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Abstract

Molecular Communication (MC) is a communication strategy that uses molecules
as carriers of information, and is widely used by biological cells. As an interdisci-
plinary topic, it has been studied by biologists, communication theorists and a grow-
ing number of information theorists. This paper aims to specifically bring MC to the
attention of information theorists. To do this, we first highlight the unique mathe-
matical challenges of studying the capacity of molecular channels. Addressing these
problems require use of known, or development of new mathematical tools. Toward
this goal, we review a subjective selection of the existing literature on information
theoretic aspect of molecular communication. The emphasis here is on the mathe-
matical techniques used, rather than on the setup or modeling of a specific paper.
Finally, as an example, we propose a concrete information theoretic problem that was
motivated by our study of molecular communication.

1 Introduction

Deployment of nanodevices has profound technological implications, and opens up unique
opportunities in a wide range of applications, particularly in medicine, for disease detec-
tion, control and treatment. Each nanodevice alone has a very limited operational capa-
bility. To increase their capability for complicated tasks, as required in many nano- and
bio-technology applications, it is essential to envision nanonetworks and study nanoscale
communication. The size and power consumption of transceivers make the electromag-
netic wave based communication rather unsuitable for interconnecting nanomachines.
This motivates the use of Molecular Communication (MC) as a promising communica-
tion mechanism (e.g., see [1] or [2]). Furthermore, being the prevalent communication
mechanism in nature among living organisms, MC nanonetwork can use the existing
micro-organisms, such as bacteria and cells, as part of network and is more compatible
with the human body, a feature which is necessary for biomedical applications. We should
note that even though MC was initially envisioned for nanoscale communications, there
are also some potential macroscale applications for it, e.g., underwater communication
where electromagnetic waves cannot be efficiently employed over a long distance since
they experience very high attenuations [3].

MC is defined as a communication strategy that uses molecules as information carrier
instead of electromagnetic waves. Information can be coded in the type, concentration
or release time of molecules that are spread in the medium. As with any other practical
communication medium, uncertainty, imperfection and noise exist in MC, fundamentally
limiting the system performance. The existing literature on MC provides various math-
ematical models of a molecular communication system, each of which is, in principle,
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amenable to capacity calculation. Furthermore, just like classical communication, the
optimal use of MC for the purposes of coordination, function computation, or control can
be studied, using information theoretic tools. The idea of determining ultimate achiev-
able limits is a helpful notion and provides an opportunity for information theorists to
collaborate in the development of the theory of MC. Furthermore, MC can inspire new
interesting problems for information theorists of mathematical orientation to look at.

Nanocells and nanodevices can only perform simple operations due to their small
physical scale and limitation of resources. In his 2002 Shannon Lecture on “Living In-
formation Theory”, Toby Berger points to the fact that living systems employ simple
structures in encoding and decoding information, and have “little if any need for the
elegant block and convolutional coding theorems and techniques of information theory.”
Berger argues (mainly in the context of neural networks) that this is because communica-
tion medium has adapted itself to the data sources in the evolutionary process. Therefore,
the optimality of encoder and decoders with simple structures is due to the fact that the
channel and the data are matched. Uncoded transmission, in particular, is an appealing
strategy for biological applications, and is shown to be provably optimal in some settings
[4]. But simplicity may find other justifications besides adaptation in the evolutionary
process. Fixing the uncoded transmission, it is shown in [5] that a certain memory-limited
simple decoder is performing close to the optimal decoder. Conversely, in [6], we fix a
simple decoder and show that a certain memory-limited simple encoder is near optimal.
These results seem to suggest that even though the optimal transmitter and Maximum
Likelihood (ML) decoder may have complicated descriptions, the nature of the molecular
channel is such that simplicity propagates: if some components of a MC system are forced
to be structurally simple (due to their physical limitation), then using complicated coding
strategies at other components comes at a negligible benefit.

Differences between classical and molecular communication open up the possibility of
defining new problems for information theorists. Some of these differences are as follows:

Complexity: MC may be used for both microscale and macroscale applications. In
the case of microscale applications, complexity is a more serious issue compared to classical
communication due to the small scale of nanodevices. Nanodevices are simple and resource
limited devices. An important question is how to find a proper theoretical framework for
studying the limitation of computational resources in the context of MC. So far, the
molecular communication literature has treated complexity in a loose manner. Simplicity
is generally invoked to justify certain restrictions of molecular encoders and decoders to
a class of intuitive and easy-to-analyze functions. Unfortunately, classical information
theory does not accommodate for a quantitative restriction on the degree of simplicity
(limitations of computational capacity or memory) of the encoder and decoder. Coding
theory aims to find practical capacity achieving codes with affordable encoder and decoder
complexity. Furthermore, finite blocklength and one shot results in information theory
relate to complexity. Nonetheless, proving fundamental lower bounds on the complexity
can be a very difficult problem, and computational formulations such as the ones given
in [7, 8] are too formal and abstract. The progress has been mainly within the context
of specific circuit models, e.g., authors in [9] consider the VLSI model to estimate the
complexity of the implementation of an error correcting code (see also [10, 11] for further
computational results based on the VLSI circuit model). To sum this up, the development
of a similar “molecular circuit model” seems to be the most promising direction to address
the computational aspects of MC.

Nature of transmitter and receiver: Even when there is no channel noise, the
capacity of a MC system is constrained by the physics of transmitter and receiver: the

2



transmitter’s actuation in response to excitement can be imperfect; the receiver may have
a fundamental sensing noise, which is independent of the channel noise. For instance,
in ligand receptors where incoming molecules bind with receptors on the surface of the
receiver, the sensing noise has a variance that is dependent on the amplitude of the signal
[12], i.e., the higher the amplitude of the signal, the larger the variance of its observation
noise. Also, both the transmitter and receiver may be allowed to actively modify the
communication medium itself by releasing chemicals in the environment. Furthermore,
similar to classical communication, the transmitter and receiver may be mobile, causing a
change in the effective channel between the transmitter and the receiver. However, unlike
the classical communication, the direction of mobility may itself be influenced by the
concentration of molecules released in the environment by other nodes (as in chemotaxis
of many cells).

Use of multiple molecule types: in MC, we can employ multiple molecule types
for signaling. A classical analogue of this degree of freedom is frequency: channels of
different molecule types can correspond to channels over different frequencies. But there
are some crucial limitations to this analogy: unlike waves moving on different frequencies,
molecules of different types might undergo chemical reactions with each other as they
travel from the transmitter to the receiver. These reactions among different molecule
types can result in a nonlinear channel [13]. Furthermore, molecules of different types
might compete with each other at the receiver in terms of binding with receptors on the
surface of the receiver; if a receptor bonds with one molecule type, it will be unable to
bond with other molecule types for a period of time.

Positivity of the input signal: the linearity and time-invariance of wireless channel
enables one to borrow tools from linear algebra or Fourier analysis. Macroscopic diffusion
in a stable medium also results in a linear and time-invariant system. However, we cannot
readily use tools from Fourier analysis: unlike electromagnetic waves whose amplitude
can become negative, only a non-negative concentration of molecules can be released
in the environment. The non-negativity constraint in the time domain does not have
an easy equivalent in the Fourier domain. To simulate negative signals, authors in [13]
suggest exploiting chemical reactions to reduce the concentration of a molecule type.
Unfortunately, diffusion with chemical reactions follows a non-linear differential equation,
prohibiting the use of linear theories (see [14] for a partial solution based on the fact
that even though the concentration of each molecule type follows a non-linear differential
equation, the difference of the concentrations still follows a linear differential equation
under some assumptions).

Energy limitation: in MC, in contrast to the classical communication, some en-
ergy is required to synthesize a molecule. While increasing the concentration of released
molecules increases the channel capacity, the amount of energy consumed for their syn-
thesis and transmission in an active transport MC channel increases as well. Thus, for the
energy limited MC system, by taking into account the energy required for synthesizing
the molecules, there exists an optimum number of released molecules [3]. The classical
analogue of this (for electronic circuits) is given in [10] where it is shown that approaching
Shannon’s capacity may require very large energy consumption.

Slow propagation: when studying MC via diffusion in an aqueous or gaseous
medium, we should note that the speed of transmission is slow. The slow propagation in
conjunction with possible changes in the medium has implications in terms of mathemat-
ical modeling of the problem. For instance, this can make it difficult to obtain channel
state information at the encoder via a feedback link from the decoder. Next, because of
the slow propagation of released molecules, self-interference among successive transmis-
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sion is a challenge. As stated above, the concentration of molecules in an environment
is a non-negative quantity. This prevents the employment of some classical techniques
for capacity evaluation, such as Fourier transform to convert an inter-symbol-interference
(ISI) channel to a parallel memoryless channel.

Focus of this paper: There are many existing works that address various aspects of
MC, sometimes from an information theoretic perspective. We are selective in reviewing
these works. Our focus are on the works that are more theoretical and appealing to
pure information theorists. For instance, there are many works that model a molecular
communication system with a memoryless channel and then evaluate the capacity of the
resulting channel. While valuable because of their modeling aspects, their analysis may
not be exciting to information theorists. We are more interested in works that do not
just borrow and apply tools from information theory, but can rather attract information
theorists and help form a dialogue between molecular communication and information
theory. There is one more caveat: we do not review a few number of works (mostly
published in biological journals) that explain evolution of biological structures by arguing
that a certain information theoretic criterion is optimized.1

Genomics and molecular biology is listed as one of the future research directions
in information theory by a number of information theorists [15], even though molecu-
lar communication is not specifically mentioned. Nonetheless, molecular communication
continues to attract the attention of more information theorists (as evidenced by sessions
dedicated to it in the ISIT conferences), and our hope is that this paper encourages more
to join.

This paper is organized as follows: we begin by reviewing transmitter, channel and
receiver models for MC in Section 2. Depending on the choice of the transmitter and
receiver model, a number of end-to-end models are given in Section 2.4. Next, a section is
devoted to each of the end-to-end models: in Section 3 and Section 4 we review capacity
results for a transmitter that puts information on the concentration, and on the release
time of molecules, respectively. We also review the results on the capacity of the ligand-
receptor in Section 5. Next, we turn to a multi-user setting in Section 6. Molecular
channels have memory, and capacity of network of channels with memory is of relevance
to MC. In Section 6, we pose and discuss (in detail) the problem of finding the capacity
of a cascade of channels with memory. Finally, we present some concluding remarks in
Section 7. Some of the proofs are moved to appendices.

Notation: Throughout, we use capital letters to denote random variables and small
letters to denote their values. The set {1, 2, . . . , n} is shown by [1 : n]. The sequence
(x1, x2, . . . , xn) is shown by xn. The input to the channel is generally denoted by rv X,
and the output is denoted by either Y or Z.

2 System Model

A point to point engineered communication system consists of a transmitter, a channel,
and a receiver, as shown in Fig. 1. We employ this structure in our review of a molec-
ular communication system. A molecular transmitter is a biological or engineered cell
whose actions influence the density of molecules in the environment (generally by emit-

1For instance, many cells move according to spatial differences in the concentration of certain chemicals
(chemotaxis). In [16], an information theoretic criterion is proposed to model how cells find their migration
direction from the imperfect information they obtain through chemical receptors on their surface.
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Figure 1: Schematic illustration of a point to point molecular communication system
consisting of three main componets: transmitter, channel and receiver. Each of these
components has its own inherent imperfection and noise.

ting molecules in the environment).2 A molecular channel refers to a physical medium in
which molecules propagate. A molecular receiver (or sensor) is a biological or engineered
cell that is influenced by the density of molecules in the environment at its vicinity.

In the following three subsections, we discuss the molecular transmitter, channel and
the receiver, separately. Besides this, observe that the physical structure of the trans-
mitter or receiver imposes some limitations and imperfections on the transmission and
reception processes. Therefore, it is also possible to lump together the imperfections of the
transmitter, channel, and receiver and define an end-to-end channel model. We discuss
the end-to-end models in the final subsection. Despite the fact that there are established
models for the diffusion process, modeling the uncertainty originated from the transmitter
and the receiver is still an open area for research.

2.1 Transmitter

A transmitter may be modeled as a point source of molecules, located at the origin. The
transmitter can control the concentration, the type, and the release time of molecules at
its location. As an example, information can be encoded in the concentration by releasing
nothing for information bit 0, and releasing a given concentration of molecules for bit 1
(on-off keying); information can be encoded in the type by releasing molecules of type A
for bit 0, and molecules of type B for bit 1. Finally, information can be encoded in time
by adjusting the release time of consecutive molecules based on the input bit.

Released molecules diffuse in the environment. The number of released molecules
depends on the distance between the transmitter and receiver. If the distance between

2 The transmitter may change the communication medium instead of emitting molecules. See Secion
7 for a discussion.
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the transmitter and receiver is very small, individual molecules may be transmitted one
by one. If the distance is large, molecules get diluted in the environment before reaching
the receiver, and the transmitter may need to send considerably more molecules to ensure
a viable communication line to the receiver.

Transmitter imperfection: In practice, the transmitter cannot perfectly control the
number or the release time of the molecules. Furthermore, the molecule generation process
of the transmitter can impose its own inherent constraints on the transmitter. To model
these imperfections, one has to know the exact physical implementation of the transmitter.
For instance, a physical description of a transmitter is detailed in [17, Section III.A]. In
[18], different chemical reactions are considered for the emission of different symbols. In
[5], the transmitter is assumed to have a reservoir of molecules, with an outlet whose
size is controlled by the transmitter. In other words, the transmitter may not control the
exact number of molecules that exit the reservoir, but only the size of its outlet. Given the
large number of molecules in the reservoir and a small probability of each exiting through
the reservoir, the number of molecules exiting the outlet can be assumed to follow a
Poisson distribution. Therefore, in this model, the number of released molecules from the
transmitter is a Poisson random variable, where its average or rate is determined by the
transmitter [5]. The Poisson model also arises in the following contexts:

• Poisson distribution models the number of escaped particles from a bounded domain
when gates on the boundary of the domain open and close randomly, e.g. as in the
escape of diffusing proteins from a corral in the plasma membrane [19, Sec. 3.6].
Similarly, it arises in [20], wherein molecule release based on ion channels across the
cell membrane is considered; the opening and closing of these channels are controlled
by a gating parameter.

• It also arises when transmitter uses a colony of bacteria for molecule release. Each
receptor on a bacterium releases a molecule with a probability that depends on the
amount of provocation by the transmitter. If p is the release probability and N is
the total number of colony receptors, the number of released molecules follows a
binomial distribution with parameters N and p. This can be approximated by a
Poisson distribution if N is large and p is small.

Transmitter models: In this paper we focus on the following transmitter models:

• Timing transmitter : transmitter releases individual molecules one by one, at speci-
fied time instances.

• Exact concentration transmitter: A time slotted transmission strategy is employed:
time is divided into intervals of length Ts, with transmission occurring at the begin-
ning of each time slot.3 The transmitter releases exactly Xi molecules (or Xi moles
of molecule if the communication is very long range) at the beginning of the i-th
time slot, i.e., at time iTs.

• Poisson concentration transmitter: Again a time slotted transmission strategy is
employed. The number of released molecules from the transmitter at the beginning
of the i-th time slot is a Poisson random variable with mean Xi.

3While this is a common assumption, it is possible to study communication rates via a continuous-
time/amplitude model for the channel [21]. This is the only paper that we are aware of that studies
mutual information terms between input and output in continuous time domain.
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2.2 Channel

To obtain a statistical model for a molecular channel, one has to specify the physical
mechanism of molecule transport between the transmitter and the receiver. The physical
motion of molecules towards the receiver may be walk-based, flow-based, or diffusion-
based [3]. In walk-based mechanisms, information molecules are encapsulated into a
cargo, which then by a motor protein, such as dynein and kinesin, are pushed toward the
destination through a pre-defined path, like microtubule tracks. It is an active propagation
and requires chemical energy (ATP). In flow-based mechanisms, molecule propagation
is influenced by an external flow, like propagation of hormones in the blood stream.
Flow is a one-way phenomenon, which makes it unsuitable for a two-way communication.
In contrast, in the diffusion-based transport, the molecules randomly propagate in
all available directions via Brownian motion and have the most spontaneous motion.
This results in a higher degree of uncertainty at the receiver, compared to the other
mechanisms. The diffusion-based mechanism is completely passive and always available
without any energy cost or prior infrastructure, and is mostly suitable for highly dynamic
and unpredictable environments. It is also possible to consider diffusion-based transport
in the presence of a drift, resulting in a mixture of diffusion and flow based mechanisms.
Most of the literature (as well as this paper) is focused on the diffusion-based transport
mechanism.

Molecular diffusion can be studied from either microscopic or macroscopic points of
view. In a microscopic point of view, the focus is on the random movement of individual
molecules, known as the Brownian motion. In a macroscopic point of view, the focus is on
the overall behavior of an enormous number of molecules. Even though each molecule still
has a random movement, but the total average behavior is characterized by a deterministic
differential equation (due to the law of large numbers phenomenon); this deterministic
differential equation is called the Fick’s law of diffusion. Historically, Fick proposed his
macroscopic law of diffusion in 1855, while the microscopic Brownian motion was studied
later by Einstein in 1905; a full mathematical theory based on the theory of stochastic
differential equations was developed only later in the 20th century.

2.2.1 Macroscopic diffusion

According to Fick’s first law of diffusion, diffusion flux goes from the region of high
concentration to the region of low concentration. Furthermore, the diffusion rate, denoted
by J , is proportional to the concentration gradient. For simplicity of exposition, let us
consider one-dimensional diffusion 4. Then, Fick’s first law is:

J(x, t) = −D∂ρ(x, t)

∂x
(1)

where J(x, t) and ρ(x, t) are respectively the diffusion flux, and molecule concentration
(in molar) at location x at time t; D is the diffusion coefficient of the environment.

Now, assuming that there are no chemical reactions, drift velocity, or injection of
external molecules to the environment, we can use the mass conservation principle to
conclude that

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
. (2)

4Equations describing the three-dimensional diffusion are similar to those describing the one-
dimensional diffusion. Hence, to convey the intuition we start with a one-dimensional diffusion.
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To intuitively understand the above equation, for a ∆x > 0, J(x, t)− J(x+ ∆x, t) shows
the entry rate of molecules from position x minus the exit rate of molecules from position
x + ∆x; if there is a mismatch between the entry and exit rates, the total number of
molecules in the interval [x, x+ ∆x] changes at a rate equal to the difference of the entry
and exit rates, i.e., at rate J(x, t)− J(x+ ∆x, t).

Equations (1) and (2) give us Fick’s second law of diffusion:

∂ρ(x, t)

∂t
= D

∂2

∂x2
ρ(x, t). (3)

If in addition to the diffusion process, we also have a molecule production rate, the
changes in molecule concentration will be both as a result of molecule production as well
as diffusion,

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
+ c(x, t). (4)

Here, for a given time t, c(x, t) denotes the density of molecule production rate at point
x, i.e., the number of molecules added to the environment in [x, x + dx] between time
[t, t+ dt] is equal to c(x, t)dxdt. Then, we can write Fick’s second law as

∂ρ(x, t)

∂t
= D

∂2

∂x2
ρ(x, t) + c(x, t).

To solve this differential equation in an interval C = [a, b], it suffices to know the initial
and boundary conditions: the initial density ρ(x, 0) at time zero for x ∈ C . The boundary
condition imposes some constraints on ρ(a, t) and ρ(b, t) as follows:

• Known values of ρ(x, t) at x = a, b for all t > 0: this corresponds to known con-
centration on the boundaries. A special case of this is the zero boundary condition:
ρ(a, t) = ρ(b, t) = 0; this corresponds to an absorbing boundary, i.e., molecules are
absorbed and removed from the environment upon hitting the boundary of C .

• Known values of ∂ρ(x,t)
∂x at x = a, b for all t > 0: this corresponds to known diffusion

flux J(x, t) on the boundaries. A special case of this is the zero boundary condition:
J(a, t) = J(b, t) = 0; this corresponds to a reflecting boundary, i.e., molecules that
hit the boundary walls are reflected back into C .

When C = (−∞,∞) is the entire real line, the boundary can be placed as we take
the limits to infinity; for instance, one can solve the differential equation assuming that
ρ(x, t) vanishes at infinity (as x becomes large). As an example, consider a transmitter
that is located at the origin (x = 0), and at time t = 0 suddenly releases one unit of
molecules in the environment. In this case, the molecule production rate will be equal to
c(x, t) = δ(x = 0)δ(t = 0). In response to this input, the output ρ(x, t) from equation (4)
(assuming vanishing ρ(x, t) at infinity) is equal to the Green’s function:

ρ(x, t) =
1[t > 0]

(4πDt)0.5
e−

x2

4Dt . (5)

Observe that for a fixed t, ρ(x, t) as a function of x is the pdf of a Gaussian distribution
with variance 2Dt. This is no coincidence, and will become more transparent once we
consider the microscopic interpretation of the diffusion process.

If there is a drift, in addition to pure diffusion, influencing the molecules motion, the
modified Fick’s laws may be employed to analyze the molecular channel. Solving the
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differential equations representing Fick’s laws can be very cumbersome when non-ideal
assumptions are considered, e.g., non-homogeneous environment, bounded space, or tur-
bulent diffusion. Thereby, obtaining explicit channel models for molecular communication
becomes complicated. A more difficult condition occurs when we consider multiple dif-
fusing molecules subject to chemical reactions. While one can still find the differential
equations that describe the process, a closed form analytical solution may not exist.5

2.2.2 Microscopic diffusion

In his celebrated work in 1905, Einstein showed that the density function of the movement
of a single particle under Brownian motion satisfies the differential equation given by
Fick’s second law of diffusion. There are different equivalent ways to formally define the
Brownian motion, which is a continuous time, random-walk process; e.g., compare [24]
and [25, p.16]. The one-dimensional Brownian motion B(t), t ≥ 0 can be defined as follows
[25, p.16]: (i) future displacements of the particle are independent of past movements.
In other words, for 0 ≤ t1 < t2, B(t2) − B(t1) is independent of {B(t), t ∈ [0 : t1]}; (ii)
increments are normally distributed, i.e., for 0 ≤ t1 < t2, B(t2) − B(t1) is a Gaussian
variable N (0, 2D(t2 − t1)). The definition of Brownian motion is self-consistent, because
sum of independent normal variables is also a normal variable. Now, assume a single
particle released at time zero, at the origin: B(0) = 0. Let us denote the distribution
of the location of the particle at time t by ρ(x, t). Then, the particle at time t follows a
normal distribution with variance 2Dt, and ρ(x, t) has the same value as given in equation
(5).

Both probability density function of a single particle (microscopic), and the concen-
tration profile of molecules (macroscopic) satisfy Fick’s diffusion law, even though these
two are conceptually different. For instance unlike the integral of a density function, the
integral of the concentration on the entire space (i.e., the total number of molecules)
can be greater than one. Next, note that to solve Fick’s differential equation, boundary
conditions are also needed. These can be imposed in the microscopic perspective in same
manner as they are imposed in the macroscopic perspective. Then, the distribution of the
particle at time t can be found by solving Fick’s law of diffusion with proper boundary
conditions.

We refer the reader to [26, Section 2.2] for an illustrative discussion of Einstein’s
connection between the Brownian motion random walk and diffusion. For a rigorous
mathematical discussion, see [23, 24]. But to explain the connection at an intuitive level,
assume that a very large number of molecules, N molecules, are released at time zero at
the origin. These molecules move randomly and independently of each other. Assume
that each molecule falls into the interval [x, x+∆(x)] with probability ρ(x, t)∆(x). Then,
since there are N molecules and each molecule falls in [x, x+∆(x)] independently of other
molecules, the number of molecules that fall in [x, x + ∆(x)] is distributed according to
a binomial distribution with parameters (N, ρ(x, t)∆(x)). The expected value of this
random variable is equal to Nρ(x, t)∆(x). By the law of large numbers, for a fixed ∆(x),
if we let N go to infinity, the binomial distribution has a sharp concentration around this
expected value. For instance, if N is one mole of molecules (N = 6.022 × 1023), then
Nρ(x, t) can be expressed as ρ(x, t) molar. Then, the mapping (x, t) 7→ ρ(x, t) also gives
us the average macroscopic concentration profile of molecules as a function of t and x in

5Nonetheless, diffusion and reaction-diffusion differential equations have been subject to numerious
studies; see for instance the first two chapters of [22]. For instance, much is known about existence of
their solutions, their global boundedness, stability and asymptotics.
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terms of molar. On the other hand, we know that the macroscopic concentration satisfies
the Fick’s laws of diffusion. As a result, ρ(x, t) satisfies the Fick’s laws of diffusion.

The above argument also provides a bridge between the macroscopic and microscopic
perspectives: the macroscopic concentration is ρ̃(x, t) = Nρ(x, t), where the microscopic
probability density is ρ(x, t), and the number of molecules that fall into interval [x, x +
∆(x)] is distributed according to a binomial distribution with parameters (N, ρ(x, t)∆(x)).
This binomial distribution may be approximated by Gaussian or Poisson distributions
[20, 27, 28, 29, 30, 31, 32]. In case of large Nρ(x, t)∆(x)(1 − ρ(x, t)∆(x)) (even for
small ∆(x)), the binomial distribution can be approximated with a Normal distribution
with mean Nρ(x, t)∆(x) and variance Nρ(x, t)∆(x)(1− ρ(x, t)∆(x)) [33, p.80]. With the
assumption that ρ(x, t)∆(x) is small, the variance Nρ(x, t)∆(x)(1 − ρ(x, t)∆(x)) can be
approximated with Nρ(x, t)∆(x). Then, the density of molecules, i.e., the number of
molecules divided by ∆(x), follows a Normal distribution with mean Nρ(x, t) = ρ̃(x, t)
and variance Nρ(x, t)∆(x)/∆(x)2 = ρ̃(x, t)/∆(x). To sum this up, if the macroscopic
perspective on diffusion predicts a concentration ρ̃(x, t) molecules per volume, the actual
concentration of molecules per volume (in an interval ∆(x)) is a normal random variable
whose mean is ρ̃(x, t), and whose variance is ρ̃(x, t)/∆(x).

Example 1. Fick’s law of diffusion in terms of probability demonstrates how the distri-
bution of the particle’s location at time t, denoted by ρ(x, t), changes over time. To show
the use of this fact, consider a transmitter located at the origin x = 0, and an absorbing
receiver located at x = d, at distance d from the transmitter. An absorbing receiver is par-
ticularly important in molecular communication and the result of the following derivation
is used elsewhere in the paper.

Assumed that a single molecule is released at time zero, therefore the initial distribution
of the particle at t = 0 is ρ(x, 0) = δ(x). The molecule disappears upon hitting the receiver.
Solving for Fick’s equation with the boundary conditions ρ(d, t) = 0 and limx→−∞ ρ(x, t) =
0, we can obtain ρ(x, t)dx as the probability that the particle is located in [x, x+dx] at time
t. We refer the reader to [26, Section 2.5] for the technique for solving Fick’s differential
(4) with this boundary condition. Then, the probability that the particle has not hit the
receiver by time t is equal to ∫ d

x=−∞
ρ(x, t)dx.

In other words, if T denotes the hitting time of a released particle with the absorbing
receiver, the distribution of T can be obtained as follows:

P[T ≥ t] =

∫ d

x=−∞
ρ(x, t)dx.

In case of the diffusion equation given in (3) in a one-dimensional free homogeneous
medium with diffusion coefficient D, the first arrival time T at the receiver can be explicitly
calculated. First shown by Schrodinger in 1915, T has a Lévy distribution [34]

fT (t) =

{ √
λ

2πt3
exp

(
− λ

2t

)
, t > 0;

0, t ≤ 0.
(6)

where λ = d2/2D. On the other hand, if the medium also has a velocity v towards the
receiver, the modified Fick’s law can be used to show that T follows an inverse Gaussian
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distribution, IG(µ, λ) [35]:6:

fT (t) =

{ √
λ

2πt3
exp

(
−λ(t−µ)2

2µ2t

)
, t > 0;

0, t ≤ 0.
(7)

where

µ =
d

v
, and (8)

λ =
d2

2D
. (9)

Note that Lévy is a heavy-tailed distribution (has infinite mean and variance), while IG
has an exponentially decreasing tail.

2.2.3 Statistical models of molecular channel

To construct a statistical model for a molecular channel, the microscopic and macroscopic
views of the diffusion should be appropriately utilized. On the transmitter side, if only
a few molecules are released, the microscopic perspective is relevant. However, if a large
number of molecules are released by the transmitter, the macroscopic perspective becomes
relevant. On the other hand, in case of a single tiny molecular receiver, the microscopic
behavior of molecules around the receiver is of importance. As a result, if a large number
of molecules are released by the transmitter and the receiver is a single tiny nanomachine,
we can employ the macroscopic view to compute the molecular concentration around
the receiver, but then switch to the microscopic view as discussed in Section 2.2.2, and
consider the actual number of molecules around the receiver. This is done explicitly later
in Section 2.4.

Finally, we comment that while in the above we restricted to one-dimensional diffusion,
similar formulas hold for diffusion in three dimensions. While Fick’s law have extensions
for nonhomogeneous environment with general boundary conditions, most existing works
study the simple case of an infinite medium in each direction, with no barrier or obstacle
except the receiver surface.

2.3 Receiver

There are different models of the receiver in the literature:

• Sampling receiver: The simplest model for a receiver is a device that measures the
macroscopic molecular concentration at a given point. The receiver’s observation is
assumed not to affect the diffusion of the molecules, hence it imposes no boundary
conditions when solving Fick’s law of diffusion. The receiver may be assumed to
sample the medium at certain given time instances.

• Transparent receiver: In this model, the receiver is a transparent sphere of volume
VR rather than a point, but still not affecting the diffusion of the molecules. Hence
it imposes no boundary conditions when solving Fick’s law of diffusion. We may
assume that the receiver can perfectly count the number of molecules that fall into its
sphere. This is the model used in [28] (see also [37]). The (microscopic) transparent

6A similar distribution holds for diffusion in a free three-dimensional environment [34, 36]
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receiver differs from the (macroscopic) sampling receiver as follows: as discussed
in Section 2.2.2, if a sampling receiver reads ρ(x, t), a transparent receiver reads a
normal random variable whose mean is ρ(x, t), and whose variance is ρ(x, t)/VR.

• Absorbing receiver: The receiver absorbs any molecule that hits its surface. It keeps
a count of the number of molecules that have hit it so far. Absorbing receivers imply
the zero boundary condition when solving the Fick’s law of diffusion.

• Ligand or reactive receiver: This model is based on the receptors of natural cells that
are used in biological signaling pathways. It considers chemical kinetics of receptors
located on the surface of the receiver. More specifically, it assumes that molecules
reaching the surface of the receiver may react and bind with the receptors on the
surface of the receiver and thereby initiate a chemical process inside the cell. The
literatures generally consider cyclic adenosine monophosphate (cAMP) receptors
that have a simple state space for each receptor: each receptor may be in the
bound (B) or unbound (U) state with incoming molecules. Output at the receiver
is the number of bound receptors. One important feature of a ligand receptor is
its lingering effect, which is due to the fact that it takes some random time for
each receptor to be detached, after binding. The state transition of each receptor
depends on the concentration of molecules around the receptor, and is governed by
chemical equations [38].
The most simplifying model is to take the statistical average of the number of bound
receptors to approximate the output, but then add a signal-dependent memoryless
Gaussian noise to represent all the modeling imperfections, i.e., the output can be
expressed as:

Z = αX +N (10)

for some constant α and Gaussian noise N [39]. In [40], a memoryless binomial(k, p)
distribution is used for the number of bound receptors, where k is the total number
of receptors and the binding probability p is a function of concentration around
the receptors. In [21], the number of bound receptors is modeled by a Poisson dis-
tribution whose parameter depends on the concentration of molecules around the
receiver.
More accurate models of the ligand receptor use Markov chains to better represent
chemical equations at the receptors and the memory of the system. The state tran-
sition probabilities of the Markov chain depend on the concentration of molecules
around the receiver [40, 41]. More specifically, if there are k receptors on the surface
of the receiver, we can denote the state by a vector in S = {B,U}k. The state at
time instance i is also the output of the receiver, Yi = Si. The state transition
probability p(si+1|si, xi) specifies the behavior of the ligand receptor [42]. The only
assumption made about p(si+1|si, xi) in [41] is that when a receptor is in bound (B)
state, the probability that it becomes unbound (U) does not depend on concentra-
tion Xi.
Finally, authors in [43] consider the boundary condition that a Ligand receptor im-
poses (the boundary condition needed for solving the Fick’s law of diffusion). The
ligand receptor is modeled by a partially absorbing boundary condition, in conjunc-
tion with an active source of molecules. The partially absorbing boundary condition
reflects the fact that molecules hitting a receptor might not bind with the receptor
and get reflected back into the environment (hence partially absorbing, partially
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reflecting), and furthermore, a bound receptor might unbind and release a molecule
and hence an active source of molecule is included in the model.

2.4 End-to-end models

In this section, we review a number of existing end-to-end models derived by jointly con-
sidering the transmitter, diffusion channel and receiver. It may be impossible to analyze
and model the end-to-end molecular channel independent from the release and reception
mechanisms at the transmitter and receiver, respectively. In other words, the release and
the reception mechanisms may have mutual effects with the molecular channel. Thereby,
a joint analysis including the release, the transport, and the reception mechanisms is
required.

Considering the three types of transmitter (timing transmitter, exact concentration
and Poisson concentration transmitter) and the four types of receiver (sampling receiver,
transparent receiver, absorbing receiver, and ligand receiver), one can potentially identify
3 × 4 = 12 combinations. However, some of the combinations are not meaningful (e.g.,
the combination of a timing transmitter and a sampling receiver), and some are mathe-
matically challenging (e.g. the combination of the ligand receiver with any of the three
transmitters). While transparent receiver [28, 29, 30], absorbing receiver [31], and ligand
receptors [44, 45] are all considered in the literature, only few of the possible transmit-
ter/receiver combinations are studied. We shall review these combinations in the sequel.7

In describing an end-to-end model, it is useful to keep in mind the five types of noise
that may need to be accounted for [3]. The first type is the diffusion noise due to the
random propagation of individual molecules according to Brownian motion. We also have
an environmental noise due to the degradation and/or reaction of molecules. There is
also a multiple transmitters noise from molecules diffused by unintended transmitters.
Finally, there are two types of noise due to the physics of transceivers: the transmitter
emission noise and receiver counting/reception noise.

In all of the models presented here, for simplicity and for being tractable, the trans-
mitter is considered as a point source of molecules, located at the origin, and molecules
are assumed not to change while propagating in the medium and also not interact with
the transmitter. Motions of molecules do not influence each other and can be modeled
by independent processes. Also, when using a concentration transmitter, a time-slotted
communications with symbol period of Ts is assumed. The transmitter and receiver are
assumed to be synchronized. Fick’s laws are employed in the models in different ways to
determine the parameters of the model.

2.4.1 Exact concentration transmitter with sampling or transparent receivers

The models that have an exact concentration transmitter with sampling or transparent
receivers are also called the linear models (also known as the deterministic models). They
are described as follows:

Transmitter: The transmitter is assumed to be completely controlling the intensity of
molecules at its location. The transmitter releases a large number of molecules (macro-
scopic diffusion regime). The intensity should be non-negative.

Medium: Extending the Fick’s second law of diffusion (stated in (3)) to three-dimensional
space [1] for a medium without any reaction and drift velocity, the concentration of

7See [46, 1] for two examples of models not discussed here.
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molecules in the environment, denoted by ρ(~r, t), at location ~r and at time t is governed
by

∂

∂t
ρ(~r, t) = D∇2ρ(~r, t) + c(~r, t), (11)

in which D is the diffusion coefficient of the transmitted molecule, and c(~r, t) is the density
of molecule production rate at point ~r at time t. Assuming that the transmitter is located
at the origin, and at time t = 0 suddenly releases one unit of molecules in the environment,
the density of the molecule production rate will be equal to c(~r, t) = δ(~r = 0)δ(t = 0).
In response to this input, the output ρ(~r, t) from equation (11) is equal to the Green’s
function:

h(~r, t) =
1[t > 0]

(4πDt)1.5
e−

‖r‖2
2

4Dt . (12)

Thus, (11) describes a linear time-invariant system, whose impulse response is given in
(12).

The transmitter has a clock with frequency fs = 1/Ts, and instantaneously releases
Xk molecules every Ts seconds, i.e., the density of production rate is the impulse train

c(~r, t) =
∑
k

Xkδ(~r = 0)δ(t− kTs),

then using the linearity of the diffusion system, the concentration of molecules at location
~r at time t will be equal to

ρ(~r, t) =
∑
k

Xkh(~r, t− kTs). (13)

Receiver: The receiver has a clock too, with the same frequency fs (or possibly mul-
tiples of it), using it to uniformly sample the medium at times jTs for j = 0, 1, 2, . . .. We
then have

• (Sampling receiver): assume that the receiver is modeled by a point, located at
~r∗, and is not affecting the diffusion medium. Furthermore, we assume that the
receiver can perfectly learn the macroscopic concentration of molecules at the time
of sampling. Then, we obtain Yj = ρ(~r∗, jTs). From (13),

Yj =
∑
k

Xkh(~r∗, jTs − kTs), j = 0, 1, 2, . . . (14)

=
∑
k

Xkpj−k, (15)

has a convolution form where pj = h(~r∗, jTs). From (12), it is clear that pj = 0 for
j < 0, and thus the convolution can be written as:

Yj =
∞∑
k=0

pkXj−k. (16)

14



Noise 
process

Receiver

𝑵𝒌𝑿𝒌

𝒀𝒌

𝒑𝒌

Figure 2: The linear model (combination of the exact concentration transmitter and
transparent receiver). It takes the input sequence Xi and convolves it with samples of
the impulse response of the diffusion channel. Finally, a signal dependent noise is added
to the convolution term.

• (Transparent receiver): assume that the receiver is modeled by a transparent sphere
of volume VR rather than a point, but still not affecting the diffusion medium. Let
us further assume that the receiver can perfectly count the number of molecules
that fall into its sphere. This is the model used in [28] (see also [37]). By similar
arguments as given in Section 2.2.2, the distribution of the number of molecules
falling in the receiver’s volume at time jTs has a normal distribution whose mean

is the macroscopic concentration
∞∑
k=0

pkXj−k, and whose variance is 1
VR

∞∑
k=0

pkXj−k.

Thus, the total number of molecules in receiver’s sphere at time jTs satisfies

Yj =
∞∑
k=0

pkXj−k +Nj , (17)

where the noise, i.e., Nj , is distributed according to N (0, 1
VR

∞∑
k=0

pkXj−k). Ob-

serve that when the input sequence (and thus Xi) is random, Nj will be a doubly
stochastic random variable since the variance of the Nj is itself a random variable
and depends on past inputs. This model is shown in Fig. 2.

Remark 1. Equation (17) only provides the pmf (probability mass function) of Yj
given the input sequence. To completely specify the channel, one has to specify the
correlation of Yj and Yj′ (for any given j, j′), conditioned on the input sequence.
In other words, the correlation of Nj and Nj′ conditioned on X0, X1, . . . should
be specified. Observe that the number of molecules in VR is changing continuously
over time, increasing or decreasing by one when a molecule enters/exits the receiver
volume. Therefore, for very small values of Ts, Yj and Yj+1 will be correlated,
conditioned on the past inputs, and we cannot impose independence on Nj and
Nj+1.8 This analysis is missing in the literature [28, 37].

8 However, one can approximateNj ’s with jointly Gaussian colored noises, whose correlation coefficients
and variances depend on the input sequence X0, X1, . . .. Briefly speaking, the correlation of Nj and Nj+1

can be computed as follows: let q11 be the probability that a released molecule falls in the receiver’s
sphere at times jTs and (j+ 1)Ts. Let q10 be the probability that the molecule falls in the sphere at time
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From the five types of noise mentioned in Section 2.4, none of them was considered in
the model given for the sampler receiver. And only diffusion noise was considered in the
model given for the transparent receiver. It is possible to modify the model to consider
other noises in the model. For instance consider the case in which the receiver has a small
volume VR and imperfectly counts the number of molecules that fall into that area. This
incurs a particle counting noise in addition to the diffusion noise.

2.4.2 Poisson concentration transmitter with absorbing receiver

Poisson concentration transmitter with absorbing receiver is also called the Poisson Model.
Transmitter: The transmitter chooses a rate Xi ≥ 0 at time slot i. The number of

released molecules in the beginning of the i-th time-slot is a Poisson random variable,
where its average or rate, is Xi. As a result, the density of production rate is the impulse
train

c(~r, t) =
∑
k

Skδ(~r = 0)δ(t− kTs),

where Sk ∼ Poisson(Xi) is the number of released molecules at time kTs by a transmitter
located at the origin. Random variable Sk is a doubly stochastic random variable (a
Poisson distribution whose parameter is the random variable Xi).

Medium and receiver: Each released molecule is absorbed upon hitting the receiver.
Let pk, k = 0, 1, 2, . . ., denote the probability that a released molecule at the current
slot hits the receiver in the next k-th time slot. The values of pk’s depend on the com-
munication medium and in general can be derived from Fick’s diffusion law. For a one-
dimensional motion, the distribution of the hitting time T was found in Example 1. Then,
the hitting probability can be computed as follows:

pk =

∫ (k+1)Ts

kTs

fT (t). (18)

Distribution of the first hitting time (and the values of pk) for a non-uniform medium
that is arbitrarily filled with barrier or obstacles may be found by numerically solving the
Fick’s equations.

Generally, the signal is decoded at the receiver based on the total number of molecules
received during the individual time slots. In a time slot, three sources contribute to the
received molecules: (i) molecules due to the transmission in the current time slot, (ii) the
residue molecules due to the transmission in the earlier time slots known as the interference
signal, and (iii) noise molecules, modeled within a slot of duration Ts as a Poisson random
variable with parameter λ0Ts. Based on the thinning property of Poisson distribution,
the number of received molecules in the time slot i, denoted by Yi, is as follows [5]:

Yi ∼ Poisson

(
λ0Ts +

i∑
k=0

pkXi−k

)
= Poisson(Ii + p0Xi) (19)

jTs, but does not fall at time (j + 1)Ts; q01 is defined reversely and q00 is the probability that molecule
does not fall in either of times jTs or (j + 1)Ts. If we release a deterministic number x of molecules at
time zero, we can define a multinomial distribution Z00, Z01, Z10, Z11 with parameters x and probabilities
(q00, q01, q10, q11). Then Yj = Z10 + Z11 and Yj+1 = Z01 + Z11 are the number of molecules received
in times slots jTs and (j + 1)Ts respectively. If q01, q10, q11 are small, we can approximate Z10, Z01 and
Z11 by independent Gaussian distributions. Thus, Yj and Yj+1 will be jointly (colored) Gaussian random
variables when we transmit x molecules at time zero.
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where Ii is the sum of interference and noise at time i. The above equation states
p(yi|x[0:i]), which together with

p(y[0:n]|x[0:n]) =
n∏
i=1

p(yi|x[0:i]) (20)

describes the Poisson channel completely. Equation (20) is proved using the thinning
property of Poisson distribution in [5].

From the five types of noise mentioned in Section 2.4, transmitter noise, diffusion noise
and multiple transmitters noise are taken into account. Transmitter noise is reflected in
the fact that the number of molecules exiting the transmitter cannot be exactly controlled;
diffusion noise is considered because the model is based on microscopic Brownian motion,
and finally multiple transmitters and background noise is considered by the λ0Ts term.

2.4.3 Timing transmitter with absorbing receiver

Timing transmitter with absorbing receiver leads to what is known as the Timing Model
for MC.

Transmitter: The transmitter is assumed to be completely controlling the release
time of molecules one by one at its location. Information is coded in the release time of
individual molecules [47].

Medium and receiver: The released molecules randomly propagate according to the
Brownian motion. Each molecule may arrive at the receiver after a (random) delay, or may
never arrive at the receiver.9 Molecules do not arrive if the Brownian motion is transient,
or the molecules fade away in the environment. Since we consider an absorbing receiver,
each molecule hits the receiver at most once. Despite the uncertainty in the arrival times
of the molecules, these arrival times are statistically correlated with their release time,
and this correlation can be used for information transmission. In this context, information
transmission capacity may be measured by bits per unit of time [34, 48], bits per molecule
[48], or bits per joule [49] for a given production rate of molecules.

Timing channel models generally ignore the existence of noise molecules, i.e., molecules
of the same type in the environment that are not diffused by the transmitter. Noise
molecules are likely to complicate the problem significantly. From the five types of noise
mentioned in Section 2.4, only diffusion noise is taken into account.10

Assuming that a molecule is released at time X, the arrival time is equal to Z = X+T ,
where T is the transmission delay. Because molecules are absorbed upon hitting the
receiver, the distribution of T is that of a first arrival time. For a one-dimensional motion
with variance σ2, a positive drift v > 0 and travel distance d, T will follow an inverse
Gaussian distribution IG(µ, λ) given in equation (7). When there is no drift v = 0, T
follows the Lévy distribution given in equation (6).

2.4.4 Ligand receiver with simplification on the transmitter side

These models focus on the physical complexity of the receiver and simplify the channel
noise, with the goal of understanding fundamental limits imposed by the receiver alone.

9The lifetime of a molecule may be modeled by Weibull distribution [50] which is a widely used lifetime
distribution, or bounded by a hard threshold [34].

10Some variations of the timing model consider a maximum lifetime for molecules; hence a form of
degradation noise is considered as well.
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Transmitter and medium: It is assumed that the concentration of molecules around
the receiver at time slot i is a function of transmission in that time slot, i.e., f(Xi) for
some known function f(·).

Receiver: A receiver with cAMP receptors that was described in Section 2.3 is as-
sumed.

3 Literature review: concentration transmitter

One of the popular signaling methods in molecular communication uses the molecules’
concentration to encode the information. In this setup, the transmitter encodes informa-
tion into the concentration of released molecules. The released molecules follow a diffusion
process through the channel to reach the receiver. As discussed in Section 2, the temporal
and spatial concentration of molecules can be derived by the Fick’s second law of diffusion
which results in a distance-time dependent impulse response.

There are several works in the literature on the concentration signaling, many of which
claim complete characterizations of channel capacity, leaving the general impression to
unfamiliar readers that the capacity of molecular channels is solved. However, once we go
inside the papers we see that the capacity calculations are mostly done after simplifications
in terms of the channel memory. Simplification and approximation have the advantage
of leading to explicit expressions. But one needs to also address how the derived bounds
relate to the actual channel capacity without any simplifications, by specifying whether
they are lower or upper bounds to the actual capacity.

Having said that, in principle, the capacity of concentration signaling, considering
the transmitter-receiver limitations and the intersymbol interference (ISI) effect of the
channel is not an open problem, under some reasonable physical assumptions. As pointed
out in [51], we may model the diffusion channel (possibly with drift in a non-uniform
medium) as a state dependent channel. Here the state models the number or density of
molecules across the environment; we can divide the space into very small cells and keep
the number of molecules in the cells as the current state of the medium. Part of the
state can also model the bound/unbound state receptors on the surface of the receiver.
Then, observe that the resulting state-dependent channel is indecomposable [52, p. 105]
as the initial state diffuses away over time under reasonable physical constraints on the
medium. Thus, one can characterize the capacity in a computable form [52]. However,
the state space is very large and capacity characterization is in finite-letter form, making
it prohibitively hard to compute and thus of little practical value.11

In the following, we describe some approaches that exist in the literature.

3.1 Linear Model

The goal is to study the capacity of the channel

Yj =
∞∑
k=0

pkXj−k +Nj , (21)

11From an information theoretic perspective, a characterization of the capacity region is called com-
putable if there exists an algorithm (constructed based on the characterization) that gets an approximation
level ε as its inputs and halts in finite time and produces a curve within ε distance of the capacity region.
There is no restriction on the time that takes for the algorithm to halt.
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where the noise, i.e., Nj , is distributed according to N (0, 1
VR

∞∑
k=0

pkXj−k). The input

constraint consists of non-negativity of input concentration Xi ≥ 0, and possibly maxi-
mum and average concentration constraints: |Xi| ≤ A and

∑n
i=1Xi/n ≤ Es. To study

the capacity of this channel, one has to specify the joint distribution of N1, N2, . . . condi-
tioned on the entire input sequence as discussed in Remark 1. Even with the assumption
of conditional independence of Nj (which is justified when Ts is large), as far as we are
aware, the capacity of the above channel has not been studied. If the variance of Nj

were some constant σ2 and channel inputs were allowed to become negative, the problem
would have reduced to the classical Gaussian ISI channel that has been subject to many
studies, starting from the work by Hirt and Massey in [53]. Nonetheless, much of the
classical ideas clearly carry over from the classical ISI channels. For instance, one can
find bounds on capacity using the ideas of using i.i.d. input distribution [54]. Also, when
the number of terms in the linear expansion (21) is finite (pk > 0 for large enough k), we
can find computable finite-letter expressions for the capacity using the ideas presented
later in Section 3.2.

The existing literature on the linear model simplify the problem by discarding the
channel memory. In this approach, the molecular channel is approximated by a memory-
less channel (in many cases, a channel with binary input alphabet) whose capacity can be
readily found by maximizing the input-output mutual information (e.g., see [55, 56, 39]).
Thus, while these papers might be valuable in the context of modeling, they are not excit-
ing to information theorists. These approaches do not genuinely consider a channel with
memory, as the interference from past inputs (ISI) is either ignored, or averaged and put
into the transition probabilities of a memoryless channel.12

The binary input restriction may be justified by the fact that nano nodes should be
simple, and one of the simplest transmission strategies is the On-Off Keying modulation
in which no molecule is transmitted for information bit 0 and Amax concentration is
released for information bit 1. While On-Off keying simplifies the transmitter’s design,
receiver’s design can be simplified to a simple threshold decoder by adopting transmission
modulation schemes that reduce or mitigate the ISI. Thus, channel simplifications and
restriction to certain modulation schemes may not be unjustified as it may appear in first
glance.

Finally, there are also some works based on the quorum sensing property of bacterial
colonies [12, 57] that also consider a memoryless channel, but with an input-dependent
noise. Even though we obtained the linear model for an exact concentration transmitter,
the same end-to-end model applies to the works based on quorum sensing.13 In these
works, the transmitter and receiver employ bacterial colonies. The collective behavior
of the bacteria in response to stimuli is exploited for transmission and reception. The
colony on the transmitter side, in the steady state, senses the concentration of a special
molecule type and in response produces and releases another type of molecules. The re-
leased molecules propagate in the medium based on diffusion equations, which has been
considered in the steady state. Similar to the transmitter, the receiver senses the concen-
tration based on the quorum sensing property. All limitations, i.e., noises, are modeled
with an additive Gaussian noise with input-dependent variance (still a memoryless chan-

12A variation of this approach is proposed in [60] by considering two binary channel, one of which occurs
depending on the last transmitted symbol.

13By ignoring ISI and considering Nj as the transmitter or the receiver noise in (21), the linear model
reduces to the model of these works (which was obtained by using a Gaussian approximation for the
binomial distribution) if the dependency between the transmitter and receiver noises is ignored.
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nel), and no ISI terms are considered. In the same scenario of biological nodes consisting
of bacteria, the relaying is studied in [58, 59], where the relay exploits its quorum sensing
property to apply the sense and forward scheme (which is parallel to the amplify and
forward scheme in the classic communication).

3.2 Poisson Model

The goal is to compute the capacity of the LTI-Poisson channel

Yi ∼ Poisson

λ0Ts +
i∑

j=0

pjXi−j

 (22)

under average and maximum intensity cost constraints. More specifically, the following
constraints on the input codewords of length n are assumed: Xi ≥ 0, average input
constraint

∑n
i=1Xi/n ≤ Es and a constraint on the maximum value of Xi, Xi ≤ A.

The summation
∑i

j=0 pjXi−j is the convolution of the sequence (X0, X1, . . .) with the
sequence p = (p0, p1, p2, . . .). This makes the Yi as the output of a channel consisting of a
cascade of an LTI system (with impulse response p) and a memoryless Poisson channel,
called an LTI-Poisson channel in [51]. This model can be understood as a generalization
of the classical memoryless Poisson channel. Therefore, the LTI-Poisson model relates to
two bodies of literature in information theory: networks with memory and memoryless
Poisson channels. A common point in both literatures is an attempt to find easy-to-
compute expressions for the capacity (e.g. see [61, 62]).

The capacity for the channel given in equation (22) is claimed to have been solved in
[63, p. 9, eqn. (40)]. However, in the proof on page 10 of [63], after equation (50), it is
claimed that Yi’s are i.i.d. and H(Y n) is expanded as

∑n
i=1H(Yi). But Yi’s are correlated

in general because they depend on the input sequence Xi.
The capacity for this channel has been characterized in [51] under the assumption

that molecules injected into the environment will disappear after k time-slots, for some
large enough k. Thus, pi = 0 for i > k. This allows one to write that

Yi ∼ Poisson

λ0Ts +

k∑
j=0

pjXi−j

 . (23)

In particular, p(yi|x[0:i]) = p(yi|x[i−k:i]), and from equation (20)

p(y0:n|x1:n) =

n∏
i=0

p(yi|xi:i−k). (24)

The factorization given in equation (24) allows for a multi-letter, albeit computable char-
acterization of the capacity region. Factorization of the type given by (24) was first
exploited by Verdu for MAC channels [64]. Verdu’s motivation for defining this class of
networks was to study linear ISI channels. The intuitive reason that factorization of (24)
is useful is that one can set or reset the channel state using any k consecutive inputs (as
the channel remembers only the last k inputs)[51].

In [51], the capacity of the original channel (with memory) is sandwiched between
the capacities of two memoryless channels, i.e., two memoryless channels are given whose
capacities bound the desired capacity from below and above. The upper and lower bounds
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can be made arbitrarily close to each other, resulting in a computable characterization of
the capacity region.

For the lower bound, a natural number r is chosen. Then time is partitioned into blocks
of size k+r, i.e. one block for time instances 1 to k+r, one block for time instances k+r+1
to 2(k + r), etc. Then, the channel is depreciated by deleting output Yi’s for the first k
time instances of each block. In other words, the new channel after deletion has inputs
X1, X2, · · · and outputs Yk+1, Yk+2, · · · , Yk+r and then Y2k+r+1, Y2k+r+1, · · · , Y2k+2r, etc.
Because the outputs in each block depend only on inputs in the same block, the resulting
channel is block memoryless and its capacity lies below the capacity of original channel.

For the upper bound, a natural number r is chosen. Then time is partitioned into
blocks of size r; in other words, first block covers time instances 1 to r, second block covers
time instances r + 1 to 2r, etc. The channel is enhanced by allowing the transmitter to
arbitrarily “reset” the memory of the channel (k last inputs) at the beginning of each
block (without any regard to its actual last k inputs). The new channel has a higher
capacity than the original channel, since the memory content specified by the transmitter
at the beginning of each block can simply be the actual state that the system would have
been in, if transmitter did not have the option of changing the memory content of the
channel. Furthermore, the new channel is block memoryless and its capacity lies above
the capacity of original channel.

The symmetrized Kullback-Leibler divergence upper bound: Capacity of a
memoryless channel can be characterized as the maximum over input distributions of the
mutual information between channel input and output of the channel. This characteriza-
tion is not always sufficiently explicit. Another contribution of [51] is to propose an easy
to compute and explicit upper bound on mutual information.

The symmetrized Kullback-Leibler divergence (KL divergence) is defined asDsym(p‖q) =
D(p‖q) +D(q‖p). Then,

Dsym(p(x, y)‖p(x)p(y)) = D(p(x, y)‖p(x)p(y)) +D(p(x)p(y)‖p(x, y))

≥ D(p(x, y)‖p(x)p(y))

= I(X;Y ). (25)

One can prove (25) directly by first simplifying the expression of Dsym(p‖q) and then
applying the Jensen’s inequality [51], but the above chain of inequalities illustrate that
the gap Dsym(p(x, y)‖p(x)p(y))−D(p(x, y)‖p(x)p(y)) is D(p(x)p(y)‖p(x, y)), the lautum
information (“mutual” written in the reverse order) that is an object of interest on its
own terms [65].

Given a channel p(y|x), one can then define the following upper bound on capacity
[51]:

U(p(y|x)) = max
p(x)

Dsym(p(x, y)‖p(x)p(y)) ≥ max
p(x)

I(X;Y ) = C(p(y|x)). (26)

It is shown in [51] that U(p(y|x)) can be explicitly computed. For instance, for a point to
point Poisson channel p(y|x), where Y = Poisson(X + λ0), it has the following compact
formula:

I(X;Y ) ≤ U(p(x, y)) = Cov(X + λ0, log(X + λ0)), (27)

where Cov(X,Y ) = E[XY ]−E[X]E[Y ]. Furthermore, it yields previously unknown bounds
for channels with small capacity (which can occur in MC systems). For instance, for a
Poisson channel with average intensity constraint Es and maximum intensity constraint
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A, this bound is calculated as:

UPoisson
(
p(y|x)

)
:= max

p(x):
E[X]=Es, 0≤X≤A

U(p(x, y)) =


Es
A (A− Es) log

(
A
λ0

+ 1
)
, Es < A/2

A
4 log

(
A
λ0

+ 1
)
, Es ≥ A/2.

For previous works on Poisson channel and other techniques for bounding mutual infor-
mation, see [61, 62].

3.3 Other models

Authors in [32] consider a combination of an exact concentration transmitter and an
absorber receiver. The exact concentration transmitter can send 0 ≤ Xi ≤ N molecules
at the beginning of each time slot. The receiver counts the number of absorbed molecules
in each time slot. Consider the hitting probabilities {pk} of the absorbing receiver in
equation (18). Then, each of the X0 molecules released in the first time slot arrive in
the k-th time slot with probability pk. Thus, the total number of molecules that are
released in time slot 0 and arrive in the k-th time slot follows a binomial distribution with
parameters (X0, pk). Since we have a transmission at the beginning of each time slot, the
total number of molecules received at the time slot k is the sum of independent binomial
random variables corresponding to transmissions from time slots k, k− 1, k− 2, etc. The
sum of independent binomial variables does not have a nice analytical form. The more
serious difficulty is the correlation that arises between outputs at different time-slots.14

There are only some approximation techniques for handling dependencies that arise in
such balls and bins problems; see for instance [66, Section 5.4]. Authors in [32] simplify
the problem by assuming that pk = 0 for k ≥ 2. Furthermore, they handle the correlation
by assuming an i.i.d. input distribution when evaluating the n-letter mutual information
form of the channel capacity. We will review the idea of evaluating the n-letter mutual
information by assuming an i.i.d. distribution in relation to a different problem in detail
in Section 4.

A different model for the diffusion medium is considered in [67]. The transmitter is still
an exact concentration transmitter, but instead of using the linear model and Fick’s law
to evaluate the concentration at the receiver, the authors assume that the concentration
at the receiver can be at either of the two “low” or “high” concentration states. In
other words, the communication medium is modeled with a two-state Markov chain, with
low and high states, which indicate the “overall” intensity of residual molecules in the
environment due to the past transmissions (high ISI or low ISI). By using the On-Off
Keying scheme and assuming memory of depth one, an achievable rate is derived in [67].

4 Literature review: timing transmitter

The capacity of molecular timing channels has been the subject of several studies. These
works appeal to information theorists because they exploit serious information theoretic
tools and are mathematically rigorous. While it is not possible to reproduce the entire

14This is the main advantage of the Poisson concentration transmitter over the exact concentration
transmitter in the presence of an absorbing receiver (see equation (24)). The linear model (that uses a
transparent receiver) also has a similar disadvantage as discussed in Remark 1.
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literature here, we selectively provide a rough sketch of some of the tools and the ideas
used.

Signaling with identical tokens: In an early work [47], the author assumes that
n molecules are released at times instances x1, x2, · · · , xn, and arriving at the receiver
at times z1 = t1 + x1, z2 = t2 + x2, · · · , zn = tn + xn, where ti is the travel time of the
i-th molecule. Travel time Ti are assumed to be independent and identically distributed
according to some smooth continuous density function (the inverse Gaussian or Lévy
distribution for free diffusion in a one-dimensional medium). While the transmitter and
receiver are perfectly synchronized, the order according to which the particles are received
is not necessarily the same as the order they are released. The molecules are of the same
type and indistinguishable at the receiver, which is the main source of difficulty in the
problem. Therefore, the receiver has only the sorted values sort(z1, z2, · · · , zn), not the
exact vector (z1, z2, · · · , zn). This is a main difference of this model with “bits through
queues” of [68]. Here we are interested in the mutual information

I(Xn; sort(Zn)).

This mutual information is harder to analyze than I(Xn;Zn) as in [68]. The reason is
that [69]

I(Xn;Zn) = h(Zn)− h(Zn|Xn) = h(Zn)− h(Tn)

where h(·) is the differential entropy. Here only the first term h(Zn) depends on input
pmf p(xn). On the other hand,

I(Xn; sort(Zn)) = h(sort(Zn))− h(sort(Zn)|Xn)

but h(sort(Zn)|Xn) depends on p(xn). However, we have that [69] 15

h(Zn|Xn) = h(sort(Zn)|Xn) +H(Zn|sort(Zn), Xn).

Thus, h(sort(Zn)|Xn) = h(Tn)−H(Zn|sort(Zn), Xn). Hence,

I(Xn; sort(Zn)) = h(sort(Zn)) +H(Zn|sort(Zn), Xn)− h(Tn).

Since the third term on the right hand side h(Tn) does not depend on p(xn), one needs
to consider the maximum of sum of the first two terms as a function of p(xn). Authors
in [69] proceed by finding upper bounds on these two terms and maximize those bounds
over input pmfs p(xn). It is also worth to mention another idea of this paper: observe
that sort(Zn) does not depend on the order of Z1, . . . , Zn. Therefore if π is a permutation
from {1, 2, · · · , n} to itself, then

sort(Z1, Z2, . . . , Zn) = sort(Zπ1 , Zπ2 , . . . , Zπn).

Thus, if instead of transmitting the input sequence in the order of X1, X2, . . . , Xn, we
transmit them in the order of Xπ1 , Xπ2 , . . . , Xπn , the mutual information between Xn

and sort(Zn) would not change. In other words, if p(xn) is a capacity achieving distri-
bution and we define X̃i = Xπi , then p(x̃n) would also be a capacity achieving distribu-
tion. Observing that mutual information is concave in the input distribution, q(xn) =

15If Zn
∆ is the quantized version of Zn (a discrete random variable), we get that H(Zn

∆|Xn) =
H(sort(Zn

∆), Zn
∆|Xn) = H(sort(Zn

∆)|Xn) + H(Zn
∆|sort(Zn

∆), Xn). Letting ∆ converge to zero, the dif-
ference H(Zn

∆|Xn)−H(sort(Zn
∆)|Xn) converges to h(Zn

∆|Xn)−h(sort(Zn
∆)|Xn), and H(Zn

∆|sort(Zn
∆), Xn)

converges to H(Zn|sort(Zn), Xn).
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1
2pXn(xn) + 1

2pX̃n(xn) would also be capacity achieving. If we consider all the permuta-
tions π, and take their average pmf, we get that it suffices to take maximum over input
distributions that are symmetric with respect to permutation on the input indices (called
“hypersymmetric” in [69]).

We continue this part by reviewing some of the ideas of [47, 70]: Author in [47] uses
the following idea for numerically computing lower bounds on the mutual information
I(Xn; sort(Zn)). Suppose we have an intractable channel p(y|x) and an input distribution
p(x). The idea is to find a tractable approximation q(x|y) of the channel p(x|y). For any
arbitrary channel q(y|x) we have that

I(X;Y ) = Ep(x,y) log
p(x|y)

p(x)
≥ Ep(x,y) log

q(x|y)

p(x)
,

where q(x|y) is calculated from q(x, y) = p(x)q(y|x). The above inequality can be directly
verified. Note that similar upper bounds on mutual information can be found via Topsoe’s
inequality [71]: for any arbitrary output pmf q(y) we have

I(X;Y ) = Ep(x,y) log
p(y|x)

p(y)
≤ Ep(x,y) log

p(y|x)

q(y)
. (28)

Memoryless models: As we saw, molecules arriving out of order are a challenge.
This might be avoided if we release molecules of different types so that they can be
distinguished at the receiver [35]. Alternatively if we assume a lifetime for molecules
(after which they fade away in the environment), we might restrict ourselves to a certain
class of encoders that after releasing a molecule, delays the next transmission long enough
to ensure that the previous transmission has either hit the receiver or died out in the
environment [34].16 Even though this restriction may not optimal, but by studying the
maximum achievable rate for this class of encoders, we can find lower bounds on the
capacity of the molecular timing channel.

Having resolved the out of order problem, the capacity of the molecular timing channel
reduces to the capacity of an additive channel Z = X+T . Distribution of the transmission
delay T depends on the physical properties of the communication medium. For a one-
dimensional motion with variance σ2 and a positive drift velocity v towards the receiver
located at distance d from the transmitter, T will follow an inverse Gaussian distribution
IG(µ, λ) given in equation (7). The additive channel Z = X + T is called an AIGN
(additive inverse Gaussian noise) channel. If there is no drift towards the receiver v = 0,
the channel becomes an ALN (additive Lévy noise) channel [34].

The goal is to compute the following expression:

max
p(x):X≥0,E[X]≤Λ

I(X;X + T ),

for some Λ > 0. Even though capacity is concave in the input density and convex optimiza-
tion techniques may be employed, the space of distributions over which the maximization
occurs is difficult to handle analytically. There are several works that find explicit lower,
upper or asymptotic expressions for the capacity of AIGN under an average input cost
constraints [35, 72, 73], with some of the techniques are borrowed (but carefully adapted)
from earlier works on the Poisson channel. A simplifying fact is the additivity property
of the IG distribution [35]: let T1 ∼ IG(µ1, λ1) and T2 ∼ IG(µ2, λ2) be independent

16This idea resembles the interference mitigation modulations techniques for dealing in channels with
intersymbol interference (ISI).
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random variables. We further assume that λ1

c1µ2
1

= λ2

c2µ2
2

= κ for some c1, c2 > 0. Then,

c1T1 + c2T2 ∼ IG(c1µ1 + c2µ2, κ(c1µ1 + c2µ2)2).
In the following we mention some of the proof ideas. Observe that I(X;X + T ) =

h(X + T ) − h(T ). Therefore, the problem is to maximize h(X + T ) subject to X ≥
0,E[X] ≤ Λ for some T ∼ IG(µ, λ).

• (Lower bounds:) The lower bound in [35] is derived by evaluating h(X + T ) when
X is distributed according to an IG distribution (capacity is maximum over all
distributions, so this yields an inner bound). The above additivity property of IG
distribution is used to specify the distribution of X+T . To derive a lower bound in
[72], author chooses the input distribution of X to an exponential distribution. The
distribution of X + T is the convolution of an exponential and an IG distribution.
The author avoids this calculation. Instead h(X + T ) is bounded from below using
the entropy power inequality in terms of h(X) and h(T ). In [73], the exact formula
of the convolution of an exponential and an IG distribution is cited from [74] and a
new analytical lower bound is derived.

• (Upper bounds:) The upper bound in [35] is derived by noting that E[X + T ] =
E[X] +E[T ] ≤ Λ +µ. Thus, the entropy of X + T is bounded by the entropy of the
exponential distribution with mean Λ + µ, as exponential distribution has maximal
differential entropy amongst all non-negative random variables with the same mean.
The idea of [73] is to use Topsoe’s inequality in (28) to bound mutual information
from above, with the choice of inverse Gaussian distribution for output pmf.

In [34], authors consider a diffusion medium with no drift. A lifetime for molecules is
considered (after which they die out in the environment) to make the channel memoryless,
resulting in a variation of the ALN channel: in case the molecule hits the receiver before
its lifetime ends, we get Z = X + T , with T following a truncated Lévy distribution. By
writing the expansion I(X;X + T ) = h(X + T )− h(T ), the particular form of the Lévy
distribution is used to find a closed form expression of the entropy of its truncated version
h(T ). The term h(X+T ) is bounded from below via the entropy power inequality (EPI),
and from above by logarithm of the support of X + T .

The discrete delay-selector model: Let us consider the following discrete model
of the timing channel . We divide the time horizon into time slots of duration Ts. At
the beginning of each time slot, up to N indistinguishable molecules may be released.
Molecules are not lost during transmission, and each of these molecules will eventually
arrive at the receiver in the current time-slot or in the subsequent time slots. Furthermore,
a channel delay of at most ∆ ∈ N is assumed: a transmission in time slot j arrives in
any of the following ∆ time slots, i.e., in one of the time slots j, j + 1, ..., j + ∆ − 1.
The receiver can count the number of molecules received in each time slot, but does not
otherwise know the exact arrival times of individual molecules within a time slot. Overall,
the input can be characterized a sequence (x1, x2, . . . , xn) where xi ∈ [0 : N] denotes the
number of molecules released in time slot i. The output is a sequence (y1, y2, . . . , yn)
where yi indicates the number of molecules received in time slot i. Since Yi depends not
only on Xi, but also on Xi−1, Xi−2, · · · , Xi−∆+1, this is a channel with memory.

The above model was originally introduced in [70] and called the delay-selector model.
Authors in [70] studied the normal Shannon capacity for the case of N = 1. The asymp-
totic behavior of capacity in terms of the number of molecules and time intervals for
communication is studied in [75]. Its zero-error capacity was completely characterized in
[76] as log r where r is the unique positive real root of the polynomial x∆+1−x∆−N = 0.
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The authors of [76] were not apparently aware of [70], as [70] is not cited and their
zero-error capacity result is not compared with the vanishing error result of [70].

One of the main ideas used in [70] can be summarized as follows:17 consider a channel
with memory. To compute the capacity, one would need to consider n-letter mutual
information terms: [77]

lim inf
n→∞

1

n
max
p(xn)

I(Xn;Y n).

But p(yn|xn) cannot be expressed as
∏n
i=1 p(yi|xi). To derive a lower bound, let us take

an i.i.d. input pmf p(xn) =
∏n
i=1 p(xi).

18 Then, one gets a single-letter expansion as
follows:

I(Xn;Y n) = H(Xn)−H(Xn|Y n)

=
n∑
i=1

H(Xi)−H(Xn|Y n)

=
n∑
i=1

H(Xi)−H(Xi|Y nX1:i−1)

≥
n∑
i=1

H(Xi)−H(Xi|Yi)

=
n∑
i=1

I(Xi;Yi).

Authors in [76] find an exact zero-error result for the delay-selector channel. They
also provide explicit capacity achieving codes and a linear-time decoding algorithm for
their codes. To define a zero-error codebook, we need a few definitions: we write
that (x1, x2, . . . , xn)  (y1, y2, . . . , yn) if there is a way to obtain (y1, y2, . . . , yn) from
(x1, x2, . . . , xn) on the delay-selector channel with appropriate choice of delays for indi-
vidual molecules. A zero-error code consists of a class of input sequences such that for
any two codewords (x1, x2, . . . , xn) and (x′1, x

′
2, . . . , x

′
n), one cannot find (y1, y2, . . . , yn)

such that (x1, x2, . . . , xn)  (y1, y2, . . . , yn) and (x′1, x
′
2, . . . , x

′
n)  (y1, y2, . . . , yn) at the

same time.
The paper follows by finding a recursive equation for the size of the optimal codebook

of size n. A key observation in [76] is the following: if there are two codewords x =
(x1, x2, . . . , xn) and x′ = (x′1, x

′
2, . . . , x

′
n) such that xi = x′i for i > ∆ + 1, and

∑∆+1
i=1 xi =∑∆+1

i=1 x′i, then x and x′ may not both belong to a zero-error code at the same time. If

this is the case and q =
∑∆+1

i=1 xi =
∑∆+1

i=1 x′i, then one can obtain the output sequence
(0, 0, . . . , 0, q, x∆+2, x∆+3, . . . , xn) from both x and x′.

5 Capacity for the ligand-receptor model

In this section, we review some results relating to the ligand-receptor models described
in Section 2.4.4

Memoryless binomial channel model: The ligand receptors are studied in [40],
where a memoryless binomial distribution is proposed to model the number of bound re-
ceptors as the output while their binding probability is taken to be the input. Thus, the

17This is not the way the idea is presented in the paper itself.
18This idea has been used in earlier works such as [54].

26



input to the channel is p ∈ [0, 1] and the output is a sample from B(k, p) for some given
k receptors on the surface of the receiver. The distribution which maximizes the mutual
information among this input-output is Jeffery’s prior [78]. Assuming an environmental
noise, authors in [79] consider two bacterial point-to-point communication scenarios from
the capacity viewpoint: (i) multi-type molecular communication with a single concen-
tration level, and (ii) single-type molecular communication with multiple concentration
levels. For both cases, upper and lower bounds are found on the capacity. For the upper
bound, the symmetrized Kullback-Leibler divergence based upper bound of (26) is em-
ployed. The lower bound is derived on the capacity under average and peak constraints
by assuming a binary input. The approach of obtaining the lower bound is to covert the
ligand-receptor model to a variation of Z-channel with the binary input and the outputs
in {1, . . . , N ′}, where N ′ is the total number of the receptors.

Markov model: In the Markov model with k receptors on the surface of the receiver,
the state of receiver is modeled by a vector in S = {B,U}k. Furthermore, the state at
time instance i is also the output of the receiver, Yi = Si. As pointed out in [80] such state
dependent channels belong to the class of channels studied (with and without feedback) in
[81, 82]. Even though we have a channel with memory, the main result is that the capacity
is achieved by i.i.d. input pmf p(xn) =

∏
i p(xi) [80] by directly investigating the analytical

expression for mutual information. For the case of one receptor, output feedback is shown
not to increase the capacity. Here, the important assumption is that when a receptor is
in state B, its transition to state U is independent of input. The intuition for this result
is summarized in [42] as follows: “when we have a coding scheme which uses feedback,
the encoding function depends on the output of the channel in the previous epochs. Since
the channel has Markov structure, if we go back more that one epoch, we do not get
useful information. Hence, one can modify the encoding function so that it would always
assume that the previous output was U (i.e., the receptor was at the unbound state). If
the assumption was correct, it is similar to the feedback strategy. Otherwise, the state of
the channel is B, and the next output is independent of the input. Thus, in both cases,
the feedback strategy and the modified strategy have the same result. Therefore, every
rate which is achievable via feedback can be achieved without feedback.” This argument
only shows that feedback does not help when there is one receptor on the surface of the
receiver. Authors in [83] consider the case of multiple ligand receptors. The resulting
state dependent channels again would belong to the class of channels studied in [81], and
its feedback capacity can be computed via the formula given in [81]. However, explicit
calculation of the capacity still requires solving an optimization problem. Authors in [83]
work out this optimization problem and show that if one can vary the input concentration
of molecules around the receiver arbitrarily fast, the capacity for m ligand receptors can
be found by simply multiplying m times the capacity of a single receptor. Surprisingly,
feedback does not help in this case either (i.e., revealing the current number of bound
receptors to the transmitter cannot increase the communication rate).

6 From point to point to multi-user: the cascade problem

Our focus up to this point has been on a point to point setting. But many of the
envisioned applications of MC employ a network of molecular nodes. Molecular networks
have received little attention in the literature. The problem is complicated by the fact
that one needs to study the effect of memory in the context of networks; any realistic
model of molecular medium or transceivers should consider the effect of memory of past
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Figure 3: Diagram of a chain of m bacteria, with the output of each directly connected
as the input of the next bacterium. Each bacterium has a state space determined by
variables s1, s2, s3, s4.

Figure 4: Cascade of m general channels with memory

actions in their formulation.
Among different network structures, we focus on the cascade structure here in this

section. We provide an open problem that was motivated by our study of molecular com-
munication. As common with interdisciplinary topics, studying molecular communication
may lead one to formulate new information theoretic problems.

6.1 The cascade problem

The channel cascade problem arises naturally when communicating over a medium con-
sisting of identical objects placed one after another. For instance, this chain could consist
of biological cells as in the bacteria cable of [84], where the output of each cell is directly
connected to the input of the next cell. There is no intelligent processor after each cells
to decode and then encode the message for the next cell. The diagram for the bacteria
cable is depicted in Fig. 3. Each bacterium is modeled by a number of electron queues
that describe its electron transport chain (a process completed by a cell to produce en-
ergy). The size of these queues statistically affects transitions of electrons from its input
terminal (electron donor) to its output terminal (electron acceptor). Here a vector of size
four, consisting of the length of the queues associated to each cell, represents the state
variable associated to each cell. By placing the cells one after another, we obtain the
cascade architecture. In this section, we provide a conjecture about cascade of channels
with memory. This conjecture implies that the capacity of the cascade link goes to zero
as the length of the cable goes to infinity.

Another motivation for the cascade problem is due to the short range of molecular
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communication and the need for multi-hop communication to send messages across longer
distances.

Problem 1 (Cascade Problem). Consider a state-dependent channel

p(y(i), s(i+ 1)|x(i), s(i)) (29)

with identical input and output alphabets, i.e., X = Y. Consider m identical copies of
this channel and let us denote the input, output and state of the j-th channel at time
i by Xj(i), Yj(i) and Sj(i) (see Fig. 4). We say that these channels are connected in
cascade if Xj(i) = Yj−1(i), i.e., the output of the (j − 1)-th channel is the input to
the j-th channel (no intelligent processing unit is placed between the output of one hop
to the input of the next hop). The input of the cascade channel is X1(i) and its out-
put is Ym(i). We allow for block codes. A communication rate is said to be achiev-
able if the average error probably converges to zero as the blocklength goes to infinity,
regardless of the initial state of the m channels. The question is what is the behavior of
the capacity of cascade of m replicas of this channel as a function of m?

To best of our knowledge, cascade of channels with memory has not received much
attention in the literature. The only result that we are aware of is that of [85] wherein
authors consider cascade of a certain nonlinear channel with memory that appears in the
context of optical fibers, but the analysis is specialized to the particular optical channel
that is governed by a certain stochastic differential equation. Capacity of a finite-state
discrete channel with input X, output Y and state variable S is given by [52, p.100]

lim
n→∞

1

n
max
p(xn)

min
s0

I(Xn;Y n|s0). (30)

Since cascade of a channel with memory is itself a channel with memory, in principle it
is possible to write a formula for channel capacity by considering (multi-letter) mutual
information between the input of the first channel and the output of the m-th channel in
cascade. The challenge is to study the limit as blocklength n tends to infinity.19

To state our main conjecture about the cascade problem, we need a definition:

Definition 1. We define the concept of zero-error capacity C0 for a channel with memory
of (29), as the maximum rate of information that can be communicated with exactly
zero error, regardless of the initial state, s(0), of the channel.20 The zero-error capacity
is defined when we allow for multiple-use of the channel with memory (blockcoding is
allowed), but only codes with exactly zero error (and not a vanishing error probability as
blocklength tends to infinity) are allowed.

Given a channel with memory, observe that its m cascade channel is itself a channel
with memory (with its state being the state vector of the m channels), and hence its zero-
error capacity can be defined in the same way. Let Cm0 denote the zero-error capacity of
m cascade channels. Also, let C inf

0 = limm→∞C
m
0 .

We can now formally state our conjecture:

19If we restrict to n = 1 in the expression of equation (30), the result of [52, p. 527] can be applied. When
considering single-letter mutual information between the input of the first channel and output of the last
channel, each of the m finite-state channels has some initial state and thereby a channel transition matrix.
Thus, the end-to-end mutual information can be found using the result of [52, p. 527] for memoryless
channel corresponding to these transition matrices.

20This corresponds to the zero-error version of C as in [52, p.100].
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Conjecture 1. Take an arbitrary state dependent channel p(y(i), s(i+ 1)|x(i), s(i)) with
finite input/output alphabet |X | = |Y| <∞. Then, the Shannon capacity of the m cascade
channel converges to C inf

0 as m goes to infinity if |S| < ∞, i.e., if it is a finite state
channel. On the other hand, one can find channels with finite input/output alphabet but
with infinite memory, |S| = ∞, such that the Shannon capacity of the cascade channel
converges to a value that is strictly larger than C inf

0 as m goes to infinity.

A partial proof of the above conjecture is given in Appendix A.

6.2 Cascade of memoryless channels

Memoryless channels are special cases of channels with memory, and their study is the first
step towards solving the general problem with memory. Consider a memoryless channel
pY |X with no state variable. We have the following Markov chain:

X1 → Y1 = X2 → Y2 = X3 → · · · → Ym−1 = Xm → Ym,

where pY |X(yi|xi) is given. If we denote the transition matrix for channel pY |X by P, the
transition matrix for the m cascade channel will be equal to Pm. Then, for a memoryless
channel we have Cm0 (P) = C0(Pm).

It is insightful to construct a Markov chain as follows: let the state space be X = Y
and the transition probability from state x to state x′ be equal to pY |X(x′|x). Then,
random variables X1, X2, · · · , Xm, Ym can be understood as a random walk sequence on
this Markov chain with the initial state of X1.

Memoryless channels with finite input/output alphabets: As an example,
cascade of m Binary Symmetric Channels (BSCs) with parameter p is a BSC channel
with parameter q = (1 − (1 − 2p)m)/2, and capacity 1 − h(q) where h(·) is the binary
entropy function. By writing the Taylor expansion of entropy function around 1/2, it is
easy to verify that the capacity drops exponentially fast in m. There are few previous
works on the behavior of memoryless cascade channels in the literature, most of which
consider cascade of simple channels (e.g. see [52, p. 527], [86, p.85], [87, p. 221], [88, p.
42], [89, 90], [91, 92]). As a historical note, just like Shannon who was motivated by the
repeatered telephone lines common in his time, the motivation of Simon for studying the
cascade channel was the repeatered telephone line [91].

It turns out that just like the BSC example, for any memoryless channel with finite
alphabet and positive transition matrix, i.e., p(y|x) > 0 for all x, y, the Shannon capacity
of the cascade channel drops exponentially to zero. In fact, to compute the capacity,
we seek the mutual information between the initial state X1 and the final state Ym. If
the Markov chain has a finite state space, and it is irreducible and aperiodic (implied by
p(y|x) > 0 for all x, y), it will have a unique stationary distribution to which the chain
converges (exponentially fast), starting from any initial state. Convergence of the Markov
chain to a stationary distribution implies that the correlation between initial state X1 and
the final state Ym after m walks fades away exponentially fast. This would imply that
the capacity drops to zero exponentially fast. To see why the drop occurs exponentially
fast in another way, note that by the data processing inequality, we have

I(X1;Ym) ≤ I(X2;Ym) ≤ · · · ≤ I(Xm;Ym).

However, the above data processing inequality can be strengthened by finding a constant
η < 1 such that for any U → X → Y we have I(U ;Y ) ≤ η ·I(U ;X), instead of the weaker
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I(U ;Y ) ≤ I(U ;X) [93, 94]. We can then write that

I(X1;Ym) ≤ ηI(X1;Ym−1) ≤ · · · ≤ ηm−1I(X1;Y1) ≤ ηm−1H(X1),

showing that (X1;Ym) drops to zero exponentially fast in m.
Let us consider a general discrete memoryless channel p(y|x). Let us first consider the

zero-error capacity of the cascade channel, i.e., the rate at which it is possible to send
information with exactly zero error. First, we provide some definitions from finite-state
Markov chain theory. State j is said to be accessible from state i (shown by i→ j), if it
is possible to reach state j from state i in some number of steps, i.e., if there exists some

n ≥ 0 such that p
(n)
ij > 0, where [pij ] is the probability transition matrix. Two distinct

states i and j are said to communicate (shown by i↔ j), if state j is accessible from state
i and state i is accessible from state j. A state is always considered to communicate with
itself. We can partition the states of a Markov chain into disjoint communicating classes,
where two states i and j are in the same class if and only if i and j communicate (i↔ j).
A communicating class is closed if starting from a state in that class, we will remain in the
class forever (i.e., states outside the class are not accessible from the states that belong to
this class). A state is called recurrent if starting from the state, the probability of returning
to it is one. Otherwise, it is called transient. The states of a closed communicating class
are all recurrent, and the states of a non-closed communicating class are all transient.

With the Markov chain interpretation of the channel in mind, the zero-error capac-
ity of the cascade of m-channels will be positive if the chain has more than one closed
communicating class. The reason is that if initial state belongs to one of the closed com-
municating classes, it will remain in that class forever. Therefore, it is possible to use the
identity of the communicating class for signaling. Furthermore, observe that zero-error
communication at a positive rate is possible even when the chain is irreducible and has
only one closed communicating class, if the states are periodic with period T . In this case,
we can partition the graph into T components and index them by 0, 1, · · · , T − 1. Then,
starting from an initial state in component j, after passing through m cascade channels,
we will end up in state (j +m) mod T . In fact, one can show the following:

Proposition 1. Let C0(Pm) and C(Pm) denote the zero-error and Shannon capacities
of the cascade of m repetitions of a finite alphabet memoryless channel with transition
matrix P. Then,

lim
m→∞

C(Pm) = lim
m→∞

C0(Pm) = log(
r∑
i=1

Ti)

where r is the number of closed communicating classes of the Markov chain correspond-
ing to P, and Ti is the period of nodes in the i-th class (thus, input alphabet X can be
partitioned into r closed communicating classes, and set of transient nodes).

The proof is given in Appendix B.
Memoryless channels with infinite input/output alphabets: For memoryless

channels with countably infinite or continuous alphabets, the behavior of the capacity of
cascade channels can be very different than the finite discrete channels. To see why the
behavior may be different, note that if we cascade m memoryless Gaussian channels with
noise σ2, the overall channel will be a Gaussian channel with noise variance mσ2. With an
input power constraint P , the capacity of the cascade channel will be 1

2 log(1 +P/(mσ2))
which is equal to P/(2mσ2) for large values of m. Thus, the capacity is proportional to
m−1, and not exponentially decreasing in m. The difference between the infinite alphabet
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Figure 5: The Markov chain of Example 2, defining a channel on X = Y = {0, 1, 2, · · · }.

and finite alphabet cases is that while it is still possible to construct a Markov chain on
the state space X = Y, the chains on infinite alphabet spaces can be more involved and
may not even have a stationary distribution.

As far as we are aware, the possible behaviors of the capacity of cascade of identical
memoryless channels with countably infinite or continuous alphabets have not received
any attention. More specifically, one may ask that besides exponential and m−1 drop in
capacity, what other behaviors are possible? An example of a memoryless channel with
countably infinite input/output alphabet is provided below to show that unlike the finite
alphabet case, one can have

lim
m→∞

C(Pm) > lim
m→∞

C0(Pm).

Example 2. Let X = Y = {0, 1, 2, · · · } be the input/output alphabets of a memoryless
channel with the following transition probabilities: pY |X(i + 1|i) = ai and pY |X(0|i) =
1− ai. This is depicted in Fig. 5. In other words, being at state i, with probability ai we
go to state i + 1 and with probability 1 − ai we go to state 0. Assume that a0 = 0, i.e.,
we always stay in state 0 if we end up there. The probabilities ai are chosen such that
bm =

∏m
i=1 ai for n ≥ 1 is a decreasing positive sequence that converges to 1/2 as m tends

to infinity. Observe that zero-error capacity C0 = 0 for this channel because given any
input, output symbol 0 occurs with some positive probability. Therefore, the zero-error
capacity of the cascade channel is also zero.

Let us assume the uniform input distribution on {0, 1} (input power is 1/2). Then, if
we use input X1 = 0 on the cascade of m identical channels as above, the output will be
Ym = 0 because input 0 is always mapped to output 0. For input X1 = 1, with probability
bm, the output at the cascade of m channels will be equal to m; with probability 1− bm, it
will be equal to 0. Therefore, the cascade of m channels is essentially a Z-channel with
input alphabet {0, 1} and output alphabet {0,m}. The input/output mutual information
as m tends to infinity, converges to the input/output mutual information of a Z-channel
with parameter 1/2, which is non-zero.

One implication of the above example is as follows: given an integer L, let us consider
the “L-truncated version” of the above channel as follows: the input/output state space
are {0, 1, 2, · · · , L}, and pY |X(i+1|i) = ai and pY |X(0|i) = 1−ai for 0 ≤ i < L. For i = L,
pY |X(0|L) = 1−aL and pY |X(j|L) for 1 ≤ j ≤ L is defined arbitrarily. The above example
shows that the capacity of the “L-truncated version” of the above channel converges to
zero as m tends to infinity for any arbitrarily large L, but the capacity of the cascade of
the channel itself is positive as m tends to infinity, even in the presence of an input power
constraint.
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Despite the above negative result, cascade capacities of many continuous alphabet
memoryless channels (with C0 = 0) converge to 0 as the length of the cascade channel
goes to infinity. This can happen if the strong data processing constant (η) is less than
one. Even when η = 1, the idea of “non-linear” data processing constant of Polyanskiy
and Wu [95] may be still used to show that mutual information drops to zero. The idea is
to show an appropriate (possibly non-linear) increasing function f(·) satisfying f(t) ≤ t,
such that for any U → X → Y we have I(U ;Y ) ≤ f(I(X;Y )). This would then imply
that

I(X1;Ym) ≤ f(I(X1;Ym−1))

≤ (f ◦ f)(I(X1;Ym−2))

≤ · · ·
≤ (f ◦ f · · · ◦ f)(I(X1;Y1)).

Therefore, one needs to look at the convergence of the sequence of a, f(a), f(f(a)), · · · for
a = I(X1;Y1).

Variation of the problem with relay nodes: A natural variation of the cascade
problem with relay processing nodes placed in between any two consecutive memoryless
channels is studied in [95, 96, 97, 98]. If there is no restriction on the relays, they can
decode and re-encode the information. In this case, the Shannon capacity of the cascade
channel will be equal to the min-cut capacity of the links. Furthermore, the zero-error
capacity of the cascade channel will be equal to C0(P), the zero-error capacity of each
individual channel. Therefore, there are potential improvements both in terms of the
Shannon capacity and the zero-error capacity.

To approach the min-cut capacity, one needs to use large blocklengths. An interesting
result for the cascade problem with relays is provided in [96]. It is shown in [96] that if
the relays are forced to process blocklength of fixed size, then for any discrete memoryless
channel, the cascade capacity converges to the zero-error capacity C0(P) exponentially
fast as the length of the cascade channel m goes to infinity. In other words, relays of
limited complexity are not helpful.

Another interesting result for additive Gaussian channel is given in [95]. It considers
the simple strategy of each relay comparing the input signal with a threshold and choosing
the input to the next channel accordingly. By a judicious choice of the thresholds, it is
shown that the end to end mutual information drops like log logm/logm (rather than
m−1), but the thresholds used depend on the location of the relay in the cascade network.

6.3 Channel with memory

The channel memory allows the channel statistic p(yi|xi, si) to adapt itself according to
the channel state si (itself influenced by previous inputs to the channel). According to
our conjecture, this freedom is limited and essentially useless for finite state channels.
Observe that even in a finite state channel (|S| <∞), the output Yi may still depend on
all previous inputs Xi, Xi−1, Xi−2, · · · . This is because Yi depends on Xi and Si, but Si
may be affected by the entire past inputs. Since the input Xi is not affected by only a
finite number of past inputs, one cannot try to model the memory effect with the actions
of the relays in the model studied in [96], wherein relays are forced to process blocklength
of fixed size.
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7 Concluding remarks and some open problems

Efficient communication among small devices is an area where communication and in-
formation theorists can contribute. In many applications, communication among nano-
devices is not a goal in itself, but occurs with the goal of serving a task. In other words,
there is not always a given explicit messages of a certain rate that needs to be commu-
nicated; but the message itself is a parameter that needs to be created and transmitted.
Examples of such scenarios from classical information theory are studies of the relation
of communication and control, communication for coordination or function computation.
These may need rethinking to address the specific setting of applications in molecular
communication. For instance, proper mathematical models of the restrictions imposed by
the transmitter and receiver may be needed; finite blocklength and one-shot results may
be of importance; and channel memory may require serious considerations. As discussed
in the paper, study of networks with memory is challenging, even for the simple cascade
architecture. Next, results from arbitrarily varying channels in classical information the-
ory might be of particular relevance because of stochastic effects such as sensitivity of the
medium to temperature or jitters. Finally, extremely long delay of the diffusion process
complicates formation of feedback links, which are both useful for effective communication
and providing stability in control.

There are already many ongoing developments in the literature. Many communication
oriented papers focus on error probability and consider simple ISI-mitigation techniques.
To put these results in a firmer theoretical footing, it would be interesting if one can show
near optimality of these techniques from an information theoretic perspective (if one
can restrict to energy efficient coding strategies of limited complexity). We introduced
three models for the transmitter and four models for receiver. While ligand receiver is a
realistic receiver model, it has not been studied in conjunction with any of the transmitter
models. In particular, it would be interesting to characterize the capacity of the ligand
receptor with the Poisson concentration transmitter. Also, further works on mathematical
modeling of different components of a molecular communications system (transmitter,
receiver and channel) and their intrinsic noises and temporal variations are needed for
any thorough information theoretic analysis. For instance, a transmitter may not be able
to instantaneously release molecules in the environment [20].

As mentioned in the introduction, development of a proper theoretical framework
for studying limitation of resources in the context of MC is necessary, perhaps in the
context of specific circuit models. For instance, for the VLSI model, in a series of works,
[10, 11] consider how much information bits need to travel across the surface of a VLSI
circuit in order to implement an encoder or decoder function. The concept of “frictional
losses” associated with moving information on a substrate is developed for Thompsons
VLSI-model and used to characterize fundamental energy requirements on encoding and
decoding in communication circuitry. It may be possible to develop proper models for
molecular circuits. Molecular circuits, including logic gates or processing units, could be
implemented using chemical reactions. It is not clear how the notion of complexity in the
context of MC should be defined at this point. It could be the ATP consumption at the
encoder and decoder units [99], the number of reaction (in chemical computation) or the
length of the DNA sequences used (in DNA computation). See also [100].

Finally, it is also worthwhile to look for new signalling mechanisms. To the best of
our knowledge, the common presumption in the existing literature is that the information
should be coded by the transmitter via the action of releasing molecules in the environ-
ment. However, other options are possible too. For instance, we might have a node
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(separate from the transmitter) that emits molecules in the environment according to
some predefined deterministic pattern. The transmitter may change the communication
medium, by exploiting chemotaxis or changing the flow (or in general physical properties)
of the medium between the emitter and receiver. We may call this “molecular media based
modulation” as it resembles media based modulation proposed in the classical communi-
cation [101]. The closest existing work to molecular media based modulation appears to
be [102]. Further understanding of molecular media based signaling can be of interest.
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Figure 6: Description of a single channel with memory used in partial proof of the con-
jecture. Here Y1 = X1 are binary, while X2 and Y2 are k-ary. The alphabet for X ′2 is
{e, 1, 2, · · · , k} is created by passing X2 through a memoryless erasure channel.

A Partial proof of the conjecture

Partial proof of the conjecture. We construct an example for the second part of the con-
jecture by carefully constructing a channel with memory. A channel with infinite memory
can remember all of its past inputs and can adapt its input-output statistical description
according to all past inputs. The general idea is to design the state dependent channel
with memory, p(y(i), s(i+ 1)|x(i), s(i)), that behaves intelligently as a memoryless chan-
nel followed by a relay node who can decode and re-encode the information. Therefore
the cascade of the m channels with memory behaves as the cascade of m memoryless
channels with relay processers placed between them. These relays decode and re-encode
information allowing for the capacity of the cascade channel to reach the min-cut capacity
of the links, strictly above C inf

0 .
We construct a p(y(i), s(i+ 1)|x(i), s(i)) structured as follows and depicted in Fig.

6: The input is X = (X1, X2) and the output is Y = (Y1, Y2), where X1, Y1 ∈ {0, 1},
and X2, Y2 ∈ {1, 2, . . . , k}. We assume that Y1 = X1 regardless of the state value, and
input X2. The input X2 first passes through a memoryless erasure channel p(x′2|x2),
with erasure probability e acting independent of the state, and then through a state-
dependent channel p(y2|x′2, s). The value of s is updated according to the input (x1, x

′
2)

and its previous value. The idea is to have p(y2|x′2, s) acting as a relay node that decodes
information over the erasure channel and re-encodes it.

Note that C inf
0 = 1 for this channel. Due to the X1 part of the input that is directly

connected to the output Y1, it is possible to send one bit throughout the m cascade
channels (see Fig. 7). Furthermore, because an erasure channel is acting on the X2 part
right after entering the first block, the input part X2 can be erased with some positive
probability. Therefore, the X2 part cannot be used to transmit information with exactly
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Figure 7: Diagram of a chain of channels connected to each other in series. Observe that
the X1 part passes through the chain without being disturbed.

zero error probability.
Observe that the X1 component passes through all the cascade nodes without any

error. It is used for the following actions:

• To reset the initial state of all of the state-dependent channels in the cascade struc-
ture to a known initial “reset” state. We assume that this is done by sending three
consecutive zeros (000) on the X1 part.

• Once in the initial “reset” state, and given the error probability ε at the transmitter,
the transmitter chooses a blocklength N , finds the binary expansion of N and send
its bits to each of the state-dependent channels on the X1 part. This incurs log(N)
bits to communicate. The end of the log(N) bits is marked by the “end sequence”
string 001. In order to avoid confusion with “reset” and “end sequence” strings 000
and 001, we assume that blocklength N is chosen such that its binary expansion
does not have either of 000 and 001 showing up as its consecutive digits. Thus far,
the channel has been used 3 + log(N) + 3 times.

• Once the blocklength N is conveyed, the X1 link is used to communicate information
N more times, while ensuring that the reset symbol 000 is not used accidentally.
One way to achieve this is to code the information bits into sequences of bits that
do not have any two consecutive zeros. The number of such sequences of length
N is given by the Fibonacci number [103, p. 253], growing like ((1 +

√
5)/2)N .

Thus, with this set of sequences of length N , we may convey N log(1 +
√

5)/2 bits
of information. In other words, the communication rate is log(1 +

√
5)/2, which

is less than 1 bit per symbol that we could have achieved on the x1 with simple
transmission of bits; we will compensate for this hit using the x2 input part.

The state-dependent channel can remember all the past inputs. Once it goes to a reset
state, it starts learning the blocklength N . Once that is over, each node knows exactly
the blocklength N ; then, all of the nodes can agree on an appropriate decoder/encoder of
blocklength N for communication over an erasure channel with paramter e. Each node
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begins looking at the X2 part of their input for the next N symbols. To produce Y2, each
node simulates the appropriate decoder/encoder for the blocklength N on the erasure
channel. Because the capacity of the erasure channel is (1−e) log(k), this would allow for
reliable transmission of N((1− e) log(k)− ε) bits of information with error probability ε
on each hop. The total error probability will be at most mε where m is the length of the
cascade. This can be made arbitrarily close to zero for a given m by sending blocklength
N to infinity and ε to zero.

The total number of bits that are communicated is N log(1+
√

5)/2+N((1−e) log(k)−
ε), and the channel is used 3 + log(N) + 3 + N times. This gives us the rate log(1 +√

5)/2) + (1− e) log(k) by letting N converge to infinity and ε converge to zero. Observe
that log(1+

√
5)/2+(1−e) log(k) can be made arbitrarily larger than C inf

0 = 1 by making
k large.

B Proof of Proposition 1

Observe that C0(Pm) ≥ log(
∑r

i=1 Ti) for any m. To see this, note that by choosing an
arbitrary vertex from communicating class i and partition j ∈ {0, 1, 2, · · · , Ti − 1}, we
can perfectly predict that after going through m channels, the final state is in commu-
nicating class i and partition k = (m + j) mod Ti. Therefore, we can use our choice of
communicating class and one of its partitions for signaling with zero error probability.
Thus,

lim
m→∞

C0(Pm) ≥ log(
r∑
i=1

Ti).

Because for each m, C(Pm) ≥ C0(Pm), it only remains to show that

lim
m→∞

C(Pm) ≤ log(

r∑
i=1

Ti).

Let us assume that X =
⋃r
i=0 Vi where V0 is the set of transient nodes, and Vi for

i ∈ [1 : r] is the i-th closed communicating class. Furthermore, for i ∈ [1 : r], the induced
graph on Vi is Ti-partite and we can correspondingly partition Vi into Ti sets Vij , having

Vi =
⋃Ti
j=1 Vij .

It suffices to show that for any arbitrary p(x1) on X1,

lim
m→∞

I(X1;Ym) ≤ log(
r∑
i=1

Ti).

We prove this statement in three steps.
Case (i): the support of p(x1) is a subset of Vij for some i ∈ [1 : r], j ∈ [1 : Ti]. In

other words, X1 is in the j-th partition of the i-th communicating class. Observe that
I(X1;Ym) is a decreasing sequence in m, by the data processing inequality. Therefore, it
suffices to study the limit for the subsequence defined by m = `Ti for ` = 1, 2, · · · . But if
X1 is in the j-th partition of the i-th communicating class, after `Ti steps, it will return to
the same partition of the same communicating class. Therefore, we can define a reduced
Markov chain on nodes in the j-th partition of the i-th communicating class that specifies
the transition probabilities after Ti steps. This Markov chain is irreducible and aperiodic.
Therefore, it has a unique stationary pmf π to which the chain converges regardless of
initial state X1. Thus, H(Y`Ti) and H(Y`Ti |X1 = x1) both tend to the entropy of π as `
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converges to infinity, for any arbitrary x1 in Vij . This implies that limm→∞ I(X1;Ym) is
zero in this case.

Case (ii): p(x1) = 0 for all x1 ∈ V0. Let random variable Q ∈ {(i, j) : i ∈ [1 : r], j ∈
[1 : Ti]} denote the index of the communicating class and the corresponding partition
that X1 belongs to. From our earlier discussion Q is a deterministic function of both X1

and Ym. Thus,

I(X1;Ym) = H(Q) + I(X1;Ym|Q)

≤ log |Q|+ I(X1;Ym|Q)

= log(

r∑
i=1

Ti) +
∑
q

I(X1;Ym|Q = q)p(Q = q).

By case (i) and the fact that p(x1|q) is concentrated on one of the partitions of a commu-
nicating classes, we have that for any q:

lim
m→∞

I(X1;Ym|Q = q) = 0.

Therefore,

lim
m→∞

I(X1;Ym) ≤ log(

r∑
i=1

Ti).

Case (iii): arbitrary p(x1). Since V0 is the class of transient states, we have

lim
m→∞

P[Xm ∈ V0] = 0.

Thus, for any δ > 0, one can find some m0 such that P[Xm0 ∈ V0] < δ. Let U be an
indicator function that Xm0 ∈ V0. Then,

I(X1;Ym) ≤ I(Xm0 ;Ym)

= I(UXm0 ;Ym)

≤ H(U) + I(Xm0 ;Ym|U)

≤ h(δ) + δI(Xm0 ;Ym|U = 0) + (1− δ)I(Xm0 ;Ym|U = 1)

≤ h(δ) + δ log |X |+ (1− δ)I(Xm0 ;Ym|U = 1)

Now, conditioned on U = 1, the pmf of p(xm0 |u = 1) falls in the class of pmfs studied in
case (ii). Therefore, limm→∞ I(Xm0 ;Ym|U = 1) ≤ log(

∑r
i=1 Ti). Hence,

lim
m→∞

I(X1;Ym) ≤ h(δ) + δ log |X |+ (1− δ) log(
r∑
i=1

Ti).

We obtain the desired result by letting δ tend to zero.
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