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We briefly review the recently developed, Markov process based isothermal chemical thermodynamics for nonlinear, driven
mesoscopic kinetic systems. Both the instantaneous Shannon entropy S[pα(t)] and relative entropy F [pα(t)], defined based on
probability distribution {pα(t)}, play prominent roles. The theory is general; and as a special case when a chemical reaction
system is situated in an equilibrium environment, it agreesperfectly with Gibbsian chemical thermodynamics: kBS and kBTF
become thermodynamic entropy and free energy, respectively. We apply this theory to a fully reversible autocatalytic reaction
kinetics, represented by a Delbrück-Gillespie process, in a chemostatic nonequilibrium environment. The open, driven chemical
system serves as an archetype for biochemical self-replication. The significance of thermodynamically consistentkinetic coarse-
graining is emphasized. In a kinetic system where death of a biological organism is treated as the reversal of its birth, the meaning
of mathematically emergent “dissipation”, which is not related to the heat measured in terms ofkBT , remains to be further
investigated.

Index Terms—Biophysics, chemical master eqution, chemical potential, detailed balance, entropy, Gillespie algorithm, information.

I. I NTRODUCTION

I N Part I and Part II of this series [1], [2], a chemical
reaction kinetic perspective on complex systems in terms

of a mesoscopic stochastic nonlinear kinetic approach, e.g.,
Delbrück-Gillespie processes, as well as a stochastic nonequi-
librium thermodynamics (stoc-NET) in phase space, have been
presented. Part I provides an overview. Part II, motivated by
both Gibbsian statistical mechanics and information theory,
focuses on a parametric family of probability distributions
p(x, β) as a noveltheoretical devicefor exploring a single
nonequilibrium steady state probabilityP (x), x ∈ S , where
S is a denumerable set of events, and(S ,F , P ) is the
underlying probability space.

The relation between Gibbsian statistical mechanics and
information theory [3] has generated endless discussions rang-
ing from “they are completely unrelated except sharing a
common term ‘entropy’,” to “they are parts of a single unifying
maximum entropy principle”. Throwing a monkey wrench
into the midst, we have articulated in [2] the notion that
minus-log-pss can be a very legitimate potential function of
an entropic force in a complex dynamics. The origin of this
practice was traced back to equilibrium statistical chemical
thermodynamics with an exact coarse-graining, and J. G.
Kirkwood’s concept ofpotential of mean force. The seemingly
naive question still remains: What is information? Is it a state
of a complex system, or a character of its dynamics, or a
form of “energy” [4], [5]? In the engineering specific context
first discussed by Shannon, information is the mathematical
symbols that represent certain messages in communication.
Therefore, the theory of information is a theory concerning
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coding, representations, and communications under uncer-
tainty. On the other hand, in a much broader sense, particularly
in the early days of applying information theory to biology,
mathematical information theory was used essentially as an
applied probability with a singular emphasis on the notion of
Shannon entropy [6], [7].

Sidestepping these issues, we follow Kolmogorov’s ax-
iomatic theory of probability in which information is simply
a very particular function of a random variablex with prob-
ability distributionpx [8], [9]: Hx(x) = − ln px(x), x ∈ S ,
whose expected value gives Gibbs-Shannon formula.

It is important to remember that in Gibbs’ statistical en-
semble theory of equilibrium matters [10], the probabilityof
a statex of a matter that is in contact with a temperature bath
is

px =
e−Ex/kBT

Ξ(T )
, where Ξ(T ) =

∑

x∈S

e−Ex/kBT , (1a)

in whichEx is the internal energy of the statex, T is temper-
ature in Kelvin,kB = 1.38064852× 10−23 m2 kg s−2 K−1

is Boltzmann’s constant,S is the set containing all possible
states of the matter. The theory of statistical mechanics states
that the entropy of the matter is then

S(T ) = −kB
∑

x∈S

px ln px =
∂

∂T

(

kBT ln Ξ(T )
)

. (1b)

In statistical thermodynamics,F (T ) ≡ −kBT ln Ξ(T ) is
called free energy, and entropy is−∂F/∂T . One also has
the important equation

F = E − TS, (1c)
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in which E is the mean internal energy

E(T ) =
∑

x∈S

Expx. (1d)

Viewed from these four widely known mathematical equations,
the theoretical devicediscussed in [2] simply provides an
extended exploration of the information content ofP (x) and
its underlying(S ,F , P ).

There is a growing interest in quantitative relations between
the theory of thermodynamics that rules many aspects of the
biochemical world and the biological dynamics of organisms,
their ecology and evolution. “Every species of living thingcan
make a copy of itself by exchanging energy and matter with its
surroundings.” [11] A living organism has two distinct aspects:
One with “genomic information” which is carried in the
sequence of polynucleic acids [7], possibly including methy-
lation modifications of base-pairs; and the other is a space-
time biochemical dynamics in terms of molecules, which can
exhibit chemical, mechanical, and electrical characteristics.
The time scales of these two aspects are vastly different:
The former cumulates changes generation after generation,
which constitutes an evolutionary process. The latter defines
“what is living” for each and every individual organism. The
relationship between these two has been the subject of many
scholarly studies in the field of biology [12], [13], [14], [15],
[16].

To a classic physicist or chemist, the cellular biochemical
processes are various transformations of energy and matters;
to a modern cell biologist, the same processes are usually
described as regulation and processing ofinformations. The
physical and chemical processes are interpreted with biological
functions [17]. The present paper is an attempt to provide
a treatment of this latter aspect in terms of a stochastic
kinetic theory. In particular, we analyze rigorously a chemical
model that makes the notion of “making a copy of itself by
exchanging energy and matter with its surroundings” precise
and quantitative. To this end, we revisit a kinetic model for
a fully reversible chemical reaction system that consists of
an autocatalytic stepA +X −→ 2X [18], [19]. This model
first appeared in the wonderful book by the late Professor
Keizer [20]. This extremely simple model, however, offers us
an insight on why a truly meaningful chemical thermodynamic
study of biological replication is premature: This is because
neither the current cosmological time scale of our universe
nor the size of entire biological population on our planet are
sufficiently large to provide a meaningful estimation of the
probability of “two [daughter cells] somehow spontaneously
revert back into one” [11]. Note the “revert back” should not
be a fusion of two cells, rather it has to be a process that
reverses the entire event-by-event of a cell replication.

It is the non-zero probability of such completely incon-
ceivable processes, in a physicist’s world, that provides an
estimation of thermodynamic heat production. When a biolo-
gist considers only feasible events to a living organism being
birth and death, the quantitative connection to the world of

thermal physics has already been lost.1 This difficulty has been
hinted in [21]: “If we assume that the processI → II is
‘irreversible’ this implies that the time-reversed dynamics is
very unstable so thatPr{II → I} is hard to estimate precisely.
One uses instead a bigger probabilityPr{II → I} based on
observable processes.” Unfortunately, any remotely reasonable
substitution for an authentic de-birth is currently out of reach;
death is not an acceptable alternative even for a lower bound
estimation.

The paper is structured as follows: In Sec. II we give a
brief review of the modern theory of stochastic nonequilibrium
thermodynamics of Markov systems [22], [23], [24], [25], as
presented in Part I [1]. While many of the terminologies and
mathematical relations can be found in the review articles [26],
[27], [28] and classic text [29], we like to point out that the
coherent narrative constructed based on the mathematics, e.g.,
their interpretations, is unique. We shall show how mathe-
matical logic dictates that entropy in systems with uniform
stationary probability should be replaced by a relative entropy,
also known as free energy, in systems with non-uniform
stationary probability, and how entropy production rateep
arises as a distinctly different concept as entropy change
dS
dt . Then in Sec. III, we first give the standard chemical
thermodynamic treatment of the simple kinetic system with
two reversible reactions

A+X
k+1

GGGGBF GGGG

k−1

2X, X
k+2

GGGGBF GGGG

k−2

B. (2)

Note, if one neglects the two “backward” reactions, e.g., letting
k−1 = k−2 = 0, then the chemical kinetics can be described
by the differential equation

dx

dt
= gx− k+2x, g ≡ k+1a. (3)

Eq. 3 describes the “birth and death” of individualX
molecules.

The simple chemical model in (2) has a clear self-replication
characteristics, it allows a rigorous thermodynamics analysis
of the replication/synthesis aspect of a biological organism.
Certainly the individualX lacks other fundamentals of a
living being: An individualX itself is a dead molecule, not a
living organism. Therefore, while it is meaningful to ask the
heat dissipation in a self-replication from a complex chemical
synthesis standpoint [30], it might not be a sufficient modelfor
the heat dissipation in the self-replication of a living organism
since even just being alive, an organism has a continuous heat
dissipation as an individual entity, e.g., active metabolism.
Simply put: a living organism, which has bothmetabolismand
self-replication, already has a basal level of heat dissipation
due to the former even in the absence of the latter. The present
analysis, however, makes a conceptual separation between the
two processes in an organism. We note that the open chemical
systems theory of motor protein chemomechanics serves as a
concrete model for the former [31].

1On the other hand, the upper bound of such an extremely small probability
can be estimated from knowing the minimal amount of caloriesrequired to
reproduce an organism using the very equation (2) in [11].
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In Sec. IV, a mesoscopic stochastic thermodynamic treat-
ment of the replication kinetics is carried out. Entropy produc-
tion rate for the kinetic process is studied. Then in Sec. V, we
articulate a distinction between thermodynamically consistent
and inconsistent kinetic approximations. The paper concludes
with a discussion in Sec. VI.

II. A M ODERN STOCHASTIC NONEQUILIBRIUM

THERMODYNAMICS OF MARKOV SYSTEMS

The very brief summary of Gibbs’ equilibrium statistical
thermodynamics, given in Eq. 1a-d, illustrates the universality
of the entropy function, be it in information theory or in
thermal physics. Indeed there is now a more unifying theory of
entropy and relative entropy, also known as Kullback-Leibler
(KL) divergence in information theory and free energy in
statistical thermodynamics, based on the probability theory of
Markov processes that describe complex system’s dynamics in
phase space [22], [23], [25].2

The first basic assumption of this stochastic nonequilibrium
thermodynamic theory is that a complex mesoscopic dynami-
cal system can be represented by an irreducible continuous
time Markov process with appropriate state spaceS and
transition probability ratesqαβ , α, β ∈ S , whereqαβ = 0
if and only if qβα = 0. Under these assumptions, it can be
shown that there exists a unique positive stationary probability
πα for the Markov system in stationarity:

∑

α∈S

παqαβ = 0. (4)

For a stationarity process defined by{πα} andqαβ , a further
distinction between anequilibrium steady stateand anonequi-
librium steady state(NESS) can be made (see below): The
former has zero entropy production rate, and the latter has
a strictly positive entropy production rate. This distinction is
determined by the set of transition probability rates{qαβ},
which necessarily satisfy detailed balance,παqαβ = πβqβα
∀α, β ∈ S , if and only if the steady state is an equilibrium.
The theory presented below is applicable to both equilibrium
and nonequilibrium steady state, as well as a time-dependent
non-stationary process.

For a mesoscopic system such as the discrete chemical
reactions in (2) with state spaceS being non-negative in-
tegers, a second assumption is that it has amacroscopic
correspondingcontinuous dynamicsx(t), x ∈ R

n. Let ω be
the “size parameter” that connects the mesoscopic system and
its macroscopic limit whenω → ∞, with x ≡ α

ω beingnumber
density. Then, for a large class of such Markov systems [24],
[33],

πωx
ω

≃ e−ωϕ(x) → δ
(

x− z

)

, (5)

in which functionϕ(x) ≥ 0 and its global minimum is atz.
In applied mathematical theory of singular perturbation, Eq. 5
is known as WKB ansatz [34]; in the theory of probability, it
is called large deviations principle[32].

2Another unifying approach to entropy is the theory of large deviations
[32]. A deep relation between the entropy function in large deviations theory
and the entropy function in complex dynamics is Sanov’s theorem. See below
as well as [24], [33].

Inspired by the similarity between the expression in Eq. 5
and Boltzmann’s law, let us define “the internal energy density
of the Markov stateα”:

Eα = −
lnπα
ω

. (6)

Then the mean energy density at timet:

E(t) =
∑

α∈S

pα(t)Eα = −ω−1
∑

α∈S

pα(t) ln πα, (7)

wherepα(t) is the probability of the system in stateα at time
t. Then the free energy, also known as Massieu potential, of
the Markov system at timet

F
[

pα(t)
]

= ωE − S(t) =
∑

α∈S

pα(t) ln

(

pα(t)

πα

)

. (8)

Then, concerning these quantities, one has a series of mathe-
matical results:

A free energy balance equation.First, an equation that is
valid for systems with and without detailed balance, and for
processes in stationary and in transient:

d

dt
F
[

pα(t)
]

= ωEin
[

pα(t)
]

− ep
[

pα(t)
]

, (9a)

in which

Ein
[

pα
]

:=
1

ω

∑

α,β∈S

(

pαqαβ − pβqβα

)

ln

(

παqαβ
πβqβα

)

≥ 0,

(9b)

ep
[

pα
]

:=
∑

α,β∈S

(

pαqαβ−pβqβα

)

ln

(

pαqαβ
pβqβα

)

≥ 0. (9c)

Eq. 9 is interpreted as a free energy balance equation for
a Markov system withEin[pα] being the instantaneous rate
of input energy, a source term, andep[pα], a sink, as the
instantaneous rate of energy lost, or entropy production rate.

Entropy change, free energy change, and entropy produc-
tion. Second, an inequality that is valid for systems with and
without detailed balance, and for processes in stationary and
in transient:

dF (t)

dt
≤ 0. (10)

Combined with (9), this impliesω−1ep ≥ Ein.
One notices that for very particular Markov systems with

qαβ = qβα ∀α, β ∈ S , they have a uniformπα ≡ constant.
Thenep(t) = dS

dt . Such systems are analogous tomicrocanon-
ical ensembles, where the entropy production is the same as
entropy increase.

For Markov systems with detailed balance,Ein(t) ≡ 0 ∀t,
and

ep
[

pα
]

=
d

dt
S
[

pα(t)
]

− ωEex
[

pα(t)
]

≥ 0, (11a)

in which

Eex
[

pα
]

:=
∑

α,β∈S

(

pαqαβ − pβqβα

)(

Eβ − Eα

)

, (11b)

is interpreted as the instantaneous rate of energy exchange.
The inequality in Eq. 11a is analogous to Clausius inequility
for spontaneous thermodynamic processes, which gives rise
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to the notion of entropy production as a distinctly different
concept asdSdt .

Macroscopic limit. For a macroscopic system in the limit
of ω → ∞, the probability distributionpα(t) becomes a
deterministic dynamicsx(t), and Eq. 9 becomes a novel
macroscopic equation [24], [33]

dϕ
[

x(t)
]

dt
= cmf

[

x(t)
]

− σ
[

x(t)
]

, (12a)

in which

cmf[x] =
∑

ℓ:all reactions

(

J+
ℓ (x)− J−

ℓ (x)
)

× ln

(

J+
ℓ (x)

J−

ℓ (x)
e−νℓ·∇xϕ(x)

)

, (12b)

σ[x] =
∑

ℓ:all reactions

(

J+
ℓ (x)− J−

ℓ (x)
)

ln

(

J+
ℓ (x)

J−

ℓ (x)

)

,

(12c)

J+
ℓ and J−

ℓ are the forward and backward fluxes of theℓth

reversible reaction, integer vectorνℓ is its stoichiometry coeffi-
cients. cmf is the chemical motive force that sustains a reaction
system out of its equilibrium, andσ is the macroscopic rate
of entropy production.

If J+
ℓ (x) = J−

ℓ (x)eνℓ·∇xϕ(x) ∀ℓ,x, it is known as detailed
balance in chemistry, or G. N. Lewis’ law of entire equi-
librium [35]. In such systems, cmf= 0, ϕ(x) is the Gibbs
function, ∂ϕ(x)/∂xk is the chemical potential of speciesk,
and νℓ · ∇xϕ(x) is the chemical potential difference of the
ℓth reaction.

Macroscopic systems with fluctuations.For a system with
very large but finiteω, Eq. 5 provides a “universal”, asymptotic
expression for stationary, fluctuatingx [32]:

fx(x) =
e−ωϕ(x)+ψ(x)

Ξ(ω)
, (13)

where
Ξ(ω) =

∫

Rn

e−ωϕ(x)+ψ(x)dx, (14)

in which ϕ(x) is uniquely defined withminx ϕ(x) = 0.

III. A N OPEN CHEMICAL SYSTEM AS A

SELF-REPLICATING ENTITY

We now apply the general theory in Sec. II to reaction sys-
tem (2). There are two reversible reactions with stoichiometric
coefficientsν1 = +1 andν2 = −1, respectively. Letx(t) be
the concentration ofX at time t, the kinetics of the reaction
system in (2) can be described by

dx(t)

dt
=

∑

ℓ=1,2

νℓ

(

J+
ℓ (x)− J−

ℓ (x)
)

= k+1ax− k−1x
2 − k+2x+ k−2b, (15)

with J+
1 (x) = k+1ax, J−

1 (x) = k−1x
2, J+

2 = k+2x, and
J−

2 = k−2b. The first of these two reversible reactions in (2)
is known asautocatalytic. One can find many many examples
of this abstract system of reactions in biochemical literature;
see [19] for more extensive biochemical motivations. One also

notices that in a semi-reversible case whenk−2 = 0 in the
system (2), extinction ofX is the only long time fate of the
kinetics. The differential equationdxdt =

(

g− k+2

)

x− k−1x
2,

however, predicts a stable populationxss =
(

g − k+2

)

/k−1.
This disagreement is known asKeizer’s paradox[18], [36].
We shall use this model as a concrete case of the chemical
nature ofexchanging of energy and matter in self-replication.

A. NESS of an open chemical system

According to (2), anX molecular has transformed the raw
material in the form ofA into a copy of itself, a secondX .
The canonical mathematical description of this autocatalytic
reaction is dx

dt = gx where the constantg = k+1a. We
shall usea, x, b to denote the concentrations ofA,X,B,
respectively. Clearly,g can be identified asper capita birth
rate if one is interested in the population dynamics ofX .
Combining with the second reaction, one hasdx

dt = gx−k+2x,
wherek+2 can be identified as aper capita death rate. When
theX is dead, the material in terms of atoms are in the form of
B. Therefore, the “birth” and “death” ofX , or more precisely
the synthesis and degradation ofX , involve an exchange of
materials, as source and waste, with its surroundings. One can
in fact assume that the concentrations ofA and B, as the
environment of the chemical reaction system in (2), are kept
at constant, as a chemostat. This is precisely why living cells
have to be “cultured”.

The calorie count one reads from a food label in a su-
permarket gives the chemical potential difference betweenA
andB, introduced below. This is not different from one reads
the electrical potential difference on a battery to be used for
keeping a radio “alive”.

One might wonder why we assume the reactions in (2)
reversible? It turns out, as anyone familiar with chemical
thermodynamics knows, one can not discuss energetics in an
irreversible reaction system. If thek−2 = 0, then the chemical
energy difference betweenX and B are infinite; which is
clearly unrealistic. In fact, the chemical potential difference
betweenA andB, in kBT unit, is

µA − µB =
(

µA − µX
)

+
(

µX − µB
)

= ln

(

k+1a

k−1x

)

+ ln

(

k+2x

k−2b

)

= − lnKeq
AB +

(a

b

)

, (16)

in which the overall equilibrium constant betweenA andB,
Keq
AB = k−1k−2/(k+1k+2). In a chemical or biochemical

laboratory, the equilibrium constant is usually determined in
an experiment according to

Keq
AB =

equi. conc. ofA
equi. conc. ofB

.

If µA > µB, then there is a continuous material flow fromA to
B, even when the concentration ofX is in a steady state: There
is a continuous birth and death, synthesis and degradation:
metabolism in an “living system”. There is an amount of
entropy being produced in the surroundings. An agent has to
constantly generatingA with high chemical potential fromB
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with low chemical potential. This entropy production in fact
is precisely theµA − µB [37].

The kinetics of (2), described by Eq. 15, eventually reach a
steady state, with the concentration ofX , xss as the positive
root of the polynomial on the right-hand-side of (15):

xss =
1

2k−1

[

k+1a− k+2 +

√

(

k+1a− k+2

)2
+ 4k−1k−2b

]

.

(17)
The net flux fromA to B in the steady state,

JssnetA→B = J+
1 (xss)− J−

1 (xss) = J+
2 (xss)− J−

2

=
1

2k−1

[

2λ+ k+2

√

(

k+1a+ k+2

)2
− 4λ

−
(

ak+1k+2 + k2+2

)]

, (18)

where

λ = ak+1k+2 − bk−1k−2 = bk−1k−2

(

e
µA−µB

kBT − 1
)

.

And the steady-state entropy productionrate according to Eq.
12c is

σ
[

xss
]

= JssnetA→B ×
(

µA − µB
)

. (19)

We see that the steady state is actually an equilibrium if
and only if whenµA = µB. In this case,σ[xss] is zero,
λ = 0, and one can check thatJssnetA→B = 0: There
is no net transformation ofA to B via X . Otherwise, the
JssnetA→B 6= 0, and it has the same sign asλ and(µA− µB).
Therefore, the macroscopic entropy production rate definedin
(19), which is never negative, mathematically quantifies the
statistical irreversibility in the self-replication ofX .

Generalizing this example is straightforward; hence with
this in mind one can claim that [11] “[e]very species of living
thing can make a copy of itself by exchanging energy and
matter with its surroundings”, which can be exactly computed
if all the reversible biochemical reactions involved are known.

B. Time-dependent entropy production rate

We now turn our attention to the non-stationary transient
thermodynamics of system (2). First, the time-dependent con-
centration ofX , x(t) is readily solved from (15):

x(t) =
βCe−βt

1− Ck−1e−βt
, (20)

in which

β =

√

(

k+1a− k+2

)2
+ 4k−1k−2b, C =

x(0)

k−1x(0) + β
.

Then, the time-dependent entropy production rateσ[x(t)], in
kBT unit,

σ
[

x(t)
]

=
(

k+1ax(t)− k−1x
2(t)
)

ln

(

k+1a

k−1x(t)

)

+
(

k+2x(t) − k−2b
)

ln

(

k+2x(t)

k−2b

)

(21)

= cmf
[

x
]

+
d

dt
ϕss
[

x(t)
]

. (22)

in which (see Eq. 37 below)

ϕss
[

x
]

=

∫ x

0

ln

(

k−1z
2 + k+2z

k+1az + k−2b

)

dz, (23)

and the instantaneous chemical motive force

cmf
[

x
]

=
∑

ℓ=1,2

(

J+
ℓ (x)− J−

ℓ (x)
)

× ln

(

J+
ℓ (x)

J−

ℓ (x)
e−νℓ∂ϕ

ss(x)/∂x

)

(24)

=
(

k+1ax− k−1x
2
)

ln

(

k+1ax

k−1x2
e∂ϕ

ss(x)/∂x

)

+
(

k+2x− k−2b
)

ln

(

k+2x

k−2b
e−∂ϕ

ss(x)/∂x

)

,(25)

with
∂ϕss(x)

∂x
= ln

(

k−1x
2 + k+2x

k+1ax+ k−2b

)

. (26)

That is,

cmf
[

x
]

=
(

k+1ax− k−1x
2
)

× ln

(

(

1 +
k+2x

k−1x2

)(

1 +
k−2b

k+1ax

)−1
)

+
(

k+2x− k−2b
)

(27)

× ln

(

(

k+1ax

k−2b
+ 1

)(

k−1x
2

k+2x
+ 1

)−1
)

.

This is an example of Eq. 12a. Finally,

d

dt
ϕ
[

x(t)
]

=
dx(t)

dt
ln

(

k−1x
2 + k+2x

k+1ax+ k−2b

)

=
(

k+1ax− k−1x
2 − k+2x+ k−2b

)

× ln

(

k−1x
2 + k+2x

k+1ax+ k−2b

)

≤ 0. (28)

This inequality implies even for a driven chemical reaction
system that approaches to a NESS, there exists a meaningful
“potential function”ϕ[x] which never increases.

To connect to the known Gibbsian equilibrium chemical
thermodynamics, we notice that chemical detailed balance
cmf[x] = 0 ∀x implies

J+
1 (x)

J−

1 (x)
= e∂ϕ(x)/∂x =

J−

2 (x)

J+
2 (x)

, (29)

that isk+1k+2a/k−1k−2b = 1. Under this condition,ϕ[x] in
(23) becomes

ϕ
[

x
]

= x ln

(

k−1x

k+1a

)

= x
(

µX − µA
)

, (30)

which is the Gibbs function, in unit ofkBT , with stateA as
reference.

The functionϕ[x] in (23) is a nonequilibrium generalization
of the Gibbs free energy for open chemical systems that
approach to NESS [24], [33], and Eq. 28 is an open-system
generalization of the 2nd Law.
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IV. STOCHASTIC K INETIC DESCRIPTION BY THE

DELBRÜCK-GILLESPIE PROCESS

Chemical reactions at the individual molecule level are
stochastic [38], which can be described by the theory of
Chemical Master Equation (CME) [39] first appeared in the
work of Leontovich [40] and Delbrück [41], whose fluctuating
trajectories can be exactly computed using the stochastic
simulation method widely known as Gillespie algorithm [42].
These two descriptions are not two different theories, rather
they are the two aspects of a same Markov process, just as the
Fokker-Planck equation and the It ō integral descriptionsof a
same Langevin dynamics. More importantly, this probabilistic
description and the deterministic mass-action kinetics inEq.
15 are just two parts of a same dynamic theory: The latter is
the limit of the former if fluctuations are sufficiently small,
when the volume of the reaction vessel,ω, is large [43].

We now show this theory provides a more complete kinetic
characterization of (2) and it is in perfect agreement with
the classical chemical kinetics as well as Gibbs’ chemical
thermodynamics. Since chemical species in (2) are discrete
entities, and the chemical reactions at the level of single-
molecules are stochastic, letpn(t) be the probability of having
n number ofX in the reaction system at timet. Then,pn(t)
follows the CME:

d

dt
pn(t) = un−1pn−1 −

(

un + wn
)

pn + wn+1pn+1,
(31a)

un = u(1)
n + u(2)

n , wn = w(1)
n + w(2)

n , u(1)
n = ak+1n,

(31b)

u(2)
n = k−2ωb, w(1)

n =
k−1n(n− 1)

ω
, w(2)

n = k+2n.

(31c)

A. Stationary distribution

The steady state of such an open chemical reaction system
has a probability distributionπn that is no longer changing
with time, after a certain period of relaxation kinetics. Byopen
system, we mean it has a constant chemical flux betweenA
andB, with its direction being determined by which of theµA
andµB being greater. The stationary probability distribution
for πn is

πn = C

n
∏

ℓ=1

ak+1(ℓ− 1) + k−2ωb

k−1ω−1(ℓ− 1)ℓ+ k+2ℓ
(32)

=
C

n!

(

k−2ωb

k+2

)n











n
∏

ℓ=1

(ℓ− 1)e
µA−µB

kBT +
(

ωk+2

k−1

)

(ℓ− 1) +
(

ωk+2

k−1

)











,

in whichC is a normalization constant. We observe that when
µA = µB, the pssn is a Poisson distribution, as predicted by
Gibbs’ equilibrium theory of grand canonical ensemble, with
the mean number ofX being (k−2ωb/k+2), or equivalently
the mean concentration(k−2b/k+2).

The chemical thermodynamics presented above does not
reference to anything with probability. But we know that the
very notion of Gibbs’ chemical potential has a deep root in it.

B. Macroscopic limit

With increasingω, the behavior of the Markov process
described by Eq. 31 becomes very close to that described by
the mass-action kinetics. In fact, if we letx = n/ω as the
concentration of the speciesX , then

pωx(t)

ω
∼ e−ωϕ(x,t) → δ

(

x− z(t)
)

, (33)

where
dz(t)

dt
= J+(z)− J−(z), (34)

J+(z) = lim
ω→∞

(uωz
ω

)

, J−(z) = lim
ω→∞

(wωz
ω

)

, (35)

and [24], [44], [45]

∂ϕ(x, t)

∂t
=

2
∑

ℓ=1

J+
ℓ (x)

[

1− eνℓϕ
′

x(x,t)
]

+ J−

ℓ (x)
[

1− e−νℓϕ
′

x(x,t)]
]

. (36)

It turns out that the macroscopic, nonequilibrium chemical
energy function appeared in Eq. 28 is the stationary solution
to Eq. 36:

ϕss(x) = −

∫ x

0

ln

(

J+
1 (z) + J−

2 (z)

J−

1 (z) + J+
2 (z)

)

dz, (37)

and
(

∂ϕss

∂x

)

= − ln

(

J+
1 (x) + J−

2 (x)

J−

1 (x) + J+
2 (x)

)

= − ln

(

ak+1x+ k−2b

k−1x2 + k+2x

)

(38)

= − ln

(

k+2 e(µB−µX )/kBT + k−1x e(µA−µX )/kBT

k+2 + k−1x

)

,

in which µA − µB = kBT ln
(

ak+1k+2

bk−1k−2

)

. We observe that
when the reaction system is not driven chemically,µB = µA.
Then (38) isµX−µA

kBT
, the chemical potential ofX in unit of

kBT , with stateA as reference.

C. The stochastic NESS entropy production rate

According to stochastic thermodynamics, the NESS entropy
production rate for the stochastic dynamics in (31), inkBT
unit, is given in Eq. 9c:

ep
[

πn
]

=

∞
∑

n=0

(

πnu
(1)
n − πn+1w

(1)
n+1

)

ln

(

πnu
(1)
n

πn+1w
(1)
n+1

)

+

∞
∑

n=0

(

πnu
(2)
n − πn+1w

(2)
n+1

)

ln

(

πnu
(2)
n

πn+1w
(2)
n+1

)

=
∞
∑

n=0

(

πnu
(2)
n − πn+1w

(2)
n+1

)

ln

(

u
(2)
n w

(1)
n+1

w
(2)
n+1u

(1)
n

)

=

∞
∑

n=0

(

πnu
(2)
n − πn+1w

(2)
n+1

)

ln

(

bk−1k−2

ak+1k+2

)

= ω ln

(

ak+1k+2

bk−1k−2

)(

k+2
〈nX〉ss

ω
− k−2b

)

. (39)
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This agrees exactly with Eq. 19, which is the entropy produc-
tion rate per unit volume.

V. COARSEGRAINING : K INETICS AND THERMODYNAMICS

The entropy production given in (19) and (39) can be
decomposed into two terms:

σ[xss] =
{

JssnetA→X×
(

µA−µX
)

}

+
{

JssnetX→B×
(

µX−µB
)

}

,

(40)
in which JssnetA→X = k+1ax

ss − k−1(x
ss)2, µA − µX =

kBT ln
(

k+1a/(k−1x
ss)
)

, JssnetX→B = k+2x
ss − k−2b, and

µX − µB = kBT ln
(

k+2x
ss/(k−2b)

)

. Both terms in{· · · }
are positive. More importantly, ifk+1 andk−1 are very large
while JssnetA→X is kept constant, thenµA − µX will be very
small; they are nearly at equilibrium. In this case, we can
lump theA and X as a single chemical species with rapid
internal equilibrium. Such coarse-graining always leads to
under-estimating the entropy production [46], [47].

A. Thermodynamically consistent kinetic approximation

We now carry out a more in depth analysis on kinetic coarse-
graining. In particular, we try to show the following: There
are at least two types of kinetic approximations: those are
thermodynamically meaningful and those are not. In mathe-
matical terms: No matter how inaccurate, the former gives a
finite approximation of the “true entropy production of the
system” while the latter yields a numerical infinity,e.g., the
thermodynamics is lost.

According to T. L. Hill [48], the expression in (18)
has a unique, thermodynamically meaningful representation
JssnetA→B = JssA→B − JssB→A, in which JssA→B = ak+1k+2/Σ,
JssB→A = bk−1k−2/Σ, and

Σ =
1

k−1
+

(

k+2

2k−1

)

√

(

k+1a+ k+2

)2
− 4λ−

(

k+1a+ k+2

)

λ
.

(41)
One can show thatΣ is strictly positive if all the parameters
having finite values. Then, the entropy production rate in (19)

σ
[

xss
]

=
(

JssA→B − JssB→A

)

ln

(

JssA→B

JssB→A

)

. (42)

With respect to the expression in Eq. 42, we can reach the
following conclusions:
(a) If an approximation leads toJssA→B → J∗

+, JssB→A →
J∗
− but J∗

+/J
∗
− finite, then there is a meaningful, finite ap-

proximatedσ. This is a sufficient condition but not necessary.
(b) If both JssA→B, JssB→A → ∞, but (JssA→B − JssB→A) is

finite, then there is a finiteσ.
(c) It is possible that (JssA→B − JssB→A) → ∞,

(JssA→B/J
ss
B→A) → 1, andσ is finite. For example,JssA→B =

x+ x2, JssB→A = x2. Then whenx → ∞ we haveσ = 1.
(d) However, if one of theJssA→B andJssB→A is finite and

another one is not, thenσ = ∞.
We see that ifk−1, k−2 → 0 while all other parameters are

finite, then it is the scenario(d). In this case, a meaningful
thermodynamics no longer exists for the kinetic approxima-
tion.

B. Birth-and-death approximation of replication kinetics

For a macroscopic sized system (2) with externally sustained
a andb, the equation for its chemical kinetics is

dx

dt
=
(

k+1a+ k−2b
)

x−
(

k−1x+ k+2

)

x. (43)

Let us now consider a particular case in which

k+1a ≫ k−2b and x ≪ k+2/k−1. (44)

Then it is completely legitimate to approximate the kinetic
equation in (43) by an approximated

dx

dt
=
(

g − k+2

)

x, g ≡ k+1a. (45)

In fact, the approximation produces accurate kinetic result if
the two inequalities in (44) are strong enough.

If system (2) is mesoscopic sized, then the deterministic
dynamics in (45) also has a stochastic, Markov counterpart,
as a birth-and-death process with master equation for the
probability distributionpn(t) ≡ Pr

{

nX(t) = n
}

, where
nX(t) is the number ofX in the system at timet:

d

dt
pn(t) = g

(

(n− 1)pn−1 − npn

)

− k+2

(

npn(t)− (n+ 1)pn+1(t)
)

. (46)

For very largen, one can approximaten + 1 ≈ n ≈ n − 1,
then this is the equation [9] in ref. [11], if we identifyk+2 as
δ.

However, as discussed in Sec. V-A, while coarse-graining is
a type of mathematical approximation, not all mathematically
legitimate kinetic approximations are valid coarse-graining for
thermodynamics. The approximated (45) now yields meaning-
less chemical thermodynamics. To see this, we consider the
exact result in Eq. 16

µA − µB = ln

(

ak+1k+2

bk−1k−2

)

, (47)

and compare it with the mathematical entropy production in
the Markov transition of the birth-and-death process (46),from
nX = n to nX = (n+ 1):

entropy production of birth-and-death

= ln

(

Pr{a birth in∆t time}
Pr{a death in∆t time}

)

= ln

(

ank+1pn
k+2(n+ 1)pn+1

)

. (48)

Comparing Eq. 48 and Eq. 47, we see there is no definitive
relation, nor definitive inequality between the two quantities:
Both k+1 andk+2, which are on the numerator and denomi-
nator in (48), are on the numerator in (47).

One also notices that whenk−1 = 0, the Markov process
described by Eq. 31 is possible to continously increase without
reaching stationarity:

(

ak+1n+ k−2bω
)

> k+2n, ∀n. (49)
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However, fork−1 6= 0, the inequality in (49) can not be valid
for all n: There must be ann∗, whenn > n∗:

(

ak+1n+ k−2bω
)

<

(

k−1(n− 1)

ω
+ k+2

)

n. (50)

This shows that a chemical kinetics with meaningful thermo-
dynamics is intrinsically stable.

As we have stated earlier, considering microscopic re-
versibility is a fundamental tenet of stochastic thermodynam-
ics. Any coarse-graining that isthermodynamically meaning-
ful has to respect the nature of microscopic reversibility. On
the other hand, the death step represented byδ = k+2 simply is
not the reverse step of the birth step represented byg = k+1a;
it cannot provide any meaningful estimation. The reversed
step of birth is actually an infant going back to the mother’s
womb! In a population dynamics model like (45), while it
could be completely accurate in kinetic modeling, nevertheless
is not thermodynamically meaningful on the level of physical
chemistry. There are irreversible approximations involved.

As pointed out in [11], “it is much more likely that one
bacterium should turn into two than that two should somehow
spontaneously revert back into one.” Nevertheless, it is the
non-zero probability of such completely inconceivable pro-
cesses, in a physicist’s world, that provides an estimationof
thermodynamic heat production. When a biologist considers
only feasible events to a living organism being birth and death,
the connection to the physical world has already lost in the
mathematical thinking.

VI. CONCLUSION AND DISCUSSION

Another 2nd Law for systems with irreversible processes?
First, we should emphasize that while classical mechanics
represents a system in terms of point masses each with a
distinct label, reasonable “variables” in biology, physiology,
and biochemistry, more often are counting numbers of various
“species”:3 number of molecules in biochemistry, number of
cells in a tissue, and number of individuals in a population.
In these latter cases, the Crooks’ equality, e.g., Eq. (3) in
[11] is mathematically hold, but its interpretation as “heat”,
based on Gibbs’ chemical thermodynamics, is subtle [37]: It
depends on how the environment of an open system is set
up. The discussion in Sec. V serves as a warning. Note when
counting the number of individuals in a population, saynX ,
the increase ofnX from n to n + 1, and its decrease from
n+ 1 to n, even they are through reversible reaction steps, it
cannot be identified whether they occur by a same individual
or different individuals: This information has already lost in
the number counting representation of nameless individuals.
However, since the mathematics is valid, it is legitimate,
even scientifically desirable, to propose a different type of
“heat” in Markov systems that is not necessarily connected
to mechanical energy viakBT .

3Note that when dealing with many-body systems, fluid mechanics and
quantum mechanics changed their representations from tracking the state of
individually labeled particles to counting the numbers: the switching from
Lagrangian to Eulerian descriptions in the former and second quantization in
the latter.

Also, with a thermodynamically valid coarse-graining, the
computation of entropy production on a coarse level can
provide a lower bound for themechanics based free energy
dissipation, as stated in [11]. This result is not new; it has
been discussed already in [46] and [47]. In a nutshell, coarse-
graining involves “rapid equilibrium” assumption which hides
dissipation in the fast modes of motions. In fact, with a given
difference

(

J+ − J−
)

which fixes the rate of an irreversible
process, the entropy productionln

(

J+/J−
)

decrease with
increasing one-way fluxesJ+ andJ−.

The physics of living systems is outside classical me-
chanics. While no living phenomenon and process disobey
classical mechanics, the former are phenomena with such a
large degree of freedom, heterogeneity, and complexity, their
understanding has to be founded on laws and descriptions
outside classical mechanics. By classical mechanics, we mean
the view of the world in terms of point masses and their
movement based on the Newtonian system of equations of
motion. In particular, we try to show that the understanding
of “heat”, which is so fundamental in the irreversibility of
macroscopic mechanical systems, actually has very little to
do with irreversibility in living systems! In contrast, chemical
thermodynamics and its irreversibility,à la Gibbs, Lewis and
Randall, naturally arises from the theory of probability, the
mathematics J. W. Gibbs employed in terms of the notion of
ensemble, for developing his brand ofstatistical mechanics. It
did not escape our notice that Gibbs was also the originator of
the chemical thermodynamics, and the inventor of the notion
of chemical potential.

Understanding thermodynamics from Newtonian mechanics
was the central thesis of L. Boltzmann’s life work. Indeed,
one of the key results of Boltzmann, together with H. von
Helmholtz, was to cast the phenomenological First Law of
thermodynamics into a mathematical corollary of the Newto-
nian equation of motion: One knows a Hamiltonian dynamics
is restricted on a level set ofH({xi}, {vi}) = E, where
the E is determined by the initial condition. Recognizing
that a thermodynamic state is actually a state of perpetual
motion, e.g., an entire level set4, there is a mathematical
function between the phase-space volume contained by the
level-set Ω, E, and other parameters in the Hamiltonian
function H({xi}, {vi}, V,N): Ω(E, V,N). Since the phase-
space volume monotonically increases withE, one can define

E = E(S, V,N), whereS = lnΩ(E, V,N). (51)

It is then a matter of simple calculus to obtain

dE =

(

∂E

∂S

)

V,N

dS +

(

∂E

∂V

)

S,N

dV +

(

∂E

∂N

)

S,V

dN,

(52)
and define the emergent thermodynamic quantitiesT =
(

∂E/∂S
)

V,N
as temperature,p = −

(

∂E/∂V
)

S,N
as pres-

sure, andµ =
(

∂E/∂N
)

S,V
as chemical potential. Note, from

the mechanical standpoint,T, p, µ are emergent quantities;
they characterize how one invariant torus is related to another
invariant torus, i.e., one thermodynamic equilibrium state to
another thermodynamic equilibrium state.

4Here, the importance ofergodicity arises.
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It is important to emphasize that, no matter how imperfect,
both T and p have well-accepted and widely understood
mechanical interpretation, as mean kinetic energy and mean
momentum transfer to the wall of a container, respectively.
However,µ has no interpretation in terms of classical mo-
tion, whatsoever; rather, it has an interpretation in termsof
probability, and in terms of Brownian motion:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
= −

1

η

∂(F̂ ρ)

∂x
, (53)

where

F̂ = −
∂µ

∂x
, and µ = Dη ln ρ(x, t) = kBT ln ρ(x, t). (54)

F̂ is known asentropic forcein chemistry, andµ is its potential
function.

A living system is sustained neither by a temperature
difference, nor by a pressure difference. It is a phenomenon
driven by chemical potential difference. Therefore, we believe
any discussion of irreversibility in living systems based on the
notion of heat is misguided. Nevertheless, as the physicistin
18th century had recognized in connection to the notion of
“heat death of the universe”, a sustained chemical potential
difference has to have a consequence in generating heat in
a closed, cyclic universe, if one indeed can treat the entire
universe as an isolated mechanical system. However, it is
equally likely, according to our current, limited understanding
of the cosmology and planet formation, that what is being
dissipated is simply local inhomogeneity, e.g., low entropy
initial condition, in our world, which was formed 13 some
billion years ago.

Information and entropy.There is a growing interest in
the phenomenon of “information to energy conversion” in
Maxwell-demon like devices [49]. To quantify information,
entropy change has to be distinguished from work. An un-
ambiguous distinction between work and heat is fundamental
to thermodynamics: “The difference between heat and work
cannot always be uniquely specified. It is assumed that there
are cases, involving ideal processes, in which the two can be
strictly distinguished from one another” [50]. Unfortunately
outside classical mechanics, at least in biochemistry where
temperature-dependent heat capacity is a commonplace [51],
distinguishing enthalpy change from entropy change becomes
increasingly challenging [52], [53], [37]. In a more modern
physics setting, heat, probability, and time are intimately
related [54]. The success of our present theory on chemical
thermodynamics owes to a large extent to a sidestepping the
notion of heat, and thus temperature that follows.

The physical locus of entropy production.Whether the
entropy is produced inside a subsystem, or in the environment
outside the system, or just at the boundary [55], is one
of the deeper issues in nonequilibrium thermodynamics: To
L. Onsager, a transport process driven by athermodynamic
force constitutes dissipation [56]. This is a NESS view of
an “insider” of an open subsystem; it can be mathematically
justified in terms of the positive chemical motive force (cmf)
introduced in Eq. 12b. To classical physicists, however, the
mechanistic origin of the “thermodynamic force” is outsidethe

subsystem due to spontaneous processes that cause entropy of
the total closed system to increase. This view is justified in
terms of dF

dt ≤ 0 for closed systems. We refer the readers
to T. L. Hill’s notion of “cycle completion” in stochastic
thermodynamics [57] for a much more complete view of the
matter. This concept nicely echoes R. Landauer and C. H.
Bennett’s principle of computational irreversibility being asso-
ciated only with memory erasing [58], [59]. It also providesa
powerful conceptual framework for further investigating other
nagging concepts such as heat dissipation associated with a
subsystem in a nonequilibrium steady state (NESS) [37] and
endo-reversibility in finite time thermodynamics (FTT) [55],
[60].
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