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Abstract

This paper studies the capacity of molecular communications in fluid media, where the information is

encoded in the number of transmitted molecules in a time-slot (amplitude shift keying). The propagation

of molecules is governed by random Brownian motion and the communication is in general subject

to inter-symbol interference (ISI). We first consider the case where ISI is negligible and analyze the

capacity and the capacity per unit cost of the resulting discrete memoryless molecular channel and the

effect of possible practical constraints, such as limitations on peak and/or average number of transmitted

molecules per transmission. In the case with a constrained peak molecular emission, we show that as

the time-slot duration increases, the input distribution achieving the capacity per channel use transitions

from binary inputs to a discrete uniform distribution. In this paper, we also analyze the impact of ISI.

Crucially, we account for the correlation that ISI induces between channel output symbols. We derive an

upper bound and two lower bounds on the capacity in this setting. Using the input distribution obtained

by an extended Blahut-Arimoto algorithm, we maximize the lower bounds. Our results show that, over

a wide range of parameter values, the bounds are close.
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I. INTRODUCTION

As nano-technology has received increasing attention, researchers have investigated communications

based on the release of molecules in a fluid propagation medium and their detection at a receiver.

Diffusion-based channels are of particular interest because diffusion is the basis of data transmission

in most of cell signaling, e.g., calcium signaling, hormones, etc. [1]. Diffusion-based molecular com-

munications systems encode information in the concentration [2], time of release [3], the number of

molecules released in a time-slot (amplitude-shift keying(ASK)), the type of molecules and the ratio of

different types of molecules [4]. The released molecules propagate in a fluid medium before arriving at

the receiver. Of these choices, this paper focuses on amplitude shift keying and characterizes the capacity

of a diffusion molecular communication channel in different settings.

The movement of molecules in a fluid medium is governed by Brownian motion [5], including when

the medium itself moves with a drift velocity [6]. The propagation time between transmitter and receiver

is, therefore, random. Several works have investigated thecapacity of molecular communications using

a fluid medium. In [7], the authors study the capacity of a discrete molecular diffusion-based channel

when the information is encoded in the concentration of molecules. The work described in [8], analyzes

the capacity of molecular communications with on-off keying. While most of the initial works assumed

perfect synchronization, the work in [9] arrives at a more realistic model considering sequences of

molecules. Recent results have also considered noise, memory and the impact of the associated physical

properties in diffusion-based communications [10]. In addition to capacity, modulation, error probability,

and symbol interval optimization have been investigated in, e.g., [11] [12]. The capacity of molecular

communication when information is encoded in the concentration of molecules released is studied for

binary communications in [13], [14] and for binary and 4-arycommunications in [15]. In [13]–[15], the

aggregate distribution of the number of arrived molecules in a time-slot is approximated by a Gaussian

distribution.

In [3], the random propagation time between transmitter andreceiver was shown to follow an additive

inverse Gaussian (AIG) distribution for 1-dimensional propagation. Based on the AIG distribution, ex-

pressions and bounds for channel capacity are presented in [3], [16], [17], for the case when information

is encoded in the release time of molecules.

In the model considered here, in which data transfer is basedon ASK, the transmitter releases a
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chosen number of molecules into a 1-D fluid medium with drift.The molecules then propagate to the

receiver where they are detected and removed from the system. One of the main challenges in such a

diffusion-based system is inter-symbol interference (ISI): due to the random propagation time, molecules

may arrive over many time-slots. Indeed, if the system did not suffer from ISI, in our model wherein

molecule release and detection are perfect, communications would also be perfect. The work in [5],

disregarding ISI, studies a binary ASK scheme by considering the life expectancy of molecule with an

AIG model for propagation time. Of interest here is a capacity analysis of an ASK molecular system

suffering from the effects of ISI. In [18], an achievable rate and the probability of error of binary and

4-ary ASK molecular schemes are investigated in presence ofISI. Specifically, the analysis there assumes

that output symbols are mutually independent, resulting ina lower bound on capacity [19].

Capacity analyses of conventional communication channelswith ISI has a strong presence in the

literature. Several methods have been proposed, starting from the seminal work by Hirt and Massey [20],

which analyzes the capacity of the Gaussian ISI channel. Theproblem is solved for the case of an

unrestricted input distribution, but remains open for a discrete input alphabet [21]. However, several

bounds, both lower and upper, to the capacity with discrete inputs and Gaussian channels have been

obtained [19]. A simulation-based approach to calculate capacity in the case of i.i.d. (independent and

identically distributed) inputs with binary modulation isgiven in [22]. This approach is based on a trellis

structure where the number of states relates to the memory ofthe ISI channel.

In this paper, with information encoded in the number of molecules released, the receiver counts the

number of molecules received within each time-slot. We obtain the probability of molecules arriving

within a specific time-slot using the AIG distribution; thisleads to a binomial distribution on the number

of molecules received in each time-slot. We begin by analyzing ASK over such a channel in the basic

discrete memoryless setting. In Section III we model the system as a memoryless channel. This molecular

discrete memoryless channel (DMC) may be motivated by a molecular communication system with life

expectancy of molecules being equal to the time-slot duration. This implies that the molecules disappear

or decompose after the duration of a time slot. Specifically,in Section III, the molecules do not cause

ISI.

We also study the capacity per channel use, the capacity per unit time, and the capacity per unit

cost and examine the effects of possible constraints on peakand average molecular cost. Capacity per
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channel use and time are useful measures in applications such as drug delivery systems (DDS) [23] and

communication over fluid channels. The capacity per unit cost is the objective function in cost efficient

communications, where the information rate per molecular emission is more important. To the best of our

knowledge, this is the first study of capacity per unit cost inmolecular communications. Constraints on

transmission cost address certain practical constraints in molecular communications. Specifically, the peak

constraint acts as a toxicity constraint in DDS [23]. Similarly, the average constraint reflects a limitation

on the average input emission or injection rate in molecularcommunications or DDS [24]. For DMC,

we obtain the optimal input distribution and the resulting quantity for different capacity measures with

average or peak molecular cost constraints. We also use thisanalysis to obtain the optimum transmission

symbol interval as a function of the channel model parameters in each case.

We then move on to analyzing the impact of ISI in ASK-based molecular communications. As in [19],

with some abuse of notation, we callIi.i.d the capacity with i.i.d. inputs, the channel capacity. We propose

two lower bounds and an upper bound for theIi.i.d of such a channel. To provide a tractable exposition,

we restrict the effect of ISI to one time-slot and analyze theaverage mutual information with correlated

channel outputs. The lower bounds are maximized by optimizing the input distribution using a modified

Blahut-Arimoto algorithm. As our results show, over a largerange of parameter values, the lower and

upper bounds are close, thereby well characterizing the capacity of such a molecular communication

channel.

A crucial question left unanswered by the presented capacity analysis is what the impact of the

simplifying assumption on one time-slot memory is. We are unable to directly evaluate the quality of this

assumption since the true channel capacity is unknown. As a proxy, we develop the maximum likelihood

(ML) detector as a possible implementation of the molecularcommunication receiver. We evaluate the

error rates assuming ISI restricted to one time-slot and compare the performance to simulations which

do not impose this assumption. As we will see, this allows us to characterize the range of parameters

over which the assumption holds true.

The remainder of this paper is organized as follows: the system model and the problem statement are

presented in Section II. Section III focuses on capacity analyses of a discrete memoryless ASK molecular

communications, while Section IV presents our analysis in presence of ISI. Numerical results illustrating

the analyses are presented in each section. Finally, Section V wraps up the paper with concluding remarks.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

The transmitter is a point source of identical molecules. Using ASK, at the beginning of every time-slot

of lengthT , it transmits a message by releasingX, 0 ≤ X ≤ Xmax, molecules into the fluid medium.

Here,Xmax is the maximum number of molecules releasable in any time-slot. The transmitter does not

affect the propagation of the molecules. The channel is one-dimensional. Molecules propagate between

the transmitter and receiver by Brownian motion characterized by a diffusion constantd and (positive)

drift velocity v.

At the receiver, all received molecules are absorbed and removed from the system. We consider two

cases: first, we ignore ISI and assume that a molecule released in time-slotm arrives within the same

time-slot or disappears; this leads to a DMC. In the second half of the paper, we consider one slot of

ISI, i.e., we assume molecules that do not arrive within two time-slots have disappeared1. Everything

else within the system operates perfectly, i.e., the only randomness in our model is the propagation time

(equivalently, the number of molecules that are received ina time-slot). Ifl denotes the distance between

transmitter and receiver2, using the AIG analysis in [3], the cumulative distributionfunction (CDF) of

the propagation time is given by

FW (w) = Φ

(
√

λ

w

(

w

µ
− 1

)

)

+ e
2λ

µ Φ

(

−

√

λ

w

(

w

µ
+ 1

)

)

, w > 0. (1)

Here,Φ (·) is the CDF of a standard Gaussian random variable,µ = l/v, λ = l2/σ2 andσ2 = d/2 is

the variance of the associated Weiner process [3]. It is noteworthy that in a 3-dimensional environment

the first passage process is transient, i.e., there is a non-zero probability of the molecule never arriving

at the receiver [25]. On the other hand, this is not true for the 1-D propagation under consideration; the

first passage process for the 1-D case is said to be “recurrent”.

When the transmitter releasesX = x molecules in a time-slot, the probability of receivingY = y of

1Note that one could use our analysis to avoid this assumption. However, the exposition becomes unwieldy and exponentially
complicated to deal with.

2The units ofl andv are normally inµm andµm/sec but but any scaled version of these units can be used
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these molecules in the same time-slot is given by

Pr (Y = y|X = x) =



























x

y



 qy1(1− q1)
x−y, 0 ≤ y ≤ x

0, y < 0, y > x,

(2)

whereq1 = FW (T ) is the probability of a molecule arriving within the same time-slot of its release.

In general,qk = FW (kT ) − FW ((k − 1)T ) denotes the probability of a molecule arriving in thek-th

time-slot after transmission.

At the start of time-slotk, Xk ∈ {0, 1, ...,Xmax} molecules are released. Letax = Pr (X = x),

0 ≤ x ≤ Xmax, denote the probability of releasingx molecules at the transmitter, andZk denote the

number of molecules in time-slotk, that were released butnot received in slot k. If Yk denotes the

number of molecules received in time-slotk, we have

Yk = Xk − Zk +Nk−1, Yk ∈ {0, 1, ..., kXmax} , (3)

in which, Nk−1 ∈ {0, 1, ..., (k − 1)Xmax} denotes the total number of “interfering” molecules from the

previousk − 1 time-slots arriving in time-slotk. ConsideringPk (n) = Pr(Nk−1 = n), the channel

transition probability whenXk = x molecules are transmitted is given by

pYk|Xk
(y | Xk = x) = (1− q1)

xPk (y) +





x

1



 q1(1− q1)
x−1Pk (y − 1) + ...





x

x− 1



 qx−1
1 (1− q)Pk (y − (x− 1)) + qx1Pk (y − x) , y = 0, ...,Xmaxk − (Xmax − x) .

(4)
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In (4), Pk(y) can be easily calculated by induction as

Pk (y) =
(

a0 + (1− qk) a1 + ...+ (1− qk)
XmaxaXmax

)

Pk−1 (y)+


qka1 +





2

1



 qk (1− qk) a2+...+





Xmax

1



 qk(1− qk)
Xmax−1aXmax



Pk−1 (y − 1)+

...


qXmax−1
k aXmax−1 +





Xmax

Xmax − 1



 qXmax−1
k (1− qk) aXmax



Pk−1 (y − (Xmax − 1))+

qXmax

k aXmax
Pk−1 (y −Xmax)

(5)

where, as defined,ai = Pr (X = i) for i ∈ {0, ...,Xmax}. If, as later in Section IV, we were to assume

that the ISI only affects the next time-slot, (5) is simplified to

P2 (0) =
(

a0 + (1− q2) a1 + ...+ (1− q2)
XmaxaXmax

)

P1 (0) , (6a)

P2 (1) =



q2a1 +





2

1



 q2 (1− q2) a2+...+





Xmax

1



 q2(1− q2)
Xmax−1aXmax



P1 (0) , (6b)

...

P2 (Xmax) = qXmax

2 aXmax
P1 (0) , (6c)

whereP1(0) = 1 as 0 molecules are received from the previous 0 time-slots.

B. Problem Statement

For the ISI channel, the average mutual information per channel use is given by

I = lim
L→∞

1

L
I
(

XL;Y L+k
)

, (7)

in which, XL = [X1, ...,XL] andY L+k = [Y1, ..., YL+k] , denote the length-L input andL + k output

sequences,k is the length of ISI, and the mutual information is evaluatedfor a given joint input distribution

PXL

(

xL
)

. This determines the achievable rate of reliable communication through this channel with this

specific input distribution; the channel capacity is the supremum of this mutual information over all

allowed joint input distributions.

Obtaining the capacity of the ISI channel requires optimization over the joint input distribution, a
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seemingly intractable problem. As suggested in [19], we focus on the case of i.i.d. inputs, i.e.,PXL =

a × ... × a = aL, wherea = [a0, ..., aXmax
]. We denote the resulting average mutual information as

Ii.i.d [19]. Note that this mutual information is a lower bound on the expression in (7), but, as in [19],

with a slight abuse of notation we will call the resulting mutual information the “channel capacity”. This

capacity is given by

C = lim
L→∞

1

L
sup
aL

I
(

XL;Y L+k
)

, (8)

Despite this significant simplification, calculating the channel capacity in (8) appears intractable and, in

the next sections, we investigate two related scenarios. Wefirst ignore ISI and obtain the capacity of

the resulting DMC under various possible constraints. In Section IV, we consider an ISI channel with a

memory of one time-slot.

III. C APACITY ANALYSIS OF MOLECULAR DMC WITH ASK

We begin by analyzing several capacity measures with different cost constraints for the basic discrete

memoryless molecular communication channel with ASK. As described in Section II, the DMC model

may also be motivated by a molecular communication system where the life expectancy of molecules is

equal to the time-slot duration. Specifically, we derive thecapacity per channel use, per unit time and per

unit cost with possible constraints on peak and average costof transmission. In each case, the optimum

input distribution and the resulting maximized capacity measure are also quantified.

A. Capacity Per Channel Use

The general capacity problem with only a constraint on the maximum number of transmitted molecules

per channel use (akin to a peak constraint on the input) is as follows

sup
P (Xm)

I (Xm;Ym) , (9)

subject to 0 ≤ Xm ≤ Xmax

whereXmax is the allowed maximum number of transmitted molecules per time-slot. Note that for this

case, we allow the transmitter to not release any molecules in a time-slot, i.e.,X = 0 is allowed. The

objective function in (9) is concave with respect to the input probability vectora and the constraint is
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linear, hence the optimization problem is concave. Hence, the solution of problem in (9) can be obtained

using the Blahut-Arimoto algorithm [26].

To describe the algorithm as applied here, using (2), we define an(Xmax + 1)× (Xmax + 1) channel

transition matrixP asPx,y = [p (Ym = y|Xm = x)], where,y ∈ [0, ...,Xmax] and x ∈ [0, ...,Xmax];

and matrixQ with Qy,x = [p (Xm = x|Ym = y)] with the same size asP, wherePx,y (Qy,x) denotes

the (x, y)((y, x))-th element ofP(Q). Let

J (a,P,Q) =
∑

x

∑

y
axPx,y log

Qy,x

ax
. (10)

Then the following is true [26]:

1) C = max
Q

max
a

J (a,Q,P) .

2) For fixeda, J (a,P,Q) is maximized by

Qy,x =
axPx,y

∑

j axPx,y
. (11)

3) For fixedQ, J (a,P,Q) is maximized by

ax =
exp

(

∑

y Px,y logQy,x

)

∑

x exp
(

∑

y Px,y logQy,x

) , 0 ≤ x ≤ Xmax. (12)

The Blahut-Arimoto algorithm begins with the transition probability matrix defined by (2) and an arbitrary,

but valid, choice fora. It then iterates between steps 2 and 3 above until convergence. Since, the mutual

information in (9) is concave in terms of input probability,the output of the algorithm is the optimal,

capacity-achieving, input probability distribution,̂a; as an aside, the matrixQ is the corresponding

output-input reverse transition matrix.

Figure 1 illustrates the results of using the Blahut-Arimoto algorithm in obtaining the optimal input

distribution. Figure 1a plots the optimum input distribution, ax, in terms ofT with l = 10−2, v = 1,

σ2 = 1 and Xmax = 10. Interestingly, though perhaps intuitively, the optimal distribution transitions

from a bipolar distribution for smallT to a uniform distribution for largeT (system essentially perfect).

In all cases in the figure, asT increases, the capacity converges tolog2(Xmax + 1).

Figure 1b plots the corresponding capacities as a function of the time-slot duration,T , for different

values ofσ2 and the same, fixed, values ofl and v. We observe that, for the given values ofv and l,

by increasingσ2 andT , the capacity increases. While it is intuitive that increasing T should increase
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Fig. 1: (a) Optimumax in terms ofT with l = 10−2, v = 1, σ2 = 1. (b-d) C in terms ofT for different
values of (b)σ2 with v = 1 and l = 10−2, (c) l with σ2 = 1 andv = 1 and (d)v with l = 10−2 and
σ2 = 1, all with Xmax = 10.

the capacity per channel use, by increasing the probabilityof receiving all molecules in one time-slot,

the increase with increasingσ2 is less intuitive. The explanation is that increasing the diffusion constant

increases the randomness in the location of the molecules, and the randomness helps improve the chances

of molecules arriving at the destination within one time-slot. This is consistent with the fact thatq1 =

FW (T ) is an increasing function ofσ for low-to-medium values ofv. For largev, q1 ≃ 1 and capacity is

near its maximum value. It is worth noting that when information is encoded in time-of-release as in [3],

the mutual information is not monotonic inσ.

Figures 1c and 1d plot the capacity for different values ofl andv, respectively. As expected, decreasing

l (equivalently, increasingv) improves capacity significantly because, in each case, clearly, q1 increases.
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B. Capacity with Average Cost Constraint

A variation on the optimization in (9) is when the average cost of transmitted molecules per channel

use is also constrained. The resulting optimization problem is

sup
p(Xm)

I (Xm;Ym) , (13a)

subject to 0 ≤ Xm ≤ Xmax (13b)

E (eXm
) ≤ E (13c)

where eXm=x ≥ 0 is the cost of usingx molecules as the ASK symbol. The vectore = [ex], x ∈

{0, 1, ...,Xmax} specifies the cost vector. A concrete example is when the transmission cost is equal

(proportional) to the number of transmitted molecules per channel use, i.e.,ex = x. The capacity with

cost constraintE is then defined as

C (E) = max
a∈AE

∑

x

∑

y
axPx,y log

Px,y
∑

x axPx,y
= max

a∈AE

I (a,P) (14)

whereAE = {a |
∑

x axex ≤ E} denotes the set of all allowable input distributions that meet the cost

constraint.

With a concave cost function and linear constraints, the optimization problem in (14) is concave.

Hence, the solution can be obtained using the constrained Blahut-Arimoto algorithm [26]. Using Lagrange

multipliers, the cost function can be parameterized as

C (E) = max
a

[

∑

x

∑

y
axPx,y log

Px,y
∑

x axPx,y
− s

(

∑

x
axex − E

)

]

, (15)

wheres denotes the Lagrange multiplier. The maximization is now over all input probability vectorsa.

For any matrixQ with size (Xmax + 1)× (Xmax + 1), let

J (s, a,P,Q) =
∑

x

∑

y
axPx,y log

Qy,x

ax
− s

∑

x
axex (16)

Hence, using (16), the following is true [26]

1) The constrained capacityC = s
∑

x xax +max
Q

max
a

J (s,a,P,Q)
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Fig. 2: (a) Optimumax for different values of average cost constraint withT = 10msec, (b) C in terms
of average cost constraint for different values ofT , all with σ2 = 1, v = 1, l = 10−2, Xmax = 10.

2) For fixeda, J (s, a,P,Q) is maximized by

Qy,x =
axPx,y

∑

x axPx,y
(17)

3) For fixeds, P, J (s, a,P,Q) is maximized by

ax =
exp

(

∑

y Px,y logQy,x − sex

)

∑

x exp
(

∑

y Px,y logQy,x − sex

) . (18)

4) The optimums is the minimum value (≥ 0) that satisfies the constraint
∑

x exax ≤ E.

The procedure to optimize for the input distribution is similar to that without the average cost constraint.

The one additional step is to obtain the parameters after updating the distribution vectora. As per 4)

above, the minimum value ofs can be obtained by a bisection search. To obtain the optimal distribution,

the algorithm is executed settingE =
∑

x exax. In the rest of the paper, unless otherwise mentioned, we

considerex = x.

Figure 2 plots the result of including an average cost constraint within the optimization problem of

(13). For ease of illustration, in Fig. 2a, withT = 10 msec, we vary the Lagrange multipliers, to vary

the average transmission cost. Increasing the parameters in (18) reducesE = E(ex) as expected; further,

reducingE, i.e., making transmissions expensive, shifts the optimalprobability distribution to the lower

values ofx. Figure. 2b plots the constrained capacity in bits per channel use in terms of average cost

constraint, i.e.E, in molecules, for different values ofT . It is evident that by increasingE andT the
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capacity increases, i.e., as expected, a stricter constraint reduces the achievable rate.

C. Capacity Per Unit Time

It is worth noting that the solutions to the optimization problems in Sections III-A and III-B can be

used to solve other problems of interest such as to maximize the mutual information per unit time with

constraints on the maximum and/or average number of transmitted molecules per unit time. The general

optimization problem is as follows

sup
p(Xm)

I (Xm;Ym)

T
(19a)

subject to 0 ≤
Xm

T
≤ Pmax, (19b)

0 ≤ E
(eXm

T

)

≤ P̄ (19c)

where,Pmax andP̄ are the maximum and the average number of transmitted molecules allowedper unit

time. However, sinceT is a constant and independent ofax, we can use the same approach as described

above by settingXmax to be the integer closest to(PmaxT ) andE = P̄ T .

We note that a related problem of interest is obtaining the optimal time-slot duration,Topt, that

maximizes the capacity per unit time for a given set of systemparameters (v, l andσ2). Unfortunately,

this optimization problem is not concave and so we have resorted here to numerical solutions.

Figures 3a and 3b plotC/T in bits/sec andq1, respectively, as functions of time-slot durationT , for

different values ofv. Here,σ2 = 0.5, l = 10−2 andX/T ≤ 20×103 molecules/sec. As expected, there is

an optimum value for time-slot duration,Topt, which maximizes theI(Xm;Ym)/T , though, interestingly,

this duration does not vary significantly with drift velocity. As drift velocity increases, the optimal value

slowly decreases. Locating the corresponding values ofq1 in Fig 3b we observe that the maximum value

of C/T corresponds to a value ofq1 higher than 0.9. For such a large probability that the molecules

arrive within the same time-slot, the assumed DMC model turns out to be essentially accurate. Hence,

we plotC/T in Figure 3a for the range ofT which corresponds to this value ofq1.

Figure 3c plotsTopt, derived numerically, as a function ofl for different values ofσ2. We observe that

increasingσ2, Topt reduces while it increases with increasingl (to ensure that an adequate percentage of

molecules arrive within the time-slot).

Figures 4a and 4b plotE(X/T ) andC/T in terms ofT for different values ofs. In the results of
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Fig. 3: (a)C/T and (b)q1 in terms ofT for different values ofv with σ2 = 0.5, l = 10−2, (c) Topt in
terms ofl for different values ofσ2 with v = 1
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these figures, the input distribution is derived from optimization problem in (19). HereE(X/T ) andC/T

decrease with increasings. Since,s is a Lagrange multiplier, in (13), increasing its value tightens the

constraint in (13c), i.e.,E(X/T ) andC/T are also reduced.

D. Capacity Per Unit Cost

A final optimization problem within the DMC framework of interest is the relative capacity, i.e., the

capacity per unit cost. This is akin to optimizing the “energy efficiency” in molecular communications.

Here, we investigate maximizing the mutual information peraverage transmission cost when the maximum

number of transmitted molecules per channel use is limited.The associated optimization problem is given

by

sup
p(Xm)

I(Xm;Ym)
E(eXm ) (20)

subject to 0 ≤ Xm ≤ Xmax

The ratio of mutual information to transmission cost, as in (20), is defined in [27] as relative capacity,

usually denoted byCR.

In (20) the choice of costeXm=x = x is the average number of molecules transmitted,E(X); allowing

X = 0 implies that we allow for a symbol with zero cost. Clearly, any optimization would maximize use

of the symbol (a0 = 1). To avoid form zero information rate, we can add a constant,i.e., useex = c0+x,

wherec0 is a small constant value, ensuring that there is no symbol with zero cost.

Since the relative capacity,I(Xm;Ym)/E(eXm
), is a continuous and quasi concave function ofa, it

may be maximized using the Jimbo-Kunisawa algorithm [28]. The corresponding iterative procedure is

as follows:

1) Initially, choose an arbitrary probability vectora(0),

2) After therth iteration, having obtained probability vectora(r), construct the(r + 1)th probability

vectora(r+1) as follows;

ã(r+1)
x = a(r)x exp

[

e0Dx

(

a(r)
)

ex

]

, x = 0, ...,Xmax, (21)

where

Dx

(

a(r)
)

=
∑

y
Px,y log

Px,y
∑

x a
(r)
x Px,y

. (22)
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Fig. 5: (a) Optimumax which maximizes relative capacity for different values ofXmax with T = 10msec,
c0 = 0. (b) Same as (a) withc0 = 1.(c) I(Xm;Ym) and (d)CR in terms ofT for different values of
Xmax with c0 = 1 and all withσ2 = 1, v = 1, l = 10−2.

Finally, we need to normalize the distribution using

a(r+1)
x =

ã
(r+1)
x

∑

x ã
r+1
x

. (23)

We iterate until
∣

∣

∣C
(r+1)
R − C

(r)
R

∣

∣

∣ < ε, whereC(r)
R is the value of objective function in (20) atrth iteration

andε > 0 is arbitrary small number.

Figure 5 plots the results of the optimization problem in (20). Figure 5a plots the optimum input

distribution which maximizes (20) without shifting the cost function, i.e., lettingc0 = 0. As is clear, for

all values ofXmax, the solution is to never transmit any molecules!

The remaining figures in this set usec0 = 1, i.e., ex = x + 1. Figure 5b plots the optimum input

distribution which maximizes (20) forT = 10ms. Comparing Figs. 5a and 5b, we observe that by
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TABLE I: Summary of results for Capacity in DMC.

Objective
Function

Transmission Cost
function

Solution
Parameters

Xmax σ v l T E(X)

I (Xm;Ym)
0 ≤ Xm ≤ Xmax (12)

↑ ↑ ↑ ↓ ↑
NA

Xm ≤ Xmax, E(Xm) ≤ E (18) ↑

I(Xm;Ym)/T
0 ≤ Xm ≤ Xmax (12)

↑ ↑ ↑ ↓ րց
NA

0 ≤ Xm ≤ Xmax,E(Xm) ≤ E (18) ↑

I (Xm;Ym)/E (Xm)
0 ≤ Xm ≤ Xmax

(23) ↓ ↑ ↑ ↓ ↑ NA

Pe 0 ≤ Xm ≤ Xmax (44) ↑ * ↓ ↑ ↓ NA

Topt 0 ≤ Xm ≤ Xmax

Numerical
results

− ↓ ↓ ↑ ↑ NA

↑ : Ascending function,↓ : Descending function,րց : Function have a maximum,
* : Depends onT , for non large values ofT is ↓, for large values ofT is ↑
NA: Not applicable.

changing the cost function toe(X) = X+1, the optimum distribution is radically different, and probability

of transmitting non-zero symbols increases (even thoughX = 0 remains the symbol with the highest

probability). Figure 5c plotsI(Xm;Ym) when the input distribution is obtained from (23) for different

values ofXmax with e(X) = X+1. Observe that, by increasingXmax, I(Xm;Ym) increases. Figure 5d

plots the relative capacity,CR, for different values ofXmax. We observe that the relative capacity increases

asXmax increases, but that quickly saturates to a value of 1 bit/cost.

Table 1 summarizes the effect of parameters in the molecularmedium, such asv, l and σ2, and

the transmitter parameters, such asXmax andE(X). Note that the table refers to error rates, an issue

considered in Section IV-F.

IV. CAPACITY ANALYSIS OF MOLECULAR ISI CHANNEL

While the previous section analyzed several capacity measures for ASK communications over molecular

DMC, in this section, we initiate an analysis in presence of ISI. As stated earlier, we focus on one time-

slot of allowed memory. As with many problems dealing with ISI, we are unable to obtain exact results

and resort to bounds. Specifically, we develop two lower bounds and an upper bound for the capacity

of the molecular communication system under consideration. We emphasize that the inputs are i.i.d.,

i.e., the term ”capacity” here refers to the simplified case where the inputs within each time-slot are

chosen independently and from the same probability distribution. Finally, in this section we develop

the maximum a posteriori (MAP) detector (as a possible implementation of a molecular communication

March 27, 2018 DRAFT



18

receiver) to evaluate the assumption of restricting memoryto only one time-slot. We do this by comparing

the numerical and simulation results of the performance measure, the probability of error. It is worth

noting that one could consider ISI over multiple time-slotsusing (5). However, this adds exponential

complexity to the analysis.

A. Lower bound 1

The first lower bound considers the effect of ISI on the mutualinformation between input and output

symbols within the same time-slot. This is a lower bound on the channel capacity because this measure

ignores the memory; essentially, we consider a DMC but with an additional source of measurement error

due to molecules from the previous time-slot. This lower bound relates to a lower bound ofIi.i.d in a

discrete-input Gaussian channel with ISI [19]. Hence we have

ILB1
= I (Xm;Ym) = H (Ym)−H (Ym|Xm)

=−
2Xmax
∑

ym=0
p (ym) log (p (ym)) +

Xmax
∑

xm=0
axm

xm+Xmax
∑

ym=0
p (ym|xm) log p (ym| xm)

(24)

wherep (ym| xm) is given by

p (ym| xm) =



































xm
∑

i=0





xm

i



 (1− q1)
xm−iqi1

Xmax
∑

j=ym−i





j

ym − i



 aj×

qym−i
2 (1− q2)

j−(ym−i), ym ≤ xm +Xmax

0, ym > xm +Xmax.

(25)

By averaging overxm on p (ym|xm) , p (ym) is given by

p (ym) =

Xmax
∑

xm=0

axm

xm
∑

i=0





xm

i



 (1− q)xm−iqi
Xmax
∑

j=y−i





j

ym − i



 ajp
ym−i
2 (1− p2)

j−(ym−i). (26)

Given an input probability vectora, this lower bound can be easily evaluated.

B. Lower Bound 2

With the one time-slot memory model, the transmitted symbolin the current time-slot only affects the

received molecules in the current and the next time-slot. Weconsider the mutual information between
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transmitted symbol in current time-slot and received symbols in the current and next time-slot

ILB2
= I (Xm−1;Ym−1, Ym)

(a)
= H (Ym, Ym−1)−H (Ym, Ym−1|Xm−1)

(b)
= H (Ym−1) +H (Ym|Ym−1)−H (Ym−1|Xm−1)−H (Ym|Xm−1, Ym−1) (27)

where (a) and (b) are obtained based on the definitions of mutual information and joint entropy, respec-

tively. We consider the channel in the steady state regime, henceP (ym−1|xm−1) = p (ym|xm), which

is given in (25). Also,p (ym| ym−1, xm−1) is given by

p (ym| ym−1, xm−1)
(a)
=

Xmax
∑

xm=0
p (xm| ym−1, xm−1) p (ym| ym−1, xm, xm−1)

(b)
=

Xmax
∑

xm=0
p (xm) p (ym| ym−1, xm, xm−1)

(28)

where (a) is obtained based on the law of total probability, (b) is obtained based on the independence of

xm from ym−1 andxm−1 which is due to the i.i.d assumption of the input distribution and causality. By

averaging overxm−1 in (28), p (ym| ym−1) is given by

p (ym| ym−1) =
Xmax
∑

xm−1=0
p (xm−1| ym−1) p (ym| ym−1, xm−1)

(a)
=

Xmax
∑

xm−1=0
p (xm−1| ym−1)

Xmax
∑

xm=0
p (xm)p (ym| ym−1, xm, xm−1)

(b)
=

Xmax
∑

xm−1=0

p(ym−1|xm−1)p(xm−1)
p(ym−1)

Xmax
∑

xm=0
p (xm) p (ym| ym−1, xm, xm−1).

(29)
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where (a) and (b) are obtained based on the law of total probability, and Bayes rule, respectively. Also,

p (ym| ym−1, xm, xm−1) is given by

p (ym| ym−1, xm, xm−1)
(a)
=

Xmax
∑

y′

m−2=0
p
(

y′m−2

∣

∣ ym−1, xm, xm−1

)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(b)
=

Xmax
∑

y′

m−2=0
p
(

y′m−2

∣

∣ ym−1, xm−1

)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(c)
=

Xmax
∑

y′

m−2=0

p(ym−1,xm−1|y′

m−2)p(y′

m−2)
p(ym−1,xm−1)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(d)
=

Xmax
∑

y′

m−2=0

p(ym−1|y′

m−2,xm−1)p(xm−1|y′

m−2)p(y′

m−2)
p(ym−1|xm−1)p(xm−1)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(e)
=

Xmax
∑

y′

m−2=0

p(ym−1|y′

m−2,xm−1)p(xm−1)p(y′

m−2)
p(ym−1|xm−1)p(xm−1)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

=
Xmax
∑

y′

m−2=0

p(ym−1|y′

m−2,xm−1)p(y′

m−2)
p(ym−1|xm−1)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(f)
=

ym−1
∑

y′

m−2=0

p(x′

m−1|xm−1)p(y′

m−2)
p(ym−1|xm−1)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

)

(30)

where (a) is obtained based on the law of total probability and y′m−2 is the number of received molecules

at the end of time-slotm− 1 from transmitted molecules in time-slotm− 2; (b) is obtained due to the

independence ofy′m−2 from xm; (c) is obtained based on Bayes’ rule; (d) is obtained based on the joint

probability formula; (e) is obtained based on independenceof y′m−2 andxm−1 and the joint probability

formula; (f) is obtained due to the fact thatym−1 = x′m−1 + y′m−2, wherex′m−1 denotes the number of

absorbed molecules at time-slotm− 1 at end of time-slotm− 1. Based on definition ofy′m−2 we have

p
(

y′m−2

)

=
Xmax
∑

xm−2=0

axm−2





xm−2

y′m−2



q2
y′

m−2(1− q2)
xm−2−y′

m−2 (31)

p
(

ym| ym−1, xm, xm−1, y
′
m−2

) (a)
= p

(

ym|xm, x′′m−1 = xm −
(

ym−1 − y′m−2

))

=






















xm
∑

i=ym−xm−1





xm

i



 (1− q1)
xm−iq1

i





x′′m−1

ym − i



 qym−i
2 (1− q2)

x′′

m−1−(ym−i),ym < xm + x′′m−1

0 ,ym > xm + x′′m−1

(32)

(a) is obtained becausexm−1 = x′m−1 + x′′m−1, wherex′′m−1 is the number of remaining molecules at

end of time-slotm− 1 from transmitted molecules in the same time-slot. Moreover, based on definition
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of x′m−1 , P (x′m−1|xm−1) is given by

P
(

x′m−1

∣

∣ xm−1

)

=





xm−1

x′m−1



 q
x′

m−1

1 (1− q1)
xm−1−x′

m−1 . (33)

While far more involved, as with the first lower bound in (24),given the input probability distribution,

obtaining this bound is a simple matter.

C. Upper Bound

Having developed two lower bounds on capacity, we now develop an upper bound motivated by the

matched filter upper bound in Gaussian ISI channels [19]. With one time-slot memory for the channel,

if we transmit symbols and wait two time-slots before transmitting the next symbol and remove any

subsequently arriving molecules, we have an interference-free channel and arrive at an upper bound to

the capacity per channel use. This is equivalent to the DMC case with the binomial transition probabilities

of (2) whereq1 is replaced byqU = FW (2T ). The mutual information of this channel is concave which

can be maximized using the Blahut-Arimoto algorithm [26]. We therefore have the upper bound

IUB = I (Xm;Ym) = H (Ym)−H (Ym|Xm) (34)

whereP (ym|xm) is given by

P (ym|xm) =



























xm

ym



 q
ym

U (1− qU)
xm−ym ,ym ≤ xm

0 ,ym > xm.

(35)

andqU = FW (2T ). Clearly,

ILB2
= I (Xm−1;Ym−1, Ym)

(a)
= I (Xm−1;Ym−1) + I (Xm−1;Ym |Ym−1 )

(b)

≥ I (Xm−1;Ym−1) = ILB1

(36)

where (a) is obtained from chain rule in mutual information and (b) is obtained based on the non-negativity

of mutual information. Hence, we have the following result

ILB1
≤ ILB2

≤ Ii.i.d ≤ IUB,
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as long as the input distribution for the upper bound is optimum. We discuss optimizing the bounds next.

D. Optimizing Lower and Upper Bounds

We are unable to show the concavity of the lower boundsILB1
and ILB2

with respect to the input

distribution vectora; however, we can modify the Blahut-Arimoto algorithm [26] to find a local maximum,

and as a result, we can optimize, to within a local maximum, these two lower bounds. The channel

transition matricesP(LBh), h ∈ {1, 2} for lower bounds 1 and 2 are

P(LB1)
xm,ym

= [p (Ym = ym|Xm = xm)] (37)

P(LB2)
xm−1,ym−1ym

= [p (Ym = ym, Ym−1 = ym−1|Xm−1 = xm−1)] (38)

where, importantly, the size ofP(LB1) andP(LB2) are (Xmax + 1) × (2Xmax + 1) and (Xmax + 1) ×

(2Xmax + 1)2 respectively. Also,ym,ym−1 ∈ [0, ..., 2Xmax ] andxm ∈ [0, ...,Xmax] . For matrixQ with

size ofP(LBh), h ∈ {1, 2} , let

J
(

a,P(LBh),Q
)

=
∑

j

∑

i
ajP

(LBh)
j,i log

Qi,j

aj
. (39)

Then the following is true.

1) ILBh
= max

a
max
Q

J
(

a,P(LBh),Q
)

.

2) For fixeda, J
(

a,P(LBh),Q
)

is locally maximized by

Qk,j =
ajP

LB(h)

j,k
∑

j ajP
LB(h)

j,k

. (40)

3) For fixedQ, J
(

a,P(LBh),Q
)

is locally maximized by

aj =
exp

(

∑

i P
(LBh)
j,i logQi,j

)

∑

j exp
(

∑

i P
(LBh)
j,i logQi,j

) (41)

The algorithm iterates betweenaj derived in (41) and the transition probability matricesP(LBh) in (37)

or (38). This procedure is repeated until the convergence ofthe probabilitiesaj .

In contrast to the lower bounds,IUB is a concave function in terms ofa. Hence, using the standard

Blahut-Arimoto algorithm [26] a unique distribution globally maximizing the upper bound can be obtained

(note that this is critical forIUB to be a valid upper bound).
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E. MAP and ML Detectors

In this subsection, we derive the detection performance of amolecular ASK receiver. Since the true

channel capacity is unknown, we are unable to directly evaluate the quality of the assumption of one

time-slot memory in molecular ISI channel on the capacity analysis. As a proxy, we examine the effect of

this assumption on the detection performance using simulations and analysis. In general, one may resort

to a sequence detector over an ISI channel for improved performance [29]–[31], however, in molecular

communications the implementation complexity for nano-machines is likely to be prohibitive. Hence,

here we consider a MAP symbol-by-symbol detector at the receiver to estimate the number of molecules

transmitted. Hence, here we consider a MAP symbol-by-symbol detector at the receiver to estimate the

number of molecules transmitted. The decision rule is givenby

x̂ = argmax
x

pYk|Xk
(x| y) = argmax

x
pYk|Xk

(y|x) p (x) (42)

By replacing (4) in (42), we have

x̂ = argmax
x

∑y−x

i=0
ax





x

i



 qi1(1− q1)
x−iPk (y − i) (43)

If x molecules are transmitted, the decision region for detecting x at the receiver is denoted by{Yx}.

Hence, probability of error is denoted by

Pe =

Xmax
∑

x=0

P (y /∈ {Yx}| x) ax (44)

As always, using a uniform input distribution inax, makes the MAP detector a ML detector.

F. Numerical Results

We now evaluate and compare the derived bounds for various medium parameters such asl, v

and σ. Figures 6a and 6b plot the two lower bounds. We quantify the lower bounds for three input

distributions: (i) optimized input distribution from maximizing I(Xm;Ym) (I(Xm;Ym, Ym+1)), denoted

by ”OptimizedI(Xm, Ym)” (”Optimized I(Xm;Ym, Ym+1) ”) in the legend forILB1
(ILB2

), (ii) optimized

input distribution from maximizing the mutual informationof DMC in (9), denoted by ”Optimized

DMC” in the legend, and (iii) uniform input distribution. This study shows the impact of selecting

input distribution on the numerical value of capacity bounds. One sees that using the optimized input
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Fig. 6: (a-b) Two lower bounds versusT (c) Comparing the lower bounds for uniform and optimized
input distributions.v = 1, l = 10−2, σ2 = 1, Xmax = 7.

distributions, the boundsILB1
and ILB2

improve noticeably in comparison to the cases with uniform

input distribution. This is while a uniform distribution maximizes the source entropy and the capacity of

a molecular channel without ISI (here an error free channel). Another important observation here is that

each of the two proposed bounds for the molecular ISI channelamounts to almost an equal rate with

either its corresponding optimized distribution or that from the molecular DMC case in Section III. To

directly compare the two bounds, Figure 6c comparesILB1
andILB2

as a function ofT for the optimized

input distribution from (41) (labeled by ”Optimized”), anda uniform input distribution.

Figures 7a-7c plotILB2
, ILB1

, CDMC andIUB versusT for different values of the transmitter-receiver

distance,l, the diffusion constantσ and drift velocityv, respectively. As evident, by decreasingl all

bounds increase and converge tolog2 (Xmax + 1) = 3, which is the entropy of the source. Similarly, all

capacity bounds are increasing functions ofσ. As also observed in [3] (for the case when information is
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Fig. 7: ILB2
, ILB1

, CDMC andIUB in terms ofT for different values of (a)l (Black curves,l = 10−2,
blue curves,l = 10−3, red curves,l = 10−4) with v = 1, σ2 = 1, (b) σ2 (Black curves,σ2 = 1, blue
curves,σ2 = 10, red curves,σ2 = 100) with v = 1, l = 10−2, (c) v (Black curves,v = 1, blue curves,
v = 100) with l = 10−2, σ2 = 1 all with Xmax = 7.

encoded in the time of release) increasing drift velocity increases mutual information due to reduced ISI.

Comparing the results of the three recent sub-figures, we note that the bounds are most sensitive to the

transmitter-receiver distancel and drift velocityv while not being as sensitive to the diffusion constant

σ. Crucially, over wide ranges ofT , the upper and lower bounds are close. Also, due to the reduced ISI,

reducingl reduces the gap between all the derived bounds.

The capacity of an ASK-based molecular communication channel is in general unknown. To test the

validity of the one time-slot memory assumption, we comparethe probability of error of the ML detector

in three cases: no ISI (the DMC of Section III), including ISIup to one time-slot (the case analyzed

in Section IV) and simulation results that track the arrivals of all molecules. We reason that, if our
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assumption is invalid, there should be a noticeable difference between the error rates for the three cases.

In all cases, we use a uniform input distribution (making theMAP and ML detectors equivalent).

Figure 8 plots the probability of error,Pe, of the ML detector versusT . In this figure, (i) the solid

curves denote the error probability for the molecular DMC case, (ii) the dashed curves denote the error

assuming single time-slot memory (STM) ISI model, and (iii) the markers denote simulation results based

on tracking all molecules (labeled as the multiple time-slot ISI model (MTM)). By comparing whether

the markers match the dashed or solid curves in these figures,one can examine the range of parameters in

which each of the DMC, STM or MTM models is valid. In Fig. 8a,Pe is depicted versusT for different

values ofv with l = 10−2 andσ2 = 1. One sees that withv = 10, for T > 2 × 10−2, the numerical

results of DMC match the simulation results and for3 × 10−3 < T < 2 × 10−2, numerical results of

STM match the simulation results; hence forv = 10, the DMC and STM models are valid in the said

ranges, respectively. Also, Figure 8b showsPe in terms ofT for different values ofσ2 with v = 1 and

l = 10−2. We observe that for small to medium values ofT , increasingσ2 reducesPe, while for large

values ofT , increasingσ2, increasesPe instead. This is consistent with the behavior ofq1 as a function

of σ2. For small and medium values ofT , in which ISI is important,q1 is an increasing function in

terms ofσ2, i.e., the increased variance in position increases the probability of the molecules arriving

within two time-slots after release. Moreover, one sees in this figure that forσ2 = 0.1, the DMC and

STM models are valid forT > 3× 10−1 and10−3 < T < 3× 10−1, respectively.

It is evident in Figure 8, that the numerical results of the DMC case (the solid curves) match well

to the simulation results for higher values ofT , while those of the one time-slot memory model (the

dashed curves) match the simulation results for lower values of T . The results show that accounting for

one time-slot of memory is adequate for design and capacity analysis purposes in an interesting range

of molecular channel parameters and error probabilities. Specifically, the corresponding results are very

close to the more accurate case of memory spread over multiple time-slots. For more accurate analysis in

these cases, one may opt to extend the presented analysis to the case where molecules arriving with more

than one time-slot delay are also taken into account in modeling ISI. Naturally, this is only achieved at

the cost of substantial (exponentially growing) computational complexity in the analysis.

For small values ofT the duration of ISI is more than one time-slot, and the probability of error

performance of the ML detector deteriorates. This is naturally assuming that the delayed molecules do
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Fig. 8: Pe in terms ofT using ML detector for different values of (a)v with l = 10−2, σ2 = 1 (b)
σ2 with l = 10−2, v = 1, all with Xmax = 7. (Solid lines: numerical results of calculatedPe over
DMC, Dashed lines: numerical results of calculatedPe with single time-slot memory (STM), markers:
Simulation results (multiple time-slot memory (MTM)). )

not expire over time. As stated, one may resort to more advanced and complex sequence detectors over

such harsh ISI channels to increase the rate and yet maintaina desired error performance. The analysis

and design of such schemes may be investigated in future studies.

It is noteworthy that depending on the characteristics of the fluid media, the quantity of molecules

and their life expectancy, the slot duration should be chosen such that a statistical majority of molecules

emitted in a slot arrive within a time-slot. Of course, the presented model, detectors and analyses will
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serve most effectively in such a practical setting.
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V. CONCLUSIONS

In this paper, we analyze the capacity of a molecular communications channel when information is

encoded in the number of transmitted molecules (molecular ASK). The molecules propagation is governed

by Brownian motion and the probability of arrival within a specific time-slot is derived using the additive

inverse Gaussian model for the transmission time. We analyzed the capacity in both DMC and ISI cases.

For the DMC, the optimized input distribution was derived toachieve the capacity per channel use,

per unit time and per unit cost. Our results show that for small (large) values of transmission time-slots,

the distribution achieving the capacity per channel use converges to bipolar (uniform) distribution. Also,

imposing a limitation on average number of transmitted molecules per channel use reduces the capacity

per channel use and makes symbols with lower transmission cost more probable. As a result in this

case, the optimum input distribution, maximizing the capacity per channel use, deviates from a uniform

distribution even for large values of time-slot duration. By considering the capacity per unit time as

the objective function, the optimum time-slot duration, which maximizes the capacity with peak and/or

average constraints on the number of transmitted moleculesper unit time, was obtained numerically. We

studied the dependence of the optimum time-slot duration with parameters of the molecular medium.

This paper also offered the first study on the capacity per unit cost in molecular communications, which

is a capacity measure conscious of its relative efficiency with respect to the molecular injection rate. For

the case where molecular alphabet only consists of symbols with non-zero cost, a non-zero capacity per

unit cost is feasible and we obtained the corresponding optimized input distribution.

The second half of this paper analyzes the case with ISI; specifically, with ISI restricted to one time-

slot. Two lower bounds and an upper bound for ASK-based molecular communication with ISI were

derived. Our results quantified how the lower bounds improvewhen the corresponding input symbol

distributions are optimized. Importantly, our results showed that over a wide range of parameter values

the gap between the lower and upper bounds are small and so canprovide a good measure of capacity. The

results also showed that the optimum distribution obtainedassuming a DMC provides close-to-optimal

results for the ISI case as well.

To test the validity of the one time-slot memory model for themolecular ISI channel, we compared

the performance of the ML detector in this case, with that assuming a DMC model and the results from

the simulations. As our results show, the one time-slot memory model is valid over an interesting range
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of molecular channel parameters. One may extend the presented analysis to the case with multiple time-

slot memory models at the cost of increased computational complexity. Also, the design and analysis of

efficient detectors in these settings is another possible future research direction.

REFERENCES

[1] F. Sako and M. Ueda,Cell Signaling Reactions, Single-Molecular Kinetic Analysis. Springer, 2011.
[2] B. Atakan and O. Akan, “An information theoretical approach for molecular communication,” inBio-Inspired Models of

Network, Information and Computing Systems, Dec 2007, pp. 33–40.
[3] K. V. Srinivas, A. Eckford, and R. Adve, “Molecular communication in fluid media: The additive inverse gaussian noise

channel,”IEEE Trans. on Inf. Theory, vol. 58, no. 7, pp. 4678–4692, July 2012.
[4] N.-R. Kim and C.-B. Chae, “Novel modulation techniques using isomers as messenger molecules for nano communication

networks via diffusion,”IEEE Journal on Selected Areas in Commun., vol. 31, no. 12, pp. 847–856, December 2013.
[5] T. Nakano, Y. Okaie, and J.-Q. Liu, “Channel model and capacity analysis of molecular communication with Brownian

motion,” IEEE Commun. Letters, vol. 16, no. 6, pp. 797–800, June 2012.
[6] T. Nakano, A. W. Eckford, and H. T.,Molecular communication. Cambridge, UK: Cambridge University Press, Oct.

2013.
[7] A. Einolghozati, M. Sardari, A. Beirami, and F. Fekri, “Capacity of discrete molecular diffusion channels,” inIEEE Int.

Symp. on Inf. Theory, July 2011, pp. 723–727.
[8] Q. Liu, K. Yang, and P. He, “Channel capacity analysis formolecular communication with continuous molecule emission,”

in Int. Conf. on Wireless Commun. Signal Proc., Oct 2013, pp. 1–6.
[9] B. Atakan, S. Galmes, and O. Akan, “Nanoscale communication with molecular arrays in nanonetworks,”IEEE Trans. on

NanoBioscience,, vol. 11, no. 2, pp. 149–160, June 2012.
[10] M. Pierobon and I. Akyildiz, “Capacity of a diffusion-based molecular communication system with channel memory and

molecular noise,”IEEE Trans. on Inf. Theory, vol. 59, no. 2, pp. 942–954, Feb 2013.
[11] H. Arjmandi, A. Gohari, M. Kenari, and F. Bateni, “Diffusion-based nanonetworking: A new modulation technique and

performance analysis,”IEEE Commun. Letters, vol. 17, no. 4, pp. 645–648, April 2013.
[12] N.-R. Kim, A. Eckford, and C.-B. Chae, “Symbol intervaloptimization for molecular communication with drift,”IEEE

Trans. on NanoBioscience, vol. 13, no. 3, pp. 223–229, Sept 2014.
[13] L.-S. Meng, P.-C. Yeh, K.-C. Chen, and I. Akyildiz, “A diffusion-based binary digital communication system,” inIEEE

Int. Conf. on Comm., June 2012, pp. 4985–4989.
[14] M. Kabir and K. Kwak, “Molecular nanonetwork channel model,” Electronics Letters, vol. 49, no. 20, pp. 1285–1287,

September 2013.
[15] M. Kuran, H. Yilmaz, T. Tugcu, and I. Akyildiz, “Modulation techniques for communication via diffusion in nanonetworks,”

in IEEE Int. Conf. on Commun., June 2011, pp. 1–5.
[16] H. Li, S. M. Moser, and D. Guo, “Capacity of the memoryless additive inverse gaussian noise channel,”IEEE Journal on

Selected Areas in Commun., vol. 32, no. 12, pp. 2315–2329, Dec. 2012.
[17] A. Eckford, K. Srinivas, and R. Adve, “The peak constrained additive inverse gaussian noise channel,” inIEEE Int. Symp.

on Inf. Theory, July 2012, pp. 2973–2977.
[18] A. Singhal, R. Mallik, and B. Lall, “Molecular communication with brownian motion and a positive drift: performance

analysis of amplitude modulation schemes,”IET Commun., vol. 8, no. 14, pp. 2413–2422, Sept 2014.
[19] S. Shamai, L. Ozarow, and A. Wyner, “Information rates for a discrete-time gaussian channel with intersymbol interference

and stationary inputs,”IEEE Trans. on Inf. Theory, vol. 37, no. 6, pp. 1527–1539, Nov 1991.
[20] W. Hirt and J. Massey, “Capacity of the discrete-time gaussian channel with intersymbol interference,”IEEE Trans. on

Inf. Theory, vol. 34, no. 3, pp. 38–38, May 1988.
[21] G. Taricco and J. Boutros, “An asymptotic approximation of the isi channel capacity,” inInf. Theory and App. Workshop,

Feb 2014, pp. 1–5.
[22] D.-M. Arnold, H.-A. Loeliger, P. Vontobel, A. Kavcic, and W. Zeng, “Simulation-based computation of information rates

for channels with memory,”IEEE Trans. on Inf. Theory, vol. 52, no. 8, pp. 3498–3508, Aug 2006.
[23] Y. Chahibi and I. Akyildiz, “Molecular communication noise and capacity analysis for particulate drug delivery systems,”

IEEE Trans. on Commun., vol. PP, no. 99, pp. 1–13, Dec 2014.

DRAFT March 27, 2018



31

[24] Y. N. Dou, J. Zheng, W. D. Foltz, R. Weersink, N. Chaudary, D. A. Jaffray, and C. Allen, “Heat-activated thermosensitive
liposomal cisplatin (htlc) results in effective growth delay of cervical carcinoma in mice,”Journal of Controlled Release,
vol. 178, pp. 69 – 78, 2014.

[25] R. M. Ziff, S. N. Majumdar, and A. Comtet, “Capture of particles undergoing discrete random walks,”The Journal of
Chemical Physics, vol. 130, no. 20, 2009.

[26] R. Blahut, “Computation of channel capacity and rate-distortion functions,”IEEE Trans. on Inf. Theory, vol. 18, no. 4, pp.
460–473, Jul 1972.

[27] F. Reza,An introduction to information theory. McGraw-Hill, 1961.
[28] M. Jimbo and K. Kunisawa, “Iteration method for calculating the relative capacity,”IEEE Trans. on Inf. Theory, vol. 43,

no. 2, pp. 216–223, Nov 1979.
[29] D. Kilinc and O. Akan, “Receiver design for molecular communication,”IEEE Journal on Selected Areas in Commun.,

vol. 31, no. 12, pp. 705–714, December 2013.
[30] A. Noel, K. Cheung, and R. Schober, “Optimal receiver design for diffusive molecular communication with flow and

additive noise,”IEEE Trans. on NanoBioscience, vol. 13, no. 3, pp. 350–362, Sept 2014.
[31] H. ShahMohammadian, G. G. Messier, and S. Magierowski,“Optimum receiver for molecule shift keying modulation in

diffusion-based molecular communication channels,”Nano Communication Networks, vol. 3, no. 3, pp. 183 – 195, 2012.

March 27, 2018 DRAFT


	I Introduction
	II System Model and Problem Statement
	II-A System Model
	II-B Problem Statement

	III Capacity Analysis of Molecular DMC with ASK
	III-A Capacity Per Channel Use
	III-B Capacity with Average Cost Constraint
	III-C Capacity Per Unit Time
	III-D Capacity Per Unit Cost

	IV Capacity Analysis of Molecular ISI Channel
	IV-A Lower bound 1
	IV-B Lower Bound 2
	IV-C Upper Bound
	IV-D Optimizing Lower and Upper Bounds
	IV-E MAP and ML Detectors
	IV-F Numerical Results

	V Conclusions
	References

