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Normal Inverse Gaussian Approximation
for Molecular Communications

Werner Haselmayr∗, Member, IEEE, Dmitry Efrosin, Member, IEEE, Weisi Guo, Member, IEEE

Abstract—The inverse Gaussian (IG) distribution is a well-
established distribution for the first hitting time in flow-induced
diffusion molecular communications. However, the distribution of
the difference between two independent IG-distributed random
variables has not been derived yet, although it is very important
for the analysis of many molecular communication systems. For
example, for deriving crossover probabilities or characterizing
the noise in time between release modulation. In this letter, we
propose an approximation by a normal inverse Gaussian (NIG)
distribution and derive an asymptotic tail approximation. Nu-
merical evaluations showed that the NIG approximation matches
very well with the solution obtained through numerical integra-
tion, in particular for the tails. Moreover, the asymptotic tail
approximation converges very quickly to the actual probability
and outperforms state-of-the-art tail approximations.

Index Terms—Molecular communications, flow-induced diffusion
channel, normal inverse Gaussian distribution, inverse Gaussian
distribution,

I. INTRODUCTION

M communication broadly defines information transmis-
sion using chemical signals [1]. It is a promising

candidate for communications at nano-scale due to its ultra-
high efficiency [2] and bio-compatibility. The main envisioned
applications are in the area of nano-medicine [3] (e.g., targeted
drug delivery). Currently, molecular communication research
can be split into three areas: 1) Living system modelling
aims at gaining more insights into molecular communication
processes occurring in biological live system using tech-
niques originating from communications engineering (e.g.,
quantifying information in protein structures [4]) 2) Living
systems interface aims to control the behavior of biological
systems (e.g., connecting synthetic biology to electronics using
redox modality [5]) 3) Artificial molecular communication
focuses on the design, fabrication and testing of human-made
molecular communication systems (e.g., artificial chemical
communication between gated nanoparticles [6]).
In molecular communications the information can be en-
coded using molecule’s concentration [7], number [8], release
time [9], type [10] or a combination of the aforementioned
methods. The information molecules can be transported from
the transmitter to the receiver through pure diffusion, diffu-
sion with flow, active transport (e.g., molecular motors [11])
and bacteria [12]. Most molecular communication research

Manuscript received month day, 2018; revised month day, 2018; ac-
cepted month day, 2018. ∗Corresponding author. W. Haselmayr and
D. Efrosinin are with the Johannes Kepler University Linz, Austria (email:
werner.haselmayr@jku.at; dmitry.efrosinin@jku.at). W. Guo is with the
School of Engineering, University of Warwick, United Kingdom (email:
weisi.guo@warwick.ac.uk).

is devoted to diffusion-based molecular communication. In
this case the receiver can be classified as either passive
or active [13]. Typically a passive receiver only observes
the molecules in the environment, but does not react with
the information molecules. In contrast, for active receiver
a chemical reaction between receiver and molecules takes
place and the molecules is recognized by the receiver due
to the reaction. The first hitting time in pure diffusion and
flow-induced diffusion channels with an active (absorbing) re-
ceiver [14] can be modelled by a Lévy [15] and inverse Gaus-
sian (IG) [9] distribution, respectively. The difference between
two independent Lévy-distributed random variables follows
a stable distribution [15]. This distribution is very important
in order to characterize crossover probabilities [8], [16], [17]
and noise in time between release modulation [15] for pure
diffusion channels. However, to the best of our knowledge
the distribution of the difference between two IG-distributed
random variables has not been derived yet. So far, only an
asymptotic tail approximation was proposed in [16].
In this letter, we present an approximation of the distribution
of the difference between two IG-distributed random variables
by a normal inverse Gaussian (NIG) distribution. Through mo-
ment matching we derive closed-form expressions for the four
parameters of the NIG distribution. Moreover, we derive an
asymptotic tail approximation. Numerical evaluations showed
that the NIG approximation matches very well with the results
obtained through numerical integration, in particular for the
tails. The tail approximation converges much faster than the
state-of-the-art approximation proposed in [16].

II. INVERSE GAUSSIAN DISTRIBUTION

In this section, we briefly discuss the main properties of the
inverse Gaussian (IG) distribution1. The probability density
function (PDF) of an IG-distributed random variable X is given
by [18]

fX (x) =
a
√

2π
exp(ab)x−3/2 exp

(
−

1
2

(
a2x−1 + b2x

))
, x > 0,

(1)

with the parameters a > 0 and b > 0. We indicate an
IG-distributed random variable with the parameters (a,b) by
X ∼ IG(a,b). The cumulative distribution function (CDF) can
be expressed as

FX (x) =φ
(
(bx)1/2 − ax−1/2

)
+ exp (2ab)

+ φ
(
− (bx)1/2 − ax−1/2

)
, x > 0, (2)

1Please refer to [18] for more details.



2

with the CDF of the standard normal distribution
φ(x) = 1/

√
2π

∫ x
−∞

exp(−t2/2)dt. Moreover, the tail
probability is given by F̄X (x) = 1 − FX (x). The moment-
generating function of X can be expressed as

MX (t) = exp
(
ab − a

√
b2 − 2t

)
. (3)

It is important to note that the IG distribution is only
closed under convolution, i.e. the linear combination of IG-
distributed random variables is also IG-distributed, if certain
conditions are fulfilled [18]. Suppose V =

∑N
i=1 ci Xi , with

Xi = IG(ai ,bi ), ci > 0 and all Xi are independent. The
random variable V is only IG-distributed, iff bi/

√
ci = c for

all i. Then the moment-generating function of V is given by

MV (t) =
N∏
i=1

MXi (ci t)

=

N∏
i=1

exp
(
ai

(
bi −

√
b2
i − 2ci t

))
= exp *

,

N∑
i=1

ai
√

ci
(
c −

√
c2 − 2t

)
+
-
. (4)

Thus, V ∼ IG
(∑N

i=1 ai
√

ci ,c
)
. The constancy of bi/

√
ci is a

necessary condition for V to be IG-distributed.

III. NORMALE INVERSE GAUSSIAN APPROXIMATION

Let’s consider a random variable Z = X1 − X2, with
X1 ∼ IG(a1,b1) and X2 ∼ IG(a2,b2). Assuming X1 and X2
are independent the PDF of Z can be expressed as

fZ (z) =
(

fX1 ∗ f −X2

)
(z) =

∞∫
−∞

fX1 (u) fX2 (u − z)du, (5)

with f −X2
= fX2 (−x). The moment-generating function of Z is

given by

MZ (t) = MX1 (t)MX2 (−t)

= exp
(
a1b1 + a2b2 −

(
a1

√
b2

1 − 2t + a2

√
b2

2 + 2t
))
.

(6)

Since b1 , b2 the random variable Z is not IG-
distributed (cf. Sec. II). Although the moment-generating
function of Z can easily be derived, the PDF of Z is difficult
to analyze. Moreover, to the best of our knowledge, neither
a closed-form expression nor an approximation has been
derived so far. In the following we propose the normal inverse
Gaussian (NIG) distribution as an appropriate approximation
for Z , since the NIG distribution is a flexible system of dis-
tributions, including heavy-tailed and skewness distributions.
The NIG approximation was introduced in [19] and it was
shown through numerical results that NIG approximation has
a smaller approximation error compared to Gram-Charlier
expansion [20] and Edgeworth expansion [21].

The PDF of a NIG-distributed random variable Y is defined
by [19]

fY (y) =
αδ

π
exp

(
δ

√
α2 − β2 − β(y − µ)

)
×

K1
(
α

√
δ2 + (y − µ)2

)
√
δ2 + (y − µ)2

, (7)

with the parameters α > 0, δ > 0, µ ∈ R and 0 ≤ | β | < α
and K1(·) denotes the modified Bessel function of the third
kind with index 1. The parameters α, β, µ and δ determine
the tail heaviness, asymmetry, location and scaling of the
distribution. The Gaussian distribution arises as a special case
of the NIG distribution by setting α → ∞, β = 0 and δ = σ2α,
where σ2 denotes the variance of the Gaussian distribution.
The relation between mean M, variance V , skewness S and
excess kurtosis K of Y is given by [19]

α = 3ρ1/2(ρ − 1)−1V−1/2 |S|−1

β = 3(ρ − 1)−1V−1/2S−1

µ =M − 3ρ−1V1/2S−1

δ = 3ρ−1(ρ − 1)1/2V−1/2 |S|−1,

(8)

where ρ = 3KS−2 − 4 > 1.
We approximate the unknown distribution of Z by matching
the mean, variance, skewness and excess kurtosis of Z with
the NIG distribution, which is known as moment matching
method [22]. The moments are then used to derive the pa-
rameters α, β, µ and δ according to (8). The mean, variance,
skewness and excess kurtosis of Z can be expressed in terms
cumulants

M̂ = κ1, V̂ = κ2,

Ŝ =
κ3

κ3/2
2

, K̂ =
κ4

κ2
2

. (9)

where κn , n = 1 . . . ,4, denotes the nth cumulant of Z .
The cumulants can be derived using the moment-generating
function of Z defined in (6)

κn =
∂n

∂tn
lnMZ (t)

�����t=0
. (10)

In the following we present the analytical expressions for the
parameters α, β, µ and δ for two important cases in molecular
communications.

A. Case 1: a1 = a2 = a and b1 = b2 = b

In this case the moment-generating function of Z can be
written as

MZ (t) = MX1 (t)MX2 (−t)

= exp
(
ab + ab −

(
a
√

b2 − 2t + a
√

b2 + 2t
))
. (11)

The moments are obtained by applying (10) and (9)

M̂ = 0, V̂ =
2a
b3 ,

Ŝ = 0, K̂ =
15

2ab
.

(12)



3

The parameters of the corresponding NIG distribution can be
derived using the relation in (8) and can be expressed as

α =
b2
√

5
, β = 0,

µ = 0, δ =
2
√

5

a
b
.

(13)

The resulting NIG distribution is symmetric, since β = 0.

B. Case 2: b1/a1 = b2/a2 = c

In this case the moment-generating function of Z can be
written as

MZ (t) = MX1 (t)MX2 (−t)

= exp
((

a2
1 + a2

2

)
c −

(
a1

√
a2

1c2 − 2t + a2

√
a2

2c2 + 2t
))
.

(14)

Similar to case 1, the moments can be calculated using (10)
and (9)

M̂ = 0, V̂ =
a−2

1 + a−2
1

c3 ,

Ŝ =
3
(
a−2

1 + a−2
1

)
√

c
(
a−2

1 + a−2
1

)3
, K̂ =

15
(
a−6

1 + a−6
1

)
c
(
a−2

1 + a−2
1

)2 .
(15)

The parameters of the corresponding NIG distribution can be
expressed as

α =

(
a2

1 − a2
2

)2
√(

a4
1 + 3a2

1a2
2 + a4

2

) (
a2

1 − a2
2

)−2
|τ |

5a2
1a2

2

√(
a−2

1 + a−2
2

)
c−3

,

β =

(
−a2

1 + a2
2

)
c2

5
,

µ =
a4

1 − a4
2(

a4
1 + 3a2

1a2
2 + a4

2

)
c
,

δ =

√
5a2

1a2
2

√(
a−2

1 + a−2
2

)
c−3 |τ |√

a2
1a2

2

(
a2

1 − a2
2

)−2
(a4

1 + 3a2
1a2

2 + a4
2)
,

(16)

with

τ =

(
a−2

1 + a−2
2

)3/2 √
c

a−4
1 − a−4

2

.

The NIG distribution is asymmetric, since β , 0.

IV. TAIL APPROXIMATION

The tail probability of the random variable Z , defined in (5),
is given by

F̄Z (z) = Pr(Z > z) =

∞∫
z

fZ (t)dt

=

∞∫
z

∞∫
−∞

fX1 (u) fX2 (u − t)dudt

=

∞∫
z

∞∫
−∞

fX1 (v + t) fX2 (v)dvdt

=

∞∫
−∞

fX2 (v)

∞∫
z

fX1 (v + t)dtdv

=

∞∫
−∞

fX2 (v)F̄X1 (v + z)dv. (17)

The asymptotic tail behavior can be derived as follows

lim
z→∞

F̄Z (z)
F̄X1 (z)

= lim
z→∞

∞∫
−∞

fX2 (v)F̄X1 (z + v)
F̄X1 (z)

dv

=

∞∫
−∞

lim
z→∞

F̄X1 (z + v)
F̄X1 (z)

fX2 (v)dv

=

∞∫
−∞

exp
(
−b2

1/2v
)

fX2 (v)dv, (18)

where we used limz→∞ F̄X1 (z + v)/F̄X1 (z) = exp(−b2
1/2v) for

all v real [23]. Thus, the asymptotic tail behavior of Z is given
by

lim
z→∞

F̄Z (z) = F̄X1 (z)

∞∫
−∞

exp
(
−b2

1/2v
)

fX2 (v)dv

= F̄X1 (z)MX2 (−b2
1/2), (19)

where MX1 (x) denotes the moment-generating function of the
inverse Gaussian distribution defined in (3).

V. APPLICATIONS IN MOLECULAR COMMUNICATIONS

For molecular communications in flow-induced diffusion
channels, the random time between the release of molecules
until the first arrival at an absorbing receiver [14] can be
modelled as IG-distributed random variable – so-called first
hitting time. In the following, we discuss two applications
showing the importance of knowing the distribution of the
difference between two independent IG-distributed random
variables.

A. Timing Channels

We consider timing channels where the information is encoded
in the time duration between two consecutive release of
molecules [15]. The arrival time of a single molecule released
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TABLE I
KL DIVERGENCE PERFORMANCE OF THE NIG APPROXIMATION

v [µm/s] d [m] D1 [µm2/s] D2 [µm2/s] D( fZ | | f̂Z )

Case 1 - Symmetric PDF (cf. Figs. 1 and 2)
1 1 0.5 0.5 1.3 × 10−2

2 1 0.5 0.5 4 × 10−3

1 2 0.5 0.5 3 × 10−3

Case 2 - Asymmetric PDF (cf. Figs. 3 and 4)
1 2 0.5 0.1 1.2 × 10−3

1 2 0.5 2.5 3.2 × 10−2

at time S is given by Y = S + X , where X denotes the first
hitting time and follows an IG distribution. If the information
is encoded in Zs = S2−S1, where S1 and S2 denote the release
time of the individual molecules, the channel model is given
by [15]

Y2 − Y1 = S2 − S1 + X2 − X1

Zy = Zs + Zx , (20)

with the noise term Zx = X2 − X1 and X1 and X2 are IG-
distributed random variables. In order to analyze such timing
channels the distribution of Zx is of interest. Since the exact
distribution of Zx is hard to determine, it can be approximated
by a NIG distribution (Sec. III).

B. Crossover Probability

Let’s assume that two molecules of different type, representing
bit 0 and bit 1, are released a time interval T apart. The first
hitting time of the first and second transmitted molecules is
given by X1 and X2, respectively, and follow an IG distri-
bution. The probability for the released molecules to arrive
out-of-order can be expressed as

Pr(X1 − X2 > T ) = Pr(Zx > T ), (21)

which is referred to as crossover probability. In order to
evaluate the crossover probability in (21) the distribution of Zx

is of interest. Since the exact distribution of Zx is hard to
determine, a possible solution is to approximate Zx by a
NIG distribution (cf. Sec. III). It is important to note that
the crossover probability in (21) is frequently used for the
theoretical analysis of molecular molecular communication
systems. For example, based on the crossover probability an
approximated error performance for different channel coding
techniques was presented in [16] and the channel capacity for
binary molecule shift keying was derived in [17].

VI. NUMERICAL EVALUATION

For the numerical evaluation we consider molecular communi-
cations in a semi-infinite one-dimensional (1D) fluidic environ-
ment (e.g., blood vessel) between a receiver and a transmitter
that are placed at a distance d. Moreover, we assume a positive
flow with velocity v from transmitter to receiver. For such
a flow-induced diffusion channels the first hitting time of a
released molecule at an absorbing receiver [14] follows an IG
distribution.

-10 -5 0 5 10

z

0

0.1

0.2

0.3

0.4

0.5

0.6

f Z
(z

)

v=1µm/s, d=1m
v=2µm/s, d=1m
v=1µm/s, d=2m

Fig. 1. Probability density function of Z = X1−X2 for case 1 (cf. Sec. III-A).
The solid lines indicate the PDF obtained through numerical integration of (5)
and the dashed lines correspond to the NIG approximation with the parameters
in (13).

Figs. 1 – 4 show the PDF and the tail probability of the random
variable Z = X1 − X2, where X1 and X2 are IG-distributed
random variables with the parameters

a1 =
d
√

2D1
, a2 =

d
√

2D2
,

b1 =
v
√

2D1
, b2 =

v
√

2D2
,

(22)

where D1 and D2 denote the diffusion coefficients of the
released molecules. In Figs. 1 – 4 the solid lines indicate
the results obtained through numerically integration of (5)
and the dashed lines correspond to the NIG approximation.
Moreover, the dotted lines in Figs. 2 and 4 represent the
asymptotic tail behavior. Moreover, we use the Kullback-
Leibler (KL) divergence to evaluate the performance of the
NIG approximation. The KL divergence between the actual
distribution fZ (z), obtained through numerical integration
of (5), and the NIG approximation f̂Z (z) can be calculated
by [24]

D
(

fZ | | f̂Z
)
=

∞∫
−∞

fZ (z)ln
fZ (z)

f̂Z (z)
dz. (23)

The KL divergence of different scenarios is summarized in
Tab. I.
In Figs. 1 and 2 the PDF and tail probability
for case 1 (cf. Sec. III-A) are shown. In this case
a1 = a2 = d/

√
2D1 and b1 = b2 = v/

√
2D1, with

D1 = 0.5 × 10−12 µm2/s. The PDF is symmetric and we
observe that increasing the distance broadens the peak of
the PDF and results in a longer tail, whereas an increase in
the velocity results in a narrow peak and a shorter tail. We
observe a very good match between the numerical results and
the NIG approximation, in particular for the tails. Moreover,
it can be seen that the asymptotic approximation of the tail
probability quickly converges to the actual probability.
Figs. 3 and 4 shows the PDF and tail probability for
case 2 (cf. Sec. III-B). In this case b1/a1 = b2/a2 = v/d, with
v = 1 µm/s and d = 2 m. The PDF is asymmetric and we
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0
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0.3
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r(
Z

 >
 z

)
v=1µm/s, d=1m
v=2µm/s, d=1m
v=1µm/s, d=2m

0 0.5 1
0

0.25

0.5

Fig. 2. Tail probability of Z = X1 − X2 for case 1 (cf. Sec. III-A). The
solid lines indicate the tail obtained through numerical integration of (17),
the dashed lines correspond to the tail probability of the NIG approximation
with the parameters in (13) and the dotted lines represent the asymptotic tail
behavior derived in (19).

-10 -5 0 5 10

z

0

0.1

0.2

0.3

0.4

f Z
(z

)

D1=0.5µm2/s, D2=0.5µm2/s

D1=0.5µm2/s, D2=0.1µm2/s

D1=0.5µm2/s, D2=2.5µm2/s

Fig. 3. Probability density function of Z = X1−X2 for case 2 (cf. Sec. III-A).
The solid lines indicate the PDF obtained through numerical integration of (5)
and the dashed lines correspond to the NIG approximation with the parameters
in (16).

observe a positive skew (right tail is longer) if D2 becomes
smaller compared to D1 and a negative skew (left tail is
longer) if D2 becomes larger compared to D1. We observe a
very good match between the numerical solution and the NIG
approximation, in particular for the tails, and the asymptotic
tail approximation quickly converges to the actual probability.
In Fig. 5 we compare the asymptotic tail approximation in (19)
with a recently proposed tail approximation given by [16]

F̄Z (z) =
4D1

v2 exp *.
,

(√
2 − 1

)
dv

2D1

+/
-

fX1 (x), (24)

where fX1 (x) denotes the PDF of an IG distribution defined
in (1). We observe that asymptotic tail approximation in (19)
converges much faster than the approximation in (24). More-
over, the approximation in (24) is only valid if the PDF is
symmetric, whereas the approximation in (19) can also be
applied to asymmetric PDFs.

1 3 5 7 9
z

0

0.1

0.2

0.3

P
r(

Z
 >

 z
)

D1=0.5µm2/s, D2=0.5µm2/s

D1=0.5µm2/s, D2=0.1µm2/s

D1=0.5µm2/s, D2=2.5µm2/s

0 0.5 1
0

0.25

0.5

Fig. 4. Tail probability of Z = X1 − X2 for case 2 (cf. Sec. III-B). The
solid lines indicate the tail obtained through numerical integration of (17),
the dashed lines correspond to the tail probability of the NIG approximation
with the parameters in (16) and the dotted lines represent the asymptotic tail
behavior derived in (19).

1 3 5 7 9
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0
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 z
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Numerical
NIG Approx.
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0 0.5 1
0

0.25

0.5

Fig. 5. Tail probability comparison for case 1 (cf. Sec. III-A), with
v = 1 µm/s, d = 2 µm and D1 = 0.5 × 10−12 µm2/s.

VII. CONCLUSIONS

In this letter, we have proposed an approximation for the
distribution of the difference between two independent IG-
distributed random variables. We derived the four parameters
of the NIG distribution through the moment matching method.
Moreover, we have presented an asymptotic tail approxima-
tion. We have shown numerically that the NIG approxima-
tion matches very well with the results obtained through
numerically integration and the asymptotic tail approximation
converges quickly to the actual probability. It is important to
note that the proposed approximations are very important for
the analysis of flow-induced diffusive molecular communi-
cations. For example, for deriving crossover probabilities or
characterizing the noise in time between release modulation.
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