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Convex Optimization of Distributed Cooperative Detection in
Multi-Receiver Molecular Communication

Yuting Fang, Student Member, IEEE, Adam Noel, Member, IEEE, Nan Yang, Member, IEEE,
Andrew W. Eckford, Senior Member, IEEE, and Rodney A. Kennedy, Fellow, IEEE

Abstract—In this paper, the error performance achieved by co-
operative detection among K distributed receivers in a diffusion-
based molecular communication (MC) system is analyzed and
optimized. In this system, the receivers first make local hard
decisions on the transmitted symbol and then report these
decisions to a fusion center (FC). The FC combines the local
hard decisions to make a global decision using an N -out-of-K
fusion rule. Two reporting scenarios, namely, perfect reporting
and noisy reporting, are considered. Closed-form expressions are
derived for the expected global error probability of the system for
both reporting scenarios. New approximated expressions are also
derived for the expected error probability. Convex constraints
are then found to make the approximated expressions jointly
convex with respect to the decision thresholds at the receivers
and the FC. Based on such constraints, suboptimal convex
optimization problems are formulated and solved to determine
the optimal decision thresholds which minimize the expected
error probability of the system. Numerical and simulation results
reveal that the system error performance is greatly improved
by combining the detection information of distributed receivers.
They also reveal that the solutions to the formulated suboptimal
convex optimization problems achieve near-optimal global error
performance.

Index Terms—Molecular communication, multi-receiver coop-
eration, error performance, convex optimization.

I. INTRODUCTION

OVER the past decades there have been considerable ad-
vancements in the fields of nanotechnology and biologi-

cal science, where the design and manufacturing of nanoscale
(< 0.1µm) and microscale (0.1 − 100µm) devices, referred
to as nanomachines, have begun to take shape [2]. Since
nanomachines are only capable of performing simple comput-
ing, data storing, sensing, and actuation tasks, it is envisioned
that they can be interconnected to execute more elaborate and
challenging tasks in a collaborative and distributed manner.
The resulting network, i.e., nanonetwork, is anticipated to
expand the capabilities of single nanomachines by allowing
them to exchange information and interact with each other.
Looking 10–20 years ahead, nanonetworks will advance a
diverse number of potential applications, such as disease
detection, targeted drug delivery, and pollution control [3].

Molecular communication (MC) has been acknowledged
as one of the most promising nanoscale communication
paradigms in bio-inspired nanonetworks, due to its unique
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potential benefits of bio-compatibility and low energy con-
sumption [4]. In fact, MC is present in nature and used
by biological entities and systems, such as molecules, cells,
and microorganisms. In MC, a transmitter (TX) releases tiny
particles such as molecules or lipid vesicles into a fluid
medium, where the particles propagate until they arrive at a
receiver (RX). The RX then detects the information encoded
in these particles [5]. The simplest molecular propagation
mechanism is free diffusion where the information-carrying
particles propagate from the TX to the RX via Brownian
motion. The TX does not need to expand any energy to use
this mechanism.

One of the primary challenges posed by diffusion-based
MC is that its reliability rapidly decreases when the TX-RX
distance increases. One approach to enhancing its reliability
is to use multiple RXs sharing common information to help
transmission. In biological environments, some cells or organ-
isms indeed share common information to achieve a specific
task [6], e.g., calcium (Ca2+) signaling [7]. In one process reg-
ulated by Ca2+ signaling, named excitation-contraction cou-
pling, the cells in skeletal muscle share Ca2+ ions to induce
the contraction of myofibrils [8].

The majority of the existing MC studies have focused on
the modeling of a single-RX MC system. Recent studies,
e.g., [9]–[16], have considered an MC system which con-
sists of multiple RXs. For example, [9], [10] analyzed the
transmission rate of a molecular broadcast system where a
single TX communicates with multiple noncooperative RXs.
In [11], simulations were performed to demonstrate the feasi-
bility of a bio-nanosensor network where bacteria-based bio-
nanomachines perform target detection and tracking. In [12],
communication between two populations of bacteria through
a diffusion channel was studied where each population acts as
a TX or a RX. In [13], a microfluidic channel with two TX
and RX pairs was explored. Focusing on the communication
between a group of TXs and a group of RXs, [14] optimized
the transmission rates that maximize the throughput and ef-
ficiency. A new stochastic model named reaction-diffusion
master equation with exogenous input was proposed in [15]
to characterize a MC system with multiple TXs and RXs.
Recently, [16] designed a multiple-input multiple-output MC
system and investigated the inter-symbol and inter-link inter-
ference therein, but did not consider cooperation between the
links. While [9]–[16] stand on their own merits, these studies
did not consider any active cooperation among multiple RXs.
This indicates that the role of the cooperation among multiple
RXs in determining the TX’s intended symbol sequence in a
multi-RX MC system has not been established in the literature.

We note that the cooperation among distributed detectors in
wireless communications has been identified as an effective
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means of improving performance. For example, cooperative
spectrum sensing is achieved by allowing multiple secondary
users to share sensing data to improve the detection quality
of a primary user [17]. Generally, in a distributed detection
system the data of the individual detectors is shared at a
fusion center (FC). This data may be hard (binary) decisions,
soft (multi-level) decisions, or quantized observations. The FC
then appropriately combines the received data to yield a global
inference [18] using a fusion rule, such as the AND rule and
OR rule for hard decisions. In fact, logic operations and cor-
responding computations required at the FC, e.g., AND, OR,
and addition operations, can be implemented at the molecular
level [19], [20]. Therefore, MC is a suitable domain to apply
distributed detection to improve transmission reliability. We
note that this application has not been previously studied.

In this paper, we for the first time quantify and maximize the
benefits of multi-RX cooperation in a cooperative diffusion-
based MC system. Our goal is to establish a fundamental
understanding of the reliability improvement brought by com-
bining the detection results of distributed RXs at an FC. In
our considered system, for each symbol transmitted from the
TX, the RXs first independently make local hard decisions on
the transmitted symbol and then report their decisions to the
FC. We note that the role of the RXs in our considered system
appears similar to that of decode-and-forward (DF) relays in
wireless systems [21]. However, the results for DF relaying
cannot be used in the MC system, due to the fact that the
characteristics of the propagation channel and the methods for
recovering the received symbols in MC systems are completely
different from those in wireless systems. After receiving the
local hard decisions, the FC fuses all decisions to make a
global decision on the transmitted symbol using an N -out-
of-K fusion rule. Here, we consider two different reporting
scenarios from the RXs to the FC, namely, perfect reporting
and noisy reporting. In this work, we assume that the FC does
not feed back its global decision to RXs. We also assume that
each RX transmits a unique type of molecule and the FC is
able to simultaneously and independently detect the different
types of molecules from the RXs1 (as in [6]). We note that
the use of a binary sequence is expected in molecular com-
munications between nanomachines to exchange the amount
of information required for executing complex collaborative
tasks, such as disease detection and targeted drug delivery.
Thus, in this work we consider the transmission of multiple
binary symbols as a sequence and take the resultant inter-
symbol interference (ISI) into account for the cooperative MC
system.

To maximize the benefits of multi-RX cooperation in the
system, we determine the jointly optimal decision thresholds
at the RXs and FC such that the expected global error
probability is minimized. We note that it is mathematically
intractable to derive analytical expressions for such optimal
thresholds. Therefore, we resort to convex optimization as an
efficient and effective method to solve the joint optimization

1We note that releasing a unique type of molecule at each RX may not be
realistic in some cases. However, this assumption gives a lower bound on the
error performance of the cooperative MC system using a hard decision fusion
rule.

problem. Since the expected global error probability is not
necessarily convex with respect to thresholds at the RXs and
FC, we conduct new convex analysis of the error performance
for the system having a symmetric topology. Based on this
analysis, we formulate convex optimization problems and find
the solution via an efficient convex optimization algorithm.
We note that finding the optimal thresholds at the RXs and
FC via exhaustive search is time-consuming and requires
relatively high complexity, compared with the adopted convex
optimization. In the symmetric topology, the distances between
the TX and the RXs are identical and the distances between the
RXs and the FC are also identical. This results in independent
and identically distributed observations at the RXs. We clarify
that the assumption of the symmetric topology is to improve
the tractability of our convex analysis and this assumption
will be relaxed in future work. Also, for some practical
applications, such as health monitoring, we may manually set
the locations of the RXs and FC to ensure that the topology of
the TX (e.g., monitored organism), the RXs (e.g., detectors),
and the FC, is symmetric and reduce the complexity of system
design and performance optimization. Also, the assumption
of a symmetric topology is reasonable if the difference in
distance between different TX−RX− FC links is negligible,
compared to the distance between the TX and the RXs. We
note that the expected error probability of a point-to-point
MC link is minimized in [22], by deriving a closed-form
analytical expression for the optimal decision threshold at the
RX. However, the derived optimal decision threshold in [22]
cannot be applied or extended to the cooperative MC system.

The primary contributions of this paper, especially relative
to our previous work [1], are summarized as follows:

1) We derive closed-form expressions for the expected
global error probabilities of the cooperative MC system
in the perfect and noisy reporting scenarios. We clarify
that a symbol-by-symbol detection with a constant de-
cision threshold at all RXs and the FC is considered in
this derivation.

2) We derive new approximated expressions for the ex-
pected global error probability of the cooperative MC
system in both reporting scenarios. We also derive
additional convex constraints under which the approx-
imated expressions are jointly convex with respect to
the decision thresholds at the RXs and the FC.

3) Based on the derived convex approximations and con-
straints, we formulate suboptimal convex optimization
problems for a given transmitted symbol sequence. For
the sake of practicality, we then extend the formulated
convex optimization problems such that a single optimal
threshold is determined to minimize the average error
performance over all realizations of transmitted symbol
sequences.

Using numerical and simulation results, we demonstrate
that the error performance of the cooperative MC system is
much better than that of the point-to-point MC link. We also
demonstrate the effectiveness of our formulated suboptimal
convex optimization problems by showing that near-optimal
global error performance is achieved by using the solutions
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Fig. 1. An example of a cooperative MC system with K = 5, where the
transmission from the TX to the RXs is represented by solid arrows and the
decision reporting from the RXs to the FC is represented by dashed arrows.

to our formulated problems, i.e., the optimal thresholds. In
this work, the optimality of the performance refers to the
accuracy of the optimization to find the optimal thresholds
in the symbol-by-symbol detection.

The rest of this paper is organized as follows. In Section II,
we describe the system model. In Section III, we present the
error performance analysis of the cooperative-RX MC system.
In Section IV, we formulate convex optimization problems
of the cooperative-RX MC system. Numerical and simulation
results are provided in Section V. In Section VI, we conclude
and describe future directions for this work.

II. SYSTEM MODEL

In this paper we consider a cooperative MC system in a
three-dimensional space, as depicted in Fig. 1, which consists
of one TX, a “cluster” of K RXs, and one device acting as an
FC. The FC is not included in the set of RXs. We assume that
the RXs are generally closer to the FC than to the TX to ensure
reliable reporting channels from the RXs to the FC. We assume
that all RXs and the FC are spherical observers. Accordingly,
we denote VRXk

and rRXk
as the volume and the radius of

the kth RX, RXk, respectively, where k ∈ {1, 2, . . .,K}. We
also denote VFC and rFC as the volume and the radius of the
FC, respectively. We also assume that the RXs and the FC
are independent passive observers such that molecules can
diffuse through them without reacting2. We further assume
that all individual observations are independent of each other.
In addition, we assume that the RXs operate in the half-duplex
mode such that they do not receive information and report their
local decisions at the same time.

In the considered system, the transmission of each infor-
mation symbol from the TX to the FC via RXs is completed
within three phases, detailed as follows:
• In the first phase, the TX transmits one symbol of

information via type A0 molecules to the RXs through
the diffusive channel. The number of the released type A0

2Although we cannot guarantee perfect independence between different
RXs, the dependence between observations made at different RXs is extremely
small. This is due to the fact that the time between adjacent samples at RXs
is sufficiently long to ensure that observations at RXs are independent and
each RX observes a small fraction of the total number of released molecules.
Moreover, the validity of assuming independence will be demonstrated by
the excellent agreement between analytical and simulation results depicted in
Section V.

molecules is denoted by S0. We assume that the diffusion
of all individual molecules is independent. The type A0

molecules transmitted by the TX are detected by all RXs.
In this work we consider that the TX uses ON/OFF
keying [24] to convey information. As per the rules of
ON/OFF keying, the TX releases S0 molecules of type
A0 to convey information symbol “1”, and releases no
molecules to convey information symbol “0”. To enable
ON/OFF keying, the information transmitted by the TX
is represented by an L-length binary sequence where
each element is “0” or “1”. The sequence is denoted
by WTX = {WTX[1],WTX[2], . . .,WTX[L]}, where WTX[j],
j ∈ {1, . . ., L}, is the jth symbol transmitted by the TX.
We assume that the probability of transmitting “1” in the
jth symbol is P1 and the probability of transmitting “0”
in the jth symbol is 1−P1, i.e., Pr(WTX[j] = 1) = P1 and
Pr(WTX[j] = 0) = 1−P1, where Pr(·) denotes probability.

• In the second phase, each RX makes a local hard decision
on the current transmitted symbol. We denote ŴRXk

[j] as
the local hard decision on the jth transmitted symbol at
RXk. Then, the RXs simultaneously report their local jth
hard decisions to the FC. We assume that RXk transmits
type Ak molecules, which can be detected by the FC. The
number of the released type Ak molecules is denoted by
Sk. We also assume that the channel between each RX
and the FC is diffusion-based, and each RX uses ON/OFF
keying to report its local hard decision.

• In the third phase, the FC obtains the decision at RXk by
receiving type Ak molecules over the RXk−FC link. We
assume that the K RXk − FC links are independent. We
denote ŴFCk [j] as the received local decision of RXk on
the jth transmitted symbol at the FC. The FC combines
all ŴFCk [j] using an N -out-of-K fusion rule to make a
global decision ŴFC[j] on the jth symbol transmitted by
the TX, where N denotes the number of decisions of “1”
received by the FC and K denotes the number of RXs. As
per the N -out-of-K fusion rule, the FC declares a global
decision of “1” when it receives at least N decisions of
“1”. There are several special cases of the N -out-of-K
fusion rule, such as 1) majority rule where N = dK/2e
and dxe represents the smallest integer greater than or
equal to x, 2) OR rule where N = 1, and 3) AND rule
where N = K.

We define Wl
TX = {WTX[1], . . .,WTX[l]} as an l-length

subsequence of the information transmitted by the TX, where
l ≤ L. We also define Ŵ

l

RXk
= {ŴRXk

[1], . . ., ŴRXk
[l]} as

an l-length subsequence of the local hard decisions at RXk.
We then define Ŵ

l

FCk
= {ŴFCk

[1], . . ., ŴFCk
[l]} as an l-length

subsequence of the received local decision of RXk at the FC.
We further define Ŵ

l

FC = {ŴFC[1], . . ., ŴFC[l]} as an l-length
subsequence of the global decisions at the FC.

We denote ttrans as the transmission interval time from the
TX to the RXs and treport as the report interval time from the
RXs to the FC. Thus, the symbol interval time from the TX
to the FC is given by T = ttrans + treport. At the beginning
of the jth symbol interval, i.e., (j − 1)T , the TX transmits
WTX[j]. After this the TX keeps silent until the start of the
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(j+1)th symbol interval. We apply the weighted sum detector
with equal weights [25] at the RXs and FC for detection.
Thus, the RXs and FC each take multiple samples within their
corresponding interval time, add the individual samples with
equal weights, and compare the summation with a decision
threshold. The decision thresholds at RXk are denoted by
ξRXk

. The decision thresholds at FC over the RXk − FC link
denoted by ξFCk

. Here, the assumption of equal weights for all
samples is adopted to limit the computational complexity of
the detector and facilitate its usage in MC.

We now describe the sampling schedules of the RXs and
FC. The FC or RXk samples at a certain time t by counting
the number of the molecules observed. All RXs sample at
the same times3 and take MRX samples per symbol interval.
The time of the mth sample for each RX in the jth symbol
interval is given by tRX(j,m) = (j − 1)T + m∆tRX, where
∆tRX is the time step between two successive samples at each
RX, m ∈ {1, 2, . . .,MRX}, and MRX∆tRX < ttrans. At the time
(j − 1)T + ttrans, each RX reports its local decision for the
jth interval via diffusion to the FC. We assume that the FC
takes MFC samples of each type of molecule in every reporting
interval. The time of the m̃th sample of type Ak molecules
at the FC in the jth symbol interval is given by tFC(j, m̃) =
(j−1)T + ttrans +m̃∆tFC, where ∆tFC is the time step between
two successive samples at the FC and m̃ ∈ {1, 2, . . .,MFC}.

III. ERROR PERFORMANCE ANALYSIS

In this section, we analyze the expected global error proba-
bility4 of the cooperative MC system. To this end, we denote
QFC[j] as the expected global error probability in the jth
symbol interval for a given transmitter sequence Wj−1

TX . Under
the assumption that there is no a priori knowledge of WTX[j],
we express QFC[j] as

QFC[j] = P1Qmd[j] + (1− P1)Qfa[j], (1)

where Qmd[j] denotes the expected global missed detection
probability (MDP) in the jth symbol interval and Qfa[j]
denotes the expected global false alarm probability (FAP) in
the jth symbol interval. By averaging QFC[j] over all possible
realizations of Wj−1

TX and across all symbol intervals, the
expected average error probability of the cooperative MC
system, QFC, can be obtained. In the analysis, we address
two different reporting scenarios, namely, perfect reporting
and noisy reporting. In the perfect reporting scenario, we
assume that no error occurs when RXk reports to the FC,
i.e., ŴFCk [j] = ŴRXk

[j]. In the noisy reporting scenario, errors
can occur when RXk reports to the FC via diffusion5.

3We note that all RXs may not be synchronized perfectly in some cases.
Thus, we make the assumption of same sampling times of all RXs to explore
the best error performance achieved by the cooperative MC system, which
serves as a performance bound for practical systems. We also note that
various methods can be adopted to achieve time synchronization among
nanomachines, e.g., [26] and [27]. Therefore, the assumption of perfect
synchronization is widely adopted in existing MC studies, e.g., [22], [25],
and [16].

4All the expected error probabilities throughout this paper are derived for
given Wj−1

TX , unless otherwise specified.
5In this paper, the notations for the symbol interval time, the number of

molecules for symbol “1” released by the TX, and the sampling schedules of
the RXs in the perfect reporting scenario are the same as those in the noisy
reporting scenario.

A. Perfect Reporting

In this subsection, we start our analysis by examining the
error performance of the TX − RXk link. This examination
is based on the analysis in [22]. We then use the results of
this examination to analyze Qmd[j] and Qfa[j] in the perfect
reporting scenario to obtain QFC[j].

1) TX − RXk Link: We first evaluate the probability of
observing a given type A0 molecule, emitted from the TX at
t = 0, inside VRXk

at time t, P (TX,RXk)
ob,0 (t). Given independent

molecular behavior and assuming that the RXs are sufficiently
far from the TX, we use [3, Eq. (1)] to write P (TX,RXk)

ob,0 (t) as

P
(TX,RXk)
ob,0 (t) =

VRXk

(4πD0t)3/2
exp

(
−
d2TXk

4D0t

)
, (2)

where D0 is the diffusion coefficient of type A0 molecules in
m2

s and dTXk
is the distance between the TX and RXk in m.

We denote S
(TX,RXk)
ob,0 [j] as the sum of the number of

molecules observed within VRXk
in the jth symbol interval, due

to the emission of molecules from the current and previous
symbol intervals at the TX, Wj

TX. As discussed in [22],
S
(TX,RXk)
ob,0 [j] can be accurately approximated by a Poisson

random variable (RV) with the mean given by

S̄
(TX,RXk)
ob,0 [j] = S0

j∑
i=1

WTX[i]

×
MRX∑
m=1

P
(TX,RXk)
ob,0 ((j − i)T +m∆tRX) . (3)

We also denote Uz,k[j], z ∈ {0, 1}, as the conditional
mean of S(TX,RXk)

ob,0 [j] when the most recent information symbol
transmitted by the TX is WTX[j] = z. Then, the decision at
RXk in the jth symbol interval is given by

ŴRXk
[j] =

{
1, if S(TX,RXk)

ob,0 [j] ≥ ξRXk
,

0, otherwise.
(4)

Moreover, based on [22, Eq. (9)], the expected MDP of the
TX− RXk link in the jth symbol interval for given Wj−1

TX is
written as

Pmd,k[j] = Pr
(
S
(TX,RXk)
ob,0 [j] < ξRXk

∣∣∣WTX[j] = 1,Wj−1
TX

)
, (5)

and the corresponding expected FAP is written as

Pfa,k[j] = Pr
(
S
(TX,RXk)
ob,0 [j] ≥ ξRXk

∣∣∣WTX[j] = 0,Wj−1
TX

)
. (6)

Based on [23, Eq. 2.5], the cumulative distribution function
(CDF) of S(TX,RXk)

ob,0 [j] is given by

Pr
(
S
(TX,RXk)
ob,0 [j] < ξRXk

∣∣∣Wj
TX

)
= exp

(
−S̄(TX,RXk)

ob,0 [j]
)

×
ξRXk
−1∑

ω=0

S̄
(TX,RXk)
ob,0 [j]ω

ω!
. (7)

Using (7) and its complementary function, we can find the
closed-form expressions for Pmd,k[j] and Pfa,k[j].
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2) Global Error Probability: We consider the cooperative
MC system having a symmetric topology such that the RXs
have independent and identically distributed observations. Un-
der this consideration, we have Uz,k[j] = Uz[j]. Accordingly,
we assume that the decision thresholds at the RXs are the
same, i.e., ξRXk

= ξRX. Thus, we have Pmd,k[j] = Pmd[j] and
Pfa,k[j] = Pfa[j].

We first consider the N -out-of-K fusion rule. Using [18,
Eq. (3.4.30)] and [18, Eq. (3.4.31)] we evaluate Qmd[j] as

Qmd[j] = 1−
K∑

n=N

(
K

n

)
(1− Pmd[j])

n
Pmd[j]

K−n (8)

and evaluate Qfa[j] as

Qfa[j] =

K∑
n=N

(
K

n

)
Pfa[j]

n
(1− Pfa[j])

K−n
. (9)

For the OR rule, we obtain Qmd[j] and Qfa[j] by substituting
N = 1 into (8) and (9), leading to

Qmd[j] = Pmd[j]K (10)

and

Qfa[j] = 1− (1− Pfa[j])
K , (11)

respectively. For the AND rule, we obtain Qmd[j] and Qfa[j]
by substituting N = K into (8) and (9), resulting in

Qmd[j] = 1− (1− Pmd[j])K (12)

and

Qfa[j] = Pfa[j]
K , (13)

respectively.
We note that the single-RX MC system, which consists of

one TX, one RX, and one FC, is a special case of the coop-
erative MC system. Therefore, the expected error probability
of the single-RX MC system in the jth symbol interval for
a given transmitter sequence Wj−1

TX in the perfect reporting
scenario, Pe,1[j], can be obtained by setting K = 1 in (8) and
(9). Accordingly, the expected average error probability of the
single-RX MC system, P e,1, can be obtained by averaging
Pe,1[j] over all possible realizations of Wj−1

TX and across all
symbol intervals.

B. Noisy Reporting

In this subsection, we first examine the error performance
of the TX − RXk − FC link, based on the analysis in [22],
[28]. We then use the results of this examination to analyze
Qmd[j] and Qfa[j] in the noisy reporting scenario, enabling us
to obtain QFC[j].

1) TX − RXk − FC Link: We denote P
(RXk,FC)
ob,k (t) as the

probability of observing a given Ak molecule, emitted from
the RXk at t = 0, inside VFC at time t. Due to the relatively
close distance between the RXs and the FC, we find that (2)

or [3, Eq. (1)] cannot be used to evaluate P (RXk,FC)
ob,k (t). Thus,

we resort to [28, Eq. (27)] to evaluate P (RXk,FC)

ob,k (t) as

P
(RXk,FC)
ob,k (t) =

1

2
[erf (τ1) + erf (τ2)]

−
√
Dkt

dFCk

√
π

[
exp

(
−τ21

)
− exp

(
−τ22

)]
, (14)

where τ1 =
rFC+dFCk
2
√
Dkt

, τ2 =
rFC−dFCk
2
√
Dkt

, Dk is the diffusion

coefficient of type Ak molecules in m2

s , and dFCk
is the distance

between RXk and the FC in m.

We denote S(RXk,FC)
ob,k [j] as the number of molecules observed

within VFC in the jth symbol interval, due to the emissions of
molecules from the current and the previous symbol intervals
at RXk, Ŵ

j

RXk
. We note that the TX and RXk use the same

modulation method and the TX−RXk and RXk−FC links are
both diffusion-based. Therefore, S(RXk,FC)

ob,k [j] can be accurately
approximated by a Poisson RV. We denote S̄(RXk,FC)

ob,k [j] as the
mean of S(RXk,FC)

ob,k [j] and obtain it by replacing S0, WTX[i],
P

(TX,RXk)
ob,0 , MRX, m, and ∆tRX with Sk, ŴRXk

[i], P (RXk,FC)
ob,k , MFC,

m̃, and ∆tFC in (3), respectively. We define Vz̃,k [j], z̃ ∈ {0, 1},
as the conditional mean of S(RXk,FC)

ob,k [j] when the most recent
information symbol transmitted by RXk is ŴRXk

[j] = z̃, given
previous decisions at RXk, Ŵ

j−1
RXk

. Furthermore, we note that
ŴFCk [j] can be obtained by replacing S(TX,RXk)

ob,0 [j] and ξRXk
with

S
(RXk,FC)
ob,k [j] and ξFCk

in (4), respectively. We now derive the
expected MDP and FAP of the TX − RXk − FC link in the
jth symbol interval averaging over all possible realizations
of Ŵ

j−1
RXk

for given Wj−1
TX , denoted by P̃md,k[j] and P̃fa,k[j],

respectively. For a given Wj−1
TX , there are 2(j−1) different

possible realizations of Ŵ
j−1
RXk

. We define Wj as the set

containing all realizations of Ŵ
j−1
RXk

. Considering all possible

realizations of Ŵ
j−1
RXk

and their likelihood of occurrence, we
first derive P̃md,k[j] and P̃fa,k[j] as

P̃md,k[j] =
∑

Ŵj−1
RXk
∈Wj

[
Pr
(

Ŵ
j−1
RXk

∣∣∣Wj−1
TX

)
×
(

Pr
(
S
(TX,RXk)
ob,0 [j] ≥ ξRX

∣∣∣WTX[j] = 1,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] < ξFCk

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
+ Pr

(
S
(TX,RXk)
ob,0 [j] < ξRX

∣∣∣WTX[j] = 1,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] < ξFCk

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

))]
(15)
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and

P̃fa,k[j] =
∑

Ŵj−1
RXk
∈Wj

[
Pr
(

Ŵ
j−1
RXk

∣∣∣Wj−1
TX

)
×
(

Pr
(
S
(TX,RXk)
ob,0 [j] ≥ ξRX

∣∣∣WTX[j] = 0,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] ≥ ξFCk

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
+ Pr

(
S
(TX,RXk)
ob,0 [j] < ξRX

∣∣∣WTX[j] = 0,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] ≥ ξFCk

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

))]
,

(16)

respectively. Considering that the cooperative MC system hav-
ing a symmetric topology, each RXk has independent and iden-
tically distributed (i.i.d.) observations over each TX−RXk −
FC link. Under this consideration, we have Vz̃,k[j] = Vz̃[j].
Accordingly, we assume that the decision thresholds at the FC
over RXs-FC links are the same, i.e., ξFCk

= ξFC. Thus, in (15)
and (16), the likelihood of occurrence of each realization of
Ŵ
j−1
RXk

is the same for each RXk. Also, the conditional MDP
and FAP for the given realization is the same for each RXk.
This indicates that P̃md,k[j] and P̃fa,k[j] are the same for all
RXs, i.e., P̃md,k[j] = P̃md[j] and P̃fa,k[j] = P̃fa[j]. We note
that the high complexity caused by considering 2(j−1) possible
realizations of Ŵ

j−1
RXk

and their likelihood of occurrence make
the evaluation of (15) and (16) cumbersome. To facilitate the
calculation of (15) and (16), we consider only one possible
realization of Ŵ

j−1
RXk

and refer to this considered realization as

the candidate. By only considering the candidate of Ŵ
j−1
RXk

, we
then approximate (15) and (16) as

P̃md[j] ≈ Pr
(
S
(TX,RXk)
ob,0 [j] ≥ ξRX

∣∣∣WTX[j] = 1,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] < ξFC

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
+ Pr

(
S
(TX,RXk)
ob,0 [j] < ξRX

∣∣∣WTX[j] = 1,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] < ξFC

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

)
(17)

and

P̃fa[j] ≈ Pr
(
S
(TX,RXk)
ob,0 [j] ≥ ξRX

∣∣∣WTX[j] = 0,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] ≥ ξFC

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
+ Pr

(
S
(TX,RXk)
ob,0 [j] < ξRX

∣∣∣WTX[j] = 0,Wj−1
TX

)
× Pr

(
S
(RXk,FC)
ob,k [j] ≥ ξFC

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

)
, (18)

where the candidate of Ŵ
j−1
RXk

can be obtained using a bi-
ased coin toss method. Particularly, we model the ith de-
cision at RXk, ŴRXk

[i], as ŴRXk
[i] = |λ − WTX[i]|, where

i ∈ {1, · · · , j − 1} and λ ∈ {0, 1} is the outcome of the
coin toss with Pr(λ = 1) = Pmd,k[i] if WTX[i] = 1 and
Pr(λ = 1) = Pfa,k[i] if WTX[i] = 0. We assume that the
candidate of Ŵ

j−1
RXk

in (17) and (18) is the same at all RXs
to ensure that P̃md,k[j] = P̃md[j] and P̃fa,k[j] = P̃fa[j] are still
valid after adopting the approximations of P̃md[j]and P̃fa[j]
in (17) and (18), respectively. We clarify that the candidate

is only considered for the theoretical evaluation of system
error performance, i.e., the calculation of (17) and (18). We
emphasize that we do not consider the same realizations of
Ŵ
j−1
RXk

at all RXs in our system model. Furthermore, in our
simulations, each RX makes decisions independently and the
realizations of Ŵ

j−1
RXk

at all RXs are not necessarily identical.
Our simulation results in Section V demonstrate the accuracy
of (17) and (18).

In addition, the CDF of S(RXk,FC)
ob,k [j] is obtained by replacing

S
(TX,RXk)
ob,0 [j], ξRXk

, Wj
TX and S̄

(TX,RXk)
ob,0 [j] with S

(RXk,FC)
ob,k [j], ξFC,

Wj
RXk

, S̄(RXk,FC)
ob,k [j] in (7), respectively. Using the CDFs of

S
(TX,RXk)
ob,0 [j] and S(RXk,FC)

ob,k [j] and their complementary functions,
we can find the closed-form expressions for P̃md,k[j] and
P̃fa,k[j].

2) Global Error Probability: In the noisy reporting sce-
nario, we obtain Qmd[j] and Qfa[j] for the N -out-of-K rule,
OR rule, and AND rule by replacing Pmd[j] and Pfa[j] with
P̃md[j] and P̃fa[j], respectively, in (8)–(13). We also note that
the expected error probability of the single-RX MC system in
the jth symbol interval for a given transmitter sequence Wj−1

TX

in the noisy reporting scenario can be obtained by setting
K = 1.

We note that the expected error probabilities of the cooper-
ative MC system are also tractable if weighted sum detectors
with different weights are considered at the RXs and FC for
detection. Under this consideration, the mth sample at RXk or
FC in the jth symbol interval can be accurately approximated
by a Poisson RV. Although the weighted sums of Poisson RVs,
S
(TX,RXk)
ob,0 [j] and S(RXk,FC)

ob,k [j], are not Poisson RVs, the weighted
sums of Gaussian approximations of the individual variables
are Gaussian RVs. Thus, we can write the CDF of the Gaussian
RVs and complementary functions to derive Pmd,k[j], Pfa,k[j],
P̃md,k[j], and P̃fa,k[j]. Then we can derive the global error
probabilities using (8)–(13) for the cooperative MC system in
the perfect and noisy reporting scenarios.

IV. ERROR PERFORMANCE OPTIMIZATION

In this section, we present a novel analysis to determine
the joint optimal ξRX and ξFC that minimize the global error
probability of the cooperative MC system. To this end, we
first derive the convex upper bounds on QFC[j] for the OR rule,
AND rule, and N -out-of-K rule6 in the perfect and noisy re-
porting scenarios, allowing us to formulate the corresponding
convex optimization problems for given Wj−1

TX . We then extend
the formulated convex optimization problems for given Wj−1

TX

to the convex optimization problems for the average error
performance over all possible realizations of Wj−1

TX and across
all symbol intervals. This extension is due to two reasons.
First, optimizing the instantaneous error performance for given
Wj−1

TX may not be feasible in practice. This optimization man-
dates the precise knowledge of Wj−1

TX at RXk, which cannot
be realized in practice. Second, the repeated optimization of

6We clarify that the convex upper bounds for the OR rule, AND rule, and
N -out-of-K rule are derived separately. This is due to the fact that the derived
convex upper bounds for the N -out-of-K rule with N = 1 and N = K are
not as tight as those derived for the OR rule and AND rule, respectively.
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the detection threshold for each realization of Wj−1
TX would

demand a high computational overhead for RXk.

A. Perfect Reporting

In this subsection, we formulate the convex optimization
problems with respect to ξRX for the OR rule, AND rule, and
N -out-of-K rule in the perfect reporting scenario. To achieve
this, we first analyze the convexity of Pmd[j]K and Pfa[j]

K

with respect to ξRX. Since S
(TX,RX)
ob,0 [j] is a Poisson RV with

a discrete distribution, its convexity analysis with respect to
ξRX is cumbersome. To overcome this cumbersomeness, we
approximate the CDF of a Poisson RV X with mean λ by the
CDF of a continuous Gaussian RV. We find that the accuracy
of this approximation becomes higher when λ increases. Thus,
the tightness of the approximation can be ensured by any
method achieving large λ, such as increasing the number of
molecules released, increasing the volume (radius) of RXs and
FC, and choosing the optimal sampling period. Including a
continuity correction, the CDF of the Gaussian RV is given
by

Pr (X < x) =
1

2
[1 + Λ (x, λ)] , (19)

where Λ (x, λ) = erf
(

(x− 0.5− λ)/
√

2λ
)

. Applying (19)
into (5) and (6), Pmd[j] and Pmd[j] are approximated as

Pmd[j] ≈ 1

2
[1 + Λ (ξRX, U1[j])] (20)

and

Pfa[j] ≈ 1− 1

2
[1 + Λ (ξRX, U0[j])] , (21)

respectively. We now present the constraints making Pmd[j]K

and Pfa[j]
K convex in the following theorem.

Theorem 1: Pmd[j]K and Pfa[j]
K are convex with respect

to ξRX, if we impose the following convex constraints:

−0.5− U1[j] + ξRX ≤ 0 (22)

and

0.5 + U0[j]− ξRX ≤ 0, (23)

respectively.
Proof: The convexity of Pmd[j]K can be proven by

showing that its second derivative with respect to ξRX is
nonnegative [29]. We derive the second derivative of Pmd[j]K

as

∂2Pmd[j]K

∂ξRX
2 =

1

2K

(
2(−1 +K)K

π
Ξ (−2 +K, 2, 1)

+

√
2

π
K (0.5 + U1[j]− ξRX) Ξ

(
−1 +K, 1,

3

2

))
, (24)

where

Ξ (α, β, γ) =
(1 + Λ (ξRX, U1[j]))

α
Θ (ξRX, U1[j])

β

U1[j]γ
(25)

and Θ (x, λ) , exp
(
− (0.5 + λ− x)

2
/2λ
)
. Due to the

fact that the value of Λ (x, λ) is between −1 and 1 and the
value of Θ (x, λ) is always greater than zero, (24) is always

nonnegative if we impose the constraint (22). Following a
similar procedure, we prove that Pfa[j]

K is also convex with
respect to ξRX, if we impose the constraint (23).

We now analyze the convexity of Qfa[j] and Qmd[j] for the
three rules. For the OR rule, an upper bound on Qfa[j] is given
by

Qfa[j] ≤ KPfa[j], (26)

which is obtained by applying the first degree Taylor series
approximation of 1− (1−Pfa[j])

K into (11) at Pfa[j] = 0. We
find that this upper bound is tight when Pfa[j] is small. We
note that Pfa[j] is convex with respect to ξRX, if we impose the
constraint (23), which can be proven by considering K = 1
in Theorem 1. Thus, the upper bound in (26) is also convex
with respect to ξRX under the same constraint, since it scales
a convex function with a nonnegative constant. Also based on
Theorem 1, Qmd[j] for the OR rule, Pmd[j]K , is convex with
respect to ξRX, if we impose the constraint (22). Therefore, the
convex optimization problem for the cooperative MC system
with the OR rule in the perfect reporting scenario is formulated
as

min
ξRX

P1Pmd[j]K + (1− P1)KPfa[j]

s.t. (22) and (23).
(27)

Due to the convexity of the objective function and the
constraints, (27) can be quickly solved by efficient algorithms,
e.g., the interior-point method [29]. Throughout this paper, we
refer to the optimal threshold, i.e., the threshold in the feasible
set that minimizes the objective function, as the solution to the
convex optimization problem, where the feasible set is the set
containing all of the thresholds that satisfy all constraints.

Next, we focus on the AND rule. Using a similar method
as in (26), Qmd[j] is upper-bounded by

Qmd[j] ≤ KPmd[j]. (28)

We note that Pmd[j] is convex with respect to ξRX under
the constraint (22), which can be proven by considering K =
1 in Theorem 1. Thus, (28) is also convex with respect to
ξRX under the same constraint. Based on Theorem 1, Qfa[j]
for the AND rule, Pfa[j]

K , is convex respect to ξRX, if we
impose the constraint (23). Therefore, the convex optimization
problem for the cooperative MC system with the AND rule in
the perfect reporting scenario can be formulated as

min
ξRX

P1KPmd[j] + (1− P1)Pfa[j]
K

s.t. (22) and (23).
(29)

Finally, we consider the N -out-of-K rule. We rewrite (8)
as

Qmd[j] =

K∑
ñ=K−N+1

(
K

ñ

)
Pmd[j]

ñ
(1− Pmd[j])

K−ñ
. (30)

Based on (30) and (9), we verify that

Qmd[j] ≤
K∑

ñ=K−N+1

(
K

ñ

)
Pmd[j]

ñ , Q+
md[j] (31)
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and

Qfa[j] ≤
K∑

n=N

(
K

n

)
Pfa[j]

n , Q+
fa [j]. (32)

In Theorem 1, we showed that Pmd[j]K and Pfa[j]
K are

convex with respect to ξRX, if we impose the convex constraints
(22) and (23), respectively. We note that Pmd[j]ñ and Pfa[j]

n,
where ñ ∈ {K−N+1, . . .,K} and n ∈ {N, . . .,K}, are also
convex with respect to ξRX, if we impose the convex constraints
(22) and (23), respectively. The convexity of Pmd[j]ñ and
Pfa[j]

n with respect to ξRX can be proven by replacing K with
ñ and n in the proof to Theorem 1, respectively. Since (31) and
(32) are nonnegative weighted sums of convex functions, i.e.,
Pmd[j]

ñ and Pfa[j]
n, they are also convex with respect to ξRX

under the same constraints. Therefore, the convex optimization
problem for the cooperative MC system with the N -out-of-K
rule in the perfect reporting scenario is formulated as

min
ξRX

P1Q
+
md[j] + (1− P1)Q+

fa [j]

s.t. (22) and (23).
(33)

We note that the convex optimization problem for the single-
RX system in the perfect reporting scenario is a special case
of problems (27), (29), and (33), with K = 1.

B. Noisy Reporting

In this subsection, we first extend the formulated convex
optimization problems from the perfect reporting scenario to
the noisy reporting scenario, assuming that ξFC is fixed. We
then formulate the joint convex optimization problems with
respect to both ξRX and ξFC for the OR rule, AND rule, and
N -out-of-K rule.

1) Optimal ξRX: We first analyze the convexity of P̃md[j]K

and P̃fa[j]
K with respect to ξRX. To facilitate the convexity

analysis of P̃md[j]K and P̃fa[j]
K with respect to ξRX, we

approximate (17) and (18) using (19), which result in

P̃md[j] ≈ 1

4
[2 + (1 + Λ (ξRX, U1[j])) Λ (ξFC, V0[j])

+ (1− Λ (ξRX, U1[j])) Λ (ξFC, V1[j])] (34)

and

P̃fa[j] ≈
1

4
[2− (1 + Λ (ξRX, U0[j])) Λ (ξFC, V0[j])

+ (−1 + Λ (ξRX, U0[j])) Λ (ξFC, V1[j])] , (35)

respectively. Recall that Vz̃,k[j], z̃ ∈ {0, 1}, denotes the con-
ditional mean of S(RXk,FC)

ob,k [j] when the most recent information
symbol transmitted by the RXk is z̃. We find that Vz̃[j]
depends on Ŵ

j−1
RXk

and Ŵ
j−1
RXk

depends on ξRX. Thus, Vz̃[j]
depends on ξRX, which complicates the convexity analysis
of P̃md[j]K and P̃fa[j]

K with respect to ξRX. To avoid this
complication, we consider a constant Vz̃[j] in the jth symbol
interval, denoted by V z̃[j], which is averaged over all the

realizations of Ŵ
j−1
RXk

, to approximate Vz̃[j] in (34) and (35)7.
By doing so, we obtain V z̃[j] as

V z̃[j] =
1

|ωj |
∑

Ŵj−1
RXk
∈ωj

Vz̃[j], (36)

where ωj is the set containing all realizations of Ŵ
j−1
RXk

and
|ωj | denotes the cardinality of ωj . Using V z̃[j], we further
approximate P̃md[j] and P̃fa[j] as 8

P̃md[j] ≈ 1

4

[
2 + (1 + Λ (ξRX, U1[j])) Λ

(
ξFC, V 0[j]

)
+ (1− Λ (ξRX, U1[j])) Λ

(
ξFC, V 1[j]

)]
(37)

and

P̃fa[j] ≈
1

4

[
2− (1 + Λ (ξRX, U0[j])) Λ

(
ξFC, V 0[j]

)
+ (−1 + Λ (ξRX, U0[j])) Λ

(
ξFC, V 1[j]

)]
, (38)

respectively. We now present the conditions making P̃md[j]K

and P̃fa[j]
K convex in the following theorem.

Theorem 2: P̃md[j]K and P̃fa[j]
K are convex with respect

to ξRX when ξFC is fixed, if we impose the convex constraints
(22) and (23), respectively.

Proof: We derive the second derivative of P̃md[j]K as

∂2P̃md[j]K

∂ξRX
2 = (−0.5− U1[j] + ξRX) Υ (K − 1, 1, 3/2)

+ (K − 1)Υ (K − 2, 2, 1) (39)

where

Υ (α, β, γ) =

[
(1 + Λ (ξRX, U1[j]))

(
1 + Λ

(
ξFC, V 0[j]

))
+ (1− Λ (ξRX, U1[j]))

(
1 + Λ

(
ξFC, V 1[j]

))]α
×
(
Λ
(
ξFC, V 1[j]

)
− Λ

(
ξFC, V 0[j]

))β
× KΘ (ξRX, U1[j])

β

U1[j]γ4α(2
√

2π)β
. (40)

We next examine the monotonicity of Λ (ξFC, V ) with re-
spect to V , V ∈ {V 1,k[j], V 0,k[j]}. We derive the first
derivative of Λ (ξFC, λ) with respect to λ as

∂Λ (ξFC, λ)

∂λ
=

2Θ (ξFC, λ) (−ξFC + 0.5− λ)

2
√

2πλ
3
2

. (41)

Since Θ (ξFC, λ) > 0 and (−ξFC + 0.5− λ) < 0, we find that
Λ (ξFC, λ) is a monotonically decreasing function with respect
to λ. Therefore, we have

(
Λ
(
ξFC, V 1[j]

)
− Λ

(
ξFC, V 0[j]

))
≤

7We note that the occurrence likelihood of each realization of Ŵj−1
RXk

may
not be the same in practice, since it depends on the value of ξRX. For example,
when ξRX is very high, Ŵj−1

RXk
would be all “0”s, while when ξRX is very

small, Ŵj−1
RXk

would be all “1”s. In this paper, we assume an equal occurrence
likelihood to keep a low evaluation complexity, but this does not have a
significant impact on the analytical results.

8We clarify that we approximate Vz̃ [j] by V z̃ [j] in (34) and (35) to
obtain (37) and (38) for the convexity analysis. This approximation is not
for deriving the expected MDP and FAP of each TX − RXk − FC link in
the jth symbol interval, i.e., P̃md,k[j] and P̃fa,k[j], since (34) and (35) are
already the approximations of P̃md,k[j] and P̃fa,k[j], respectively.
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0. It follows that (39) is always nonnegative if we impose the
constraint (22), and thus P̃md[j]K is convex with respect to
ξRX. Similarly, we prove that P̃fa[j]

K is convex with respect to
ξRX, if we impose the convex constraint (23).

Similar to (26) and (28), we upper-bound Qfa[j] for the OR
rule and Qmd[j] for the AND rule as

Qfa[j] ≤ KP̃fa[j] (42)

and

Qmd[j] ≤ KP̃md[j], (43)

respectively. We note that P̃fa[j] and P̃md[j] are convex with
respect to ξRX, if we impose the constraints (22) and (23),
respectively, which can be proven by considering K = 1 in
Theorem 2. Since (42) and (43) scale a convex function with
a nonnegative constant, they are also convex with respect to
ξRX under the same constraints. Next, we focus on Qmd[j] for
the OR rule and Qfa[j] for the AND rule. Based on Theorem
2, we note that P̃md[j]K and P̃fa[j]

K are convex with respect
to ξRX when ξFC is fixed, if we impose the convex constraints
(22) and (23), respectively. Then, we focus on the N -out-of-K
rule. We note that P̃md[j]ñ and P̃fa[j]

n are convex with respect
to ξRX when ξFC is fixed, if we impose the convex constraints
(22) and (23), respectively, which can be proven by replacing
K with ñ and n in Theorem 2, respectively. For the N -out-
of-K rule, using a similar method to (30)–(32), we can derive
the upper bounds on Qmd[j] and Qfa[j] that are convex with
respect to ξRX, given that P̃md[j]ñ and P̃fa[j]

n are convex with
respect to ξRX.

In the noisy reporting scenario, we formulate the convex
optimization problems with respect to ξRX given fixed ξFC for
the OR rule, AND rule, and N -out-of-K rule by replacing
Pmd[j] and Pfa[j] with P̃md[j] and P̃fa[j], respectively, in
(27), (29), and (33). We note that the convex optimization
problem with respect to ξRXk

for the single-RX system in the
noisy reporting scenario is a special case of the corresponding
problem for a cooperative MC system with K = 1.

2) Joint Optimal ξRX and ξFC: We first analyze the joint
convexity of P̃md[j]K and P̃fa[j]

K with respect to ξRX and
ξFC. To facilitate the joint convexity analysis of P̃md[j]K and
P̃fa[j]

K with respect to both ξRX and ξFC, we consider the
approximations given by

Pr
(
S
(RXk,FC)
ob,k [j] < ξFC

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

)
≈ 1 (44)

and

Pr
(
S
(RXk,FC)
ob,k [j] ≥ ξFC

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
≈ 1, (45)

which are tight when the error probability of the RXk − FC
link is low. We emphasize that we still keep

Pr
(
S
(RXk,FC)
ob,k [j] < ξFC

∣∣∣ŴRXk
[j] = 1, Ŵ

j−1
RXk

)
(46)

and

Pr
(
S
(RXk,FC)
ob,k [j] ≥ ξFC

∣∣∣ŴRXk
[j] = 0, Ŵ

j−1
RXk

)
(47)

in (37) and (38), respectively. Employing (44) and (45) into
(37) and (38), respectively, we further upper-bound P̃md[j] and
P̃fa[j] as

P̃mdb[j] =
1

4
[3 + Λ (ξRX, U1[j])

+ (1− Λ (ξRX, U1[j])) Λ
(
ξFC, V 1[j]

)]
(48)

and

P̃fab[j] =
1

4

[
3− Λ

(
ξFC, V 0[j]

)
−
(
1 + Λ

(
ξFC, V 0[j]

))
Λ (ξRX, U0[j])

]
, (49)

respectively, where P̃mdb[j] and P̃fab[j] are the upper bounds on
P̃md[j] and P̃fa[j], respectively. We now present the constraints
making P̃mdb[j]K and P̃fab[j]K convex in the following two
theorems.

Theorem 3: P̃mdb[j]K is jointly convex with respect to ξRX

and ξFC, if we impose the convex constraints (22), and the
following constraints:

−0.5− V 1[j] + ξFC ≤ 0, (50)

Φ
(
ξRX, ξ

+
FC ,K

)
≤ 0, and Φ

(
ξ+RX, ξFC,K

)
≤ 0, (51)

where ξ−RX and ξ+RX are bounds on ξRX, and ξ−FC and ξ+FC are bounds
on ξFC, and Φ (µ, ν,K) is given in (52) at the top of page 10.

Theorem 4: P̃fab[j]K is jointly convex with respect to ξRX and
ξFC, if we impose the convex constraints (23) and the following
constraints:

0.5 + V 0[j]− ξFC ≤ 0, (53)

Ψ
(
ξRX, ξ

−
FC ,K

)
≤ 0, and Ψ

(
ξ−RX, ξFC,K

)
≤ 0, (54)

where Ψ (µ, ν,K) is given in (55) at the top of page 10.
Proof: The proof of Theorem 3 and Theorem 4 is given

in the Appendix.
Similar to (26) and (28), we upper-bound Qfa[j] for the OR

rule and Qmd[j] for the AND rule as

Qfa[j] ≤ KP̃fab[j] (56)

and

Qmd[j] ≤ KP̃mdb[j], (57)

respectively. We note that P̃fab[j] is convex with respect
to ξRX and ξFC, if we impose the constraints (23), (53),
Ψ (ξRX, ξ

−
FC , 1) ≤ 0, and Ψ (ξ−RX, ξFC, 1) ≤ 0, which can be

proven by considering K = 1 in Theorem 4. We also note
that P̃mdb[j] is convex with respect to ξRX and ξFC, if we
impose the constraints (22), (50), Φ (ξRX, ξ

+
FC , 1) ≤ 0, and

Φ (ξ+RX, ξFC, 1) ≤ 0, which can be proven by considering K = 1
in Theorem 3. Since (56) and (57) scale a convex function
with a nonnegative constant, they are also convex with respect
to ξRX and ξFC under the same constraints. We then focus on
the joint convexity analysis of Qmd[j] for the OR rule and
Qfa[j] for the AND rule. Based on Theorem 3 and Theorem
4, we note that P̃mdb[j]K and P̃fab[j]K are jointly convex with
respect to ξRX and ξFC, respectively. For the N -out-of-K rule,
we note that P̃mdb[j]ñ is jointly convex with respect to ξRX



SUBMITTED TO IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS 10

Φ (µ, ν,K) = 4Θ
(
ξ+RX, U1[j]

) (
−4 +K +KΛ

(
ξ−FC , V 1[j]

)
+KΛ

(
ξ−RX, U1[j]

) (
1 + Λ

(
ξ−FC , V 1[j]

)))2 − (1 + Λ (ξ−RX, U1[j]))√
U1[j]V 1[j]

×
(
1 + Λ

(
ξ−FC , V 1[j]

)) (
2 (−1 +K)

√
V 1[j]

(
1 + Λ

(
ξ+RX, U1[j]

))
−

√
2π

Θ
(
ξ+FC , V 1[j]

) (0.5 + V 1[j]− ν
)

×
(
−3 + Λ

(
ξ+FC , V 1[j]

)
+ Λ

(
ξ+RX, U1[j]

) (
1 + Λ

(
ξ+FC , V 1[j]

))))(
Θ
(
ξ+RX, U1[j]

) (
1 + Λ

(
ξ−FC , V 1[j]

))
× (−1 +K) 2

√
U1[j]−

√
2π (0.5 + U1[j]− µ)

(
−3 + Λ

(
ξ+FC , V 1[j]

)
+ Λ

(
ξ+RX, U1[j]

) (
1 + Λ

(
ξ+FC , V 1[j]

))))
(52)

Ψ (µ, ν,K) = 4Θ
(
ξ−RX, U0[j]

) (
−4 +K −KΛ

(
ξ+FC , V 0[j]

)
+KΛ

(
ξ+RX, U0[j]

) (
−1 + Λ

(
ξ+FC , V 0[j]

)))2 − (1− Λ (ξ+RX, U0[j]))√
U0[j]V 0[j]

×
(
−1 + Λ

(
ξ−FC , V 0[j]

)) (
−2 (−1 +K)

√
V 0[j]

(
−1 + Λ

(
ξ−RX, U0[j]

))
+

√
2π

Θ
(
ξ−FC , V 0[j]

) (0.5 + V 0[j]− ν
)

×
(
−3− Λ

(
ξ+FC , V 0[j]

)
+ Λ

(
ξ−RX, U0[j]

) (
−1 + Λ

(
ξ−FC , V 0[j]

))))(
Θ
(
ξ−RX, U0[j]

) (
−1 + Λ

(
ξ−FC , V 0[j]

))
× (−1 +K) 2

√
U0[j]−

√
2π (0.5 + U0[j]− µ)

(
−3− Λ

(
ξ−FC , V 0[j]

)
+ Λ

(
ξ−RX, U0[j]

) (
−1 + Λ

(
ξ+FC , V 0[j]

))))
(55)

and ξFC under the constraints (22), (50), Φ (ξRX, ξ
+
FC , ñ) ≤ 0,

and Φ (ξ+RX, ξFC, ñ) ≤ 0, which can be proven by replacing K
with ñ in Theorem 3. We also note that P̃fab[j]n is jointly
convex with respect to ξRX and ξFC under the constraints (23),
(53), Ψ (ξRX, ξ

−
FC , n) ≤ 0, and Ψ (ξ−RX, ξFC, n) ≤ 0, which can

be proven by replacing K with n in Theorem 4. Given that
P̃mdb[j]n and P̃fab[j]n are jointly convex with respect to ξRX

and ξFC and applying a similar method to (30)–(32), we can
derive the upper bounds on Qmd[j] and Qfa[j] which are jointly
convex with respect to ξRX and ξFC.

In the noisy reporting scenario, we formulate the convex
optimization problems with respect to ξRX and ξFC for the OR
rule, AND rule, and N -out-of-K rule as

min
ξRX, ξFC

P1P̃mdb[j]K +
(

1− P̃1

)
KPfab[j]

s.t. (22), (23), (50)− (53),

Ψ
(
ξRX, ξ

−
FC , 1

)
≤ 0, and Ψ

(
ξ−RX, ξFC, 1

)
≤ 0,

(58)

min
ξRX, ξFC

P1KP̃mdb[j] + (1− P1) P̃fab[j]K

s.t. (22), (23), (50), (53), (54),

Φ
(
ξ+RX, ξFC, 1

)
≤ 0, and Φ

(
ξRX, ξ

+
FC , 1

)
≤ 0,

(59)

and

min
ξRX, ξFC

P1Q̃
+
md[j] + (1− P1)Q̃+

fa [j]

s.t. (22), (23), (50), (53),

Φ
(
ξ+RX, ξFC, ñ

)
≤ 0, Φ

(
ξRX, ξ

+
FC , ñ

)
≤ 0,

Ψ
(
ξRX, ξ

−
FC , n

)
≤ 0, and Ψ

(
ξ−RX, ξFC, n

)
≤ 0,

(60)

respectively, where Q̃+
md[j] ,

∑K
ñ=K−N+1

(
K
ñ

)
P̃mdb[j]

ñ

and Q̃+
fa [j] ,

∑K
n=N

(
K
n

)
P̃fab[j]

n
. We emphasize that

the constraints Φ (ξ+RX, ξFC, ñ) ≤ 0, Φ (ξRX, ξ
+
FC , ñ) ≤ 0,

Ψ (ξRX, ξ
−
FC , n) ≤ 0, Ψ (ξ−RX, ξFC, n) ≤ 0 for each ñ and n

are applied in (60), where ñ ∈ {K − N + 1, . . .,K} and
n ∈ {N, . . .,K}, to ensure the convexity of Q̃+

md[j] and Q̃+
fa [j].

We note that the jointly convex optimization problem for the
single-RX system in the noisy reporting scenario is a special
case of problems (58), (59), and (60), with K = 1.

C. Average Error Performance Optimization

We emphasize that the solutions to the formulated optimiza-
tion problems in Sections IV-A and IV-B are the instanta-
neous suboptimal thresholds which minimize the instantaneous
system error performance for given Wj−1

TX . As previously ex-
plained, it may not be realistic for the RXs and FC to calculate
the instantaneous suboptimal thresholds and such calculation
incurs significant computational overhead. Therefore, in this
subsection we aim to obtain a single suboptimal threshold
which optimizes the average system error performance over all
possible realizations of Wj−1

TX and across all symbol intervals.
If we aim to optimize QFC for the OR rule in the perfect

reporting scenario, based on (27), then we formulate the
problem as

minimize
ξRX

1

L

L∑
j=1

 1

|ωj |
∑
ωj

Pmd[j]K +KPfa[j]


s.t. all constraints for all considered realizations

of Wj−1
TX in ωj for each symbol interval.

(61)
The empirical average error performance of the system

is optimized in (61), since we assume that the occurrence
likelihoods of the realizations of Wj−1

TX are equal. Using a
formulation similar to (61), we can extend all convex optimiza-
tion problems for optimizing the instantaneous system error
performance to those for optimizing the average system error
performance. Also, since all the derived inequality constraint
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functions are affine, the constraints define the lower limits and
upper limits on ξRX and/or ξFC. We clarify that it is reasonable
to only consider the minimum upper limit and the maximum
lower limit on ξRX and/or ξFC among all the upper and lower
limits.

V. NUMERICAL RESULTS AND SIMULATIONS

In this section, we present numerical and simulation results
to examine the error performance of the cooperative MC sys-
tem. The simulation results are generated by a particle-based
stochastic simulator, where we track the precise locations of
all individual molecules over discrete time steps. We clarify
that all the approximations in Sections III and IV are only
considered for facilitating our theoretical analysis, i.e., the
theoretical evaluation and optimization of error performance.
We do not adopt these approximations in our simulations.
In our simulations, we consider a cooperative system as
described in Section II. In this section, we also demonstrate
the effectiveness of the solutions to our formulated convex
optimization problems, referred to as suboptimal solutions,
by comparing them with the actual optimal solutions that
minimize the expected average error probability of the system.
We use the fmincon solver in MATLAB with the interior-point
algorithm to obtain the suboptimal solutions. We clarify that
the actual optimal solutions are obtained via the exhaustive
search of the numerical results of the expected average error
probability. Such solutions do not require the information of
Wj−1

TX . We denote ξ◦RX and ξ◦FC as suboptimal solutions and
denote ξ∗RX and ξ∗FC as actual optimal solutions. We refer to the
minimum upper bounds achieved by ξ◦RX and ξ◦FC as suboptimal
error probabilities. We refer to the expected error probability
achieved by ξ◦RX and ξ◦FC as the approximated error probabilities.

We list all the fixed environmental parameters adopted in
this section in Table I. The varying parameters adopted in this
section are the decision threshold at RXs, ξRX, the decision
threshold at the FC, ξFC, the number of RXs, K, the radius of
RXk, rRXk

, and the radius of the FC, rFC. In particular, rRXk

is set as 0.225µm in all the figures except for Fig. 3 and
rFC is fixed at 0.2µm in all the figures except for Fig. 6. In
Fig. 3, we set rRXk

as 0.2µm. In the following, we assume
that the TX releases S0 = 8000 molecules for information
symbol “1” and the total number of molecules released by all
RXs for symbol “1” is fixed at 2000, i.e., each RX releases
Sk = 2000/K molecules to report its decision of symbol “1”.
The locations of the TX, RXs, and FC are listed in Table II. For
each realization of Wj−1

TX , we set ξ−RX = U0[j]+1, ξ+RX = U1[j],
ξ−FC = V 0[j] + 1, and ξ+FC = V 1[j], since the initial convex
feasible sets of ξRX and ξFC are 0.5+U0[j] ≤ ξRX ≤ 0.5+U1[j]
and 0.5 + V 0[j] ≤ ξFC ≤ 0.5 + V 1[j], respectively.

Throughout this section, QFC are calculated by averaging
Pe,k[j] and QFC[j], respectively, over all considered realizations
of Wj−1

TX and across all symbol intervals. Here, we consider
all possible realizations of Wj−1

TX except for the realization
of all “0” bits, i.e., when the MDP is zero and there is no
optimal threshold. Since we consider the length of the symbol
sequence from the TX is 10 bits, we consider 1023 different
symbol sequences in total. The simulated error probabilities

TABLE I
FIXED ENVIRONMENTAL PARAMETERS USED IN SECTION V

Parameter Symbol Value

Radius of RXs rRXk
{0.225µm, 0.2µm}

Radius of FC rFC 0.2µm
Time step at RXs ∆tRX 100µs
Time step at FC ∆tFC 30µs

Number of samples of RXs MRX 5
Number of samples of FC MFC 5
Transmission time interval ttrans 1 ms

Report time interval treport 0.3 ms
Bit interval time T 1.3 ms

Diffusion coefficient D0 = Dk 5× 10−9m2/s
Length of symbol sequence L 10

Probability of binary 1 P1 0.5

TABLE II
LOCATIONS OF TX, RXS, AND FC

Devices X-axis [µm] Y-axis [µm] Z-axis [µm]

TX 0 0 0

RX1 2 0.6 0

RX2 2 −0.6 0

RX3 2 −0.3 0.5196

RX4 2 −0.3 −0.519

RX5 2 0.3 0.5196

RX6 2 0.3 −0.5196

FC 2 0 0

are averaged over at least 5 × 104 independent transmissions
of the considered symbol sequences. In Figs. 2–4, we plot the
simulation for the expected error probabilities, while in Fig. 6,
we plot the simulation for the approximated error probabilities.
Moreover, we clarify that ξ◦RX and ξ◦FC for the expected average
error probabilities are obtained using the optimization method
in Section IV-C only once for all considered realizations
of Wj−1

TX and across all symbol intervals, unless otherwise
noted. In other words, suboptimal solutions do not require the
information of Wj−1

TX , unless otherwise noted. Furthermore, we
clarify that the noninteger optimization solutions are rounded
to integers in Figs. 3, 5, and 6. Specifically, the most two
nearest integers around the solution are compared and the one
achieving the lower error probability is chosen.

A. Perfect Reporting

In this subsection we consider the perfect reporting scenario.
In Fig. 2, we consider a three-RX cooperative system and
plot the average global error probability versus the decision
threshold at the RXs for the OR rule, AND rule, and majority
rule. The expected curves for the three rules are obtained from
(8)–(13) with (5) and (6). The Gaussian approximation curves
for the three rules are obtained from (8)–(13) with (20) and
(21). The upper bound curves for the OR rule, AND rule,
and majority rule are obtained from (10) and (26), (13) and
(28), and (31) and (32), respectively, with (20) and (21). The
value of ξ◦RX for the OR rule, AND rule, and majority rule
is obtained by solving (27), (29), and (33), respectively, with
(20) and (21).

In Fig. 2, we first observe that the simulated points accu-
rately match the expected curves, validating our analysis of
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Fig. 2. Average global error probability QFC of different fusion rules versus
the decision threshold at RXs ξRX with K=3 in the perfect reporting scenario.
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Fig. 3. Optimal average global error probability Q∗
FC of different fusion rules

versus the number of cooperative RXs K in the perfect reporting scenario.

the expected results. Second, we observe that ξ◦RX is almost
identical to ξ∗RX for each fusion rule, confirming the accuracy of
ξ◦RX. Third, we observe that the Gaussian approximation curves
well approximate the expected curves. Fourth, we observe
that the convex upper bound curve for the OR rule is lower
than its expected curve. This can be explained as follows: In
the single-RX system, the Gaussian approximations give an
upper bound on Pmd[j] and a lower bound on Pfa[j]. For the
OR rule, Qmd[j] is the product of Pmd[j] and Qfa[j] is the
sum of Pfa[j]. Since the Gaussian approximation of Qmd[j]
is tighter than that of Qfa[j], the Gaussian approximation of
the global error probability for the OR rule is lower than the
expected curve. Finally, observing the expected curves, we find
that the majority rule outperforms the OR rule and the OR
rule outperforms the AND rule at their corresponding optimal
decision thresholds.

In Fig. 3, we plot the optimal average global error probabil-
ity versus the number of cooperative RXs for the OR, AND,
and majority rules. The baseline case is a single TX − RX
link with K = 1, i.e., only one RX exists but no FC exists.

In the baseline case, we assume that the RX is located at
(2µm, 0.6µm, 0), the TX releases 10000 molecules, the time
step between two successive samples is 100µs, and the symbol
interval time is T = 1.3 ms, all of which ensure the fairness
of the error performance comparison between the baseline
case and the considered cooperative MC system. We keep
the total number of molecules released by all RXs fixed for
the fairness of error performance comparison between the
baseline case and the cooperative MC system with different
K. Moreover, the fixed total number of molecules applies
to realistic biological environments where the number of
available molecules within the environment may be limited.
Also, for a fair comparison of different K, we consider that
all RXs sample at the same time and has the same number
of samples for different K, since the sampling time tRX(j,m)
determines the mean number of molecules observed, based on
(2) and (14). The value of Q

∗
FC for each K in the expected

curves for the three fusion rules is the minimum QFC. For
the expected curves, we consider that a single ξ∗RX is applied
to all considered realizations of Wj−1

TX , which are obtained
via exhaustive search of the expected expressions of (8)–(13)
with (5) and (6). On the other hand, the value of Q

∗
FC for each

K in the approximated curves for the OR rule, AND rule,
and majority rule are obtained by solving the corresponding
average error performance optimization problems given by
(27), (29), and (33), respectively. To this end, we use a single
ξ◦RX for all considered realizations of Wj−1

TX , and then calculate
the actual values of QFC achieved by ξ◦RX. The value of Q

∗
FC for

each K in the average approximated curves are obtained by
solving (27), (29), and (33), respectively, with (20) and (21)
for all considered realizations. For this purpose, we consider
a single ξ◦RX for each realization of Wj−1

TX . Hence, for average
approximated curves, the information of Wj−1

TX is required
for suboptimal solutions. We then calculate the actual value
of QFC[j] achieved by ξ◦RX for each realization of Wj−1

TX , and
refer to it as the instantaneous approximated error probabil-
ities. Finally, we calculate the mean of all the instantaneous
approximated error probabilities for all realizations of Wj−1

TX .
In Fig. 3, we first observe that for the OR rule and majority

rule, the approximated curves match the expected curves,
which confirms the accuracy of ξ◦RX. Second, we observe that
for the AND rule, the approximated curve deviates from
the expected curve when K = 5 and K = 6. This is
due to the fact that ξ◦RX is outside the feasible set restricted
by all the constraints for all realizations of Wj−1

TX . Third,
we observe an accurate match between the simulated points
and the expected curves. Fourth, we observe that for the
three fusion rules, the error performance clearly improves
when the optimization is performed for each realization of
Wj−1

TX . However, as previously explained, this performance
gain may not be feasible in practice and thus, we consider the
average approximated curves as the best performance bound of
our considered system. Fifth, we observe from the expected
curves that the majority rule outperforms the OR rule and
AND rule, which is consistent with that in Fig. 2. Lastly,
we observe that the cooperative MC system outperforms the
baseline case for all fusion rules, even though the distance of
the baseline case is shorter than that of the cooperative MC
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Fig. 4. Average global error probability QFC of different fusion rules versus
the decision threshold at RXs ξRX with K = 3 in the noisy reporting scenario.

system. Importantly, we see that the system error performance
significantly improves as K increases. This is due to fact that
an increasing number of cooperative RXs enables more inde-
pendent observations of the transmitted information symbol.
It follows that the probability that all RXs fail to detect the
transmitted information symbol is reduced.

We clarify that if we keep the total volume of all RXs
fixed, then the system error performance degrades as K
increases9. We note that a single TX-RX link with one RX
has the same error performance as our simple soft fusion
rule proposed in [1], since both schemes have the same
mean number of molecules observed under the assumption
of uniform concentration. In simple soft fusion, the FC adds
all RXs’ observations in the jth symbol interval and then
compares it with a decision threshold ξFC to make a decision
ŴFC[j] (see [1]). We then note that the simple soft fusion rule
outperforms the majority rule, since local hard decisions are a
quantization that decreases the granularity of the information
available to the FC. Thus, for a fixed total volume of RXs, the
single TX-RX link outperforms the majority rule.

B. Noisy Reporting

In this subsection we focus on the noisy reporting scenario.
In Fig. 4, we consider a three-RX cooperative system and
plot the average global error probability versus the decision
threshold at the RXs for the AND rule, OR rule, and majority
rule. In this figure, we consider ξFC = 2 for the AND rule, ξFC =
4 for the OR rule, and ξFC = 3 for the majority rule, since these
thresholds are the values obtained when the thresholds at the
RXs and FC are jointly optimized for the three fusion rules. All
curves in this figure are obtained from the same expressions
and the same optimization problems as those in Fig. 2, except
for replacing (5), (6), (20), and (21) with (17), (18), (37), and
(38), respectively. Similar to Fig. 2, we observe that ξ◦RX is
almost identical to ξ∗RX. By comparing Fig. 2 with Fig. 4, we
also observe that the expected error probabilities in Fig. 2 are

9For more details about this clarification, please refer to [31].
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Fig. 5. Expected average global error probability QFC versus the decision
threshold at RXs ξRX and the decision threshold at the FC ξFC with K = 3 in
the noisy reporting scenario for (a) OR rule, (b) AND rule, and (c) majority
rule. In (a)–(c), ‘�’ is the optimal QFC achieved by ξ∗RX and ξ∗FC, obtained by
exhaustive search, and ‘�’ is the approximated QFC achieved by ξ◦RX and ξ◦FC.

slightly lower than those in Fig. 4. We further observe that the
optimal threshold at RXs is the same in Fig. 2 and Fig. 4. This
observation is not surprising, since the relatively short distance
between RXk and the FC, which leads to a relatively low error
probability in the RXk − FC link. This low error probability
does not significantly affect the error probability of the TX−
RXk−FC link. In addition, we also confirmed that increasing
K significantly improves the system error performance in the
noisy reporting scenario (figure omitted for brevity).

In Fig. 5, we consider a three-RX cooperative system and
plot the expected average global error probability versus the
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TABLE III
COORDINATES AND VALUES OF ‘�’ AND ‘�’ IN FIG. 5

Variable OR Rule AND rule Majority Rule

ξ∗FC of ‘�’ 4 2 3

ξ∗RX of ‘�’ 9 4 7

ξ◦FC of ‘�’ 3 2 2

ξ◦RX of ‘�’ 9 4 7

Value of ‘�’ 2.78× 10−3 8.99× 10−3 2.64× 10−3

Value of ‘�’ 3.22× 10−3 8.99× 10−3 3.01× 10−3

rFC [µm]

0.1250.150.1750.20.225

Q
F

C

10
-2

10
-1

Expected

Approximated

Simulation for Approximated

AND Rule

OR Rule

Majority Rule

*

Fig. 6. Optimal average global error probability QFC of different fusion rules
versus the radius of the FC rFC with K = 3 in the noisy reporting scenario.

decision thresholds at the RXs and FC for the OR rule, AND
rule, and majority rule in Fig. 5(a), Fig. 5(b), and Fig. 5(c),
respectively. The expected surfaces for the three fusion rules
are obtained from (8)–(13) with (17) and (18). The values of
ξ◦RX and ξ◦FC, associated with ‘�’, for the OR rule, AND rule,
and majority rule are obtained by solving (58), (59), and (60),
respectively. The coordinates and values of ‘�’ and ‘�’ in
Figs. 5(a), 5(b), and 5(c) are summarized in Table III. Based
on Table III, we quantify the accuracy loss caused by the
suboptimal convex optimization for the OR rule, AND rule,
and majority rule as 15.7%, 0%, and 14%, respectively. These
small losses reveal that the joint ξ◦RX and ξ◦FC we find can achieve
near-optimal error performance.

In Fig. 6, we consider a three-RX cooperative system and
plot the average global error probability versus the radius
of the FC for the AND rule, OR rule, and majority rule.
The value of Q

∗
FC for each rFC in the expected curves for

the three fusion rules are obtained via the exhaustive search
of (8)–(13) with (17) and (18). The value of Q

∗
FC for each

rFC in the approximated curves for the three fusion rules are
obtained by first solving (58), (59), and (60), respectively, and
then searching the actual values of QFC achieved by ξ◦RX and
ξ◦FC. The simulation for approximated curves are obtained by
considering ξ◦RX and ξ◦FC for each rFC. We observe that for the
AND rule and majority rule, the approximated curves well
approximate the expected curves, which confirms the accuracy
of jointly optimizing ξ◦RX and ξ◦FC. We also observe that for the
OR rule, the approximated curve deviates from the expected
curve when rFC = 0.225 and rFC = 0.175. This is due to

the fact that the global error probability is very sensitive to
both thresholds in the region of ξ∗FC. Furthermore, we observe
that the approximated curves match the expected curves when
rFC ≤ 0.2µm for the AND rule, rFC ≤ 0.15µm for the OR
rule, and rFC ≤ 0.175µm for the majority rule. Additionally,
we observe that the expected error performance degrades as
rFC decreases for all the fusion rules. This can be explained by
the fact that the reporting from the RXs to the FC becomes
less reliable when rFC decreases.

VI. CONCLUSIONS

In this paper, we optimized the error performance achieved
by cooperative detection among distributed RXs in a diffusion-
based MC system. For the perfect and noisy reporting sce-
narios, we derived closed-form expressions for the expected
global error probability of the system having a symmetric
topology. We also derived approximated expressions for the
expected error probability in both reporting scenarios. We then
found the convex constraints under which the approximated
expressions are jointly convex with respect to the decision
thresholds at the RXs and the FC. Based on the derived convex
approximations and constraints, we formulated suboptimal
convex optimization problems for the system in both reporting
scenarios. Furthermore, we extended the suboptimal convex
optimization problem for the instantaneous error performance
to that for the average error performance over all transmitter
symbol sequences. Using numerical and simulation results, we
showed that the system error performance can be significantly
improved by combining the detection information among
distributed RXs, even when the total number of transmitted
molecules is limited. We also showed that the suboptimal
decision thresholds, obtained by solving our formulated con-
vex optimization problems, achieve near-optimal global error
performance. In our future work, we will explore the error
performance analysis and optimization of soft fusion schemes
at the fusion centre and the cooperative MC system with an
asymmetric topology.

APPENDIX

PROOF OF THEOREM 3 AND THEOREM 4
The convexity of P̃mdb[j]K can be proven by showing that

its Hessian is positive semidefinite (PSD) [29]. Although the
Hessian of P̃mdb[j]K is not always PSD, we can show that the
Hessian of P̃mdb[j]K is PSD over a convex region if we impose
a set of additional constraints. Recall that a matrix is PSD if
and only if all of its principal minors are nonnegative [30].
Thus, we prove the joint convexity of P̃mdb[j]K with respective
to ξRX and ξFC by finding when ∂2P̃mdb[j]

K

∂ξRX
2 ≥ 0, ∂

2P̃mdb[j]
K

∂ξFC
2 ≥ 0,

and
(
∂2P̃mdb[j]

K

∂ξRX
2

)(
∂2P̃mdb[j]

K

∂ξFC
2

)
−
(
∂2P̃mdb[j]

K

∂ξRXξFC

)2
≥ 0.

We derive the second partial derivatives of P̃mdb[j]K with
respect to ξRX and ξFC as

∂2P̃mdb[j]K

∂ξRX
2 = Γ

(
ξRX, ξFC, U1[j], V 1[j]

)
= (−0.5− U1[j] + ξRX) Υ̂ (K − 1, 1, 3/2)

+ (K − 1)Υ̂ (K − 2, 2, 1) (62)
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and

∂2P̃mdb[j]K

∂ξFC
2 = Γ

(
ξFC, ξRX, V 1[j], U1[j]

)
, (63)

respectively, where

Υ̂ (α, β, γ) =
(

(1− Λ (ξRX, U1[j]))
(
1 + Λ

(
ξFC, V 1[j]

))
+ 2 (1 + Λ (ξRX, U1[j]))

)α
×
(
Λ
(
ξFC, V 1[j]

)
− 1
)β KΘ (ξRX, U1[j])

β

U1[j]γ4α(2
√

2π)β
.

(64)

Since Λ (x, λ) is between −1 and 1 and Θ (x, λ) is greater
than zero, (62) and (63) are always nonnegative if we impose
the convex constraints (22) and (50), respectively.

Finally, we show how the third condition of the joint
convexity is satisfied. To this end, we derive the second mixed
derivative of P̃mdb[j]K with respect to ξRX and ξFC as

∂2P̃mdb[j]K

∂ξRXξFC

=
21−2KK

π
√
U1[j]V 1[j]

Θ (ξRX, U1[j]) Θ
(
ξFC, V 1[j]

)
×
(

3− Λ (ξRX, U1[j])
(
1 + Λ

(
ξFC, V 1[j]

))
− Λ

(
ξFC, V 1[j]

) )−2+K(
− 4 +K

+KΛ
(
ξFC, V 1[j]

)
+KΛ (ξRX, U1[j])

×
(
1 + Λ

(
ξFC, V 1[j]

)) )
. (65)

Combining (62), (63), and (65), and performing some
algebraic manipulations, we have(

∂2P̃mdb[j]K

∂ξRX
2

)(
∂2P̃mdb[j]K

∂ξFC
2

)
−

(
∂2P̃mdb[j]K

∂ξRXξFC

)2

= Ω (ξRX, ξFC)
K22−4K

π2U1[j]V 1[j]
Θ
(
ξFC, V 1[j]

)
Θ (ξRX, U1[j])

×
(

3− Λ
(
ξFC, V 1[j]

)
− Λ (ξRX, U1[j])

×
(
1 + Λ

(
ξFC, V 1[j]

)))(−4+2K)

, (66)

where Ω (ξRX, ξFC) is shown in (67) at the top of page 16.
We note that (66) is always nonnegative if the following

constraint is satisfied:

Ω (ξRX, ξFC) ≥ 0. (68)

The constraint (68) is not convex, and ξRX and ξFC in the
exponential and error functions make joint convexity analysis
with respect to ξRX and ξFC cumbersome. To tackle this cum-
bersomeness, we can bound ξRX with ξ−RX or ξ+RX, and bound ξFC

with ξ−FC or ξ+FC to lower the value of the left-hand side of (68).
Thus, we obtain (51) to ensure that (66) is always nonnegative.
Under the constraints (22), (50), and (51), we define a convex
region where P̃mdb[j]K is jointly convex with respect to ξFC

and ξRX.
Similar to the proof of the joint convexity of P̃mdb[j]K , it

can be proven that P̃fab[j]K is also jointly convex with respect
to ξRX and ξFC under the constraints (23), (53), and (54).
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