I. Ruz Herrera, “Evaluación para el aprendizaje,” Rev. Educ. Las
Américas, vol. 6, pp. 13–28, 2018.

[11] J. Gil Flores and M. T. Padilla Carmona, “La participación del alumnado
universitario en la evaluación del aprendizaje,” Educación XX1, 2009.

[12] P. M. Sadler and E. Good, “The impact of self- and peer-grading,” Educ.
Assess., vol. 11, no. 1, pp. 1–31, 2006.

[13] D. Reinholz, “The assessment cycle: A model for learning through peer
assessment,” Assess. Eval. High. Educ., vol. 41, no. 2, pp. 301–315,
2016.

[14] S. T. Basurto-Mendoza, J. A. Moreira-Cedeño, A. N. Velásquez-
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