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Abstract

Molecular communication is a new field of communication where molecules are used to transfer

information. Among the proposed methods, molecular communication via diffusion (MCvD) is particu-

larly effective. One of the main challenges in MCvD is the intersymbol interference (ISI), which inhibits

communication at high data rates. Furthermore, at the nano scale, energy efficiency becomes an essential

problem. Before addressing these problems, a pre-determined threshold for the received signal must

be calculated to make a decision. In this paper, an analytical technique is proposed to determine the

optimum threshold, whereas in the literature, these thresholds are generally calculated empirically. Since

the main goal of this paper is to build an MCvD system suitable for operating at high data rates without

sacrificing quality, new modulation and filtering techniques are proposed to decrease the effects of ISI and

enhance energy efficiency. As a transmitter-based solution, a modulation technique for MCvD, molecular

transition shift keying (MTSK), is proposed in order to increase the data rate via suppressing the ISI.

Furthermore, for energy efficiency, a power adjustment technique that utilizes the residual molecules is

proposed. Finally, as a receiver-based solution, a new energy efficient decision feedback filter (DFF) is

proposed as a substitute for the decoders such as minimum mean squared error (MMSE) and decision

feedback equalizer (DFE). The error performance of DFF and MMSE equalizers are compared in terms

of bit error rates, and it is concluded that DFF may be more advantageous when energy efficiency is

concerned, due to its lower computational complexity.
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Index Terms

Communication via diffusion; molecular communication; nanonetworks; intersymbol interference;

energy efficiency; modulation techniques; decision threshold.

I. INTRODUCTION

Nanotechnology enables the miniaturization and fabrication of devices in a scale ranging from 1 to

100 nanometers. At this scale, a nano-machine or a nano-enabled node (NeN) can be considered as the

most basic functional unit [1]. NeNs are tiny components consisting of an arranged set of molecules,

which are able to perform very simple computation, sensing, and/or actuation tasks [2]. They can be

interconnected to form a nanonetwork, in which they can coordinate, share, and fuse information. At such

small dimensions, electromagnetic communication is challenging because of physical implementation

constraints, such as the ratio of the antenna size to the wavelength of the electromagnetic signal [3].

Molecular communication is a new field of communication suitable for nanonetworks, where instead of

electric currents or electromagnetic waves, patterns of molecules are used to transfer information from a

source (transmitter) to a destination (receiver) [4]. In the literature, various molecular communication

systems, such as molecular communication via diffusion (MCvD), calcium signaling, microtubules,

pheromone signaling, and bacterium-based communication are proposed [5], [6]. Among these systems,

MCvD is a particularly effective and energy efficient method for transporting information [7], [8].

An MCvD system is composed of five main processes: encoding, emission (transmission), propagation,

absorption (reception), and decoding. [9]. In the encoding stage, the transmitter encodes the information

onto a physical property (e.g., number, type, etc.) of the messenger molecules. These molecules propagate

through the environment following the physical characteristics of the channel, and when some of these

molecules arrive at the receiver (i.e., hit the receiver), they are sensed and absorbed by the receptors on

the surface of the receiver. The properties of these received molecules constitute the received signal [10],

and the received signal is decoded according to the encoding technique. Communicating NeN pairs are

assumed to be synchronized and the overall communication time is divided into time slots of equal

duration that allow a single symbol to be sent. These time slots are called symbol durations and denoted

by ts.

Due to the nature of diffusion, some of the messenger molecules may fail at arriving at the receiver in

their intended time slots and interfere with the messenger molecules of subsequent transmissions, causing

inter symbol interference (ISI). One of the most popular solutions to reduce the amount of ISI at the

receiver is to keep the symbol duration as long as possible and, thus, allow the messenger molecules a
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longer time to reach their destinations. This effectively reduces the number of residual molecules left in the

channel. On the other hand, increasing the symbol duration also decreases the data rate, which is already

slow enough due to the nature of the diffusion. Additionally, another major constraint on communication

at nano scale is the energy efficiency due to the extremely small size of the nano scaled devices [11].

Therefore, a trade off is observed between the data rate, energy efficiency, and communication quality.

The main goal of this paper is to propose new techniques applicable at both transmitter and receiver sides,

which will improve the overall communication quality to achieve arbitrarily low error rates at shorter

symbol durations, hence increasing the data rate.

One of the open problems in molecular communication is the lack of diversity in modulation techniques

suitable for operating at high data rates efficiently. In the literature, concentration shift keying (CSK) and

molecule shift keying (MoSK) are the most commonly used modulation techniques for nanonetworks

where communication is realized via diffusion [12]. In binary CSK (BCSK), number of the received

messenger molecules is used as the amplitude of the signal. The receiver decodes the intended symbol as

a bit-1 if the number of messenger molecules arriving at the receiver during a symbol duration exceeds

a pre-determined threshold, and as a bit-0, otherwise. The binary MoSK (BMoSK), on the other hand,

utilizes the emission of two different types of messenger molecules, where the transmitter releases the

appropriate type of molecule based on the current symbol. The receiver then decodes the intended symbol

based on the type and number of the molecules received during a time slot [12]. None of these modulation

techniques aim to mitigate the effects of ISI directly, hence they require large signal powers to operate

at low error rates, and are insufficient in terms of energy efficiency.

Two different approaches can be considered for dealing with the energy efficiency problem in a

communication system. The first approach is to reduce the signal power as much as possible. In this

paper, we propose a new modulation technique, molecular transition shift keying (MTSK), which is

an energy efficient modulation technique designed to reduce the effects of ISI for a single-transmitter

single-receiver communication system. To enhance the energy efficiency, a power adjustment technique

that utilizes the residual molecules in the channel is also proposed.

Power consumption can also be decreased by reducing the power expended by a NeN during the encod-

ing/decoding processes, which requires the design of filters or equalizers with minimum computational

complexity possible. In this paper, we propose a decision feedback filter for the decoding process, which

has a lower computational complexity compared to a minimum mean squared error or decision feedback

equalizer. Analyzing the transmitter and receiver based ISI mitigation techniques including encoding and

filtering techniques in a comprehensive manner can also be considered as one of the main contributions
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Fig. 1: MCvD system model including a point source and a spherical receiver.

of this paper.

Another open problem in the literature is the thresholding problem. Notice that BCSK, BMoSK, and

MTSK require a pre-determined threshold at the receiver to make a decision for the received signal. In the

literature, these threshold values are calculated empirically, which involves calculating the bit error rate

for various detection threshold values and choosing the threshold that minimizes the error rate [7], [12].

This means that a long sequence of pilot symbols must be used before the information transmission in

order to obtain a comprehensive understanding of the system behavior. Furthermore, even if one of the

system parameters, such as temperature, diffusion coefficient, transmitter - receiver distance, etc., changes

slightly, this empirical calculation must be repeated. In this paper, an analytical technique is proposed to

determine the optimum threshold value prior to information transmission, which is also one of the main

contributions of this paper.

The remainder of this paper is organized as follows: Section II reviews the characteristics of the

diffusion process, modulation techniques in the literature, and the ISI problem. The proposed analytical

technique to determine the optimum threshold value for a nano communication system is presented

in Section III. Section IV introduces the transmitter based ISI mitigation techniques, which include the

proposed modulation technique, MTSK, and the power adjustment method applied to different modulation

techniques. Receiver based ISI mitigation techniques that include the proposed DFF and the MMSE

equalizer are given in Section V. Section VI concludes the paper.

II. MOLECULAR COMMUNICATION VIA DIFFUSION AND ISI

The communication model used in this paper is depicted in Figure 1. Messenger molecules are used

as information carriers between a point source and a spherical receiver with absorbing receptors. The

point source is located at a distance r0 from the center of the receiver. The point source and the spherical
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receiver both reside in a fluid propagation medium, which is a 3-dimensional (3-D) environment. After

the information is modulated onto some physical property of the messenger molecules, these molecules

are released to the medium, where they diffuse according to Brownian motion and arrive at the receiver.

To receive the molecules (i.e., the signal), the spherical receiver with radius rr, uses receptors placed on

its surface.

The messenger molecules are the information particles for an MCvD system. At this scale, random

movement/diffusion of particles through the fluid is modeled by Brownian motion. The motion is governed

by the combined forces applied to a messenger molecule by the molecules of the fluid due to thermal

energy. Brownian motion is described by the Wiener process, which is a continuous-time stochastic

process. The Wiener process Wt is characterized by four properties:

• W0 = 0,

• Wt is almost surely continuous,

• Wt has independent increments,

• Wt −Ws ∼ N (0, t− s) for 0 ≤ s ≤ t.
Here, N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. For simulating the

Brownian motion in an n-dimensional space, time is divided into very small steps, and at each time step,

random movement is applied to each dimension as

~rt+∆t = ~rt + ∆~r. (1)

The total displacement of a molecule (∆~r) in one time step (∆t) can be found as

∆~r = (∆x1, ...,∆xn), (2)

where ∆xi is the displacement of a molecule in the ith dimension. Movement in each dimension for a

given time step is modeled independently and follows a Gaussian distribution, i.e., ∆xi ∼ N (0, 2D∆t)

∀i ∈ {1, ..., n}. Molecules propagate in the environment according to these dynamics. As conventionally

done in the literature, our model ignores, for simplicity, collisions between the messenger molecules [13],

[14]. This model utilizing the Brownian motion is used for Monte Carlo simulations.

A. Absorption rate of a perfectly absorbing spherical receiver

The microscopic theory of diffusion can be developed from the assumption that a substance will move

down its concentration gradient. The derivative of the flux with respect to time results in Fick’s Second

Law in a 3-D environment, given by

∂p(r, t|r0)

∂t
= D∇2p(r, t|r0), (3)
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where ∇2, p(r, t|r0), and D are the Laplacian operator, the molecule distribution function at time t and

distance r given the initial distance r0, and the diffusion constant, respectively. The value of D depends

on the temperature, the viscosity of the fluid, and the Stokes’ radius of the molecule [15].

Fraction of hitting molecules to a perfectly absorbing spherical receiver located at (0, 0, 0) has been

recently derived in [16] by solving the Fick’s diffusion equation with relevant initial and boundary

conditions and describing the absorbing process. The initial condition is defined as

p(r, t→ 0|r0) =
1

4πr2
0

δ(r − r0). (4)

The first boundary condition is

lim
r→∞

p(r, t|r0) = 0, (5)

which reflects the assumption that the distribution of the molecules vanishes at distances far greater than

r0. The second boundary condition is

D
∂p(r, t|r0)

∂r
= wp(r, t|r0) for r = rr, (6)

where rr and w denote the radius of the receiver and the rate of reaction, respectively. When the rate of

reaction approaches infinity, it corresponds to the boundary condition in which every collision leads to

an absorption. In this case, we consequently have a diminishing p(r, t|r0) as r approaches the surface of

the absorber (i.e., limr→rr p(r, t|r0) = 0).

After solving the differential equation for w → ∞ for the perfectly absorbing sphere with the given

boundary and initial conditions, the molecule distribution function at time t and distance r is obtained as

p(r, t|r0) =
1

4πrr0

1√
4πDt

(
e−

(r−r0)2

4Dt − e−
(r+r0−2rr)2

4Dt

)
. (7)

Using (7), the hitting rate of molecules is also calculated in [16] as

fhit(t) = 4πr2
r w p(rr, t|r0) =

rr
r0

1√
4πDt

r0 − rr
t

e−
(r0−rr)2

4Dt , (8)

which is illustrated in Figure 2 for rr = 5µm, r0 = 10µm, and D = 79.4µm2/s 1. Notice that fhit(t) has

one peak around 52ms, where the fraction of absorbed molecules reaches its maximum value. Hence,

we can find the mean pulse peak time, tpeak, by finding the vanishing point for the derivative of fhit(t)

with respect to time, which leads to

E[tpeak] =
d2

6D
. (9)

1These values are considered to be typical, since they simulate an environment such that human insulin hormone is used as

the messenger molecules, and a device whose capabilities are similar to a pancreatic β-cell is used as the tranmistter [7].
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Fig. 2: fhit(t) for rr = 5µm, r0 = 10µm, and D = 79.4µm2/s.

Furthermore, integrating fhit(t), fraction of molecules absorbed by the receiver until time t, Fhit(t), can

be obtained as

Fhit(t) =

t∫
0

fhit(t
′)dt′ =

rr
r0

erfc

[
r0 − rr√

4Dt

]
. (10)

Time dependent formulation for the fraction of molecules absorbed by the receiver is an important

formulation in the nanonetworking domain, since (8) and (10) describe the response of the diffusion

channel completely. Additionally, tpeak has a great significance for the choice of symbol duration ts for a

nano communication system. In terms of ISI mitigation, it is desirable to have the first hitting probability

p1 to be the largest in magnitude compared to pk for k > 1. Therefore, ts should be chosen such that

hitting probabilities are in a descending order ( p1 > p2 > p3 > ...).

B. Modulation and demodulation techniques

BCSK and BMoSK are the two most common modulation techniques for MCvD. In BCSK, number

of the received messenger molecules is used as the amplitude of the signal. The receiver decodes the

intended symbol as a bit-1 if the number of messenger molecules arriving at the receiver during a time slot

exceeds a pre-determined threshold, and as a bit-0, otherwise. To represent different values of symbols,
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(a) Effects of ISI for BCSK encoded sequence, where

rr = 5µm, r0 = 10µm, D = 79.4µm2/s, n0 = 0,

n1 = 500 and ts = 200ms.
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(b) Effects of ISI for BMoSK encoded sequence, where

rr = 5µm, r0 = 10µm, D = 79.4µm2/s, n0 = 0,

n1 = 500 and ts = 200ms.

Fig. 3: Effects of ISI for CSK and MoSK encoded sequences of {1, 1, 0, 1, 0, 1, 1}.

the transmitter releases different number of molecules for each value the symbol can represent, e.g.,

the transmitter releases n0 molecules for a bit-0, whereas it releases n1 molecules for a bit-1 [12]. As

mentioned earlier, in the literature, the threshold is typically empirically chosen by using a long sequence

of pilot symbols.

The BMoSK, on the other hand, utilizes the emission of two different types of messenger molecules

to represent information. The transmitter releases a constant number of type-A or type-B molecules

for the current symbol values of bit-0 and bit-1, respectively. The receiver then decodes the intended

symbol based on the type and the number of the molecules received during a time slot [12]. Unlike

CSK, decoding of a MoSK-encoded binary sequence does not necessarily require a threshold value. The

receiver can make a decision simply by comparing the received number of molecules of both molecule

types and determining which one is larger.

The MCvD system using BCSK can be adversely affected from ISI, caused by the residual molecules

from the previous symbols [12]. By using (8), the hitting rates for a BCSK-encoded binary message

sequence of {1, 1, 0, 1, 0, 1, 1} are calculated, and effects of ISI on each time slot are illustrated in

Figure 3a.

Similar to the BCSK, the residual molecules from the previous symbols also cause ISI when BMoSK

is used. BMoSK is less susceptible to ISI effects than the BCSK technique [12]. However, BMoSK

DRAFT



9

requires the synthesis of two types of molecules rather than one, and number of molecules released from

transmitter almost doubles, since bit-0s are also encoded with constant number of molecules. Effects of

ISI for BMoSK is illustrated in Figure 3b, where the same binary message sequence of {1, 1, 0, 1, 0, 1, 1}
is used.

In conclusion, both modulation techniques are inefficient in terms of energy efficiency and ISI mitiga-

tion when molecular communication at high data rates is considered. Additionally, there is no technique

in the literature besides the empirical one to calculate the threshold value for a BCSK encoded sequence.

III. ISI THRESHOLD COMPUTATION TECHNIQUE

As stated in the introduction, the optimal threshold is traditionally calculated empirically in the

literature. The empirical calculation, however, requires a large sample set of received molecule counts

to have a good representation of the system behavior, which means that one must use a long sequence

of pilot symbols. In this approach, a slight change in the system model parameters such as temperature,

diffusion coefficient, transmitter - receiver distance, etc., requires all these computations to be repeated.

This is the main motivation for developing an analytical approach to calculate the optimal threshold.

By using Fhit(t) given in (10), probability of a single molecule to hit the receiver in a given time slot

can be calculated. Let pk denote the hitting probabilities, where p1 is the hitting probability in the current

symbol duration and pk for k ≥ 2 denote the hitting probabilities in the consecutive symbol durations.

Hitting probabilities pk for k = 1, 2, ... for a given system model can be calculated using

pk =


Fhit(kts)− Fhit([k − 1]ts), if k > 1,

Fhit(ts), if k = 1,

(11)

where ts denotes the symbol duration.

Hitting probabilities are sufficient to describe the characteristics of the diffusion channel completely,

which implies that the choice of symbol duration has a great significance in determination of the channel

response. In terms of ISI mitigation, it is desirable to have the first hitting probability p1 to be the largest

in magnitude compared to pk for k > 1. Therefore, ts should be chosen such that hitting probabilities

are in a descending order ( p1 > p2 > p3 > ...).

Let bn1 = {b1, b2, ..., bn} denote the binary message sequence of length n, and let bi and Mi denote the

message symbols and number of molecules sent from the transmitter in the ith time slot for i = 1, 2, ..., n,

respectively. For simplicity, assume BCSK, where the number of molecules to be transmitted is Mi = M

for bi = 1, and Mi = 0 for bi = 0.
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The number of molecules induced at the receiver for a given time slot can be modeled as a Gaussian

random variable [17]. Let Ci denote the number of molecules induced at the receiver in the ith time slot

due to the transmission of bi1. The probability model for Ci can be defined [17] as

bi ∼ BE(P [bi = 1]), (12)

Ci|bi1 ∼ N (µ{i}, σ2{i}), (13)

where BE(·), N (·, ·), P [bi = 1], and P [bi = 0] denote the Bernoulli distribution, Gaussian distribution,

probability of occurrence for bit-1 and probability of occurrence for bit-0 in the message sequence,

respectively. Due to ISI, the expected number of molecules arriving at the receiver in the ith time slot

can be given as

E[Ci|bi1] = µ{i} = M

i∑
k=1

pk bi−k+1, (14)

which is the mean of the Gaussian distributed molecule count at the receiver. The variance of Ci is

similarly given by

Var[Ci|bi1] = σ2{i} = M

i∑
k=1

pk (1− pk) bi−k+1. (15)

It should be noted that (14) and (15) do not include any randomness except for the one due to the

diffusion process. This model can be extended by the addition of a zero-mean white Gaussian noise

with a constant variance σ2
c , which may represent the counting noise at the receiver, or noise due to the

molecule reactions in the environment, etc. Since the sum of two independent Gaussian random variables

is again a Gaussian random variable, with its mean being the sum of the two means, and its variance

being the sum of the two variances, the variance of Ci becomes

σ2{i} = σ2
c +M

i∑
k=1

pk (1− pk) bi−k+1. (16)

Equations (14) and (15) indicate that the parameters of the Gaussian distribution change for each

symbol, which means that each and every symbol requires its own optimal threshold. To begin with, let

us focus on finding the optimal threshold γ∗{i} for the detection of bi in bn1 such that

Ci
b̂i=1
≷
b̂i=0

γ∗{i}, (17)
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Fig. 4: Binary tree for n = 3.

where b̂i denotes the estimate of bi. We can treat this case as a traditional binary detection problem in

an AWGN channel and use maximum a posteriori probability (MAP) decision rule, given as

P [bi = 1]

P [bi = 0]

p(Ci|bi−1
1 , bi = 1)

p(Ci|bi−1
1 , bi = 0)

b̂i=1
≷
b̂i=0

1, (18)

where p(·) denotes the probability density function of the Gaussian distributed Ci. Note that calculation

of γ∗{i} requires information about the sequence history bi−1
1 . In case of a memoryless decoder, when the

first (i−1) bits, which are crucial for (14) and (15), are unknown, all possible combinations (candidates)

for bi−1
1 must be considered, which yields to 2i−1 candidate means, variances, and optimal thresholds.

Each bi−1
1 candidate also has its own probability, P [bi−1

1 ]. To allow for the enumeration of the candidates,

each candidate sequence is denoted by d
{i,j}
k , and its corresponding optimal threshold is denoted by

γ∗{i,j}. In this notation, j is equal to the decimal value of reverse ordered bi−1
1 sequence, i denotes

the length of the candidate sequence, and k denotes whether the candidate sequence is conditioned on

bi = 0 or bi = 1. For example, d{3,1}0 corresponds to the bit sequence of length three, conditioned on

bit-0, and with decimal value 1 for the reverse ordered history; which can only be the sequence {1 0 0}.
Reversing the order of bi−1

1 becomes significant when we consider the effects of ISI, since the latter

symbols contribute more to the ISI than the former ones. Thus, j allows for the ordering of the amount

of ISI for each d
{i,j}
k . Possible candidate sequences for n = 3 can be visualized as a binary tree given

in Figure 4.

By conditioning each candidate on bit-1 and bit-0, the optimal threshold γ∗{i,j} can be found for

siblings {d{i,j}0 ,d
{i,j}
1 } in the binary tree, which are basically two Gaussian distributions with parameter

sets {µ{i,j}0 , σ
{i,j}
0 } and {µ{i,j}1 , σ

{i,j}
1 }, respectively. Each γ{i,j} can be calculated by writing (18) and

(17) explicitly, resulting in the quadratic equation

a
(
γ∗{i}

)2
+ bγ∗{i} + c = 0, (19)
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where,

a =
[
σ

2{i,j}
1 − σ2{i,j}

0

]
, (20)

b = 2
[
σ

2{i,j}
0 µ

{i,j}
1 − σ2{i,j}

1 µ
{i,j}
0

]
, (21)

c = σ
2{i,j}
1 µ

2{i,j}
0 − σ2{i,j}

0 µ
2{i,j}
1 − 2σ

2{i,j}
1 σ

2{i,j}
0 log

[
P [bi = 0]σ

{i,j}
1

P [bi = 1]σ
{i,j}
0

]
. (22)

This equation can be solved analytically considering the positive root γ∗{i} = −b+
√

∆
2a , where ∆ =

b2 − 4ac.

To find the optimal threshold γ∗{i} that minimizes the overall probability of error in the detection of

bi considering all candidate sequences, the minimizing function can be written as

Ji(γ) =

2i−1−1∑
j=1

P [d
{i,j}
0 ]Q

(
γ − µ{i,j}0

σ
{i,j}
0

)
+ P [d

{i,j}
1 ]Q

(
µ
{i,j}
1 − γ
σ
{i,j}
1

)
, ∀i ≥ 1, (23)

which is equal to the sum of error probabilities for a given threshold γ. To minimize Ji(γ), derivative

with respect to γ can be set to zero as

∂Ji(γ)

∂γ
=

2i−1−1∑
j=1

P [d
{i,j}
1 ]N (γ∗{i}|µ{i,j}1 , σ

2{i,j}
1 )− P [d

{i,j}
0 ]N (γ∗{i}|µ{i,j}0 , σ

2{i,j}
0 ) = 0, (24)

which yields

2i−1−1∑
j=1

P [d
{i,j}
1 ]N (γ∗{i}|µ{i,j}1 , σ

2{i,j}
1 ) =

2i−1−1∑
i=1

P [d
{i,j}
0 ]N (γ∗{i}|µ{i,j}0 , σ

2{i,j}
0 ). (25)

For i > 2, (25) becomes a hard problem to solve analytically, so numerical methods are used instead.

γ∗{i} can be efficiently computed using two fundamental observations. The first observation makes use

of (14), (15), and the fact that ts is chosen such that hitting probabilities are in an descending order, i.e.,

pi > pj for i < j. We can then sort the distribution parameters as

µ
{i,1}
0 < µ

{i,2}
0 < ... < µ

{i,2i−1−1}
0 ,

µ
{i,1}
1 < µ

{i,2}
1 < ... < µ

{i,2i−1−1}
1 ,

σ
{i,1}
0 < σ

{i,2}
0 < ... < σ

{i,2i−1−1}
0 ,

σ
{i,1}
1 < σ

{i,2}
1 < ... < σ

{i,2i−1−1}
1 . (26)

Consequently, optimal thresholds can also be sorted as

γ∗{i,1} < γ∗{i,2} < ... < γ∗{i,2
i−1−1}. (27)
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TABLE I: Distribution parameters.

Candidate Sequence Mean Standart Deviation Probability of Occurance Optimal Threshold

d
{2,0}
0 = {0, 0} µ

{2,0}
0 σ

{2,0}
0 0.25

γ∗{2,0}

γ∗{2}

d
{2,0}
1 = {0, 1} µ

{2,0}
1 σ

{2,0}
1 0.25

d
{2,1}
0 = {1, 0} µ

{2,1}
0 σ

{2,1}
0 0.25

γ∗{2,1}d
{2,1}
1 = {1, 1} µ

{2,1}
1 σ

{2,1}
1 0.25

Being able to sort these optimal thresholds provides us with an upper bound for γ∗{i,2
i−1−1}, since the

optimal threshold considering all candidates cannot be greater than the optimal threshold considering only

the siblings {d{i,2
i−1−1}

0 ,d
{i,2i−1−1}
1 } with the highest mean and variance values, i.e., γ∗{i} < γ∗{i,2

i−1−1}.

The second observation is that, as n increases, due to the accumulating molecules in the diffusion

channel, the optimal threshold also increases monotonically, i.e., γ∗{i−1} < γ∗{i}. In conclusion, the

lower and upper bounds for γ∗{i} can be written as

γ∗{i−1} < γ∗{i} < γ∗{2
i−1−1}. (28)

These bounds allow for the search of γ∗{i} by employing a fixed point iteration. Such an iterative algorithm

is given in Algorithm 1.

Example 1: Consider a BCSK modulated random binary sequence, where P [bi = 0] = P [bi = 1] = 0.5,

∀i. To calculate the optimal threshold γ∗{2}, the distribution parameters must be calculated by using (14)

and (15). Candidate sequences and their corresponding parameters are given in Table I.

To calculate γ∗{2}, (14) and (15) must be used, which means that information of the first two hitting

probabilities are required. Let us define a parameter set, denoted by P , where rr = 5µm, r0 = 10µm,

σ2
c = 1, molecules similar to insulin hormone are used as information carriers, and the channel is filled

with a liquid which results in a diffusion coefficient of 79.4µm2/s [7]. This parameter set will be

used for all the latter simulations and examples in this paper. For this example, in addition to the set

of parameters P , the symbol duration is chosen as ts = 200ms, and M = 100 molecules are used as

messenger molecules on each symbol duration . With these parameters, hitting probabilities are calculated

as {p1, p2} = {0.1875, 0.0777}. Using these probabilities, the mean and the variance of four possible

candidates can be calculated as
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Algorithm 1 Calculation of γ∗{N}

1: Compute γ∗{1}

2: for i = 2 to N do

3: for j = 0 to 2i−1 − 1 do

4: Calculate {µ{i,j}0 , µ
{i,j}
1 , σ

{i,j}
0 , σ

{i,j}
1 }

5: if j = 2i−1 − 1 then

6: Compute optimal threshold γ∗{i,2
i−1−1}

7: γmax ← γ∗{i,2
i−1−1}

8: end if

9: end for

10: Set step size α = 0.1

11: γ = γ∗{i−1} : α : γmax

12: while α > 10−4 do

13: Calculate the sum of likelihoods

r =

∑2i−1−1
j=1 P [bi = 1]N (γ|µ{i,j}1 , σ

{i,j}
1 )∑2i−1−1

j=1 P [bi = 0]N (γ|µ{i,j}0 , σ
{i,j}
0 )

14: m∗ ← argmin
m
|1− r(m)|

15: γ∗{i} ← γ(m∗)

16: γ ← γ∗{i} − α : α/10 : γ∗{i} + α

17: α← α/10

18: end while

19: end for

{µ{2,0}0 , σ
2{2,0}
0 } = {0, 1},

{µ{2,1}0 , σ
2{2,1}
0 } = {7.77, 8.17},

{µ{2,0}1 , σ
2{2,0}
1 } = {8.75, 16.23},

{µ{2,1}1 , σ
2{2,1}
1 } = {26.52, 23.40}.

According to (18) and (25), the optimal threshold values must satisfy

0.5N (γ∗{2,0}|µ{2,0}0 = 0, σ
2{2,0}
0 = 1) = 0.5N (γ∗{2,0}|µ{2,0}1 = 8.75, σ

2{2,0}
1 = 16.23), (29)

0.5N (γ∗{2,1}|µ{2,1}0 = 7.77, σ
2{2,1}
0 = 8.17) = 0.5N (γ∗{2,1}|µ{2,1}1 = 26.52, σ

2{2,1}
1 = 23.40), (30)
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Fig. 5: Distributions of recieved molecule counts and threshold values.

0.25N (γ∗{2,0}|µ{2,0}0 = 0, σ
2{2,0}
0 = 1) + 0.25N (γ∗{2,1}|µ{2,1}0 = 7.77, σ

2{2,1}
0 = 8.17) =

0.25N (γ∗{2,0}|µ{2,0}1 = 8.75, σ
2{2,0}
1 = 16.23) + 0.25N (γ∗{2,1}|µ{2,1}1 = 26.52, σ

2{2,1}
1 = 23.40).

(31)

Equations (29) and (30) can be solved analytically, whereas solving for γ∗{2} in (31) requires the use

of Algorithm 1. As a result, γ∗{2,0} = 4.0189, γ∗{2,1} = 15.1198, and γ∗{2} = 12.7882 are obtained.

These results can be interpreted as follows. If the receiver is memoryless, it has to consider all possible

candidate sequences in order to make a decision for b2. In this case, γ∗{2} must be used, meaning that

any number of molecules below approximately 13 molecules yields to a decision of b̂2 = 0. On the other

hand, if the receiver stores information about b̂1, depending on the binary value of b̂1, either γ∗{2,0} or

γ∗{2,1} can be used. Distribution of candidate sequences and threshold values for this example are plotted

in Figure 5.

A. Least Mean Squares Regression

Computing the optimal threshold for bi requires computation of the distribution parameters for all

candidates, which means that the number of operations increases with powers of 2 as i increases. To

calculate the optimal thresholds for large values of i, least mean squares (LMS) regression can be applied
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threshold value calculated by LMS regression,

where P [bi = 0] = 0.5, ts = 200ms, and M = 500.

to the threshold values γ∗{i} for i ≤ 20, using a function of the form

γ∗i = αiβ + κ, (32)

where α, β, κ ∈ R and −1 < β < 0. The motivation of using a function of this from can be justified

based on two facts. First, note that hitting probabilities have a cumulative effect on both distribution

parameters, as seen in (14) and (15). As i increases, the marginal effect of hitting probabilities will

decrease, indicating that there should be a limit value as i goes to infinity. Physical interpretation of this

is as follows: since the channel is assumed to be free of molecules before the transmission begins, the

optimal threshold value will increase in the early stages of the transmission. As transmission continues,

due to the accumulation of the molecules in the diffusion channel, number of molecules in the channel

will go into saturation and the optimal threshold value will converge to a constant. The first 20 threshold

values computed using Algorithm 1 and the values for i > 20 obtained via LMS are shown in Figure 6.

Empirically chosen threshold values for i ≤ 20 are also included in Figure 6. Root mean square error

(RMSE) is calculated to evaluate the performance of the fit.

To verify the reliability of the LMS outputs, random binary messages of length 105 consisting of

equally likely bits are generated and the histograms of molecule counts conditioned on b105 = 0 and

b105 = 1 are plotted. As seen in Figure 7, the optimal threshold γ∗{105} computed via LMS regression is

at the intersection of two distributions where likelihoods are equal to each other. φ(·) in Figure 7 denotes
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the unnormalized density of the number of received molecules.

It should be noted that α, β, and κ in (32) are dependent both on signal power and hitting probabilities,

which are both determined by the environmental parameters, such as diffusion coefficient, receiver radius,

etc. Threshold values for different signal power levels are given in Figure 8.

Since it is possible to compute γ∗{i}, ∀i, and limi→inf γ
∗{i} = κ, different strategies can be used for

thresholding. As seen in Figure 8, approximately after 100 bits, all threshold values seem to converge to

a constant value, which means that, in case of a continuous transmission, κ can be applied as a threshold

for i > 100. On the other hand, if the decoder cannot afford to store the γ∗{i} for i ≤ 100, b100
1 can

be used as a burn-in period. It is also possible to apply different techniques such as binning the bit

indices and applying particular threshold values for these particular ranges. Being able to compute γ∗{i},

∀i allows us to apply different thresholding strategies depending on the performance specifications and

technical constraints.

Since the distribution parameters depend on the location of each and every bit in the message, each

candidate sequence has a unique optimal threshold. In simulations, rather than using pilot symbols, this

threshold can be found empirically by trying various number of threshold values and minimizing the

Hamming distance d(b̂n1 ,b
n
1 ) after gathering all the information about molecule counts at the receiver.

A performance comparison between the thresholds computed via Algorithm 1 and empirically computed

thresholds is given in Figure 9. Binary sequences of length 105 were used in the simulations, and γ∗{105}
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was applied to every bit without any burn in period.

Empirically found thresholds perform slightly better as expected, since they were found for that

particular message, by using the information of the original message bn1 . On the other hand, thresholds

computed by Algorithm 1 only make use of the the hitting probabilities. Additionally, rate of convergence

depends on the value of P [bi = 0], since lower P [bi = 0] values yield a slower convergence due to the

permanently increasing number of accumulating molecules. Curves depending on the numerical values

of P [bi = 0] are given in Figure 10.

IV. TRANSMITTER - BASED ISI MITIGATION

In this section, two transmitter-based ISI mitigation techniques are proposed. The first technique is the

molecular transition shift keying (MTSK), which is an energy efficient modulation technique that aims

to decrease the detrimental effects of the ISI by utilizing two different molecule types. Second technique

employs a power adjustment strategy by utilizing the residual molecules from the previous symbols,

which is applicable for BCSK, BMoSK, and MTSK.

A. Molecular transition shift keying

In case of continuous transmission, the first bit-0 after a large number of consecutive bit-1s becomes

hard to detect due to the ISI caused by the accumulated molecules in the channel. b5
1 = {1, 1, 1, 1, 0}

DRAFT



19

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (Seconds)

M
a
g
n
it
u
d
e

Fig. 11: First 20 hitting probabilities, where ts = 200ms.

can be given as an example for such a case. It is hard for the decoder to detect b5 due to the ISI caused

by b4
1. This is the main motivation for MTSK, which aims to distinguish whether the number of received

molecules Ci in the ith time slot is induced by the ISI due to bi−1
1 , or a bi being a 1, by decreasing the

amount of ISI due to the residual molecules that belong to previous symbols.

As discussed in Section II, a proper choice of symbol duration allows us to sort the hitting probabilities

in a descending order, such as p1 > p2 > p3 > .... The amount of decay between consecutive hitting

probabilities also decreases decreasingly, which implies that most of the residual molecules that lead

to ISI belong to the time slot immediately preceding the current one, and depends on the magnitude

of p2. Residual molecules from two or more previous time slots which are related to the magnitude of

pi for i ≥ 3 have less significance. To visually illustrate this behavior, the hitting probabilities pk for

k = 1, 2, ..., 10 are given in Figure 11.

MTSK can be explained as follows. The bit-0s are encoded by the absence of the messenger molecules,

and bit-1s are encoded by using two different types of molecules, denoted as type-A and type-B, of

constant number of molecules, M , where the choice of the molecule type depends on the value of the

following symbol in the message sequence. type-A or type-B molecules are released for the next symbol

values of bit-0 and bit-1, respectively. In case of CSK, bit-1s are encoded by emitting only type-A (or only
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type-B) molecules, which causes high amounts of ISI observed by bit-0s due to the accumulation of the

same type of molecules in the channel. On the other hand, in case of MTSK, emitting type-B instead of

type-A molecules before each bit-0 reduces the ISI induced by type-A molecules on each bit-0. Similarly,

since type-B molecules are only emitted before a bit-0, their accumulation in the channel is less than the

case where CSK is employed by emitting only type-B molecules. As a result, ISI observed by each bit-0

is decreased compared to the case where CSK is employed. An example sequence is given in Figure

12, where the modulated sequence is delayed for one symbol duration to obtain a causal representation,

and mn
1 = {m1,m2, ...,mn} represents the molecule types of the modulated message sequence that will

be transmitted through the diffusion channel, where absence of messenger molecules is denoted with an

“×”.

b16
1 : 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0

m16
1 : × A A B × B × A B × B × × A B ×

Causal System : × A A B × B × A B × B × × A B ×

Fig. 12: MTSK modulated binary sequence example.

This causal system can now be represented by the first-order Markov chain whose state transition diagram

is given in Figure 13.

Since there are two types of molecules to be sensed in an MTSK modulated signal, a decision should

be made based upon the information they jointly possess. Consequently, decoding an MTSK modulated

signal requires an optimal choice of decision threshold for both molecule types. Since the receiver is

assumed to detect both molecule types independent of each other, bn1 can be treated as two different

messages; one modulated by using type-A and the other using type-B molecules, denoted as bn1 (A)

0 10/x 1/A

1/x

0/B

Fig. 13: State diagram for MTSK encoder.
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and bn1 (B), respectively. bn1 (A) and bn1 (B) are illustrated in Figure 14 for the same b16
1 in Figure 12.

Splitting bn1 into bn1 (A) and bn1 (B) allows us to find optimal thresholds for each sequence, which are

denoted by γ∗{n}A and γ∗{n}B , respectively.

b16
1 (A) : 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0

b16
1 (B) : 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0

Fig. 14: MTSK encoded binary sequence example.

Let PA[bi = 1] and PB[bi = 1] denote the probability of occurrence for 1 in bn1 (A) and bn1 (B),

respectively. As given in (12), bn1 (A) and bn1 (B) can also be interpreted as n independent Bernoulli

trials with probabilities of success PA[bi = 1] and PB[bi = 1], respectively. Considering that each bit-

1 run of length r ≥ 1 in bn1 contains exactly one bit encoded by molecule type-B, PB[bi = 1] and

PA[bi = 1] can be calculated as

PB[bi = 1] = P [bi = 1](1− P [bi = 1]), (33)

PA[bi = 1] = P [bi = 1]− P [bi = 1](1− P [bi = 1]) = P [bi = 1]2, (34)

γ
∗{i}
A and γ

∗{i}
B can therefore be determined by employing Algorithm 1 using the probabilities in (33)

and (34), respectively.

Let Ci(A) and Ci(B) denote the number of type-A and type-B molecules induced at the receiver

due to the transmission of bi1(A) and bi1(B), respectively. Decision rule for each molecule type can be

given as

Ci(A)
b̂i(A)=1

≷
b̂i(A)=0

γ
∗{i}
A , (35)

Ci(B)
b̂i(B)=1

≷
b̂i(B)=0

γ
∗{i}
B , (36)

where b̂i(A) and b̂i(B) denote the estimation of bi(A) and bi(B), respectively. To decide for a bit-0, both

b̂i(A) = 0 and b̂i(B) = 0 must be satisfied. On the other hand, if at least one of the number of induced

molecules exceeds its corresponding threshold regardless of its molecule type, the decoder decides for a
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TABLE II: Parameters for BCSK, BMoSK, and MTSK modulation techniques.

Modulation Type Modulated sequences Mean (molecules) Variance (molecules2) Threshold (molecules)

BCSK b3
1 = {1, 1, 0} µ

{3,3}
0 = 11.68 σ

2{3,3}
0 = 11.92 γ∗{3} = 14.64

BMoSK
b3
1(A) = {1, 1, 0} µ

{3,3}
0 (A) = 11.68 σ

2{3,3}
0 (A) = 11.92 −

b3
1(B) = {0, 0, 1} µ

{3,0}
1 (B) = 18.75 σ

2{3,0}
1 (B) = 16.23 −

MTSK
b3
1(A) = {1, 0, 0} µ

{3,1}
0 (A) = 3.90 σ

2{3,1}
0 (A) = 4.75 γ

∗{3}
A = 13.76

b3
1(B) = {0, 1, 0} µ

{3,2}
0 (B) = 7.77 σ

2{3,2}
0 (B) = 8.17 γ

∗{3}
B = 13.76

bit-1. Consequently, the decision rule for an MTSK encoded binary sequence can be given as

b̂i =


1, if Ci(A) > γ

∗{i}
A or Ci(B) > γ

∗{i}
B ,

0, if Ci(A) ≤ γ∗{i}A and Ci(B) ≤ γ∗{i}B .

(37)

Example 2: Consider a random binary sequence b3
1 = {1, 1, 0}, where P [bi = 0] = 0.5, ts = 200ms

and M = 100. To compare the error performance of the BCSK, BMoSK, and MTSK, probability of an

erroneous decision for b3 will be used, since ISI observed by b3 due to previous bits being bit-1 makes

it harder to decode.

Hitting probabilities for these parameters were calculated in Example 1 as {p1, p2} = {0.1875, 0.0777}.
Using these probabilities, the parameters with their corresponding sequences and threshold values (cal-

culated via Algorithm 1) are given in Table II. Additionally, the decision rule for the BMoSK encoded

sequences does not employ a threshold value and it can be expressed as

Ci(A)
b̂i=1
≷
b̂i=0

Ci(B), (38)

since bit-1 is encoded by molecule type-A and bit-0 is encoded by molecule type-B.

Let PBCSK
e (bi), PBMoSK

e (bi), and PMTSK
e (bi) denote the probabilities of error in the detection of bi for
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BCSK, BMoSK, and MTSK modulated messages, respectively. These probabilities can be calculated as

PBCSK
e (b3) = P [C3 > γ∗{3}] = Q

(
γ∗{3} − µ{3,3}0

σ
{3,3}
0

)
= 0.1950,

PBMoSK
e (b3) = P [C3(B) > C3(A)] = P [C3(B)− C3(A) > 0]

= Q

 µ
{3,0}
1 (B)− µ{3,3}0 (A)√

(σ
{3,3}
0 (A))2 + (σ

{3,0}
1 (B))2

 = 0.0913,

PMTSK
e (b3) = 1− P [C3(A) < γ

∗{3}
A ]P [C3(B) < γ

∗{3}
B ]

= 1−Q
(
γ
∗{3}
A − µ{3,1}0 (A)

σ
{3,1}
0 (A)

)
Q

(
γ
∗{3}
B − µ{3,2}0 (B)

σ
{3,2}
0 (B)

)
= 0.0181.

As a result, PBCSK
e (b3) > PBMoSK

e (b3) > PMTSK
e (b3). Note that even though there are only two bit-1s

before b3, differences between error probabilities are noteworthy.

In order to compare the error performance of BCSK, BMoSK, and MTSK, average signal power per

symbol for these techniques must be defined. For BCSK, where Mi = 0 for bi = 0, and Mi = M

for bi = 1, average power per symbol can be defined as P̄ = MP [bi = 1]. This is also valid for

MTSK, since bit-1s are encoded with a constant number of M molecules, and bit-0s are encoded by

the absence of molecules, independent of the molecule type. On the other hand, since BMoSK utilizes

M number of molecules for both bit-0 and bit-1, average signal power of BMoSK will be equal to M .

Error performance of the BCSK, BMoSK, and MTSK modulation techniques are compared via Monte

Carlo simulations, and the resulting BER curves are given in Figure 15. 104 realizations were performed,

and threshold values computed via Algorithm 1 are used in the simulations. As seen in Figure 15, error

rates are significantly decreased when MTSK is employed. By comparison with CSK, employing MTSK

increases the system complexity, since it utilizes two different types of molecules instead of one. On the

other hand, if utilization of two different molecule types is allowed, one can easily prefer MTSK over

BMoSK, since the improvement in the communication quality is very significant.

B. Power Adjustment

Effects of ISI can both be beneficial (constructive interference) and harmful (destructive interference) to

the symbol in question. In BCSK, BMoSK, and MTSK, residual molecules become a source of destructive

interference when the intended symbol is a bit-0. On the other hand, they may actually be beneficial

for consecutive bit-1s in a sequence and may be used to support the messenger molecules that will

be emitted in the next time slots. With this motivation, BCSK, BMoSK, and MTSK were modified to
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utilize the residual molecules from the previous symbols, and modified versions are denoted by BCSK-

PA, BMoSK-PA, and MTSK-PA, where PA stands for power adjustment. A similar approach on utilizing

residual molecules in terms of symbol duration adjustments can be found in [18]. Briefly, in [18], authors

propose a dynamic structure at the receiver side, where they dynamically lengthen the symbol duration

as the number of accumulated molecules increase in the channel. This helps to prevent ISI.

Recall that, in case of a BCSK modulated signal, Mi = 0 for bi = 0 and Mi = M for bi = 1.

Since BCSK-PA intends to adjust the signal power considering the effects of constructive ISI, in case

of a BCSK-PA modulated signal, value of M will be adjusted depending on the number of residual

molecules in the channel.

Let E[MI ] denote the expected value of the number of molecules at the receiver induced by sending

M number of molecules for the first bit-1 in bi1. Since Mi = 0 for bi = 0, bit-0s before the first bit-1

in bi1 will not effect the number of molecules accumulated in the channel. Relationship between E[MI ]

and M is given as

E[MI ] = p1M. (39)

For correct transmission, the threshold at the receiver side should be chosen so that E[MI ] number of

molecules leads to a symbol decision of bit-1. For a sequence containing consecutive bit-1s, sending the
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same amount of molecules for each symbol increases the cumulative number of molecules induced at the

receiver side, exceeding E[MI ]. This will also cause more molecules to accumulate in the channel and

become a source of ISI for the following bit-0s. On the other hand, for the second and latter symbols,

by sending a smaller number of molecules and making use of the residual ones from the previous time

slots, E[MI ] can still be induced at the receiver and the intended symbol can be decoded correctly. This

guarantees the accumulation of fewer molecules in the channel, which, in turn, reduces the amount of

ISI for the following symbols. Required number of molecules to maintain E[MI ] number of molecules

at the receiver after the transmission of the first bit-1 can be calculated as

Mi = E[MI ]− E[MR
i ], (40)

where E[MR
i ] denotes the expected value of the residual molecules accumulated in the channel due

to the transmission of bi1. Since the channel is assumed to be free of messenger molecules before the

transmission begins, E[MR
i ] can be calculated as

E[MR
i ] =

i∑
j=2

pjMi−j+1. (41)

Continuously calculating the effects of a large number of symbols from previous time slots is imprac-

tical. It is also possible to adjust Mi by using a finite memory of length K, and rewrite (41) as

E[MR
i ] =

K∑
j=2

pjMi−j+1. (42)

In order to apply power adjustment to BMoSK and MTSK modulated signals, expected value of the

number of residual molecules must be calculated for both types of molecules, which are denoted by

E[MR
i (A)] and E[MR

i (B)] for type-A and type-B molecules, respectively. Splitting bi1 into bi1(A) and

bi1(B) as was done in Figure 14 allows us to calculate E[MR
i (A)] and E[MR

i (B)] separately.

The power adjustment technique aims to maintain a constant number of received molecules for a bit-1,

but by doing so, number of received molecules for a bit-0 fluctuates depending on K, and distorts the

monotonically increasing behavior of optimal threshold values. Consequently, γ∗(i) cannot be calculated

for large i, and empirically found threshold values are used in the simulations.

Error performance of the BCSK-PA, BMoSK-PA, and MTSK-PA were compared via Monte Carlo

simulations and BER curves for K = 2 and K = 4 are given in Figure 16 and 17, respectively.

15000 realizations were performed in order to obtain an average. Note that employing power adjustment

decreases the error rates for all modulation techniques significantly. Since the effect of K previous bits

are considered, as K increases, improvement in the communication quality also increases. On the other
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Fig. 16: BER Curves for different modulation

techniques with power adjustment for K = 2,

where ts = 200ms and P [bi = 0] = 0.5.
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Fig. 17: BER Curves for different modulation

techniques with power adjustment for K = 4,

where ts = 200ms and P [bi = 0] = 0.5.

hand, increasing K introduces more memory to the system, which results in a trade off between memory

length and communication quality.

V. RECEIVER – BASED ISI MITIGATION

In this section, we consider a new type of decision-feedback filter for molecular communication with a

lower computational complexity than the MMSE equalizer proposed in [11]. Unlike the additive Gaussian

noise, the variance of Ci is signal dependent, and equalizer tap coefficients must be updated for each

sample based on previously detected bits with a feedback mechanism [11]. Each update requires to solve

the set of equations given in (30) in [11], which implies that the computational complexity of the equalizer

increases as the number of equalizer taps increases. On the other hand, DFF introduced in this section

has a computational complexity independent of the number of filter taps, but requires a larger number

of memory elements in order to achieve the same BER with the MMSE filter.

As mentioned in Section III, the number of candidate sequences d
{i,j}
1 and d

{i,j}
0 increases with

powers of 2 as i increases. On the other hand, when b̂i−1
1 is available to receiver, there are only two

candidate sequences conditioned on bit-0 and bit-1, which are d
{i,j}
0 = {b̂i−1

1 , 0} and d
{i,j}
1 = {b̂i−1

1 , 1},
respectively. µ{i,j}1 , µ{i,j}0 , σ{i,j}0 , and σ{i,j}1 can be calculated using (14) and (16), and these parameters

can be used to calculate γ∗{i,j} via solving the quadratic equation given in (19). Consequently, by storing

previously estimated bits at the receiver, γ∗{i,j} for each i can be calculated in a signal dependent manner,
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equalizer2, where M = 500 and ts = 200ms.

assuming that the decisions are correct.

In case of continuous transmission, storing b̂i−1
1 for each i requires infinite memory, and is hence

impractical. Rewriting distribution parameters for a finite memory receiver yields to

µ
{i,j}
0 = M

S∑
k=2

pk b̂i−k+1, (43)

µ
{i,j}
1 = M

S∑
k=2

pk b̂i−k+1 +Mp1, (44)

σ
2{i,j}
0 = σ2

c +M

S∑
k=2

pk (1− pk) b̂i−k+1, (45)

σ
2{i,j}
1 = σ2

c +M

S∑
k=2

pk (1− pk) b̂i−k+1 + p1 (1− p1), (46)

where S denotes the length of the receiver memory. Block diagram of this DFF is given in Figure 18.

Note that the use of erroneously detected b̂i−1
1 may cause error propagation, which may decrease the

performance of the DFF.

Error performance of DFF and the MMSE equalizer proposed in [11] are compared via Monte Carlo

simulations and bit error rates with respect to memory lengths are given in Figure 19. 500 realizations

were performed in order to obtain an average.

2MMSE filter proposed in [11] stores S = 2K − 1 previously detected bits to calculate K equalizer taps.
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As seen in Figure 19, in order for the DFF and the MMSE equalizer to perform at a bit error rate of

around 10−3, DFF must have S = 35, whereas S = 13 is sufficient for MMSE equalizer. However, if the

computation of the distribution parameters are ignored, computational complexity of MMSE equalizer is

at the order of O(S3), whereas computational complexity of DFF is equal to O(1), since it only requires

to solve the quadratic equation given in (19).

VI. RESULTS AND DISCUSSION

In this paper, transmitter and receiver-side energy efficient ISI mitigation techniques were proposed for

MCvD in terms of modulation, filtering, and signal power adjustment. To work on modulation techniques

for a real time communication scenario, decision threshold for detection had to be determined prior to

the information transmission, which was a problem never addressed in the literature before. An analytical

method that minimizes the overall error rate when the system parameters are known was proposed to

determine the optimal decision threshold for each symbol. Since the number of operations performed

for calculating the optimal threshold increases for the latter symbols in the sequence, LMS regression

is applied to the first 20 threshold values, using a function that resembles the dynamics of the diffusion

channel. By doing so, optimal thresholds can be calculated for each symbol regardless of the sequence

length. These threshold values are compared with the empirically found threshold values via Monte

Carlo simulations, and are verified to be optimal in the sense of minimizing the overall bit error rate.

It is concluded that, as long as α, β, and κ in (32) are known, different thresholding strategies can be

applied depending on the system constraints. Resolving the thresholding problem is the pre-requisite step

which allows us to propose new ISI mitigation techniques.

The first transmitter-based solution proposed for ISI mitigation is a novel modulation technique, titled

MTSK, which utilizes the use of multiple molecule types in order to increase the data rate via suppressing

the negative impact of the ISI on communication quality. It was shown via Monte Carlo simulations that

MTSK decreases the bit error rates significantly, and outperforms the two most common modulation

techniques in the literature, which are BCSK and BMoSK. Furthermore, as the second transmitter-based

solution, a power adjustment technique, which utilizes the residual molecules in the channel, is proposed

in order to enhance the energy efficiency. Error performance of CSK-PA, MoSK-PA, and MTSK-PA were

compared via Monte Carlo simulations, and it was shown that the power adjustment technique decreases

the ISI, hence the bit error rate for a fixed signal power for all modulation techniques, significantly.

Furthermore, a trade off is observed between memory length (K) employed in PA and communication

quality.
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The receiver-based solution proposed for the energy efficiency problem was to employ a simpler

decoder in terms of computational complexity, titled decision feedback filter. DFF calculates the optimum

threshold value for the symbol in question and updates the decision threshold for each sample by using

the previously estimated bits. DFF was compared with the MMSE equalizer proposed in [11] in terms

of bit error rate, memory length, and computational complexity via Monte Carlo simulations. It was

concluded that DFF requires more memory to reach the same error rate as that of the MMSE equalizer,

but since calculating the optimal threshold value has computational complexity at the order of O(1), DFF

becomes more advantageous when energy efficiency is a priority.
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