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Abstract

This paper studies the capacity of molecular communicatiofiuid media, where the information is
encoded in the number of transmitted molecules in a timefaloplitude shift keying). The propagation
of molecules is governed by random Brownian motion and thmmanication is in general subject
to inter-symbol interference (I1SI). We first consider thesecavhere ISl is negligible and analyze the
capacity and the capacity per unit cost of the resultingrdiscmemoryless molecular channel and the
effect of possible practical constraints, such as linotadion peak and/or average number of transmitted
molecules per transmission. In the case with a constraimadt pnolecular emission, we show that as
the time-slot duration increases, the input distributichieving the capacity per channel use transitions
from binary inputs to a discrete uniform distribution. Iristipaper, we also analyze the impact of ISI.
Crucially, we account for the correlation that ISI induce$vieen channel output symbols. We derive an
upper bound and two lower bounds on the capacity in thismgettising the input distribution obtained
by an extended Blahut-Arimoto algorithm, we maximize thedo bounds. Our results show that, over

a wide range of parameter values, the bounds are close.
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. INTRODUCTION

As nano-technology has received increasing attentiomarebers have investigated communications
based on the release of molecules in a fluid propagation medind their detection at a receiver.
Diffusion-based channels are of particular interest bgeadiffusion is the basis of data transmission
in most of cell signaling, e.g., calcium signaling, hormsnetc. [1]. Diffusion-based molecular com-
munications systems encode information in the conceatrg@], time of releasel 3], the number of
molecules released in a time-slot (amplitude-shift keyiA§K)), the type of molecules and the ratio of
different types of molecule$|[4]. The released moleculepagate in a fluid medium before arriving at
the receiver. Of these choices, this paper focuses on ardelghift keying and characterizes the capacity
of a diffusion molecular communication channel in differsettings.

The movement of molecules in a fluid medium is governed by Biaw motion [%], including when
the medium itself moves with a drift velocity|[6]. The progaigpn time between transmitter and receiver
is, therefore, random. Several works have investigatec#pacity of molecular communications using
a fluid medium. In[[¥], the authors study the capacity of a mite molecular diffusion-based channel
when the information is encoded in the concentration of oudks. The work described inl[8], analyzes
the capacity of molecular communications with on-off keyifVhile most of the initial works assumed
perfect synchronization, the work in/[9] arrives at a moralistic model considering sequences of
molecules. Recent results have also considered noise, mend the impact of the associated physical
properties in diffusion-based communications| [10]. Iniidd to capacity, modulation, error probability,
and symbol interval optimization have been investigatecein., [11] [12]. The capacity of molecular
communication when information is encoded in the concéntreof molecules released is studied for
binary communications in_[13], [14] and for binary and 4-agmmunications in [15]. In_[13]=[15], the
aggregate distribution of the number of arrived molecutea time-slot is approximated by a Gaussian
distribution.

In [3], the random propagation time between transmitter rogiver was shown to follow an additive
inverse Gaussian (AIG) distribution for 1-dimensional gmgation. Based on the AIG distribution, ex-
pressions and bounds for channel capacity are presenté®],ifil], [17], for the case when information
is encoded in the release time of molecules.

In the model considered here, in which data transfer is basedSK, the transmitter releases a
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chosen number of molecules into a 1-D fluid medium with diifhe molecules then propagate to the
receiver where they are detected and removed from the sy€em of the main challenges in such a
diffusion-based system is inter-symbol interference)(I8le to the random propagation time, molecules
may arrive over many time-slots. Indeed, if the system dit suffer from ISI, in our model wherein
molecule release and detection are perfect, communicatimuld also be perfect. The work inl[5],
disregarding ISI, studies a binary ASK scheme by considettie life expectancy of molecule with an
AIG model for propagation time. Of interest here is a capaaitalysis of an ASK molecular system
suffering from the effects of ISI. IN_[18], an achievableeraind the probability of error of binary and
4-ary ASK molecular schemes are investigated in present® oSpecifically, the analysis there assumes

that output symbols are mutually independent, resulting lower bound on capacity [19].

Capacity analyses of conventional communication chanwéls ISI has a strong presence in the
literature. Several methods have been proposed, staringthe seminal work by Hirt and Massey [20],
which analyzes the capacity of the Gaussian ISI channel. prbblem is solved for the case of an
unrestricted input distribution, but remains open for acdite input alphabet [21]. However, several
bounds, both lower and upper, to the capacity with discrepaits and Gaussian channels have been
obtained [[19]. A simulation-based approach to calculagacay in the case of i.i.d. (independent and
identically distributed) inputs with binary modulationgs/en in [22]. This approach is based on a trellis

structure where the number of states relates to the mematyedfSI channel.

In this paper, with information encoded in the number of rooles released, the receiver counts the
number of molecules received within each time-slot. We iobtae probability of molecules arriving
within a specific time-slot using the AIG distribution; tHeads to a binomial distribution on the number
of molecules received in each time-slot. We begin by anatyASK over such a channel in the basic
discrete memoryless setting. In Section Il we model théesysas a memoryless channel. This molecular
discrete memoryless channel (DMC) may be motivated by a catde communication system with life
expectancy of molecules being equal to the time-slot dumafThis implies that the molecules disappear
or decompose after the duration of a time slot. Specificaih&ection Ill, the molecules do not cause

ISI.

We also study the capacity per channel use, the capacity mertione, and the capacity per unit

cost and examine the effects of possible constraints on pedkaverage molecular cost. Capacity per
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channel use and time are useful measures in applicatiomsasudrug delivery systems (DD$) [23] and
communication over fluid channels. The capacity per unit cothe objective function in cost efficient
communications, where the information rate per moleculaission is more important. To the best of our
knowledge, this is the first study of capacity per unit costiolecular communications. Constraints on
transmission cost address certain practical constraintslecular communications. Specifically, the peak
constraint acts as a toxicity constraint in DDSI[23]. Simijlathe average constraint reflects a limitation
on the average input emission or injection rate in molecatanmunications or DDS [24]. For DMC,
we obtain the optimal input distribution and the resultingantity for different capacity measures with
average or peak molecular cost constraints. We also usarhigsis to obtain the optimum transmission

symbol interval as a function of the channel model pararsdteeach case.

We then move on to analyzing the impact of ISI in ASK-basedeniglar communications. As i [19],
with some abuse of notation, we cdj}; ; the capacity with i.i.d. inputs, the channel capacity. Weppise
two lower bounds and an upper bound for the, of such a channel. To provide a tractable exposition,
we restrict the effect of ISI to one time-slot and analyzedkerage mutual information with correlated
channel outputs. The lower bounds are maximized by optigihe input distribution using a modified
Blahut-Arimoto algorithm. As our results show, over a largage of parameter values, the lower and
upper bounds are close, thereby well characterizing thaagpof such a molecular communication

channel.

A crucial question left unanswered by the presented capacitlysis is what the impact of the
simplifying assumption on one time-slot memory is. We arahle to directly evaluate the quality of this
assumption since the true channel capacity is unknown. Asxypwe develop the maximum likelihood
(ML) detector as a possible implementation of the molecatammunication receiver. We evaluate the
error rates assuming ISl restricted to one time-slot andpawenthe performance to simulations which
do not impose this assumption. As we will see, this allowsasharacterize the range of parameters

over which the assumption holds true.

The remainder of this paper is organized as follows: theesyshodel and the problem statement are
presented in Sectidnl 1. Sectignllll focuses on capacityyases of a discrete memoryless ASK molecular
communications, while Sectian 1V presents our analysisr@sence of ISI. Numerical results illustrating

the analyses are presented in each section. Finally, &é¢tiaraps up the paper with concluding remarks.
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Il. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

The transmitter is a point source of identical moleculesniyé&SK, at the beginning of every time-slot
of lengthT', it transmits a message by releasiig 0 < X < X,,.x, molecules into the fluid medium.
Here, X,.x is the maximum number of molecules releasable in any time-$he transmitter does not
affect the propagation of the molecules. The channel isdim&nsional. Molecules propagate between
the transmitter and receiver by Brownian motion charaoeeriby a diffusion constant and (positive)

drift velocity v.

At the receiver, all received molecules are absorbed andvedhfrom the system. We consider two
cases: first, we ignore ISI and assume that a molecule reléagéme-slotm arrives within the same
time-slot or disappears; this leads to a DMC. In the secoriddfighe paper, we consider one slot of
ISI, i.e., we assume molecules that do not arrive within timeetslots have disappeageiverything
else within the system operates perfectly, i.e., the ontglomness in our model is the propagation time
(equivalently, the number of molecules that are receiveal time-slot). If/ denotes the distance between
transmitter and receivg, using the AIG analysis in_[3], the cumulative distributitmction (CDF) of

the propagation time is given by

FW(w):CI>< %(%—1>>+e%¢<— %<%+1>>,w>0. )

Here, ® (-) is the CDF of a standard Gaussian random variable; [/v, A = [?/o? ando? = d/2 is
the variance of the associated Weiner process [3]. It iswarthy that in a 3-dimensional environment
the first passage process is transient, i.e., there is a ermnprobability of the molecule never arriving
at the receiver [25]. On the other hand, this is not true fer IFD propagation under consideration; the

first passage process for the 1-D case is said to be “recurrent

When the transmitter releasés = = molecules in a time-slot, the probability of receiviig= y of

INote that one could use our analysis to avoid this assumptiowever, the exposition becomes unwieldy and expondntial
complicated to deal with.

2The units ofl andv are normally inum and wm/sec but but any scaled version of these units can be used
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these molecules in the same time-slot is given by

xr
(l-—q)" " 0<y<z
Pr(Y=ylX=x)= Y 2)

0, y <0,y >z,

whereq; = Fy (T) is the probability of a molecule arriving within the same éhslot of its release.
In general,g, = Fw (kT) — Fww((k — 1)T') denotes the probability of a molecule arriving in theh

time-slot after transmission.

At the start of time-slotk, X, € {0,1,..., X;nax} Molecules are released. Lef = Pr (X = x),
0 < z < Xnax, denote the probability of releasing molecules at the transmitter, arif), denote the
number of molecules in time-sldt, that were released buiot received in slot k. If Y, denotes the

number of molecules received in time-sigtwe have
Yk :Xk_Zk“‘Nk—la Yk € {0,1,...,k‘Xmax}, (3)

in which, Ni_; € {0,1, ..., (k — 1) X1uax } denotes the total number of “interfering” molecules frore th
previousk — 1 time-slots arriving in time-slo&. ConsideringP; (n) = Pr(Ny_; = n), the channel

transition probability whenX, = = molecules are transmitted is given by

x
Pvix, Wl Xe=2)=(1—q) P (y) + a(l—q)" "Pe(y—1)+...
1
x
Q%_l (1 - Q) Pk (y - (‘T - 1)) + q:ka (y - 1’) ) Yy = 07 ---aXman - (Xmax - 1’) .
r—1

(4)
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In @), P.(y) can be easily calculated by induction as

Py (y) = <a0 +(1-q)ar+...+(1— Qk)X"”anmax> Pe_1(y) +
2 XmaX

qra1 + ar (1 — qi) ag+...+ ar(1—q) > lax, | Peo1i(y—1)+
1 1
%)
N —1 Ximax N —1
g "lax,, 1 + q. " (1 — QIc) ax.. P4 (y — (Xmax - 1)) +
Xmax - 1
Xinax

q; ’ aXmaXPk—l (y - Xmax)

where, as definedy; = Pr (X =) for i € {0, ..., Xmax - If, as later in Sectiof IV, we were to assume

that the ISI only affects the next time-sldt] (5) is simplifi

Py (0) = (ao +(1-g)a+..+(1- Q2)X’"a"axmax) Py (0), (6a)
2 Xmax X _1

Py (1) = | gea1 + 2 (1 —q2) ag+...+ @(l—q) ™ Tax,.. | P1(0), (6b)
1 1

Py (Xmax) = @5 ax,,.. P1 (0), (6c)

where P;(0) = 1 as 0 molecules are received from the previous 0 time-slots.

B. Problem Satement

For the ISI channel, the average mutual information per slhuse is given by

1= lim 1 (XL;YL+k) : (7)

—oo L

in which, X% = [Xy,...,Xz] andYX** = [y}, ..., Y7 ,] , denote the lengtli- input andZ + & output
sequencey; is the length of I1SI, and the mutual information is evaludteda given joint input distribution
Px: (:::L) This determines the achievable rate of reliable commuioicahrough this channel with this
specific input distribution; the channel capacity is thersoum of this mutual information over all
allowed joint input distributions.

Obtaining the capacity of the ISI channel requires optitraover the joint input distribution, a
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seemingly intractable problem. As suggested_in [19], wau$oon the case of i.i.d. inputs, i.6Px. =
ax..xa=al wherea = [ag,...,ax,. |. We denote the resulting average mutual information as
I; ;.4 [19]. Note that this mutual information is a lower bound oe #xpression in(7), but, as in [19],
with a slight abuse of notation we will call the resulting maltinformation the “channel capacity”. This
capacity is given by

C = lim 1 sup [ (XL;YL+k) ) (8)

L—oo al

Despite this significant simplification, calculating theaohel capacity in[{8) appears intractable and, in
the next sections, we investigate two related scenariosfildteignore ISI and obtain the capacity of
the resulting DMC under various possible constraints. lati8e[IV, we consider an ISI channel with a

memory of one time-slot.

IIl. CAPACITY ANALYSIS OF MOLECULAR DMC wiTH ASK

We begin by analyzing several capacity measures with éiffiecost constraints for the basic discrete
memoryless molecular communication channel with ASK. Ascdibed in Section I, the DMC model
may also be motivated by a molecular communication systeerevthe life expectancy of molecules is
equal to the time-slot duration. Specifically, we derive ¢hpacity per channel use, per unit time and per
unit cost with possible constraints on peak and averageafdsansmission. In each case, the optimum

input distribution and the resulting maximized capacityasw@e are also quantified.

A. Capacity Per Channel Use
The general capacity problem with only a constraint on th&imam number of transmitted molecules
per channel use (akin to a peak constraint on the input) i®l&svs

sup [ (Xm§ Ym) > (9)
P(X.m)

subject to 0 < X < Xax

where X ..« is the allowed maximum number of transmitted molecules jpee-slot. Note that for this
case, we allow the transmitter to not release any moleculestime-slot, i.e..X = 0 is allowed. The

objective function in[(B) is concave with respect to the inprobability vectora and the constraint is
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linear, hence the optimization problem is concave. Herree sblution of problem i {9) can be obtained
using the Blahut-Arimoto algorithm_[26].

To describe the algorithm as applied here, usiig (2), we @&fin X nax + 1) X (Xmax + 1) channel
transition matrixP asP,, = [p (Y, = y| X,, = z)], where,y € [0, ..., Xpnax] @andz € [0, ..., Xiax);
and matrixQ with Q, ., = [p (X, = z|Y;, = y)] with the same size aB, whereP, , (Q, ) denotes
the (z,y)((y, x))-th element ofP(Q). Let

J(aP,Q) = Zx Zy a; Py, log Qus (10)

a
Then the following is truel[26]:
1) C= m(gxmaXJ(a, Q,P).

2) For fixeda, J (a,P, Q) is maximized by

a;P
Qo= =—2—. (11)
4 > Py
3) For fixedQ, J (a, P, Q) is maximized by
exp <Zy P, ,log Qy7x>
4y = , 0< 2 < Xpax. (12)
S, exp (32, Paylog Q)

The Blahut-Arimoto algorithm begins with the transitioropability matrix defined by {2) and an arbitrary,
but valid, choice fora. It then iterates between steps 2 and 3 above until conveeg&ince, the mutual

information in [9) is concave in terms of input probabilitie output of the algorithm is the optimal,
capacity-achieving, input probability distributios; as an aside, the matri€ is the corresponding

output-input reverse transition matrix.

Figure[1 illustrates the results of using the Blahut-Arimaigorithm in obtaining the optimal input
distribution. Figure_Ta plots the optimum input distrilautj a,, in terms of " with [ = 1072, v = 1,
0?2 = 1 and X,,.. = 10. Interestingly, though perhaps intuitively, the optimastdbution transitions
from a bipolar distribution for small' to a uniform distribution for largg” (system essentially perfect).
In all cases in the figure, &6 increases, the capacity convergeddg, (Xyax + 1).

Figure[Ib plots the corresponding capacities as a functiahentime-slot duration]’, for different
values ofo2 and the same, fixed, values bfand v. We observe that, for the given valuesofand,

by increasings? and 7', the capacity increases. While it is intuitive that inciegsl” should increase
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Fig. 1: (@) Optimuma,, in terms of T with [ = 1072, v = 1, 02 = 1. (b-d) C in terms ofT for different
values of (b)o? with v = 1 and! = 1072, (c) [ with 02 = 1 andv = 1 and (d)v with [ = 10~2 and
o? =1, all with X, = 10.

the capacity per channel use, by increasing the probalififyeceiving all molecules in one time-siot,
the increase with increasing is less intuitive. The explanation is that increasing tHéusglion constant
increases the randomness in the location of the molecuidsh& randomness helps improve the chances
of molecules arriving at the destination within one timetsiThis is consistent with the fact that =

Fy (T) is an increasing function af for low-to-medium values ob. For largev, ¢; ~ 1 and capacity is
near its maximum value. It is worth noting that when inforibatis encoded in time-of-release aslin [3],

the mutual information is not monotonic i

Figured It anf1d plot the capacity for different valuesafidv, respectively. As expected, decreasing

[ (equivalently, increasing) improves capacity significantly because, in each casarlgle; increases.
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B. Capacity with Average Cost Constraint

A variation on the optimization if{9) is when the averagetaistransmitted molecules per channel

use is also constrained. The resulting optimization probie

sup I (Xpm;Ym), (13a)

p(Xm)
subject to 0 < X,,, < Xpnax (13b)
E (eXm) <FE (130)

whereey, -, > 0 is the cost of usinge molecules as the ASK symbol. The vector= [e,|, x €
{0,1,..., Xmax} Specifies the cost vector. A concrete example is when thesrtrssion cost is equal
(proportional) to the number of transmitted molecules gennel use, i.e¢, = x. The capacity with
cost constrain is then defined as

P,
— maxz Z a; P,y log =—5— S 4 P = max [ (a,P) (14)

acAg T,y acAg
where Ap = {a | > ase, < E} denotes the set of all allowable input distributions thaetribe cost

constraint.

With a concave cost function and linear constraints, thenopation problem in[(I4) is concave.
Hence, the solution can be obtained using the constrairstuBlArimoto algorithm[[26]. Using Lagrange

multipliers, the cost function can be parameterized as

= max [Z >, aPuy log == "4 — — s (Z gy — E)} (15)

wheres denotes the Lagrange multiplier. The maximization is nowraadl input probability vectors.

For any matrixQ with size (Xyax + 1) X (Xmax + 1), let

J(s,a,P,Q) = Z Z a; P,y log Qy’ szxaxex (16)

Hence, using[(16), the following is trug [26]

1) The constrained capacity = s za, + méix max J(s,a,P,Q)
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Fig. 2: (a) Optimumu,, for different values of average cost constraint with= 10msec, (b) C' in terms
of average cost constraint for different valuesigfall with 0?2 =1, v =1, I = 1072, Xyax = 10.

2) For fixeda, J (s,a, P, Q) is maximized by

a; Py y
= ey 17
Qy’ ZSE amevy ( )
3) For fixeds, P, J (s,a,P,Q) is maximized by
exp <Zy P,,logQy . — sez>

> . €Xp (Zy P, logQy ., — sex)
4) The optimums is the minimum value X 0) that satisfies the constraidt e a, < F.

The procedure to optimize for the input distribution is $&nto that without the average cost constraint.
The one additional step is to obtain the parametafter updating the distribution vecter. As per 4)
above, the minimum value &f can be obtained by a bisection search. To obtain the optirsailkiition,
the algorithm is executed settifg = > e, a,. In the rest of the paper, unless otherwise mentioned, we
considere, = x.

Figure[2 plots the result of including an average cost caigtwithin the optimization problem of
(d13). For ease of illustration, in Fig. 2a, withi = 10 msec, we vary the Lagrange multipliey to vary
the average transmission cost. Increasing the paramétgfl8) reduces” = E(e,) as expected; further,
reducingF, i.e., making transmissions expensive, shifts the optipnabability distribution to the lower
values ofz. Figure.[2b plots the constrained capacity in bits per cbhose in terms of average cost

constraint, i.e.F/, in molecules, for different values &f. It is evident that by increasing andT the
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capacity increases, i.e., as expected, a stricter consteduces the achievable rate.

C. Capacity Per Unit Time

It is worth noting that the solutions to the optimization Iplems in Sections TlI-A an@1l-B can be
used to solve other problems of interest such as to maxirhzenutual information per unit time with
constraints on the maximum and/or average number of tratesimnolecules per unit time. The general

optimization problem is as follows

I (Xm; Y

sup ( ) (19a)
p(Xm) T
. Xm
subject to 0 < T < Phax, (19b)
ex _

< — ) <

0_E<T>_P (19¢)

where, P,..x and P are the maximum and the average number of transmitted mekallowedper unit
time. However, sincé” is a constant and independent«f, we can use the same approach as described
above by setting\ ... to be the integer closest {P,.T) and E = PT.

We note that a related problem of interest is obtaining thénwg time-slot duration,T,,;, that
maximizes the capacity per unit time for a given set of syspamametersy(, [ ando?). Unfortunately,
this optimization problem is not concave and so we have teddrere to numerical solutions.

Figures: 3k anfl 3b plaf'/T in bits/sec andy, respectively, as functions of time-slot duratiéh for
different values ob. Here,0? = 0.5, I = 102 and X /T < 20 x 10® molecules/sec. As expected, there is
an optimum value for time-slot duratiof,,;, which maximizes thd (X,,,;Y;,)/T’, though, interestingly,
this duration does not vary significantly with drift velociAs drift velocity increases, the optimal value
slowly decreases. Locating the corresponding valueg af Fig[30 we observe that the maximum value
of C'/T corresponds to a value @f higher than 0.9. For such a large probability that the mdéscu
arrive within the same time-slot, the assumed DMC modelstwout to be essentially accurate. Hence,
we plot C'/T in Figure[3a for the range ¢f which corresponds to this value of.

Figure[3t plotsT,,;, derived numerically, as a function ofor different values ofr2. We observe that
increasings?, T,,; reduces while it increases with increasino ensure that an adequate percentage of
molecules arrive within the time-slot).

Figures[4h an@4b ploE(X/T) and C/T in terms of T for different values ofs. In the results of
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Fig. 3: (@) C/T and (b)q; in terms of T for different values ofv with o2 = 0.5, [ = 1072, (c) T in
terms of{ for different values ot with v = 1
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Fig. 4: () E(X/T) (b) C/T in terms of T, for different values ofs ande(X) = X, all with constraint
on average transmuted molecules per secondlaadl0~2, v = 100 ¢% = 0.5 and X/T < 20 x 103
molecules/sec.
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these figures, the input distribution is derived from opziation problem in[(19). Her& (X /T) andC/T
decrease with increasing Since,s is a Lagrange multiplier, in_(13), increasing its value tigts the

constraint in[(13c), i.e.£(X/T) andC/T are also reduced.

D. Capacity Per Unit Cost

A final optimization problem within the DMC framework of imtest is the relative capacity, i.e., the
capacity per unit cost. This is akin to optimizing the “enegdficiency” in molecular communications.
Here, we investigate maximizing the mutual information pegrage transmission cost when the maximum

number of transmitted molecules per channel use is limiiéé. associated optimization problem is given

by

I(Xm§Ym) (20)

sup Eex,. )

p(Xm)
subject to 0 < X < Xiax

The ratio of mutual information to transmission cost, asiZfl)( is defined in[[27] as relative capacity,
usually denoted by 'x.

In (20) the choice of costy, _, = x is the average number of molecules transmitfédy ); allowing
X = 0 implies that we allow for a symbol with zero cost. Clearlyyaptimization would maximize use
of the symbol ¢o = 1). To avoid form zero information rate, we can add a constant,usee, = ¢y +x,
wherecy is a small constant value, ensuring that there is no symbibl éro cost.

Since the relative capacity(X,,; Yn)/E(ex,, ), is a continuous and quasi concave functiorapft
may be maximized using the Jimbo-Kunisawa algorithm [28]e Torresponding iterative procedure is
as follows:

1) Initially, choose an arbitrary probability vectaf?,

2) After therth iteration, having obtained probability vectat”), construct the(r + 1)th probability

vectora(™t1) as follows:

D, (a
diﬂrl) = ay) exXp [eoeﬁ] = 07 (X Xma)u (21)
where
P
D, (a®) = P, log —— %Y (22)
( ) Zy & Zx a:(vr)Px,y
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Fig. 5: (a) Optimunmu,, which maximizes relative capacity for different valuesXaf..x with 7' = 10msec,
co = 0. (b) Same as (a) witlyy = 1.(c) I(X,;Y,n) and (d)Cg in terms ofT" for different values of
Xmax With ¢g =1 and all withe? =1, v =1, 1= 1072,

Finally, we need to normalize the distribution using
C~L(T’-i-1)

(r+1) _

T

a ————

T ~r+41
Zx Qg

(23)

(r+1)

We iterate untill/C, " — Cg) <g, Wherng) is the value of objective function i (20) ath iteration

ande > 0 is arbitrary small number.

Figure[® plots the results of the optimization problem [in)(2Bigure[5a plots the optimum input
distribution which maximized_(20) without shifting the ¢dsnction, i.e., lettingey = 0. As is clear, for

all values of X,,,.x, the solution is to never transmit any molecules!

The remaining figures in this set usg = 1, i.e., e, = = + 1. Figure[5b plots the optimum input

distribution which maximizes[(20) fof" = 10ms. Comparing Figd. ba and]5b, we observe that by
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TABLE |: Summary of results for Capacity in DMC.

Objective Transmission Cost Solution Parameters
Function function Xmaz | ol v |1 T E(X)
0< Xm S Xma:L' NA
1 (X3 Yin) - @ |+ v fr|e] 1
X < Xonaw, E( X)) <E 19 T
. O S Xm S Xma:)c @) NA
I(XTTM Ym)/T 0 S Xm S XmamaE(Xm) S E GE) T T T \l/ /‘\( T
I (X3 Ym)/E (Xm) V<X <X @) Lol NA
Pe 0< Xy, < Xnao 44) 1 R NA
Numerical
Topt 0< X < Xomas results - LT NA

1 : Ascending function, : Descending function,M\, : Function have a maximum,
* . Depends onT’, for non large values of" is |, for large values of" is 1
NA: Not applicable.

changing the cost function td X') = X +1, the optimum distribution is radically different, and pedtility
of transmitting non-zero symbols increases (even thokgk 0 remains the symbol with the highest
probability). Figure Sc plotd (X,,;Y;,) when the input distribution is obtained from {23) for diffet
values ofX,,,., with e(X) = X + 1. Observe that, by increasing, .., I(X,,;Y;,) increases. Figuie bd
plots the relative capacity;r, for different values ofX ... We observe that the relative capacity increases
as X . increases, but that quickly saturates to a value of 1 bit/cos

Table 1 summarizes the effect of parameters in the molecukdium, such as, | and 2, and
the transmitter parameters, such s, and E(X). Note that the table refers to error rates, an issue

considered in Section TV}F.

IV. CAPACITY ANALYSIS OF MOLECULAR ISI CHANNEL

While the previous section analyzed several capacity meagor ASK communications over molecular
DMC, in this section, we initiate an analysis in presenceSif As stated earlier, we focus on one time-
slot of allowed memory. As with many problems dealing with, 8e are unable to obtain exact results
and resort to bounds. Specifically, we develop two lower bisuand an upper bound for the capacity
of the molecular communication system under consideraliéa emphasize that the inputs are i.i.d.,
i.e., the term "capacity” here refers to the simplified cadeekg the inputs within each time-slot are
chosen independently and from the same probability digidh. Finally, in this section we develop

the maximum a posteriori (MAP) detector (as a possible imgletation of a molecular communication
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receiver) to evaluate the assumption of restricting menminly one time-slot. We do this by comparing
the numerical and simulation results of the performancesmea the probability of error. It is worth
noting that one could consider ISI over multiple time-slagng [5). However, this adds exponential

complexity to the analysis.

A. Lower bound 1

The first lower bound considers the effect of ISI on the muinfdrmation between input and output
symbols within the same time-slot. This is a lower bound andhannel capacity because this measure
ignores the memory; essentially, we consider a DMC but witlkadditional source of measurement error
due to molecules from the previous time-slot. This lowerrmuelates to a lower bound df; ; in a

discrete-input Gaussian channel with 1S1][19]. Hence weehav

Itg, =1 (Xn; YY) = H(Ym) — H(Yn| Xn)

2 X max Xomax T+ Xmax (24)
=— Zop(ym)log(p(ym)H Zoaxm ZO P (Ym| Zm) 108 p (Ym]| Zm)
Ym= T = Ym =

wherep (ym| z.,) IS given by

T m _i o Xmax J
> 1—q)™ "¢, > ajx
i=0 i J=Ym=t \ gy, — @
P (Ym| 2m) = y o (25)
qZZJm Z(l - Q2)] W z)’ Ym < T+ Xmax
0, Ym > Tm + Xmax-
By averaging over,, on p (Ym| Tm) , p (ym) iS given by
Xm ax Tm xm o max j . . .
P (ym) _ Z g, Z (1 . q):cm—zqz Z ajpgm_l(l - p2)]—(ym—2)_ (26)
L =0 i=0 { j=y—i \ Ym — 1

Given an input probability vectas, this lower bound can be easily evaluated.

B. Lower Bound 2

With the one time-slot memory model, the transmitted synitbahe current time-slot only affects the

received molecules in the current and the next time-slot.cdfesider the mutual information between
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transmitted symbol in current time-slot and received sylmibothe current and next time-slot

(a)
ILBg = I (Xm—l; Ym—la Ym) =H (Yma Ym—l) - H (Yma Ym—l‘ Xm—l)

—
=

= H(Yp_1)+H (Y| Y1) — H (Y| Xone1) — H (Y| Xone1, Y1) (27)

where (a) and (b) are obtained based on the definitions ofahurtformation and joint entropy, respec-
tively. We consider the channel in the steady state regiec®P (yym—1| Tm—1) = P (Ym| Tm), Which
is given in [25). Alsop (ym| Ym—1,Zm—1) iS given by

DRSS
P (Y| Um—1,Zm=1) = D P (Tm| Ym—1,Tm-1) P (Ym| Ym—1, Tm Tm—1)

T =0
(b) Xeng (28)

= Y p(@m) P (Ym| Ym—1:Tm, Tm—1)

where (a) is obtained based on the law of total probabiliiy,ig obtained based on the independence of

Zm from y,,_1 andx,, 1 which is due to the i.i.d assumption of the input distribotend causality. By

averaging over,,,_1 in 28), p (ym| ym—1) iS given by

Xmax
P (YmlYym-1) = X2 Op(wm_llym_l)p(ym!ym_l,wm_l)
Lo 1=
(a) thax thax
= Z p(xm—l‘ym—l) z p(xm)p(ym‘ym—lawmawm—l) (29)
"Em71:0 mm:(]
(b) Xmax 1|1 - max
= > Op(y o lpline ) Zop(wm)p(ym! Ym—1: Tm, Tm—1)-
Tm—1= Tm=
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where (a) and (b) are obtained based on the law of total pililgabnd Bayes rule, respectively. Also,

p(ym’ym—hxm;wm—l) is given by

—~

a) Xmax
p (ym| ym—lygjmal'm—l) = Z Op (y/m—2| ym—1,$m7$m—1)p (ym| ym—17$myxm—17y/m—2)
Yo —2=

N

(b) g

= ylgzop (¥ im—2| Ym—1,Zm—1)P (Y| Ym—1, Tm, Tm—1, Y 1 —2)
o) P st W aoWone)y (1 @t Y o)
Y =0
@ ol o oV s 1) @
9 g el M Ml (s o)
Kmax

m— ‘ /7717 rm— /7717
p(y li(ywnilwlx7ni)lz))(y 2)p(ym‘ym_l,xm,wm—17y/m—2)

Y n_2=0
(:f) Vet pla'merlzm—1)p(Y o)
P(Ym—1]Tm—1)

p (ym‘ ym—17 wm7 xm—la y/m—Z)
Y m—2=0

where (a) is obtained based on the law of total probability @p_, is the number of received molecules
at the end of time-slotn — 1 from transmitted molecules in time-slot — 2; (b) is obtained due to the
independence of,,_, from z,,; (C) is obtained based on Bayes’ rule; (d) is obtained baseth® joint
probability formula; (e) is obtained based on independeyicg, , andz,,—; and the joint probability
formula; (f) is obtained due to the fact that,_1 = z/,,_, + v,,,_,, Wherez!, _, denotes the number of

absorbed molecules at time-stot— 1 at end of time-slotn — 1. Based on definition o/, _, we have

Xonax
P(Ym2)= D . g2 (1 — qg)*m 7Y 2 (31)
Tm—2=0 Ym—2

p (ym| ym—lyxma$m—1>y,m—2) @p (ym| l’mal'”m—l =Tm — (ym—l - y/m_2)) =

™ Tm Tm—i_ i Y —i & 1= (Y1) "
> I—q)" "¢ g (1 —q2) Ym < T+ 2" m1
=Ym—Tm—1 i Ym — {
0 WYm > Tm + x//m—l
(32)
(a) is obtained because,_, = =/, | + z/ wherez” ;| is the number of remaining molecules at

m—11 m—1

end of time-slotnn — 1 from transmitted molecules in the same time-slot. Moreolased on definition
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of 2/ , P (2 ;-1 xm—1) is given by

P (2 | @me) = ;"1 — )T T (33)

While far more involved, as with the first lower bound in}(2gjven the input probability distribution,

obtaining this bound is a simple matter.

C. Upper Bound

Having developed two lower bounds on capacity, we now degvalo upper bound motivated by the
matched filter upper bound in Gaussian ISI chanriels [19]hWifte time-slot memory for the channel,
if we transmit symbols and wait two time-slots before traiténg the next symbol and remove any
subsequently arriving molecules, we have an interferdremechannel and arrive at an upper bound to
the capacity per channel use. This is equivalent to the DM@ ©ath the binomial transition probabilities
of (2) whereq; is replaced by = Fy (27). The mutual information of this channel is concave which

can be maximized using the Blahut-Arimoto algoritim|[26]e Wierefore have the upper bound
Iyp =1 (Xm;Ym)=H(Yy,) — H (Y| Xn) (34)
where P (y,,| .,) is given by

Tm—Ym

a; (1 —qu) Ym < Ty
P(ym’ xm) = Ym (35)

0 7ym > xM'
andqy = Fy (27). Clearly,

(a)
ILBg — I(Xm—l;ym—laym) - (Xm—l;Ym—l) + I(Xm—l;Ym |Ym—1)

0 (36)
> 1 (Xpm—1;Ym—1) =I1B,

where (a) is obtained from chain rule in mutual informatiowl §b) is obtained based on the non-negativity

of mutual information. Hence, we have the following result

Ing, <Irp, <Iiiq<Iys,
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as long as the input distribution for the upper bound is optimWe discuss optimizing the bounds next.

D. Optimizing Lower and Upper Bounds

We are unable to show the concavity of the lower bouhgls, and I; 5, with respect to the input
distribution vectoa; however, we can modify the Blahut-Arimoto algorithm [26]find a local maximum,
and as a result, we can optimize, to within a local maximures¢htwo lower bounds. The channel

transition matrice®(“5»), h € {1,2} for lower bounds 1 and 2 are

LBy) __ o o
P:(vm,y,l = [p (Yo = Ym| Xon = 1) (37)
P:(vile),ym,lym = [p (Ym = YUm, Ym—l = ym—1’ Xm—l = xm—l)] (38)

where, importantly, the size d&(“51) and P(“P2) are (Xpax + 1) X (2Xmax + 1) and (Xpax + 1) X
(2Xmax + 1)2 respectively. AlSOy., ym—1 € [0, ..., 2Xmax] @andx,, € [0, ..., Xiax] . FOr matrixQ with
size of PBR) e {1,2} , let
J(a p(LBn), ) Z > aP plL )1og%. (39)
J aj
Then the following is true.
1) Ip, = maxm(ng (a,P(LB’l),Q) .

2) For fixeda, J (a,P(*P») Q) is locally maximized by

PLB(h>
Qk,j Z JPLB(U (40)
J
3) For fixedQ, J (a, P54 Q) is locally maximized by
exp (Z P(LB" log Qi,j)

5o (3 P 105 Qi)

The algorithm iterates between derived in [(41) and the transition probability matrid@s“5) in @17)
or (38). This procedure is repeated until the convergendbeprobabilities;.

In contrast to the lower bound$, s is a concave function in terms a@f Hence, using the standard
Blahut-Arimoto algorithm[[256] a unique distribution gldhamaximizing the upper bound can be obtained

(note that this is critical fody;p to be a valid upper bound).
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E. MAP and ML Detectors

In this subsection, we derive the detection performance wioéecular ASK receiver. Since the true
channel capacity is unknown, we are unable to directly atalthe quality of the assumption of one
time-slot memory in molecular ISI channel on the capaci@glgsis. As a proxy, we examine the effect of
this assumption on the detection performance using silak&and analysis. In general, one may resort
to a sequence detector over an ISI channel for improved mpeafioce [[29]-31], however, in molecular
communications the implementation complexity for nanahiaes is likely to be prohibitive. Hence,
here we consider a MAP symbol-by-symbol detector at theivecé estimate the number of molecules
transmitted. Hence, here we consider a MAP symbol-by-symbtector at the receiver to estimate the

number of molecules transmitted. The decision rule is givegn

& = argmaxpy,|x, (z|y) = argmaxpy,x, (y|z)p(z) (42)

By replacing [(#) in[(4R), we have

x

N y—z i T—i .
& = arg max Zi:O ay ¢i(1—q1)" "Py(y — 1) (43)

)
If x molecules are transmitted, the decision region for detgcti at the receiver is denoted By, }.

Hence, probability of error is denoted by

max

X
Po=)Y Py¢{Va}a)a. (44)

=0

As always, using a uniform input distribution ir),, makes the MAP detector a ML detector.

F. Numerical Results

We now evaluate and compare the derived bounds for variousiumeparameters such ds v
and 0. Figures[6h and _6b plot the two lower bounds. We quantify tweet bounds for three input
distributions: (i) optimized input distribution from mawizing I(X,,; Y:») (I(Xm; Yo, Yimt1)), denoted
by "OptimizedI (X,,, ;)" ("Optimized I(X,,; Y, Yim+1) ") in the legend forl . 5, (I15,), (ii) optimized
input distribution from maximizing the mutual informatiosf DMC in (9), denoted by "Optimized
DMC” in the legend, and (iii) uniform input distribution. T study shows the impact of selecting

input distribution on the numerical value of capacity bosin@ne sees that using the optimized input
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Fig. 6: (a-b) Two lower bounds versds (c) Comparing the lower bounds for uniform and optimized
input distributionsy =1, 1 = 1072, 62 = 1, Xppae = 7.

distributions, the bound$; s, and I;p, improve noticeably in comparison to the cases with uniform
input distribution. This is while a uniform distribution ianizes the source entropy and the capacity of
a molecular channel without ISI (here an error free chandgipther important observation here is that
each of the two proposed bounds for the molecular ISI chaam&lunts to almost an equal rate with
either its corresponding optimized distribution or thainfr the molecular DMC case in Sectibnl lll. To
directly compare the two bounds, Figliré 6¢c compdyjes and/;, s, as a function off” for the optimized
input distribution from[(411) (labeled by "Optimized”), areduniform input distribution.

Figured 7A-7c plof;,, I1.5,, Comc andIyp versusT for different values of the transmitter-receiver
distance,l, the diffusion constant and drift velocity v, respectively. As evident, by decreasihall
bounds increase and convergeldg, (Xmax + 1) = 3, which is the entropy of the source. Similarly, all

capacity bounds are increasing functionssofAs also observed in [3] (for the case when information is
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Fig. 7: I1B,, I1B,, Cpume andIyp in terms of T for different values of (aj (Black curves] = 1072,

blue curves] = 1073, red curves] = 10~%) with v = 1, 02 = 1, (b) 0 (Black curves,o? = 1, blue
curves,o? = 10, red curvesg? = 100) with v = 1, I = 1072, (c) v (Black curvesp = 1, blue curves,
v =100) with [ = 1072, 02 = 1 all with X0, = 7.

encoded in the time of release) increasing drift velocitré@ases mutual information due to reduced ISI.
Comparing the results of the three recent sub-figures, we thait the bounds are most sensitive to the
transmitter-receiver distandeand drift velocityv while not being as sensitive to the diffusion constant
o. Crucially, over wide ranges d&f, the upper and lower bounds are close. Also, due to the red$&ie

reducingl reduces the gap between all the derived bounds.

The capacity of an ASK-based molecular communication cahisnin general unknown. To test the
validity of the one time-slot memory assumption, we comghesprobability of error of the ML detector
in three cases: no ISI (the DMC of Sectibnl lll), including I& to one time-slot (the case analyzed

in Section[1\) and simulation results that track the arsvaf all molecules. We reason that, if our
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assumption is invalid, there should be a noticeable diffegebetween the error rates for the three cases.

In all cases, we use a uniform input distribution (making M&P and ML detectors equivalent).

Figure[8 plots the probability of errof?., of the ML detector versu§'. In this figure, {) the solid
curves denote the error probability for the molecular DMGe;di) the dashed curves denote the error
assuming single time-slot memory (STM) ISI model, aiiij the markers denote simulation results based
on tracking all molecules (labeled as the multiple timd-$&8 model (MTM)). By comparing whether
the markers match the dashed or solid curves in these figuressan examine the range of parameters in
which each of the DMC, STM or MTM models is valid. In F[g.188, is depicted versud' for different
values ofv with [ = 1072 and o2 = 1. One sees that with = 10, for 7" > 2 x 1072, the numerical
results of DMC match the simulation results and fox 1072 < T < 2 x 10~2, numerical results of
STM match the simulation results; hence for= 10, the DMC and STM models are valid in the said
ranges, respectively. Also, Figurel8b shoRsin terms of7" for different values of? with v = 1 and
I = 10~2. We observe that for small to medium valuesTafincreasings? reducesP,, while for large
values ofT’, increasings?, increases’, instead. This is consistent with the behaviorgefas a function
of o2. For small and medium values @f, in which ISI is important,q; is an increasing function in
terms of o2, i.e., the increased variance in position increases thbafitity of the molecules arriving
within two time-slots after release. Moreover, one seedis figure that foro2 = 0.1, the DMC and

STM models are valid fofl” > 3 x 10~! and1073 < T' < 3 x 107!, respectively.

It is evident in Figurd 18, that the numerical results of the ©Mase (the solid curves) match well
to the simulation results for higher values 'Bf while those of the one time-slot memory model (the
dashed curves) match the simulation results for lower wabid". The results show that accounting for
one time-slot of memory is adequate for design and capaaoiyysis purposes in an interesting range
of molecular channel parameters and error probabilitipecically, the corresponding results are very
close to the more accurate case of memory spread over nauitipe-slots. For more accurate analysis in
these cases, one may opt to extend the presented analylsesdage where molecules arriving with more
than one time-slot delay are also taken into account in nirogléSl. Naturally, this is only achieved at

the cost of substantial (exponentially growing) compuotadi complexity in the analysis.

For small values ofl" the duration of ISI is more than one time-slot, and the praibatof error

performance of the ML detector deteriorates. This is ndijuessuming that the delayed molecules do
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Fig. 8: P, in terms of 7' using ML detector for different values of (a) with I = 1072, 62 = 1 (b)
o2 with [ = 1072, v = 1, all with X,,.x = 7. (Solid lines: numerical results of calculatégedl over
DMC, Dashed lines: numerical results of calculatedwith single time-slot memory (STM), markers:
Simulation results (multiple time-slot memory (MTM)). )
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not expire over time. As stated, one may resort to more ashhaod complex sequence detectors over
such harsh ISI channels to increase the rate and yet mamtdésired error performance. The analysis

and design of such schemes may be investigated in futuréestud

It is noteworthy that depending on the characteristics ef fthid media, the quantity of molecules
and their life expectancy, the slot duration should be chaseh that a statistical majority of molecules

emitted in a slot arrive within a time-slot. Of course, thegented model, detectors and analyses will
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serve most effectively in such a practical setting.
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V. CONCLUSIONS

In this paper, we analyze the capacity of a molecular comaatioins channel when information is
encoded in the number of transmitted molecules (molecu&)AThe molecules propagation is governed
by Brownian motion and the probability of arrival within aesgific time-slot is derived using the additive
inverse Gaussian model for the transmission time. We aedljfze capacity in both DMC and ISl cases.

For the DMC, the optimized input distribution was derivedathieve the capacity per channel use,
per unit time and per unit cost. Our results show that for bffeige) values of transmission time-slots,
the distribution achieving the capacity per channel usevemes to bipolar (uniform) distribution. Also,
imposing a limitation on average number of transmitted mulles per channel use reduces the capacity
per channel use and makes symbols with lower transmissiehrnore probable. As a result in this
case, the optimum input distribution, maximizing the cagyager channel use, deviates from a uniform
distribution even for large values of time-slot duratiory Bonsidering the capacity per unit time as
the objective function, the optimum time-slot duration,iefhmaximizes the capacity with peak and/or
average constraints on the number of transmitted mole@&esinit time, was obtained numerically. We
studied the dependence of the optimum time-slot duratiadh warameters of the molecular medium.
This paper also offered the first study on the capacity peragst in molecular communications, which
is a capacity measure conscious of its relative efficiendl wéspect to the molecular injection rate. For
the case where molecular alphabet only consists of symhithsnen-zero cost, a non-zero capacity per
unit cost is feasible and we obtained the correspondingripdid input distribution.

The second half of this paper analyzes the case with ISI;ifsgaty, with IS restricted to one time-
slot. Two lower bounds and an upper bound for ASK-based mtdecommunication with ISI were
derived. Our results quantified how the lower bounds impraten the corresponding input symbol
distributions are optimized. Importantly, our results whd that over a wide range of parameter values
the gap between the lower and upper bounds are small and go@ade a good measure of capacity. The
results also showed that the optimum distribution obtaiassuming a DMC provides close-to-optimal
results for the ISI case as well.

To test the validity of the one time-slot memory model for thelecular I1SI channel, we compared
the performance of the ML detector in this case, with thatiassg a DMC model and the results from

the simulations. As our results show, the one time-slot nrgmuodel is valid over an interesting range
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of molecular channel parameters. One may extend the pegbantlysis to the case with multiple time-

slot memory models at the cost of increased computatiormaptaxity. Also, the design and analysis of

efficient detectors in these settings is another possitileduesearch direction.
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