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We briefly review the recently developed, Markov process basl isothermal chemical thermodynamics for nonlinear, driven
mesoscopic kinetic systems. Both the instantaneous Shamentropy S[p«(t)] and relative entropy F[p«(t)], defined based on
probability distribution {p«(t)}, play prominent roles. The theory is general; and as a spediacase when a chemical reaction
system is situated in an equilibrium environment, it agreesperfectly with Gibbsian chemical thermodynamics: kgS and kgTF
become thermodynamic entropy and free energy, respectivel We apply this theory to a fully reversible autocatalytic reaction
kinetics, represented by a Delbriick-Gillespie process,nia chemostatic nonequilibrium environment. The open, drien chemical
system serves as an archetype for biochemical self-repliben. The significance of thermodynamically consistenkinetic coarse-
graining is emphasized. In a kinetic system where death of aiblogical organism is treated as the reversal of its birth, he meaning
of mathematically emergent “dissipation”, which is not related to the heat measured in terms ofkgT, remains to be further
investigated.

Index Terms—Biophysics, chemical master eqution, chemical potentiatietailed balance, entropy, Gillespie algorithm, informaion.

. INTRODUCTION coding, representations, and communications under uncer-

fainty. On the other hand, in a much broader sense, pantigula

In. the early days of applying information theory to biology,
athematical information theory was used essentially as an

N Part | and Part Il of this series[1].][2], a chemica

reaction kinetic perspective on complex systems in ter
of a mesoscopic stochastic nonlinear kinetic approach, e. . . . ) ) .
Delbruck-Gillespie processes, as well as a stochastieqan plied probability W'th a singular emphasis on the notién o
librium thermodynamics (stoc-NET) in phase space, hava be ha_nnon enfcropy (61! ‘~7_]' ,
presented. Part | provides an overview. Part Il, motivated b Sld_estepplng these ISSUES, we foI_Iow KOlmogoro_Vs ax-
both Gibbsian statistical mechanics and information th,eoﬂomat'c thepry of prob_ab|I|ty in which |nfor_mat|0r_1 is simpl
focuses on a parametric family of probability distributon@ VEry particular function O_'T a random variabtewith prob-
p(z, B) as a noveltheoretical devicefor exploring a single 2Pility distributionpy [8], [B: Hx(z) = —Inpx(z), © € 7,
nonequilibrium steady state probabilify(z), « € .%, where whose expected value gives Gibbs-Shannon formula.

 is a denumerable set of events, apd’, F, P) is the It iS important to remember that in Gibbs' statistical en-
underlying probability space. semble theory of equilibrium matters |10], the probability

The relation between Gibbsian statistical mechanics aﬁdstatec of a matter that is in contact with a temperature bath

information theory([8] has generated endless discussamg-r 'S

ing from “they are completely unrelated except sharing a o~ Fx/kpT
common term ‘entropy’,” to “they are parts of a single unifyi Px = W
maximum entropy principle”. Throwing a monkey wrench -
into the midst, we have articulated il [2] the notion that . . . :
minus-logp®® can be a very legitimate potential function of Wh'_Ch Ex IS the internal energy of tﬁSBStaﬁeT |sj2empjelr-
an entropic force in a complex dynamics. The origin of thigture in Kelw,n,kB N 1'380(_54852 x 10 m .kg s ° K .
practice was traced back to equilibrium statistical chanic'® Bolizmann’s constant? is the set co_nt.alnlng all pqsmble
thermodynamics with an exact coarse-graining, and J. ates of the matter. The theory of statistical mechana®est

Kirkwood's concept opotential of mean forceThe seemingly that the entropy of the matter is then

, where E(T) = > e ®/kT  (1a)
xeS

naive question still remains: What is information? Is it atest )
of a complex system, or a character of its dynamics, or a S(T) = —kg Y  pxInpy = 8—T(/€BT1DE(T))- (1b)
form of “energy” [4], [5]? In the engineering specific contex x€ES

first discussed by Shannon, information is the mathematical . . _ .
y ﬁ statistical thermodynamicst'(T) = —kgTInZE(T) is

symbols that represent certain messages in communicat

Therefore, the theory of information is a theory concerninﬁ‘el?ri;g?farin:(;ggﬂggd entropy #s0F/9T. One also has
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in which E is the mean internal energy thermal physics has already been B3tis difficulty has been
hinted in [21]: “If we assume that the process— II is
_ ‘irreversible’ this implies that the time-reversed dynamis
E(T) = Z Eypx. (1d)  very unstable so thatr{I] — I} is hard to estimate precisely.
x€S One uses instead a bigger probabily{I] — I} based on
observable processes.” Unfortunately, any remotely resse

Viewed from these four W|de|y known mathematical equaﬂongubstitution for an authentic de-birth is Currently out eé.tth,
the theoretical devicediscussed in[]2] simply provides andeqth i; not an acceptable alternative even for a lower bound
extended exploration of the information content/fz) and estimation.
its underlying(., F, P). The paper is structured as follows: In S&g. Il we give a
brief review of the modern theory of stochastic nonequiilibr
thrmodynamics of Markov systenis [22], [23], [24], [25], as
resented in Part [ [1]. While many of the terminologies and
mathematical relations can be found in the review arti@&3$,[
[@7], [28] and classic text [29], we like to point out that the
coherent narrative constructed based on the mathematics, e
their interpretations, is unique. We shall show how mathe-
matical logic dictates that entropy in systems with uniform
ationary probability should be replaced by a relativeay,
so known as free energy, in systems with non-uniform
stationary probability, and how entropy production rate

There is a growing interest in quantitative relations befwe
the theory of thermodynamics that rules many aspects of
biochemical world and the biological dynamics of organism
their ecology and evolution. “Every species of living thiogn
make a copy of itself by exchanging energy and matter with i
surroundings.”[111] A living organism has two distinct asfse
One with “genomic information” which is carried in the
sequence of polynucleic acids [7], possibly including rgeth
lation modifications of base-pairs; and the other is a spa
time biochemical dynamics in terms of molecules, which ¢
exhibit chemical, mechanical, and electrical charadiess L .
The time scales of these two aspects are vastly differeagseS as a distinctly d'ffefe”t (?oncept as entropy Ch‘?‘”ge
The former cumulates changes generation after generati@; Then in _SecE[]I, we first give the s_tandard chemlc_al
which constitutes an evolutionary process. The latter defint ermodyn_am|c trea!tment of the simple kinetic system with
“what is living” for each and every individual organism. TheWo reversible reactions

relationship between these two has been the subject of many ko ko
scholarly studies in the field of biology [12], [13[. [14L51, A+ X ==—2X, X <—5 (@)
[16].

To a classic physicist or chemist, the cellular biochemichiote, if one neglects the two “backward” reactions, e.gtirlg
processes are various transformations of energy and mattér1 = -2 = 0, then the chemical kinetics can be described
to a modern cell biologist, the same processes are usudllthe differential equation
described as regulation and processingndérmations The dz
physical and chemical processes are interpreted with dpicdd T kiox, g=kpa. ()
functions [17]. The present paper is an attempt to provide
a treatment of this latter aspect in terms of a stochasfiél- [3 describes the “birth and death” of individual
kinetic theory. In particular, we analyze rigorously a cheah Mmolecules.
model that makes the notion of “making a copy of itself by The simple chemical modelinl(2) has a clear self-replicatio
exchanging energy and matter with its surroundings” peecigharacteristics, it allows a rigorous thermodynamics ysis|
and quantitative. To this end, we revisit a kinetic model fo?f the replication/synthesis aspect of a biological orgami
a fully reversible chemical reaction system that considts &ertainly the individualX lacks other fundamentals of a
an autocatalytic stepl + X —s 2X [18], [19]. This model living being: An individualX itself is a dead molecule, not a
first appeared in the wonderful book by the late Professting organism. Therefore, while it is meaningful to asleth
Keizer [20]. This extremely simple model, however, offess uheat dissipation in a self-replication from a complex cheahi
an insight on why a truly meaningful chemical thermodynamgynthesis standpoirit[30], it might not be a sufficient mddel
study of biological replication is premature: This is besau the heat dissipation in the self-replication of a living angsm
neither the current cosmological time scale of our univer§éice even just being alive, an organism has a continuous hea
nor the size of entire biological population on our planet aglissipation as an individual entity, e.g., active metaboli
sufficiently large to provide a meaningful estimation of th&imply put: a living organism, which has batfetabolismand
probability of “two [daughter cells] somehow spontanegusielf-replication already has a basal level of heat dissipation
revert back into one’ [11]. Note the “revert back” should nofiue to the former even in the absence of the latter. The presen
be a fusion of two cells, rather it has to be a process trRftalysis, however, makes a conceptual separation betleen t

reverses the entire event-by-event of a cell replication. ~ two processes in an organism. We note that the open chemical
systems theory of motor protein chemomechanics serves as a

It is the non-zero probability of such completely mcongoncrete model for the former 31

ceivable processes, in a physicist's world, that provides
estimation of thermodynamic heat production. When a biolo- .
10n the other hand, the upper bound of such an extremely snodlapility

g?St considers only feaSible_ ev_ents toa Iiv_ing 0organismM@ei ¢a, e estimated from knowing the minimal amount of caloregguired to
birth and death, the quantitative connection to the world @fproduce an organism using the very equation (2) i [11].



In Sec.[TM, a mesoscopic stochastic thermodynamic treat-Inspired by the similarity between the expression in [Hq. 5
ment of the replication kinetics is carried out. Entropyguro- and Boltzmann'’s law, let us define “the internal energy dgnsi
tion rate for the kinetic process is studied. Then in §éc. ¥, vof the Markov statex”:
articulate a distinction between thermodynamically csiesit Inm,

and inconsistent kinetic approximations. The paper catesu Eo = : (6)

. . - . w
with a discussion in Sef. /1. Then the mean energy density at time

II. A M ODERN STOCHASTIC NONEQUILIBRIUM Et) = Z Pa(t)Ey = —w ™! Z pat)Inm, (7)
THERMODYNAMICS OF MARKOV SYSTEMS aeS aeS

The very brief summary of Gibbs’ equilibrium statisticawherep,,(¢) is the probability of the system in stateat time
thermodynamics, given in Efl 1a-d, illustrates the un&#@ss ¢. Then the free energy, also known as Massieu potential, of
of the entropy function, be it in information theory or inthe Markov system at time
thermal physics. Indeed there is now a more unifying thebry o )
entropy and relative entropy, also known as Kullback-leibl  F[p,(t)] = wE — S(t) = Z Pa(t)In <pa ) . (8)

(KL) divergence in information theory and free energy in aES T

statistical thermodynamics, based on the probability®e® Then concerning these quantities, one has a series of mathe
Markov processes that describe complex system’s dynamicyiatical results:

phase spacé [22]. [23]. [2]. A free energy balance equatiorFirst, an equation that is

The first basic assumption of this stochastic nonequiliariuy5;iq for systems with and without detailed balance, and for
thermodynamic theory is that a complex mesoscopic dy”arBil’ocesses in stationary and in transient:

cal system can be represented by an irreducible continuous

time Markov process with appropriate state spaceand EF[ a()] = WEin [pa(t)] — ep[pa(t)], (9a)
transition probability rateg.s, «, 8 € ., whereg,s = 0 de

if and only if gg, = 0. Under these assumptions, it can b& which

shown that there exists a unique positive stationary pritiyab 1 Tafap
7, for the Markov system in stationarity: Ein[pa] := w Z (Paqaﬁ —pﬁ%a) In (mqg ) > 0,
a,feS «
Z Tafas = 0. (4) i (9b)
a€s ep[pal = (paqa —Psq a) In (O‘—“ﬂ) > 0. (9c)
p[ ] Z B8~ PBU4p Padsa

For a stationarity process defined by, } andqg.g, a further o,BES

qlis?inction between aaquilibrium steady statand anonequi- Eq.[9 is interpreted as a free energy balance equation for
librium steady stat§NESS) can be made (see below): Thg \arkov system withZ;, [p.] being the instantaneous rate
former has zero entropy production rate, and the latter hé‘isinput energy, a source term, angllp,], a sink, as the

a strictly positive entropy production rate. This distinotis j,stantaneous rate of energy lost, or entropy productiea ra
determined by the set of transition probability rates,s}. Entropy change, free energy change, and entropy produc-
which necessarily satisfy detailed balaneggns = 5950 tion. Second, an inequality that is valid for systems with and

Va, 5 € 7, if and only if the steady state is an equilibriumyithoyt detailed balance, and for processes in stationady a
The theory presented below is applicable to both equilibriujn transient:

and nonequilibrium steady state, as well as a time-depénden dF(t) <0 (10)
non-stationary process. e —

For a mesoscopic system such as the discrete chemigglpined with [®), this impliess e, > E;
. . . . . . ’ p = Lin-
reactions in [(P) with state space’ being non-negative in-  gne notices that for very particular Markov systems with
tegers, a second assumption is that it hasnacroscopic (s = Qs Vo, 3 € ., they have a uniformr, = constant
. . . « - [e3% i ’ o — .
correspondingcontinuous dynamics(t), € R". Let w be Thene,(t) = %_ Such systems are analogousricrocanon-

the “size parameter” that connects the mesoscopic system g, ensembleswhere the entropy production is the same as
its macroscopic limit whew — oo, with x = & beingnumber entropy increase.

density Then, for a large class of such Markov systems [24], £5r Markov systems with detailed balandg,, () = 0 V¢,
[33],

Twx —wol(x and
-, e “"()—>5(x—z), (5) d
. . . . . . ep[ a] = _S[ a(tﬂ _WEez[ a(tﬂ >0, (11a)
in which functiony(x) > 0 and its global minimum is at. dt
In applied mathematical theory of singular perturbatiog,[8 in which
is known as WKB ansatz [34]; in the theory of probability, it o
is calledlarge deviations principld32]. Ees[pa] = Bz:y (paqaﬁ —pgqga) (E[j - Ea)7 (11b)
a,Be

?Another unifying approach to entropy is the theory of largmviations s interpreted as the instantaneous rate of energy exchange

[32]. A deep relation between the entropy function in largeiations theory . Lo . . . .
and the entropy function in complex dynamics is Sanov’s rim@o See below The mequa“ty n Eqma IS analogous to Clausius mequmt

as well as[[24],[13B]. for spontaneous thermodynamic processes, which gives rise



to the notion of entropy production as a distinctly diffesremotices that in a semi-reversible case when, = 0 in the

concept as%. system[(R), extinction ofX is the only long time fate of the
Macroscopic limit. For a macroscopic system in the limitkinetics. The differential equatio%% = (g— k+2)x —k_122,

of w — oo, the probability distributionp,(t) becomes a however, predicts a stable populatioff = (g - k+2)/k:,1.

deterministic dynamicsx(¢), and Eq.[® becomes a novelThis disagreement is known d&izer's paradox[18], [36].

macroscopic equation [24], [33] We shall use this model as a concrete case of the chemical

nature ofexchanging of energy and matter in self-replication

d t
@ = emf[x(t)] — o [x(t)], (12a)
in which A. NESS of an open chemical system
_ According to [2), anX molecular has transformed the raw
_ + )
omilx] = B “Z A (Jf () = J; (X)) material in the form of4 into a copy of itself, a secon&.
@ m;fons The canonical mathematical description of this autoctitaly
In <&eue~vx¢(x)>7 (12b) reaction is‘é—f = gz where the constany = kyja. We
Jy (%) shall usea,z,b to denote the concentrations of, X, B,
_ JH(x) respectively. Clearlyg can be identified aper capita birth
_ + ) ¢
olx] = Z (Jf (x) = J, (x)) n (Jé(x)) ’ rate if one is interested in the population dynamics &f

¢:all reactions Combining with the second reaction, one Bés= gz — k..,

(12c) wherek o can be identified as per capita death rateWhen

JS and J, are the forward and backward fluxes of tfé the X is dead, the material in terms of atoms are in the form of
reversible reaction, integer vectey is its stoichiometry coeffi- B. Therefore, the “birth” and “death” ak’, or more precisely
cients. cmf is the chemical motive force that sustains ati@ac the synthesis and degradation &f, involve an exchange of
system out of its equilibrium, ana is the macroscopic rate materials, as source and waste, with its surroundings. @ne c
of entropy production. in fact assume that the concentrations Aofand B, as the

If J;F(x) = J; (x)e¥*V=¢) ¢ x, it is known as detailed environment of the chemical reaction system[ih (2), are kept
balance in chemistry, or G. N. Lewis’ law of entire equiat constant, as a chemostat. This is precisely why livints cel
librium [35]. In such systems, cmf 0, ¢(x) is the Gibbs have to be “cultured”.
function, dp(x)/0xy, is the chemical potential of speciés The calorie count one reads from a food label in a su-
and v, - Vxp(x) is the chemical potential difference of thepermarket gives the chemical potential difference betwéen
¢t reaction. and B, introduced below. This is not different from one reads

Macroscopic systems with fluctuation§or a system with the electrical potential difference on a battery to be used f
very large but finiteo, Eq.[5 provides a “universal”, asymptotickeeping a radio “alive”.
expression for stationary, fluctuating[32]: One might wonder why we assume the reactions[in (2)
o () +(x) reversible? It turns out, as anyone familiar with chemical

fx(x) = — , (13) thermodynamics knows, one can not discuss energetics in an
E(w) irreversible reaction system. If the , = 0, then the chemical
where energy difference betweeX and B are infinite; which is
E(w) :/ e*wsa(XHw(X)dx, (14) clearly unrealistic. In fact, the chemical potential diéface
" betweenA and B, in kgT unit, is

in which ¢(x) is uniquely defined withmin, ¢(x) = 0.

pa—ps = (pa—px)+ (ux —ps)
[1l. AN OPENCHEMICAL SYSTEM AS A — In (kﬂa) +1ln <k+2x)
SELF-REPLICATING ENTITY koix k—2b
e a
We now apply the general theory in SEG. Il to reaction sys- = —InK%% + (5) ) (16)
tem [2). There are two reversible reactions with stoichimime ) o
coefficientsy; = +1 andw, = —1, respectively. Letz(t) be N which the overall equilibrium constant betweénand B,

the concentration o at time+, the kinetics of the reaction Kap = k-1k—2/(ki1ky2). In a chemical or biochemical
system in[(R) can be described by laboratory, the equilibrium constant is usually deterrdire

d(t) an experiment according to
x _
5 - > (JZr(iU) —Jy (CC)) Jcea _ €qui. conc. ofA

=12 AB ™ equi. conc. ofB’

= k —k_12® -k k_ob 15 . . .
+10% e 22 + kb, (15) If ua > pp, then there is a continuous material flow frotrto

with Ji"(z) = kyiaz, Jy (z) = k_12%, JF = kioxz, and B, evenwhen the concentration &fis in a steady state: There
Jy = k_3b. The first of these two reversible reactionsl[ih (2)s a continuous birth and death, synthesis and degradation:
is known asautocatalytic One can find many many examplesnetabolism in an “living system”. There is an amount of
of this abstract system of reactions in biochemical litgr@t entropy being produced in the surroundings. An agent has to
see [19] for more extensive biochemical motivations. Ose alconstantly generatingl with high chemical potential froni3



with low chemical potential. This entropy production in ffacin which (see Eq._37 below)
is precisely theus — up [37].

x 2
The kinetics (_)f[ZJZ), described by Hqg.l15, eventually rgach a P [z] = / In (%) dz, (23)
steady state, with the concentration ®f 2°° as the positive 0 +10Z + F—2
root of the polynomial on the right-hand-side Bf(15): and the instantaneous chemical motive force
1 _
" = o {kﬂa —kya + \/(kﬂa T 4k1k2bl . oomfla] = 3 (J[(w) —Jj (w))
1 (=1,2
(17 2
The net flux fromA to B in the steady state, % In (Jz (ff)eueasa“(m)/az) (24)
Jy (x)
s = @)@ = @) - Jy s (kg o
1 5 = (k+1ax—k_1ac )ln ﬁe
= 2/\+k+2\/(k+1a+k+2) —4A -1z
. hiar — k_gb) In (225 00 @/02) (o5
= (akirkiz + 1)) (18) + (ke —koab)ln (k2b€ )’( )
where with
HA—HB 8()055(:6) =1n <I€1I2ﬂ> (26)
A= akyikio — bk_ik_o = bk_1k_s (eTT _ 1) , oz kprar +kob )
And the steady-state entropy productiae according to Eq. That is,
28 is Cmf[:zr] = (k+1a:17 — k,le)
U[ISS} = Jhetasp X (:LLA - NB)- (19) . k_ob 1
+ —
We see that the steady state is actually an equilibrium if x I <(1+ k1x2) <1+ k+1a:c) )
and only if whenps = pp. In this case,c[x®®] is zero,
A = 0, and one can check thatss, ,_,5 = 0: There + (kioz — ko) B 27)
is no net transformation oA to B via X. Otherwise, the < In kyiax ] k_q2? 41
J%, 45 # 0, and it has the same sign asand (4 — ). k_ob kiox ‘

Therefore, the macroscopic entropy production rate defimed _
(I9), which is never negative, mathematically quantifies tihis is an example of Eq._IPa. Finally,
statistical irreversibility in the self-replication of .

- : : : . d dx(t k_i2? +k
Generalizing this example is straightforward; hence with —tgp[x(t)} = zl(t ) In (k s 1:2:2)
this in mind one can claim that [L1] “[e]very species of ligin +102 + K2
thing can make a copy of itself by exchanging energy and = (k+1ax — k12 — kyox + k_gb)
matter with its surroundings”, which can be exactly comgute o122 4 ko
if all the reversible biochemical reactions involved ar@km. x In (=120 ) <o, (28)
k+1ax + k_gb

This inequality implies even for a driven chemical reaction
system that approaches to a NESS, there exists a meaningful

We now turn our attention to the non-stationary transiengotential function” p[z] which never increases.
thermodynamics of systerhl(2). First, the time-dependemt co To connect to the known Gibbsian equilibrium chemical
centration ofX, x(t) is readily solved from[{15): thermodynamics, we notice that chemical detailed balance
cmflz] = 0 Va implies

B. Time-dependent entropy production rate

BCe P
z(t) = ————, (20) _
( ) 1-— Ck_le_ﬂt J;F(CC) _ eaw(z)/am _ J2 (:C) (29)
in which Jy (z) I ()
- 2 B z(0) that isky1ki0a/k_1k_ob = 1. Under this conditiony[z] in
p= \/(kﬂa —ky2)” +4k1ko2b, C= k_12(0)+ 8 (23) becomes
. _ . . k7
Then, the time-dependent entropy production rate(t)], in o[z] = ¢ln LAN 2(ix — pa), (30)
ksT unit, +1a
kiia which is the Gibbs function, in unit otz 7T, with stateA as
olz)] = (k“ax(t) a k‘1x2(t)) n (k:l:c(t)> reference.

) The functionp[z] in (23) is a nonequilibrium generalization

+(k+2$(f) —k—2b) In (ﬁ) (21) of the Gibbs free energy for open chemical systems that
d approach to NESS [24][33], and Hg.l128 is an open-system

cmffz] + Ego“ [z(1)]. (22) generalization of the 2nd Law.



IV. STOCHASTICKINETIC DESCRIPTION BY THE B. Macroscopic limit
DELBRUCK-GILLESPIE PROCESS With increasingw, the behavior of the Markov process
Chemical reactions at the individual molecule level argescribed by Ed. 31 becomes very close to that described by

stochastic [[38], which can be described by the theory §t€ mass-action kinetics. In fact, if we let= n/w as the
Chemical Master Equation (CME) [B9] first appeared in thgPncentration of the species, then

work of Leontovich[40] and Delbriick [41], whose fluctuagin o vl
trajectories can be exactly computed using the stochastic # ~ e _>6(x_z(t))’ (33)
simulation method widely known as Gillespie algoritimlI[42}yhere
These two descriptions are not two different theories,aath dz(t) TH(z) = 7 (2) (34)
they are the two aspects of a same Markov process, just as the dt ’
Fokker-Planck equation and the Ito integral descriptaires N 1 Uz N Wz
same Langevin dynamics. More importantly, this probatidlis T2 = whféo ( w )  J(2) = wlgréo ( w ) ’ (35)
description and the deterministic mass-action kinetickin and [24], [44], [45]
are just two parts of a same dynamic theory: The latter is
the limit of the former if fluctuations are sufficiently small 890 z,1) ZJ+ [ _ uesa;(z-,t)}
when the volume of the reaction vessel,is large [43].

We now show this theory provides a more complete kinetic T () [ _ e_V“pI(I’t)]} (36)
characterization of[{2) and it is in perfect agreement with ¢ '

the classical chemical kinetics as well as Gibbs’ chemichl turns out that the macroscopic, nonequilibrium chemical
thermodynamics. Since chemical species[ih (2) are discretgergy function appeared in Eq.]28 is the stationary saiutio
entities, and the chemical reactions at the level of single Eq.[36:

molecules are stochastic, let(¢) be the probability of having " TH2) + 5 (2)
n number of X in the reaction system at time Then, p,,(t) O (x) = —/ 1 <%> dz, (37)
follows the CME: 0 Iy (2) + J57(2)
d and
Epn(t) = Up—1Pn—-1 — (Un + wn)pn + Wn41Pn+1, (a(pss)
(313.) or
Uy, = ul) +ul?, w, =wd + 0@, ul) =akyin, (@) + J5 (z)
@b = n ()
ug) = k_owb, w,&l) = w, wT(f) = kyon. _ | ak+1$ + k_ob 38
v (B1c) ( ka2 + kﬁx) (38)
C (k+2 e(#B ux)/ksT +k 1z e(#A #X)/kBT)
k+2 + /{,156 ’

A. Stationary distribution

The steady state of such an open chemical reaction syst@nwhich ua — up = kgT'ln (M) We observe that
has a probability distributionr,, that is no longer changing when the reaction system is not driven chemically, = p4
with time, after a certain period of relaxation kinetics. &en Then [38) is%, the chemical potential oX in unit of
system, we mean it has a constant chemical flux betweenkgT', with stateA as reference.
and B, with its direction being determined by which of thg
and ;. being greater. The stationary probability distribution C. The stochastic NESS entropy production rate

for 7, is According to stochastic thermodynamics, the NESS entropy
Hn aki1(f —1) + k_owb production rate for the stochastic dynamics [in] (31) kigil’
+1(6 — ductio :
" 32) unit, is given in Eq[Bc:
" ¢ kE_jw=t(0 = 1)l + kit (32) unit, is given in Eq[B

n=0 Tn4+1W. +1

-1 (g— 1) 4 (u;ck_tz) ’ %) 2 - USLQ)
B + Z (wnug) - 7Tn+1w7(l+1) In | —"—
n=0

(2)
in which C is a normalization constant. We observe that when (7;"4“(11;0"“
= , the p** is a Poisson distribution, as predicted b > Up, W
HA = [\B Dn, p y Z (Wnugz) _ Wn+1wff)+)1) In ( n n+1>

n! k+2

°° (1)
—n TnUn
C (k2wb>n n (é — 1)6 IziBTB + (o.;f:rlz) €p [ﬂ'n] = Z (ﬂ'nugll) — 7Tn+1w1(11—ﬁ)-1) In (7(1) )
14

Gibbs’ equilibrium theory of grand canonical ensemble hwit — w® D
the mean number oK being (k_swb/ky2), Or equivalently ”O_OO L
the mean concentratiofk_2b/k2). _ Z (wnu(Q) _ 7Tnﬂw(zJZl) In (bk1kz>
The chemical thermodynamics presented above does not =0 " " aki1kio
reference to anything with probability. But we know that the aki1kis (nx)®s
very notion of Gibbs’ chemical potential has a deep root.in it = wl (W) ( +2 - k—zb) - (39)



This agrees exactly with Ef. 119, which is the entropy produc-B. Birth-and-death approximation of replication kinetics

tion rate per unit volume. For a macroscopic sized system (2) with externally susthine

a andb, the equation for its chemical kinetics is
V. COARSEGRAINING: KINETICS AND THERMODYNAMICS
The entropy production given if_(119) and {39) can be
decomposed into two terms:

ole**] = { g x> (uA—ux>}+{JzztxﬁBx(ux—mt,
(40
in which Jig 4 x = keraw™ — k1(@™)%, pa = px = Then it is completely legitimate to approximate the kinetic

kpTn (kyia/(k=13%)), Ty xp = k420" — k_2b, and  gquation in[[dB) by an approximated
px — pp = kpTIn (k2w /(k_2b)). Both terms in{---}

are positive. More importantly, iﬁ:H andk_, are very large dx (g k+2) g =kpa. (45)

while Jy5 4, x is kept constant, thep sy — px will be very dt "

small; they are nearly at equilibrium. In this case, we caf fact, the approximation produces accurate kinetic te$ul

lump the A and X' as a single chemical species with rapighe two inequalities in[{44) are strong enough.

internal equilibrium. Such coarse-graining always leads t |f system [2) is mesoscopic sized, then the deterministic

under-estimating the entropy production[46].1[47]. dynamics in [4b) also has a stochastic, Markov counterpart,
as abirth-and-death process with master equation for the

A. Thermodynamically consistent kinetic approximation Probability distributionp,,(t) = Pr{nx(t) = n}, where
(t) is the number ofX in the system at time:

dzx
dt (kz+1a + k_ Qb)ZC — (k,1$ + k+2)£€. (43)
Let us now consider a particular case in which

kyia>k_ob and =z < /€+2/l€71. (44)

We now carry out a more in depth analysis on kinetic coarse=

graining. In particular, we try to show the following: There d P 1

are at least two types of kinetic approximations: those are  gz”n(!) = 9((n ~ Dpn-1 — "p")
ther_modynam.mally meanlngful_and those are not. In rr_1athe— — ko (npn(t) —(n+ l)pn+1(t)). (46)
matical terms: No matter how inaccurate, the former gives a

finite approximation of the “true entropy production of theeor very largen, one can approximate + 1 ~ n ~ n — 1,
system” while the latter yields a numerical infinity,g, the then this is the equation [9] in ref [11], if we identify, , as
thermodynamics is lost. 5.

According to T. L. Hill [48], the expression in[{18) However, as discussed in SEC.V-A, while coarse-graining is
has a unique, thermodynamically meaningful represemtatig type of mathematical approximation, not all mathemdical
Jretass = Jip — I 4 INWhich J3°, p = aky1ki2/%,  |egitimate kinetic approximations are valid coarse-grajrfor
JEa = bk_1k_2/%, and thermodynamics. The approximatéd](45) now yields meaning-

5 less chemical thermodynamics. To see this, we consider the
g1 +( kyo ) \/(/‘?+1a+ ki2)” —4X = (ky1a +ky2)  exact result in EG16
k_q '

2k A 41 aky1kio
. o (41) pa—pp = (=2 ) (47)
One can show tha¥ is strictly positive if all the parameters bk_1k_2

having finite values. Then, the entropy production raté B) (1ang compare it with the mathematical entropy production in

the Markov transition of the birth-and-death procéss (#6n

55 st B
olz™] = (JA—>B JB—>A) 1n<J%S:ZA)' (42) ny=nto nx = (n+1):

With respect to the expression in Eqg] 42, we can reach the entropy production of birth-and-death
following conclusions:

(a) If an approximation leads td3*, , — Ji, J§, 4 — =1 (
J* but Ji/J* finite, then there is a meaningful, finite ap-
proximateds. This is a sufficient condition but not necessary. 1

(b) If both J55, 5, J35, 4 — oo, but (J55, 5 — J&, ) is —In (M) (48)
finite, then there is a finite. k2(n + 1)pn1

(¢) It is possible that (/3,5 — J3',4) — oo, Comparing Eq[48 and EG. 47, we see there is no definitive

Pr{a birth in At time}
Pr{a death inAt time}

( A%B/JBHA) — 1, ando is finite. For exampleJ3*, 5 = relation, nor definitive inequality between the two quaeit

x4+ 22, Ji, , = «*. Then whenz — oo we haves = 1. Both k1 and k2, which are on the numerator and denomi-
(d) Howevt_ar if one of the/3*, ; and J3’, , is finite and nator in [48), are on the numerator [n[47).

another one is not, them = oo. One also notices that when.; = 0, the Markov process

We see that ifc_1, k—> — 0 while all other parameters aredescribed by Eq_31 is possible to continously increaseowith
finite, then it is the scenari@d). In this case, a meaningful reaching stationarity:

thermodynamics no longer exists for the kinetic approxima-
tion. (ak+1n + k,wa) > kion, Vn. (49)



However, fork_; # 0, the inequality in[(49) can not be valid Also, with a thermodynamically valid coarse-graining, the
for all n: There must be an*, whenn > n*: computation of entropy production on a coarse level can
ko(n—1) p_rov_ide_a lower bound_ for thmec_hanics bgsed free energy
(ak+1n+ k_gbw) < <_7 + k+2) n. (50) dissipation, as stated im_[11]. This result is not new; it has
w been discussed already In [46] and|[47]. In a nutshell, &ars
This shows that a chemical kinetics with meaningful therm@raining involves “rapid equilibrium” assumption whichdeis
dynamics is intrinsically stable. dissipation in the fast modes of motions. In fact, with a give
As we have stated earlier, considering microscopic rglf'ference(J+ — J*) which fixes the rate of an irreversible
versibility is a fundamental tenet of stochastic thermaaiyn Process, the entropy productidn (J*/J~) decrease with
ics. Any coarse-graining that thermodynamically meaning- increasing one-way fluxeg* and.J~.
ful has to respect the nature of microscopic reversibility. On The physics of living systems is outside classical me-
the other hand, the death step representeblbyk - simply is chanics. While no living phenomenon and process disobey
not the reverse step of the birth step representeg By a; classical mechanics, the former are phenomena with such a
it cannot provide any meaningful estimation. The reverséafge degree of freedom, heterogeneity, and complexigir th
step of birth is actually an infant going back to the motherdnderstanding has to be founded on laws and descriptions
womb! In a population dynamics model like {45), while itoutside classical mechanics. By classical mechanics, veame
could be completely accurate in kinetic modeling, neveetsee the view of the world in terms of point masses and their
is not thermodynamically meaningful on the level of phykicdnovement based on the Newtonian system of equations of
chemistry. There are irreversible approximations invdlve ~ motion. In particular, we try to show that the understanding
As pointed out in[[I1], “it is much more likely that oneOf “heat”, which is so fundamental in the irreversibility of
bacterium should turn into two than that two should somehd®acroscopic mechanical systems, actually has very little t
spontaneously revert back into one.” Nevertheless, it & tHO With irreversibility in living systems! In contrast, amécal
non-zero probability of such completely inconceivable-prdhermOdynamiCS and its irreversibility, la Gibbs, Lewis and
cesses, in a physicist's world, that provides an estimasibn Randall, naturally arises from the theory of probabilitye t
thermodynamic heat production. When a biologist considef@thematics J. W. Gibbs employed in terms of the notion of
only feasible events to a living organism being birth andtdea €nsemblefor developing his brand ddtatistical mechanicdt

the connection to the physical world has already lost in ttid not escape our notice that Gibbs was also the origindtor o
mathematical thinking. the chemical thermodynamics, and the inventor of the notion

of chemical potential.
Understanding thermodynamics from Newtonian mechanics
was the central thesis of L. Boltzmann’s life work. Indeed,
Another 2nd Law for systems with irreversible processesone of the key results of Boltzmann, together with H. von
First, we should emphasize that while classical mechanidglmholtz, was to cast the phenomenological First Law of
represents a system in terms of point masses each witfiharmodynamics into a mathematical corollary of the Newto-
distinct label, reasonable “variables” in biology, physigy, Nian equation of motion: One knows a Hamiltonian dynamics
and biochemistry, more often are counting numbers of varioi$ restricted on a level set off ({z;},{v;}) = E, where
“species’™ number of molecules in biochemistry, number ofne E is determined by the initial condition. Recognizing
cells in a tissue, and number of individuals in a populatiothat a thermodynamic state is actually a state of perpetual
In these latter cases, the Crooks’ equality, e.g., Eq. (3) otion, e.g., an entire level Betthere is a mathematical
[11] is mathematically hold, but its interpretation as “tiea function between the phase-space volume contained by the
based on Gibbs’ chemical thermodynamics, is subflé [37]:lavel-set 2, E, and other parameters in the Hamiltonian
depends on how the environment of an open system is 8#tction H({z;}, {v;},V,N): Q(E,V,N). Since the phase-
up. The discussion in Selc] V serves as a warning. Note wHg@ce volume monotonically increases withone can define
couqting the number of individuals in a population, say, E = E(S,V,N), whereS =InQ(E,V,N). (51)
the increase ofiy from n to n + 1, and its decrease from
n+ 1 to n, even they are through reversible reaction steps,itis then a matter of simple calculus to obtain
cannot be identified whether they occur by a same individual OF OF OF
or different individuals: This information has already tlas - (%)VNdS"' < >5Ndv (W)S VdN’
the number counting representation of nameless individual T (52
However, since the mathematics is valid, it is legitimateynd define the emergent thermodynamic quantifies=
even scientifically desirable, to propose a different type QaE/as)VN as temperaturey = _(3E/3V)SN as pres-
“heat” in Markov systems that is not necessarily connect%glre, andf: (8E/3N)sv as chemical potentiél. Note, from

to mechanical energy viapT. the mechanical standpoint;,p, x are emergent quantities;
SNote that when deali it bod . fuid medsamind they characterize how one invariant torus is related toharot
ote that when dealing with many-body systems, fluid medsamind . : . - S
quantum mechanics changed their representations frorkiritgathe state of Invariant torus, 1.e., One thermo_dynamlc equilibrium ested
individually labeled particles to counting the numberse switching from another thermodynamic equilibrium state.

Lagrangian to Eulerian descriptions in the former and seéa@prantization in
the latter. 4Here, the importance argodicity arises.

VI. CONCLUSION AND DISCUSSION

aVv



It is important to emphasize that, no matter how imperfecubsystem due to spontaneous processes that cause erftropy o
both T" and p have well-accepted and widely understoothe total closed system to increase. This view is justified in
mechanical interpretation, as mean kinetic energy and mdarms of‘ii—f < 0 for closed systems. We refer the readers
momentum transfer to the wall of a container, respectivetyp T. L. Hill's notion of “cycle completion” in stochastic
However, ;. has no interpretation in terms of classical mothermodynamics [57] for a much more complete view of the

tion, whatsoever; rather, it has an interpretation in teohs matter. This concept nicely echoes R. Landauer and C. H.

probability, and in terms of Brownian motion: Bennett's principle of computational irreversibility Ingi asso-
) . ciated only with memory erasing [58], [59]. It also provides
Op(z,t) _ Da plz.t) _ _1M7 (53) Powerful conceptual framework for further investigatirter
ot O n Oz nagging concepts such as heat dissipation associated with a

where subsystem in a nonequilibrium steady state (NESS)) [37] and

. O endo-reversibility in finite time thermodynamics (FTT) |55

F= ~ 37 and p = Dnlnp(z,t) = kgTInp(x,t). (54) [60].

xr
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18" century had recognized in connection to the notion of
“heat death of the universe”, a sustained chemical potentia

. . . [1] H. Qian, “Nonlinear stochastic dynamics of complex syss, I: A
difference has to have a consequence In generating heat' chemical reaction kinetic perspective with mesoscopiceqaiiibrium

a closed, cyclic universe, if one indeed can treat the entire thermodynamics, arXiv:1605.08070, 2016.
universe as an isolated mechanical system. However, it [l L. F. Thompson and H. Qian, “Nonlinear stochastic dyrzsniof

. . L . complex systems, |l: Potential of entropic force in Markggtems with
equa”y I'kely' accordlng to our current, limited undemmg nonequilibrium steady state, generalized Gibbs functioe eriticality,”

of the cosmology and planet formation, that what is being [arXiv:1605.08071, 2016.
dissipated is simply local inhomogeneity, e.g., low engrop [3] C. E. Shannon and W. Weavérhe Mathematical Theory of Communi-

- L . ; cation Chicago: Univ. lllinois Press, 1963.
initial condition, in our world, which was formed 13 some [4] S.Toyabe, T. Sagawa, M. Ueda, E. Muneyuki and M. Sanoptxen-

billion years ago. tal demonstration of information-to-energy conversiod aalidation of
Information and entropy. There is a growing interest in the generalized Jarzynski equalitjyat. Phys.vol. 6 988-992, 2010.

th h £ “inf ti t ., . [5] D. Mandal and C. Jarzynski, “Work and information prosieg in a
€ phenomenon of Intormation 10 energy COonversion™ IN"~ g, aple model of Maxwells demonProc. Natl Acad. Sci. U.S.Aol.

Maxwell-demon like devices [49]. To quantify information, 109, 11641-11645, 2012.
entropy Change has to be distinguished from work. An un®] H. A. Johnson, “Information theory in biology after 18ass,” Science

. T . vol. 168, pp. 1545-1550, 1970.
amblguous distinction between work and heat is fundament T. D. Schneider, “Some lessons for molecular biologyrfrmformation

to thermodynamics: The difference between heat and work ~ theory,” In Entropy Measures, Maximum Entropy Principle and Emerg-
cannot always be uniquely specified. It is assumed that there ing Applications E. Vargas, M. A. Jiménez-Montafio and J. L. Rius,

. Vi ideal . hich the t eds., New York: Springer-Verlag, pp. 229-237, 2003.
are cases, Involving ideal processes, in whic € two can §] A. N. Kolmogorov, “Three approaches to the quantitatdefinition of

strictly distinguished from one anotHef50]. Unfortunately information,” Int. J. Comput. Mathvol. 2, 157-168, 1968.
outside classical mechanics, at least in biochemistry ghef® H. Qian, “Mesoscopic nonequilibrium thermodynamicssafgle macro-

"y lecules and dynamic entropy- tRhy's. Rev. Eol.
temperature-dependent heat capacity is a commonglate [51] s ar 016102 o000 T C ooy Compensa nys. Rev. &0

distinguishing enthalpy change from entropy change besomeo] R. H. Fowler, Statistical Mechanics: The Theory of the Properties of

increasingly challenging [52]/ [53][[37]. In a more modern _ Matter in Equilibrium U.K.: Camberage Univ. Press, 1929.
hvsi tin heat robability. and time are inti teill] J. L. England, “Statistical physics of self-replicati” J. Chem. Phys.
physics setting, P ihity, ! Inumea vol. 139, art. 121923, 2013.

related [54]. The success of our present theory on chemigal] J. RoughgarderTheory of Population Genetics and Evolutionary Ecol-
thermodynamics owes to a large extent to a sidestepping the 09 An Introduction New York: Macmillan Pub., 1979.

. [13] B. M. R. Stadler and P. F. Stadler, “The topology of evioinary
notion of heat, and thus temperature that follows. biology,” In Modelling in Molecular Biology G. Ciobanu and G.

The physical locus of entropy productionNVhether the Rozenberg eds., pp. 267-286, New York: Springer, 2004.

entropy is produced inside a subsystem, or in the envirohm&l M. W. Kirschner and J. C. Gerharthe Plausibility of Life: Resolving
Darwins Dilemma New Haven: Yale Univ. Press, 2005.
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of the deeper issues in nonequilibrium thermodynamics: To Press, 2008.

L. Onsager, a transport process driven bghermodynamic [16] R- A weinberg, fcoming full circle ~— From endless corety to
. L. . _ L. . simplicity and back againCell, vol. 157, pp. 267-271, 2014.
force constitutes dissipatiori_[56]. This is a NESS view oﬁﬂi L. H. Hartwell, J. J. Hopfield, S. Leibler and A. W. Murga§From

an “insider” of an open subsystem; it can be mathematically molecular to modular cell biology,Nature vol. 402, pp. C47—C52,
justified in terms of the positive chemical motive force (Jmf 1999 . o _ _

. d d in EqCTb. To classical physicists, howeves ting] M. Vellela and H. Qian, “A quasistationary analysis ofstochastic
Intro uc_e ) In - q : P _y ' ? chemical reaction: Keizers paradoxgullet. Math. Biol, vol. 69, pp.
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