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Capacity of electron-based communication over

bacterial cables: the full-CSI case

Nicolò Michelusi and Urbashi Mitra

Abstract

Motivated by recent discoveries of microbial communities that transfer electrons across centimeter-

length scales, this paper studies the information capacity of bacterial cables via electron transfer, which

coexists with molecular communications, under the assumption of full causal channel state information

(CSI). The bacterial cable is modeled as an electron queue that transfers electrons from the encoder

at the electron donor source, which controls the desired input electron intensity, to the decoder at the

electron acceptor sink. Clogging due to local ATP saturation along the cable is modeled. A discrete-time

scheme is investigated, enabling the computation of an achievable rate. The regime of asymptotically

small time-slot duration is analyzed, and the optimality of binary input distributions is proved, i.e., the

encoder transmits at either maximum or minimum intensity, as dictated by the physical constraints of

the cable. A dynamic programming formulation of the capacity is proposed, and the optimal binary

signaling is determined via policy iteration. It is proved that the optimal signaling has smaller intensity

than that given by the myopic policy, which greedily maximizes the instantaneous information rate but

neglects its effect on the steady-state cable distribution. In contrast, the optimal scheme balances the

tension between achieving high instantaneous information rate, and inducing a favorable steady-state

distribution, such that those states characterized by high information rates are visited more frequently,

thus revealing the importance of CSI. This work represents a first contribution towards the design of

electron signaling schemes in complex microbial structures, e.g., bacterial cables and biofilms, where the

tension between maximizing the transfer of information and guaranteeing the well-being of the overall
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bacterial community arises, and motivates further research on the design of more practical schemes,

where CSI is only partially available.

I. INTRODUCTION

Cellular respiration relies on a continuous flow of electrons from an electron donor (ED) to

an electron acceptor (EA) through the electron transport chain (ETC) of the cell to produce

energy in the form of the molecule adenosine triphosphate (ATP), and to sustain vital operations

and functions [3, Section 16.2]. This fundamental mechanism is well-known for individual,

isolated cells. However, in the past decade, remarkable discoveries of multi-cellular microbial

communities that transfer electrons between cells and across multi-cellular structures have been

made [4]. This mechanism, termed electron transfer, has been observed in molecular assemblies

known as bacterial nanowires, and in macroscopic architectures, such as biofilms and multi-

cellular bacterial cables [5]. These experimental observations raise the possibility of microbial

communication via electron transfer, which coexists with the better-known communication strate-

gies based on molecular diffusion [4], [6], [7], enabling cells to quickly sense and respond to

their environment.

In this paper, motivated by these experimental observations and building on our recent queuing

theoretic model of bacterial cables [8], we study the capacity of bacterial cables under the

assumption of perfect CSI at both the encoder and the decoder. The encoder controls the

desired intensity of the electron signal entering the cable, and the decoder attempts to decode

the transmitted message based on the measured output electron process. The bacterial cable

(the channel) has an internal state evolving dynamically as a function of electrons leaving and

entering the cable, and events occurring within the cable, and therefore falls within the broad

class of channels with state, e.g., [9]–[11]. Specifically, the cable is treated as a single black

box, which takes electrons as input from the ED source and outputs electrons into the EA sink,

and is modeled as a finite-state Markov channel [11], controlled by the input signal. That is, the

detailed dynamics of electrons and of the states of the cells located along the cable, as discussed

in [8], are not explicitly accounted for, but only global effects on the cable resulting from these

local interactions are modeled. Electrons enter and exit the cable according to Poisson processes,

whose intensities are functions of the internal cable state, which in turn determines the ability

of the cable to relay electrons, and of the encoded signal.
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The contributions of this paper are as follows. We characterize the capacity of a discrete-

time version of the system, using results on the capacity of finite-state Markov channels with

feedback derived in [11], and prove the optimality of stationary Markov input distributions, which

depend only on the current state of the cable. We then consider the regime of asymptotically

small time-slot duration. Based on this asymptotic analysis, we prove the optimality of binary

input distributions, thus extending previous results on the capacity of static Poisson channels

[12] to our dynamic setting. We prove that the capacity maximization problem is a Markov

decision process (MDP) [13], with state given by the internal cable state, action given by the

expected desired input electron intensity, which generates the binary intensity signal, and reward

given by the instantaneous mutual information rate, and can thus be solved efficiently using

standard optimization algorithms, e.g., policy iteration (see [13]). We show that the optimal

input distribution optimizes a trade-off between achieving high instantaneous information rate,

and inducing an ”optimal” steady-state distribution of the cable state, such that those states

where the transmission of information is more favorable are visited more frequently. On the

other hand, the optimal distribution for the myopic or greedy policy, which greedily maximizes

the instantaneous information rate, without considering its impact on the steady-state distribution

of the cable, performs poorly. In particular, we prove that the optimal expected desired input

electron intensity is smaller than that dictated by the myopic strategy. In fact, larger input electron

intensities tend to quickly recharge the electron reserves within the cable, hence the ATP reserves

of the cells, resulting in a clogging of the cable rendering it unable to further relay electrons

until its reserves discharge to sufficiently low levels.

Remarkably, this work represents a first contribution towards the design of electron signaling

schemes in complex microbial structures, e.g., bacterial cables and biofilms, where the tension

between maximizing the transfer of information and guaranteeing the well-being of the overall

bacterial community often arises, and thus motivates further research in this direction, e.g,

using methods based on statistical physics [14]. Moreover, our numerical evaluations reveal

the importance of CSI, which enables adaptation of the input signal to the state of the cell,

and thus motivates further research on the design of more practical schemes, where CSI is only

partially available, and of state estimation techniques.

Most of the recent literature on the design of biological communication systems is based

on molecular diffusion [7], [15]–[21]. The achievable capacity for the chemical channel is
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investigated in [17], under Brownian motion, and in [18], under a diffusion channel. In [7], [19],

novel molecular modulations are proposed. In [20], an in-vitro molecular communication system

is designed and, in [21], an energy model is proposed. In [22], upper bounds on the capacity

of communication networks over linear time-invariant Poisson channels have been investigated

in the context of molecular diffusion, based on the symmetrized Kullback-Leibler divergence.

Therein, a static channel with inter-symbol interference is considered, and, similar to our work,

the optimality of binary input distributions is also proved based on such upper bound. In this

paper, instead, we build on the stochastic model recently developed in [8] to study the capacity

of bacterial cables via electron transfer. The proposed channel model is dynamic, as opposed to

static, and explicitly captures biological constraints of bacterial cables, which are not present in

microbial communications based on molecular diffusion, such as clogging of the cable induced

by local ATP saturation of the cells, resulting in degradation of the electron transfer efficiency

of the cable, and the minimum input electron flow requirement in order to keep the cells alive.

Finite-state Markov channels have received significant attention in the information theoretic

community, e.g., [9]–[11]. The case with feedback and CSI at both the encoder and decoder

is considered in [11]. We specialize the capacity formulation of [11] to our Poisson channel,

and show that it can be achieved by input distributions independent of the feedback signal. The

case with no CSI has been considered in [10] and in [9], for finite-state Markov channels whose

transition probabilities are independent of the input signal. The capacity of channels with i.i.d.

states controlled by actions scheduled by the encoder has been considered in [23], and in [24],

for the setting where actions are generated adaptively.

The capacity of continuous-time Poisson channels is known, and it has been derived in [12]

for the static case. The case with i.i.d. block-fading, CSI at the receiver, and partial CSI at the

transmitter, has been considered in [25]. The capacity of a Poisson channel with side information

on spurious counts generated by an adversary at the receiver is considered in [26]. The bacterial

cable considered in this paper is also modeled as a continuous-time Poisson channel. However,

unlike [12], [25], [26], the channel is finite-state Markov, and its state is controlled by the input

signal generated by the encoder. While the capacity of continuos-time channels is known, the

capacity of discrete-time Poisson channels is unknown, and only upper and lower bounds have

been derived [22], [27].

This paper is organized as follows. In Section II, we present the system model and the discrete-
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time representation. In Section III, we analyze the capacity of the discrete-time model and study

its asymptotic capacity. In Section IV, we present numerical results. In Section V, we conclude

the paper. The proofs of the theorems and propositions are provided in the Appendix.

II. SYSTEM MODEL

We consider a continuous-time communication system based on a bacterial cable, depicted in

Fig. 1. A stochastic model for a bacterial cable has been proposed in [8]. The bacterial cable

contains C cells and has an internal state S(t) ∈ S at time t, taking values from the state space

S. S(t) evolves in a stochastic fashion as a result of random events occurring within the cable,

e.g., electrons entering (X(t)) and exiting (Y (t)) the cable at random times, as detailed in [8].

The communication system includes an encoder, which maps the message m ∈ {1, 2, . . . ,M}

to a desired electron intensity λ(t) ∈ [λmin, λmax], t ∈ [0, T ], where T is the codeword duration,

and λmin > 0 and λmax > λmin are, respectively, the minimum and maximum electron intensities

allowed into the cable. These are physical constraints induced by the nature of the cable. We

let ρ , λmin

λmax
≤ 1. Note that the stochastic model developed in [8] assumes that the cells may

die at random times, e.g., as a consequence of an insufficient input electron flow. In this paper,

we assume that the minimum input electron intensity λmin is sufficient to keep the entire cable

alive, so that cells do not die.1 Note that λmin can also be interpreted as the dark current [12].

Electrons enter the bacterial cable following a Poisson process with rate λin(t)=A(S(t))λ(t),

where A(s) ∈ [0, 1] is the clogging state, and denotes the ability of the bacterial cable to accept

electrons. A(s) is specific to our bacterial cable model, and is not present, e.g., in static Poisson

channels, where A(s) = 1 [12]. In particular, A(s)=0 if the bacterial cable is clogged and no

electrons can be accepted, and A(s)=1 if all electrons can be accepted without any loss. In

general, A(s) takes value in [0, 1], so that only a fraction of the input electrons can be accepted,

depending on the state of the cable. For instance, if the high energy external membrane of the

first cell in the cable is full [8], then no electrons can be accepted and A(s) = 0 accordingly. The

input electron process is modeled as a counting process X(t) ∈ {0, 1, 2, . . . }, with X(0) = 0.

Note that the encoder does not have full control of the timing and number of electrons released

1The more general case where cells die at random times will be considered as future work, and can be analyzed using tools

developed in [28].
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Figure 1. Communication system over a bacterial cable.

into the cable (X(t)), but only of λ(t), so that X(t) is a random quantity, which depends both

on the encoded signal λ(t) and on the clogging state A(S(t)). The output electron flow is also

modeled as a Poisson process with state-dependent intensity µ(S(t)), which is a function of

the internal state of the cable. We let Y (t) ∈ {0, 1, 2, . . . } be the counting process associated

with the output electron flow, with Y (0) = 0, and we denote the maximum output intensity as

µmax , maxs µ(s).

We assume that both the encoder and the decoder have full CSI, i.e., the state sequence

S(0 : t) = {S(τ), τ < t} is known at both the encoder and the decoder at time t. Therefore, the

desired electron intensity at time t, λ(t), is chosen as a function of the message m and the CSI

S(0:t), λ(t) = ft(m;S(0:t))∈[0, λmax]. On the other hand, the decoder, given the output electron

counting process Y (0:T )={Y (t), t∈[0, T ]} and the cable state sequence S(0:T ), estimates the

message m as m̂=g(Y (0:T ), S(0:T )).
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A. Bacterial cable model

In this section, we describe a model for the bacterial cable state S(t). The model [8] presumes

that S(t) is given by the interconnection of the states of each cell in the cable, leading to high

dimensionality. In fact, letting Scell be the state space of the internal state of each cell, then

the overall state space of the cable is S ≡ SCcell, which grows exponentially with the bacterial

cable length C. Herein, we propose an approximation of the model presented in [8], which treats

the bacterial cable as a black box, and captures only the global effects on the electron transfer

efficiency of the cable, resulting from local interactions of the cells along the cable. Specifically,

we model S(t) as the number of electrons carried in the cable, i.e., the sum of the number of

electrons carried in the external membrane of each cell, which participate in the ETC to produce

ATP for the cell. The state space for this approximate model is S ≡ {0, 1, . . . , Smax}, where Smax

is the electron carrying capacity of the bacterial cable. Letting S
(cell)
max be the electron carrying

capacity of a single cell, we have that Smax = C · S(cell)
max . The rationale behind this approximate

model is as follows: when S(t) is large, the large number of electrons in the cable can sustain a

large ATP production rate, so that the ATP pools of the cells are full, and the cable is clogged,

resulting in A(S(t)) ' 0. On the other hand, when S(t) is small, a weak electron flow occurs

along the cable, so that the ATP pools are almost empty and the cells are energy-deprived, so

that the cable can sustain a large input electron flow to recharge the ATP pools (A(S(t)) ' 1).

In order to capture this behavior, we make the following assumptions.

Assumption 1 The clogging state A(s) is a non-increasing function of s, with A(Smax)=0,

A(0)=1, A(s)>0, ∀s<Smax. The output electron intensity, µ(s), is such that µ(0)=0, µ(s)>0, ∀s>0.

According to this simplified model, from state S(t) at time t, the state of the cable becomes

S(t+) = S(t) + 1 with rate λin(t), corresponding to the arrival of one electron into the cable,

and to state S(t+) = S(t)−1 with rate µ(S(t)), corresponding to one electron exiting the cable.

B. Discrete-time model

The bacterial cable can be modeled as a finite-state continuous-time Markov channel [11]

with Poisson input and output. We now design a discrete-time system, enabling the computation

of an achievable rate for the continuous-time system. In particular, we use an approach similar

to [12], which focused on the capacity analysis of a static Poisson channel, and we extend it

February 28, 2022 DRAFT



8

to our finite-state Markov channel. We divide the codeword duration T into N slots of fixed

duration ∆ = T/N . The kth slot is the interval [k∆, (k + 1)∆), for k ∈ {0, 1, . . . , N − 1}. In

[12], it is shown that capacity-achieving schemes for this discrete-time model asymptotically

achieve the capacity of the continuous-time Poisson channel, for asymptotically small values

of the slot-duration ∆ → 0. Similarly, we first design capacity-achieving schemes and the

corresponding capacity for the discrete-time model, and then analyze the asymptotic regime

∆→ 0 in Section III. The rationale behind this analysis is that, if

∆� 1

µmax + λmax

, (1)

then the probability that more than one event (i.e., multiple electrons entering/leaving the cable)

occurs in a single slot is very small, of the order of o(∆2), whereas the following events are most

likely to occur: 1) no electrons enter/leave the cable, with probability ' 1−∆µ(s)−∆A(s)λ; 2)

one electron enters the cable, with probability ' ∆A(s)λ; 3) one electron exits the cable, with

probability ' ∆µ(s). However, the following analysis holds for any ∆ > 0. Let

αk , X((k + 1)∆)−X(k∆), (2)

βk , Y ((k + 1)∆)− Y (k∆), (3)

be the number of electrons entering and exiting the cable in slot k, respectively. We make the

following assumptions, similar to [12]:

1) λ(t) is constant within each slot. We denote its constant value in slot k as λk, so that

λ(t)=λk,∀t ∈ [k∆, (k+1)∆);

2) The encoder and decoder, at the beginning of slot k, know the sampled CSI time-series

Sk0 =(S0, S1, . . . , Sk), where Sk=S(k∆), rather than the continuous time-series S(0:k∆);

3) Additionally, the receiver observes βk. However, it assumes βk > 1 is a rare event. This

event is indeed rare when ∆ satisfies condition (1), since its probability is of the order of

o(∆2). Therefore, the receiver utilizes only the positive presence of electrons β̂k = χ(βk >

0) for decoding purposes, where χ(·) is the indicator function, i.e., β̂k = 0 if no electrons

are received in slot k, and β̂k = 1 otherwise.

We let, for a, b,≥ 0,

p
(∆)
A,B(a, b|s, λ)=P(αk = a, βk = b|Sk = s, λk = λ). (4)
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From the properties of Poisson processes, we have that

p
(∆)
A,B(a, b|s, λ) =


1−∆µ(s)−∆A(s)λ+g0,0(∆, s, λ) a = 0, b = 0,

∆A(s)λ+ g1,0(∆, s, λ) a = 1, b = 0,

∆µ(s) + g0,1(∆, s, λ) a = 0, b = 1,

ga,b(∆, s, λ) a > 0, b > 0,

(5)

where ga,b(∆, s, λ) are functions such that ga,b(∆, s, λ) ∼ o(∆max{a+b,2}), i.e., they decay to

zero as ∆max{a+b,2} when ∆ → 0, and
∑

a,b ga,b(∆, s, λ) = 0, so that p(∆)
A,B(a, b|s, λ) is a

probability distribution. The interpretation of Eq. (5) is that, when ∆ satisfies the condition

in Eq. (1), the event (a, b) = (0, 0) (no electrons enter/leave the cable) occurs with probability

' 1−∆µ(s)−∆A(s)λ; the event (a, b) = (1, 0) (one electron enters the cable, no electrons leave

the cable) occurs with probability ' ∆A(s)λ; whereas the event (a, b) = (0, 1) (no electrons

enter the cable, one electron leaves the cable) occurs with probability ' ∆µ(s); all the other

events occur with probability of the order of o(∆2). We let

p
(∆)
S (s1|s0, λ) = P(Sk+1 = s1|Sk = s0, λk = λ). (6)

Since Sk+1 = Sk + αk − βk, we have that

p
(∆)
S (s1|s0, λ) =

∞∑
a=(s1−s0)+

p
(∆)
A,B(a, s0 − s1 + a|s, λ), (7)

and therefore, using (5),

p
(∆)
S (s0 + 1|s0, λ)=∆A(s)λ+

∞∑
a=1

ga,a−1(∆, s, λ), (8)

p
(∆)
S (s0 − 1|s0, λ)=∆µ(s)+

∞∑
a=0

ga,a+1(∆, s, λ), (9)

p
(∆)
S (s0|s0, λ)=1−∆µ(s)−∆A(s)λ+

∞∑
a=0

ga,a(∆, s, λ), (10)

p
(∆)
S (s1|s0, λ)=

∞∑
a=(s1−s0)+

ga,s0−s1+a(∆, s, λ), ∀s1 /∈{s0−1, s0, s0+1}. (11)

Finally, we define the joint probability of state transition Sk→Sk+1 and channel output β̂k as

p
(∆)

S,B̂
(s1, b|s0, λ)=P(Sk+1=s1, β̂k=b|Sk=s0, λk=λ). (12)
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Using the fact that Sk+1 = Sk + αk − βk, we obtain

p
(∆)

S,B̂
(s1, 0|s0, λ) = p

(∆)
A,B(s1 − s0, 0|s0, λ)χ(s1 ≥ s0),

p
(∆)

S,B̂
(s1, 1|s0, λ) =

∞∑
b=max{s0−s1,1}

p
(∆)
A,B(b+s1−s0, b|s0, λ).

The encoding and decoding schemes for this discrete time model are defined as follows:

• Encoding: in slot k, given the message m to be transmitted, and the CSI Sk0 , the encoder

defines the desired electron intensity λk = fk(m;Sk0 ), taking values from the continuous

alphabet [λmin, λmax];

• Decoding: given the CSI SN0 and the output sequence β̂N−1
0 , the decoder returns the message

estimate m̂=g(SN0 , β̂
N−1
0 ).

Note that, similar to [12], we have converted the original continuous-time Poisson channel

into a discrete-time channel, with input λk∈[λmin, λmax] and binary output β̂k ∈ {0, 1}. However,

unlike [12] which focuses on a static Poisson channel, we now have a finite-state Markov

channel, controlled by the input sequence, with transition probability p(∆)
S (s1|s0, λk) and output

distribution

P(β̂k = 1|Sk = s0, Sk+1 = s1, λk) =
p

(∆)

S,B̂
(s1, 1|s0, λk)

p
(∆)
S (s1|s0, λk)

.

Therefore, the optimal input distribution, which is analyzed in the next section, optimizes a

trade-off between achieving high instantaneous information rate, and inducing transitions in the

future to states characterized by large information rate.

III. CAPACITY ANALYSIS

We have the following proposition, which states an important property of the controlled

Markov chain {(Sk, β̂k−1), k ≥ 0}.

Proposition 1 The Markov chain {(Sk, β̂k−1), k ≥ 0}, with state space S × {0, 1} and action

space [λmin, λmax], is strongly irreducible and strongly aperiodic [11].

The significance is that, if we view the Markov chain as a random walk on a directed graph, this

directed graph is always strongly connected and all its states are of period one, irrespective of

the input distribution generating {(Sk, β̂k−1), k ≥ 0} [11]. In particular, under a stationary
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Markov input distribution, whose optimality is proved in [11], the resulting Markov chain

{(Sk, β̂k−1), k ≥ 0} is stationary and ergodic.

The capacity of finite-state Markov channels is studied in [11], for the case where the encoder

is provided with the output feedback β̂k. Therein, it is proved that, for strongly irreducible and

aperiodic Markov channels, the feedback capacity specialized to our case is given by

C∗∆ = max
ν

Smax∑
s=0

∑
b∈{0,1}

π(∆)
ν (s, b)I(∆)

ν (s, b), (13)

and is achieved by a stationary Markov input distribution ν∗∆ (the optimizer of (13)), which

maps the current state (Sk, β̂k−1) = (s, b) to a probability distribution over the input signal,

ν(λ|s, b). The terms π(∆)
ν (s, b) and I

(∆)
ν (s, b) are, respectively, the steady-state distribution and

the instantaneous mutual information rate of state (Sk, β̂k−1) = (s, b), induced by the input

distribution ν. I(∆)
ν (s, b) is defined as

I(∆)
ν (s, b) =

1

∆
I(λk; β̂k, Sk+1|Sk = s, β̂k−1 = b, ν(·|s, b)). (14)

Note that, in general, the input signal distribution ν is a function of the current state Sk = s and

of the feedback signal β̂k−1 = b. However, the feedback signal β̂k−1 = b is not provided to the

encoder in our model. In the following proposition, we show that the optimal input distribution

solution of (13), denoted by ν∗∆, is, in fact, independent of β̂k−1.

Proposition 2 The optimal input distribution maximizing the capacity C∗∆ in (13), ν∗∆, is such

that

ν∗∆(·|s, 0) = ν∗∆(·|s, 1), ∀s ∈ S, (15)

i.e., it is independent of the feedback signal β̂k−1 = b. Under such a distribution, the capacity

is given by

C∗∆ = max
ν

Smax∑
s=0

π(∆)
ν (s)I(∆)

ν (s), (16)

where the optimization is over the set of stationary Markov input distributions ν which map the

current cable state Sk = s to a probability distribution over the input signal, ν(λ|s). The terms

π
(∆)
ν (s) and I

(∆)
ν (s) are, respectively, the steady-state distribution and the mutual information

rate in state Sk=s, induced by ν. I(∆)
ν (s) is defined as

I(∆)
ν (s) =

1

∆
I(λk; β̂k, Sk+1|Sk = s, ν(·|s)). (17)
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Proof: See Appendix A.

That a distribution ν(·|s) independent of the feedback β̂k−1 is optimal can be intuitively

explained: the state Sk is an information state, and captures all information about the past, so that

knowledge of β̂k−1 is irrelevant; moreover, since the instantaneous information rate I(∆)
ν (Sk, β̂k−1)

is a concave function of the input distribution, it is maximized by the input distribution ν(·|Sk)

independent of the feedback signal β̂k−1, rather than by randomizing between ν(·|Sk, 0) and

ν(·|Sk, 1), depending on the value of β̂k−1 ∈ {0, 1}. The implication is that the capacity C∗∆ in

Eq. (13) is achievable only with the CSI Sk available at the encoder, but without feedback β̂k−1,

as it is assumed in our model.

In this paper, we are interested in the analysis of the asymptotic regime ∆→ 0, thus extending

the capacity of static Poisson channels [12] to our dynamic setting. The asymptotic capacity,

defined as

C∗ , lim
∆→0

C∗∆, (18)

is characterized in Proposition 3.

Proposition 3 The asymptotic capacity C∗ is given by

C∗ = max
ν

Smax∑
s=0

πλ̄(s)Iν(s), (19)

where we have defined the asymptotic mutual information rate as

Iν(s), lim
∆→0

I(∆)
ν (s)=A(s)

∫ λmax

λmin

ν(λ|s)λ log2

(
λ

λ̄(s)

)
dλ, (20)

and the asymptotic steady-state distribution as

πλ̄(s) , lim
∆→0

π(∆)
ν (s) =

s−1∏
j=0

A(j)λ̄(j)

µ(j + 1)
πλ̄(0), (21)

where

πλ̄(0) , lim
∆→0

π(∆)
ν (0) =

1

1 +
∑Smax

t=1

∏t−1
j=0

A(j)λ̄(j)
µ(j+1)

, (22)

and we have defined the average desired input electron intensity

λ̄(s) ,
∫ λmax

λmin

ν(λ|s)λdλ. (23)

Proof: See Appendix B.
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Note that the steady-state distribution (21) is a function of λ̄ only. Since we are considering

infinitely small time-slot durations ∆ → 0, the input signal {λk} averages out over short time

intervals, hence only its expected value λ̄(s) affects state transitions, rather than its specific

distribution.

The capacity optimization problem in Eq. (19) highlights the following trade-off: the optimal

input signal should, on the one hand, achieve high instantaneous information rate Iν(Sk) (e.g., by

employing the myopic distribution ν(·|s) = arg max Iν(s), ∀s); on the other hand, it should be

designed in such a way as to favor the occurrence of states characterized by large instantaneous

information rate. These two goals are in tension. In fact, the instantaneous information rate

is maximum in states with large clogging state A(s) ' 1, i.e., when Sk is small and the

bacterial cable is deprived of electrons. Visits to these states are achieved more frequently by

choosing λk = λmin with probability one. However, under this deterministic input distribution

the instantaneous information rate is zero. The optimization problem in (19) can be interpreted

as a MDP, with state space S, action ν(·|s) in each state (each action is a probability distribution

over the input signal λk ∈ [λmin, λmax]), the reward r(ν(·|s), s) under action ν(·|s) in state s is

given by

r(ν(·|s), s) = A(s)

∫ λmax

λmin

ν(λ|s)λ log2

(
λ

λ̄(s)

)
dλ, (24)

and transition probability from state Sk = s0 to Sk+1 = s1 under action ν(·|s0) given by

P(Sk+1 = s1|Sk = s0, ν(·|s0)) =


1− δµ(s0)− δA(s0)λ̄(s0) s1 = s0,

δA(s0)λ̄(s0) s1 = s0 + 1,

δµ(s0) s1 = s0 − 1,

0 otherwise,

(25)

where λ̄(s) is defined in (23) and δ is any constant satisfying

δ <
1

µmax + λmax

, (26)

in order to guarantee a feasible transition probability matrix. In fact, by solving the steady-state

equations with transition probabilities in Eq. (25), we obtain the steady-state distribution πλ̄(s)

stated in the proposition. Note that the transition probabilities in Eq. (25) are equivalent to

E[p
(δ)
S (s1|s0, λ)] (see Eq. (8)), where the expectation is with respect to λ ∼ ν(λ|s0)), but without

the terms ga,b(δ, s0, λ), which are negligible in the asymptotic regime ∆→ 0.

February 28, 2022 DRAFT



14

Therefore, the optimal input distribution which maximizes the capacity in Eq. (19), denoted

by ν∗(·|s), can be determined by using standard MDP algorithms, such as policy iteration [13].

Note that, under any ν, the steady-state distribution of Sk is a function of the average desired

input electron intensity λ̄ only. Given λ̄, there exist an infinite set of distributions ν which induce

the same average desired input electron intensity λ̄ and the same steady-state distribution πλ̄.

Mathematically, this set is defined as

V(λ̄) ≡
{
ν :

∫ λmax

λmin

ν(λ|s)λdλ = λ̄(s), ∀s ∈ S
}
. (27)

Therefore, we have a degree of freedom in optimizing ν over such set V(λ̄), for every possible

choice of λ̄. Since all ν ∈ V(λ̄) induce the same steady-state distribution, this optimization

is equivalent to maximizing the instantaneous mutual information rate Iν(s) in each state.

Intuitively, Iν(s) is maximized by choosing input symbols λk which can be distinguished more

clearly at the receiver and are maximally different, i.e., λk ∈ {λmin, λmax}. This is formalized

in the following proposition, which proves the optimality of binary input distributions.

Proposition 4 The optimal input distribution has the form

ν∗(λmax|s)=P(λk = λmax|Sk = s)=
λ̄∗(s)− λmin

λmax − λmin

, (28)

ν∗(λmin|s)=P(λk = λmin|Sk = s)=
λmax − λ̄∗(s)
λmax − λmin

, (29)

where λ̄∗(s) is the optimal expected desired input electron intensity in state s, defined as the

maximizer of the capacity,

C∗ = max
λ̄:S7→[λmin,λmax]

Smax∑
s=0

πλ̄(s)I(λ̄(s), s), (30)

where I(x, s) is given by, for x ∈ [λmin, λmax],

I(x, s),A(s)

[
x log2

(
λmax

x

)
−ρ(λmax−x)

1−ρ
log2

(
1

ρ

)]
. (31)

Proof: See Appendix C.

A similar result has been proved in [12] for the case of a static Poisson channel. Therein,

the optimal input distribution is the myopic input distribution, studied in Section III-A, which

maximizes the instantaneous mutual information rate, i.e.,

λ̄MP , arg max
x∈[λmin,λmax]

I(x, s), ∀s ∈ S. (32)
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(Note from (31) that λ̄MP is independent of s; the dependence on s has thus been removed

accordingly). In fact, for a static Poisson channel, the tension between maximizing the instanta-

neous mutual information rate and inducing a favorable steady-state distribution does not arise.

Proposition 4 thus represents the extension of [12] to finite-state Markov channels.

From Proposition 4, it follows that the optimization can be restricted only to binary input

distributions, which allocate non-zero probability only to the minimum and maximum input

electron intensities, and zero probability to any intermediate values. Equivalently, only the

expected electron intensity λ̄(s) needs to be optimized in each state, as the maximizer of (30),

using optimization tools such as policy iteration [13].

Note that the myopic policy, defined in (32) and studied in Section III-A, maximizes the

instantaneous mutual information rate I(x, s). However, in doing so, the myopic policy neglects

the steady-state behavior of the cable, and may thus induce frequent visits to states characterized

by small clogging state A(Sk) ' 0, i.e., when Sk approaches Smax. On the other hand, the

optimal input distribution λ̄∗(s) balances this tension by giving up part of the instantaneous

transfer rate in favor of a better steady-state distribution in the future, i.e., states characterized

by large clogging state A(Sk) ' 1 where a larger instantaneous mutual information rate can be

achieved. Note that any input distribution λ̄(s) larger than the myopic one λ̄MP is deleterious to

the capacity for the following two reasons: 1) a lower instantaneous mutual information rate is

achieved, compared to λ̄MP (by definition of the myopic distribution, which maximizes I(x, s));

2) faster recharges of electrons within the cable are induced, resulting in frequent clogging of

the cable, where the instantaneous mutual information rate is small. This property is formalized

in the following theorem, which proves a structural property of λ̄∗(s), by comparing it with the

myopic distribution.

Theorem 1 The optimal signal distribution λ̄∗ is such that λ̄∗(s) ≤ λ̄MP ,∀s.

Proof: See Appendix D.

Theorem 1 can be exploited in the capacity optimization problem (30), by restricting the

optimization only to distributions such that λ̄(s) ∈ [λmin, λ̄MP ]. We now present the policy

iteration algorithm [13], which exploits this fact.

Algorithm 1 (Policy iteration algorithm) 1) Initialization: initial average desired electron
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intensity λ̄[0]; i = 0; ε > 0

2) Stage i, policy evaluation step: compute the achievable rate under policy λ̄[i],

C [i] =
Smax∑
s=0

πλ̄[i](s)I(λ̄[i](s), s), (33)

using (21) and (31). Let D[i](0) = 0, and recursively, for s ∈ {1, 2, . . . , Smax},

D[i](s) =
µ(s− 1)D[i](s− 1) + C [i] − I(λ̄[i](s− 1), s− 1)

A(s− 1)λ̄[i](s− 1)
. (34)

3) Stage i, policy improvement step: for each s ∈ S, determine a new policy λ̄[i+1] as follows:

λ̄[i+1](s) =


λ̄MP D[i](s+ 1) ≥ 0,

λmin D[i](s+ 1) ≤ log2(e) + 1
1−ρ log2(ρ),

λ̄MP2D
[i](s+1) otherwise.

(35)

4) Convergence test: if C [i+1] − C [i] < ε, return λ̄[i+1]; otherwise, let i := i + 1 and repeat

from step 2).

The following proposition states the optimality of Algorithm 1.

Proposition 5 Algorithm 1 determines the optimal policy λ̄∗ when ε→ 0.

Proof: The optimality of the policy iteration algorithm is proved in [13]. The specific forms

of the policy evaluation and improvement steps, which exploit the structure of our model, are

proved in Appendix E.

The algorithm can be initialized with the myopic policy, studied in Section III-A.

A. Myopic codebook generation

The myopic policy, defined in (32), is the expected desired input electron intensity which

maximizes the instantaneous mutual information rate. Since the mutual information rate I(x, s)

is a concave function of x, with I ′(λmin, s) > 0 and I ′(λmax, s) < 0, it is maximized by the

unique x ∈ (λmin, λmax) such that I ′(x, s) = 0. From (68), it is given by

λ̄MP =
λmax

e
ρ−

ρ
1−ρ , (36)

and is independent of s (the argument s has been removed accordingly). The resulting achievable

rate under this myopic input distribution, denoted by CMP , is given by

CMP = ĀMPλmax

[
1

e
ρ−

ρ
1−ρ log2(e) +

ρ

1− ρ
log2(ρ)

]
, (37)
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where ĀMP =
∑

s πMP (s)A(s) is the average clogging state and πMP (s) is the steady-state dis-

tribution under the myopic policy. Note that λ̄MP only maximizes the instantaneous information

rate, without taking into account its effect on the steady-state distribution, so that the resulting

average clogging state ĀMP , and the capacity CMP , may be small.

IV. NUMERICAL RESULTS

In this section, we present numerical results. We consider a cable with electron capacity

Smax = 1000. The clogging state A(s) and output rate µ(s) are given by2

A(s) = χ(s < Smax)

[
1− (1− Amin)

s

Smax

]
, (38)

µ(s) = 0.6 + 0.8
s

Smax

, (39)

where Amin is the minimum clogging state value, taking values in the range [0, 1]. Note that A(s)

is peculiar to the bacterial cable, since it captures saturation effects occurring locally within each

cell, and causing the overall cable to clog.

In Fig. 2, we evaluate the achievable information rate under the optimal input distribution

(OPT), computed with the policy iteration algorithm [13], and the myopic input distribution

(MP). We plot the achievable information rate as a function of Amin ∈ [0, 1]. We note that

the achievable information rate increases with Amin for both schemes. This is because, as Amin

increases, both A(s) and the instantaneous information rate I(x, s) increase as well (see Eqs.

(38) and (31)). Intuitively, the larger A(s), the better the ability of the bacterial cable to transport

electrons.

OPT outperforms MP by ∼ 9% for small values of Amin. This can be explained with the help

of Fig. 3, for the case Amin=0. In this case, clogging is severe when the cable state approaches

the maximum value Smax. For instance, if Sk > Smax/2, then A(Sk) < 0.5 and the rate of

electrons entering the cable is less than halved, resulting in low instantaneous information rate.

Therefore, in order to achieve high instantaneous information rate, the state of the cable Sk

should be kept small, e.g., below Smax/2. MP greedily maximizes the instantaneous information

rate, but this action results in an unfavorable steady-state distribution, such that the cable is often

2The specific choices of A(s) and µ(s) have been discussed with Prof. M. Y. El-Naggar and S. Pirbadian, Department of

Physics and Astronomy, University of Southern California, Los Angeles, USA.
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Figure 2. Achievable information rate as a function of the minimum clogging state value, Amin, for the MP and OPT input

distributions.

in large queue states Sk > Smax/2, where the clogging is significant (A(Sk) < 0.5) and most

electrons are discarded at the cable input. On the other hand, OPT gives up some instantaneous

information rate in order to favor the occupancy of low queue states, where A(s) approaches

one and the transfer of information is maximum. Note that MP does not require CSI at the

encoder, as seen in (36). Therefore, Fig. 3 demonstrates the importance of CSI, which enables

the adaptation of the input signal based on the state of the cable. Finally, note that OPT and MP

approach the same value of the average information rate when Amin→1. In fact, in this case the

instantaneous information rate I(x, s) is the same in all states, except Smax, where A(Smax)=0

and I(x, Smax)=0. However, state Smax is visited very infrequently, resulting in a negligible

degradation of MP with respect to OPT.
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Figure 3. Cumulative steady-state distribution (SSD) and instantaneous information rate for the MP and OPT input distributions;

Amin = 0.

V. CONCLUSIONS

In this paper, we have studied the capacity of bacterial cables via electron transfer, for

the case where both the encoder and the decoder have full causal CSI. We have studied a

discrete-time version of the system, which enables the computation of an achievable rate for the

continuous-time system, based on known results on the capacity of finite-state Markov channels.

We have analyzed the regime of asymptotically small time-slot duration, based on which we

have established the optimality of binary Markov input distributions, which are functions of the

current state only. We have shown that the optimal distribution optimally balances the tension

between optimizing the instantaneous mutual information rate, and inducing a favorable steady-

state distribution, e.g., to states characterized by large clogging state, and we have proved that

it is smaller than that given by the myopic policy, which greedily maximizes the instantaneous

information rate neglecting its effect on the steady-state distribution of the cable. We have

shown that the optimal probability that generates the binary intensity signal as a function of the
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current cable state can be determined efficiently via the policy iteration algorithm. Our numerical

evaluations reveal the importance of CSI, which enables adaptation of the input signal to the

state of the cell, and thus motivates further research on the design of more practical schemes,

where CSI is only partially available, and of state estimation techniques.

This work represents a first contribution towards the design of electron signaling schemes

in complex microbial structures, e.g., bacterial cables and biofilms, where the tension between

maximizing the transfer of information and guaranteeing the well-being of the overall community

arises, and thus motivates further research in the design of signaling schemes in large-scale

microbial systems and bio-films, e.g, using methods based on statistical physics [14].
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APPENDIX A: PROOF OF PROPOSITION 2

Let ν be a stationary Markov input distribution with feedback, which maps the current state

(Sk, β̂k−1) = (s, b) to a probability distribution over the input signal, ν(λ|s, b), but is independent

of the past [11]. From Proposition 1, the state sequence {(Sk, β̂k−1), k ≥ 0} is a strongly

irreducible and aperiodic Markov chain, controlled by ν. Given (Sk−1, β̂k−2) = (s′, b′), which

occurs with steady-state probability π
(∆)
ν (s′, b′), the system moves to state (Sk, β̂k−1) = (s, b)

with probability
∫ λmax

λmin
ν(λ|s′, b′)p(∆)

S,B̂
(s, b|s′,λ)dλ, independent of the past. Therefore, the steady-

state distribution of (Sk, β̂k−1) induced by the stationary Markov input distribution ν is the unique

solution of the system of steady-state equations

π(∆)
ν (s, b) =

∑
s′,b′

π(∆)
ν (s′,b′)

∫ λmax

λmin

ν(λ|s′, b′)p(∆)

S,B̂
(s, b|s′,λ)dλ,∀s, b. (40)

We now define a new stationary input distribution without feedback, denoted by ν̃. Let, for

each s ∈ S,

ν̃(λ|s) =

∑
b π

(∆)
ν (s, b)ν(λ|s, b)
π

(∆)
ν (s)

, ∀λ, (41)
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where π(∆)
ν (s) = π

(∆)
ν (s, 0) + π

(∆)
ν (s, 1). The steady-state distribution of (Sk, β̂k−1) induced by

ν̃ is the unique solution of the system of equations

π
(∆)
ν̃ (s, b)=

∑
s′,b′

π
(∆)
ν̃ (s′, b′)

∫ λmax

λmin

ν̃(λ|s′)p(∆)

S,B̂
(s, b|s′, λ)dλ. (42)

We now show that π(∆)
ν (s, b) solves (42), hence π(∆)

ν̃ (s, b) = π
(∆)
ν (s, b), ∀s, b, i.e., we prove that

π(∆)
ν (s, b)=

∑
s′,b′

π(∆)
ν (s′, b′)

∫ λmax

λmin

ν̃(λ|s′)p(∆)

S,B̂
(s, b|s′, λ)dλ. (43)

In fact, substituting (41) into (43), we obtain

π(∆)
ν (s, b) =

∑
s′,b′

π(∆)
ν (s′, b′)

∫ λmax

λmin

∑
y πν(s

′, y)ν(λ|s′, y)∑
y πν(s

′, y)
p

(∆)

S,B̂
(s, b|s′, λ)dλ

=
∑
s′,y

π(∆)
ν (s′, y)

∫ λmax

λmin

ν(λ|s′, y)p
(∆)

S,B̂
(s, b|s′, λ)dλ, (44)

and this holds true from (40). Therefore, the two policies ν and ν̃ achieve the same steady-state

distribution π(∆)
ν (s, b) = π

(∆)
ν̃ (s, b), ∀s, b.

The mutual information rate I(∆)
ν (s, b) is given by

I(∆)
ν (s, b) =

∑
s′,b′

Z(∆)(ν(·|s, b), s, s′, b′), (45)

where from (14) we have defined

Z(∆)(x, s, s′, b′) = − 1

∆

∫ λmax

λmin

x(λ)p
(∆)

S,B̂
(s′, b′|s, λ) log2

∫ λmax

λmin
x(λ′)p

(∆)

S,B̂
(s′, b′|s, λ′)dλ′

p
(∆)

S,B̂
(s′, b′|s, λ)

 dλ.

(46)

It can be shown that Z(∆)(x, s, s′, b′) is a strictly concave function of the input distribution x.

Therefore, using (45) we obtain∑
b∈{0,1}

π(∆)
ν (s, b)I(∆)

ν (s, b) = π(∆)
ν (s)

∑
s′,b′

∑
b∈{0,1}

π
(∆)
ν (s, b)

π
(∆)
ν (s)

Z(∆)(ν(·|s, b), s, s′, b′)

≤ π(∆)
ν (s)

∑
s′,b′

Z(∆)

 ∑
b∈{0,1}

π
(∆)
ν (s, b)

π
(∆)
ν (s)

ν(·|s, b), s, s′, b′


= π
(∆)
ν̃ (s)

∑
s′,b′

Z(∆)(ν̃(·|s), s, s′, b′) = π
(∆)
ν̃ (s)I

(∆)
ν̃ (s),
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with equality if and only if ν(·|s, b) = ν̃(·|s),∀b ∈ {0, 1}, where I(∆)
ν̃ (s) is given by (17). In the

last step, we have used the definition of ν̃ in (41) and the fact that π(∆)
ν (s) = π

(∆)
ν̃ (s). Finally,

we obtain
Smax∑
s=0

∑
b∈{0,1}

πν(s, b)Iν(s, b) =
Smax∑
s=0

∑
b∈{0,1}

πν̃(s, b)Iν(s, b) ≤
Smax∑
s=0

πν̃(s)Iν̃(s), (47)

with equality if and only if ν̃(λ|s) = ν(λ|s, b),∀λ, s, b, so that the input distribution ν̃ achieves

a larger average information rate than the original input distribution ν. The proposition is thus

proved.

APPENDIX B: PROOF OF PROPOSITION 3

The mutual information rate I(∆)
ν (s) is defined in (17) and is given by

I(∆)
ν (s) =

∑
s′,b′

Z(∆)(ν(·|s), s, s′, b′), (48)

where Z(∆)(ν(·|s), s, s′, b′) is defined in (46). In particular, for (s′, b′) /∈ {(s, 0), (s+ 1, 0), (s−

1, 1)}, from (5) when ∆→ 0, we have that

lim
∆→0

Z(∆)(ν(·|s), s, s′, b′) = 0, (49)

since, in this case, p(∆)

S,B̂
(s′, b′|s, λ) ∼ o(∆2). Therefore, it follows that

lim
∆→0

I(∆)
ν (s) = lim

∆→0

[
Z(∆)(ν(·|s), s, s, 0)

+Z(∆)(ν(·|s), s, s+ 1, 0) + Z(∆)(ν(·|s), s, s− 1, 1)
]
. (50)

By neglecting the probability terms of order o(∆2) in (8)-(11), from (46) we thus obtain

Z(∆)(ν(·|s), s, s, 0)'−
∫ λmax

λmin

x(λ)

(
1

∆
−µ(s)−A(s)λ

)
log2

(
1/∆− µ(s)− A(s)λ̄(s)

1/∆− µ(s)− A(s)λ

)
dλ,

→ − log2(e)

∫ λmax

λmin

x(λ)A(s)(λ− λ̄(s))dλ = 0, (51)

Z(∆)(x, s, s+ 1, 0)=

∫ λmax

λmin

x(λ)A(s)λ log2

(
λ

λ̄(s)

)
dλ,

Z(∆)(ν(·|s), s, s− 1, 1) ' 0, (52)

where, in (51), we have applied L’Hopital’s rule to compute the limit. Finally, using (48), we

obtain lim∆→0 I
(∆)
ν (s) = Iν(s) as given by (20).
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We now compute the asymptotic steady-state distribution. The steady-state distribution π
(∆)
ν

is the unique solution of the balance equations, for s ∈ {1, 2, . . . , Smax},
s−1∑
s′=0

π(∆)
ν (s′)

Smax∑
s′′=s

∫ λmax

λmin

ν(λ|s′)p(∆)
S (s′′|s′, λ)dλ

=
Smax∑
s′=s

π(∆)
ν (s′)

s−1∑
s′′=0

∫ λmax

λmin

ν(λ|s′)p(∆)
S (s′′|s′, λ)dλ. (53)

By reordering the terms, we can rewrite

π(∆)
ν (s− 1)

∫ λmax

λmin

ν(λ|s− 1)p
(∆)
S (s|s− 1, λ)dλ− π(∆)

ν (s)

∫ λmax

λmin

ν(λ|s)p(∆)
S (s− 1|s, λ)dλ (54)

= π(∆)
ν (s)

s−2∑
s′′=0

∫ λmax

λmin

ν(λ|s)p(∆)
S (s′′|s, λ)dλ− π(∆)

ν (s− 1)
Smax∑
s′′=s+1

∫ λmax

λmin

ν(λ|s′)p(∆)
S (s′′|s′, λ)dλ

+
Smax∑
s′=s+1

π(∆)
ν (s′)

s−1∑
s′′=0

∫ λmax

λmin

ν(λ|s′)p(∆)
S (s′′|s′, λ)dλ−

s−2∑
s′=0

π(∆)
ν (s′)

Smax∑
s′′=s

∫ λmax

λmin

ν(λ|s′)p(∆)
S (s′′|s′, λ)dλ.

Using (8)-(11) and the fact that the terms ga,b(∆, s, λ) are of the order of o(∆max{a+b,2}), it can

be shown that the right hand-side of (54) contains terms of the order of o(∆2). Therefore, using

(8)-(10) to express the left-hand side and including the terms o(∆2) in the right-hand side, (54)

becomes

π(∆)
ν (s− 1)

∫ λmax

λmin

ν(λ|s− 1)∆A(s− 1)λdλ− π(∆)
ν (s)∆µ(s) = o(∆2), (55)

or equivalently, by dividing each side by ∆,

π(∆)
ν (s− 1)A(s− 1)λ̄(s− 1)− π(∆)

ν (s)µ(s) = o(∆). (56)

Therefore, letting ∆→ 0, we obtain

πλ̄(s) =
A(s− 1)λ̄(s− 1)

µ(s)
πλ̄(s− 1). (57)

The steady-state distribution (21) is obtained by solving recursively, thus proving the proposition.

APPENDIX C: PROOF OF PROPOSITION 4

Using (27), the capacity C∗ can be decoupled as

C∗ = max
λ̄

max
ν∈V(λ̄)

Smax∑
s=0

πλ̄(s)Iν(s), (58)
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where the inner optimization is over the set of distribution with a predefined average desired

input electron intensity profile λ̄, and the outer optimization maximizes over such λ̄.

We now solve the inner optimization problem

max
ν∈V(λ̄)

Smax∑
s=0

πλ̄(s)Iν(s). (59)

Since Iν(s) is only a function of ν(·|s) and is independent of ν(·|s′), ∀s′ 6= s, and the steady-state

distribution πλ̄ is the same for all ν ∈ V(λ̄), we obtain

max
ν∈V(λ̄)

Smax∑
s=0

πλ̄(s)Iν(s) =
Smax∑
s=0

πλ̄(s)I(λ̄(s), s), (60)

where we have defined

I(λ̄(s), s) = max
ν(·|s)

Iν(s), s.t.
∫ λmax

λmin

ν(λ|s)λdλ = λ̄(s). (61)

Equivalently, using (20),

I(λ̄(s), s) = max
x

A(s)

∫ λmax

λmin

x(λ)λ log2

(
λ

λ̄(s)

)
dλ,

s.t.
∫ λmax

λmin

x(λ)λdλ = λ̄(s),

∫ λmax

λmin

x(λ)dλ = 1. (62)

Letting

z(y) , y log2

(
y

λ̄(s)

)
, (63)

the optimization problem (62) is equivalent to

I∗ν (s) = max
x

A(s)

∫ λmax

λmin

x(λ)z(λ)dλ

s.t.
∫ λmax

λmin

x(λ)λdλ = λ̄(s),

∫ λmax

λmin

x(λ)dλ = 1. (64)

Note that z(y) is a convex function of y. Therefore, we have that∫ λmax

λmin

x(λ)z(λ)dλ≤λmax−λ̄(s)

λmax−λmin

z(λmin)+
λ̄(s)−λmin

λmax−λmin

z(λmax).

Therefore, the maximum in (62) is attained by a distribution ν∗ which selects λk ∈ {λmin, λmax}

with probabilities given by (28), so as to attain the constraint E[λk|Sk = s] = λ̄(s), ∀s. Under

the optimal distribution, the expression of I(x, s) can be shown to be as in (31). The proposition

is thus proved.
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APPENDIX D: PROOF OF THEOREM 1

We prove the theorem by analyzing structural properties of the n-step cost-to-go function [13]

from state s, denoted by Vn(s). Using (25) and the structural properties of Proposition 4, which

restricts the input signal to binary values λk ∈ {λmin, λmax}, Vn(s) solves recursively

Vn(s) = max
x∈[λmin,λmax]

{I(x, s) + δA(s)xVn−1(s+ 1) + δµ(s)Vn−1(s− 1)

+(1− δA(s)x− δµ(s))Vn−1(s)} , (65)

where V0(s) = 0, ∀s. The maximizer of (65) is the optimal average desired input electron

intensity in step n, denoted by λ̄n(s), yielding

Vn(s) =Vn−1(s) + I(λ̄n(s), s)− δA(s)λ̄n(s)[Vn−1(s)− Vn−1(s+ 1)]

+ δµ(s)[Vn−1(s− 1)− Vn−1(s)]. (66)

We prove that

λmin ≤ λ̄n(s) ≤ λ̄MP , ∀s, ∀n. (67)

Then, since λ̄n(s) converges to the optimal policy as n → ∞, i.e., λ̄n(s) → λ̄∗(s) for n → ∞

[13], it follows that the condition (67) implies λmin ≤ λ̄∗(s) ≤ λ̄MP by taking the limit n→∞,

thus proving the theorem.

It can be shown that I(x, s), given by (31), is a strictly concave function of x, with first

derivative

I ′(x, s) ,
dI(x, s)

dx
= A(s)

[
log2

(
λmax

ex

)
+

ρ

1− ρ
log2

(
1

ρ

)]
. (68)

Therefore, given Vn−1, the objective function in (65) is a concave function of x. Its derivative

with respect to x is given by

f(x) , I ′(x, s)− δA(s)[Vn−1(s)− Vn−1(s+ 1)], (69)

We have the following cases:

1) If f(λmax) > 0, or equivalently, by using (68) and (36), 2−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP > λmax,

then λ̄n(s) = λmax. It follows that the condition λ̄n(s) ≤ λ̄MP is violated. Note that, for this

case to occur, Vn−1(s+ 1)− Vn−1(s) > 0 must necessarily hold.
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2) If f(λmin) > 0, or equivalently 2δ[Vn−1(s+1)−Vn−1(s)]λ̄MP < λmin, then λ̄n(s) = λmin. It follows

that the condition λ̄n(s) ≤ λ̄MP is satisfied. Using (36), this case is equivalent to

Vn−1(s)− Vn−1(s+ 1) >

1
1−ρ ln

(
1
ρ

)
− 1

δ
log2(e) , γ. (70)

3) Otherwise, λ̄n(s) is the unique solution of f(x) = 0. Using (68), we thus obtain

λ̄n(s) = 2−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP . (71)

In this case, the condition λ̄n(s) ≤ λ̄MP is satisfied if and only if Vn−1(s+ 1)− Vn−1(s) ≤ 0.

By combining cases 1, 2 and 3, we obtain that the condition stated in (67) is equivalent to

Vn−1(s)− Vn−1(s+ 1) ≥ 0. (72)

We prove (72) by induction on n, thus implying (67). Trivially, (72) holds for n = 1, since

V0(s) = 0,∀s. Now, let n ≥ 1 and assume that the condition (72) holds under such n. We show

that (72) implies

Vn(s)− Vn(s+ 1) ≥ 0, (73)

proving the induction step. Since case 1 cannot hold under the induction hypothesis, by combining

cases 2 and 3, λ̄n(s) can be expressed as

λ̄n(s) = max
{
λmin, 2

−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP

}
. (74)

Therefore, by reordering the terms and using (66), we obtain

Vn(s)− Vn(s+ 1) = I(λ̄n(s), s)− I(λ̄n(s+ 1), s+ 1)

+ (Vn−1(s)− Vn−1(s+ 1))(1− δµ(s+ 1)− δA(s)λ̄n(s))

+ δµ(s)(Vn−1(s− 1)− Vn−1(s)) + δA(s+ 1)λ̄n(s+ 1)(Vn−1(s+ 1)− Vn−1(s+ 2))

, g(Vn−1(s− 1), Vn−1(s), Vn−1(s+ 1), Vn−1(s+ 2)). (75)

Therefore, the induction step Vn(s)−Vn(s+1) ≥ 0 is equivalent to g(Vn−1(s−1), Vn−1(s), Vn−1(s+

1), Vn−1(s + 2)) ≥ 0. Note that g(Vn−1(s − 1), Vn−1(s), Vn−1(s + 1), Vn−1(s + 2)) is a non-
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decreasing function of Vn−1(s− 1). Since Vn−1(s− 1) ≥ Vn−1(s) from (72), we thus obtain

Vn(s)− Vn(s+ 1) = g(Vn−1(s− 1), Vn−1(s), Vn−1(s+ 1), Vn−1(s+ 2))

≥ g(Vn−1(s), Vn−1(s), Vn−1(s+ 1), Vn−1(s+ 2)) = I(λ̄n(s), s)− I(λ̄n(s+ 1), s+ 1)

+ (Vn−1(s)− Vn−1(s+ 1))(1− δµ(s+ 1)− δA(s)λ̄n(s))

+ δA(s+ 1)λ̄n(s+ 1)(Vn−1(s+ 1)− Vn−1(s+ 2)). (76)

We now minimize g(Vn−1(s), Vn−1(s), Vn−1(s + 1), Vn−1(s + 2)) with respect to Vn−1(s), and

use the induction hypothesis Vn−1(s) ≥ Vn−1(s + 1). We distinguish the two cases Vn−1(s) −

Vn−1(s+ 1) > γ and γ ≥ Vn−1(s)− Vn−1(s+ 1) ≥ 0 below.

a) Case Vn−1(s)− Vn−1(s+ 1) > γ: In this case, (74) yields λ̄n(s) = λmin, and therefore,

substituting in (76),

g(Vn−1(s), Vn−1(s), Vn−1(s+ 1), Vn−1(s+ 2))

= (Vn−1(s)− Vn−1(s+ 1))(1− δµ(s+ 1)− δA(s)λmin)− I(λ̄n(s+ 1), s+ 1)

+ δA(s+ 1)λ̄n(s+ 1)(Vn−1(s+ 1)− Vn−1(s+ 2)). (77)

The derivative of g(Vn−1(s), Vn−1(s), Vn−1(s+1), Vn−1(s+2)) with respect to Vn−1(s) is given by

dg(v, v, Vn−1(s+ 1), Vn−1(s+ 2))

dv

∣∣∣∣
v=Vn−1(s)

= 1− δµ(s+ 1)− δA(s)λmin ≥ 0, (78)

where we have used (26).

b) Case γ ≥ Vn−1(s)−Vn−1(s+1) ≥ 0: In this case, (74) yields λ̄n(s) = 2−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP .

Substituting this expression in (76), we obtain

dg(v, v, Vn−1(s+ 1), Vn−1(s+ 2))

dv

∣∣∣∣
v=Vn−1(s)

= 1− δµ(s+ 1)− δA(s)λ̄n(s)

+ δ2A(s)2−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP ln 2(Vn−1(s)− Vn−1(s+ 1))2

− I ′(λ̄n(s), s)2−δ[Vn−1(s)−Vn−1(s+1)]λ̄MP ln 2δ[Vn−1(s)− Vn−1(s+ 1)]. (79)

Now, from (68) and (36), we have that

I ′(λ̄n(s), s) = A(s)δ[Vn−1(s)− Vn−1(s+ 1)], (80)

and therefore

dg(v, v, Vn−1(s+ 1), Vn−1(s+ 2))

dv

∣∣∣∣
v=Vn−1(s)

= 1− δµ(s+ 1)− δA(s)λ̄n(s) ≥ 0. (81)
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In both cases Vn−1(s)− Vn−1(s + 1) > γ and γ ≥ Vn−1(s)− Vn−1(s + 1) ≥ 0, we have that

g(Vn−1(s), Vn−1(s), Vn−1(s+1), Vn−1(s+2)) is a non-decreasing function of Vn−1(s), minimized

by Vn−1(s) = Vn−1(s+ 1), yielding λ̄n(s) = λ̄MP . From (76), we thus obtain

Vn(s)− Vn(s+ 1) = g(Vn−1(s− 1), Vn−1(s), Vn−1(s+ 1), Vn−1(s+ 2))

≥ g(Vn−1(s+ 1), Vn−1(s+ 1), Vn−1(s+ 1), Vn−1(s+ 2))

= I(λ̄MP , s)− I(λ̄n(s+ 1), s+ 1) + δA(s+ 1)λ̄n(s+ 1)(Vn−1(s+ 1)− Vn−1(s+ 2))

≥ I(λ̄MP , s)− I(λ̄n(s+ 1), s+ 1), (82)

where in the last inequality we have used the induction hypothesis Vn−1(s+1)−Vn−1(s+2) ≥ 0.

Finally, using (31) and the fact that A(0) = 1 from Assumption 1, we obtain

I(λ̄MP , s)− I(λ̄n(s+ 1), s+ 1) = A(s)I(λ̄MP , 0)− A(s+ 1)I(λ̄n(s+ 1), 0)

= (A(s)− A(s+ 1))I(λ̄MP , 0) + A(s+ 1)
[
I(λ̄MP , 0)− I(λ̄n(s+ 1), 0)

]
≥ 0, (83)

where we have used the definition of λ̄MP in (32) and the fact that A(s) ≥ A(s + 1) from

Assumption 1. Therefore, Vn(s)− Vn(s+ 1) ≥ 0, proving the induction step and the theorem.

APPENDIX E: PROOF OF PROPOSITION 5

In the policy evaluation step [13], given the policy λ̄[i] at the beginning of the ith stage of the

algorithm, we evaluate the value function v[i](s) over the states s ∈ S. Let C [i] be the achievable

rate under policy λ̄[i]. The value function under λ̄[i] is the solution of [13]

v[i](s)−
∑
s1∈S

P(Sk+1=s1|Sk=s, λ̄[i](s))v[i](s1)=I(λ̄[i](s), s)− C [i], ∀s ∈ S (84)

with v[i](0) = 0. Equivalently, using (25), we obtain

v[i](0) = 0,

v[i](s)− δµ(s)v[i](s− 1)− δA(s)λ̄[i](s)v[i](s+ 1) (85)

− [1− δµ(s)− δA(s)λ̄[i](s)]v[i](s) = I(λ̄[i](s), s)− C [i], ∀s ∈ S,

Let D[i](0) = 0 and D[i](s) = δ[v[i](s) − v[i](s − 1)], ∀s > 0. Then, the recursive expression

(34) directly follows by rewriting (86) in terms of D[i].
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In the policy improvement step, an improved policy λ̄[i+1](s) is determined as

λ̄[i+1](s) = arg max
x∈[λmin,λ̄MP ]

I(x, s)+
∑
s1∈S

P(Sk+1=s1|Sk=s, λ̄[i](s))v[i](s1), (86)

where we have used Theorem 1 to restrict the optimization over [λmin, λ̄MP ], and, using (25),

λ̄[i+1](s)= arg max
x∈[λmin,λ̄MP ]

I(x, s) + δµ(s)v[i](s− 1) + δA(s)xv[i](s+ 1) + [1−δµ(s)−δA(s)x]v[i](s)

= arg max
x∈[λmin,λ̄MP ]

I(x, s) + A(s)xD[i](s+ 1). (87)

Since the objective function in (87) is concave in x, we have the following cases, yielding (35):

1) I ′(λ̄MP , s) + A(s)D[i](s+ 1) ≥ 0, where I ′(x, s) is given by (68), or equivalently, using the

expression of λ̄MP in (36), D[i](s + 1) ≥ 0. In this case, the objective function in (87) is an

increasing function of x, hence the optimal is λ̄[i+1](s) = λ̄MP .

2) I ′(λmin, s)+A(s)D[i](s+1) ≤ 0, or equivalently D[i](s+1)≤ log2(e)+ log2(ρ) 1
1−ρ . In this case,

the objective function in (87) is a decreasing function of x, hence the optimal is λ̄[i+1](s) = λmin.

3) Otherwise, the optimal λ̄[i+1](s) is the unique x ∈ [λmin, λ̄MP ] such that I ′(x, s)+A(s)D[i](s+

1) = 0. Using the expression of I ′(x, s) (68) and of λ̄MP in (36), we obtain

λ̄[i+1](s) =
λmax

e
ρ−

ρ
1−ρ2D

[i](s+1) = λ̄MP2D
[i](s+1). (88)

The specific form of the policy iteration Algorithm 1 is thus proved.
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