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Terahertz Induced Protein Interactions in a Random
Medium

Hadeel Elayan, Andrew W. Eckford, and Raviraj Adve

Abstract—Folding of proteins into their correct native struc-
ture is key to their function. Simultaneously, the intricate
interplay between cell movement and protein conformation
highlights the complex nature of cellular processes. In this
work, we demonstrate the impact of Terahertz (THz) signaling
on controlling protein conformational changes in a random
medium. Our system of interest consists of a communication
link that involves a nanoantenna transmitter, a protein receiver,
and a channel composed of moving red blood cells. Due to
the system dynamics, we investigate the influence of both the
fast and slow channel variations on protein folding. Specifically,
we analyze the system’s selectivity to asses the effectiveness of
the induced THz interaction in targeting a specific group of
proteins under fading conditions. By optimizing the selectivity
metric with respect to the nanoantenna power and frequency, it
is possible to enhance the controllability of protein interactions.
Our probabilistic analysis provides a new perspective regarding
electromagnetically triggered protein molecules, their micro-
environment and their interaction with surrounding particles. It
helps elucidate how external conditions impact the protein folding
kinetics and pathways. This results in not only understanding
the mechanisms underlying THz-induced protein interactions but
also engineering these still-emerging tools.

Index Terms—Terahertz signals, protein interactions, proba-
bility of folding, fast fading, slow fading, selectivity, outage.

I. INTRODUCTION

Over the past two decades, the field of nanotechnology has
experienced significant advancements, prompting researchers
to explore methods for establishing reliable communication
between nanomachines. This communication enables nanosen-
sors to independently transmit their sensing data, receive
instructions from a central command center, and collaborate
with other nanomachines when necessary [2]. To achieve
nanoscale communication, scientists have put forward various
solutions that consider both molecular and electromagnetic
(EM) communication approaches. From the EM perspective,
plasmonic nano-lasers, plasmonic nanoantennas, and single-
photon detectors have all indicated the significance of the
Terahertz (THz) band, which spans from 0.1 to 10 THz, as
a crucial facilitator of communication at the nanoscale [3].

The viability of utilizing THz intra-body communication has
been strengthened through the characterization of tissues in the
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THz frequency range [4]. As a result, scientists have focused
on creating models that accurately capture signal propagation,
photo-thermal effects, and sources of noise [5], [6]. For
example, the authors in [7] presented a channel model for
THz propagation inside the human skin. To verify the achieved
results, the authors have compared their findings with THz
time-domain spectroscopy measurements of a skin sample.
Moreover, researchers have proposed mechanisms to overcome
the high path-loss and enable wireless communication with
deeper implants for nano-biosensing applications [8]. Recently,
the authors in [9] presented an in-depth overview covering
the state of the art in EM nanoscale communication and
networking, where they discussed nanonetworking in the THz
band and beyond while focusing on applications ranging from
nano-bio interfaces to quantum communications.

THz radiation operates within the energy range of molecular
interactions, which encompass hydrogen bonds, intermolec-
ular forces, and the vibration of macromolecules [10]. This
alignment of energy levels elucidates why biomolecular in-
teractions are highly responsive to emerging THz techniques.
Specifically, proteins, the fundamental components of cells,
exhibit distinctive collective vibrational patterns in the THz
frequency range. These patterns correspond to crucial func-
tional modes, which have been identified as potential drivers
of conformational alterations, ligand binding, and changes in
oxidation state [11].

The dynamics and conformational changes of proteins in-
volve a multitude of motions driven by various mechanisms,
occurring at different timescales and amplitudes. Protein mo-
tions involve a broad range of timeframes, from fast bond
vibrations in the femtosecond range to slow and extensive
domain movements in the millisecond range [12]. These varia-
tions have posed challenges in identifying universal principles
governing protein folding [13]. Proteins also experience con-
stant external stresses and crowding from other biomolecules
within cells, membranes, or extracellular spaces [14].

In our previous work, we proposed a hybrid communica-
tion model that combines EM and molecular approaches by
utilizing proteins as molecular machines within the human
body [15]. We employed a Markov model to derive the
mutual information and calculate the capacity of the com-
munication system under different constraints. This analysis
was conducted for both a two-state and a multi-state protein
model [16]. In this context, capacity serves as a quantita-
tive measure that provides researchers with insights into the
amount of information gained by the protein signaling pathway
as the protein transitions from an unfolded to a folded state.

In the aforementioned works, we treated the external
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nanoantenna force as a deterministic component, in which
the incident EM field directly impacts the protein population.
However, we have not considered the impact of channel
randomness on the EM wave that triggers the desired protein.
In a more realistic model, cells act as obstacles in the path
between the transmitter (Tx) and receiver (Rx). In addition,
rapid fluctuations in received signal strength occur over both
short distances and short time periods due to the mobility of
these particles. For instance, in a blood medium, red blood
cells (RBCs) interfere with propagation in a time-varying
manner. This phenomenon is similar to fading in wireless
communications, with the impinging signal suffering from
shadowing. The fading can be either slow or fast, depending
on the time constant of the protein dynamics [1].

To bridge the gap, we consider a communication link that
consists of a nanoantenna Tx, a protein Rx, and a chan-
nel composed of RBCs. Since a large number of moving
molecules exist between the communicating endpoints, the
channel experiences fading, which randomly attenuates the
transmitted nanoantenna signal. Therefore, we will examine
the impact of both fast and slow fading on our ability to
stimulate controlled protein folding behaviors. To evaluate
the system’s performance under fading conditions, we study
the selectivity of the system, which was initially investigated
in [17] to demonstrate the efficiency of the stimulated THz
interaction for a protein population.

The proposed selectivity metric assesses the capability of
the nanoantenna to induce a conformational change within
the desired protein population without affecting untargeted
proteins in the network. It requires suppressing the effect of
undesired proteins and enhancing only the impact of targeted
ones. Specifically, in this work, we explore the effect of fading
on the ability to achieve selective protein interactions. The un-
predictability of fading presents a challenge, but by optimizing
the selectivity metric with respect to the nanoantenna power
and frequency, it is possible to enhance the controllability
of protein interactions. From this perspective, we make the
following contributions:

• We determine the best fit of the nanoantenna force
realizations based on the developed propagation model.

• We study the phenomenon of fast and slow fading in
THz intra-body communication and its impact on folding
dynamics.

• We formulate a joint optimization problem to retrieve the
optimal parameters that maximize the selectivity in fading
scenarios.

• We introduce selectivity outage as a metric that indicates
the performance of the slow fading channel.

Studying how the blood channel affects protein dynamics
offers a broader perspective on the functioning and interactions
of proteins within a living organism. This approach helps
bridge the gap between in-vitro experiments and in-vivo
conditions. These insights could impact the way experiments
are designed and controlled, as researchers might explore the
channel as a tool to influence folding patterns, investigate
specific aspects of folding mechanisms, or validate hypotheses
related to protein folding processes.

The rest of the paper is organized as follows. In Sec. II, we
present the system model for the stimulated protein dynamics.
In Sec. III, we present a propagation model to compute the
power received by the protein and calculate the path-loss
experienced due to the shadowing imposed by the particles
in the channel. In Sec. IV, we formulate the expression of
the steady-state energy absorbed by the protein subject to the
random nanoantenna force and use it to modify the Boltzmann
distribution. In Sec. V, we introduce the concept of fading
in an intra-body environment and examine its impact on
the capability to invoke controlled interactions in a protein
network. In Sec. VI, we demonstrate our numerical results.
Finally, we draw our conclusions in Sec. VII.

II. SYSTEM MODEL

Our system model involves a nanoantenna Tx and a protein
Rx. The channel we focus on is a blood vessel that contains
various intra-body particles. Among these particles, RBCs
are the largest, with a size of approximately 7 microns, and
they are also the most abundant, constituting 45% of the
particles in human blood. Therefore, RBCs play a crucial role
in governing the propagation of THz waves in the bloodstream.
Additionally, the blood cells are surrounded by blood plasma,
which mainly consists of water (92%). We model the plasma
as a lossy medium, characterized by the complex permittivity
of water at THz frequencies [18].

It is noteworthy that in our current work, we consider a
dipole nanoantenna designed for the incident frequency being
used, which is tuned to the vibrational frequency of the desired
protein, without delving into the specific details of the antenna
design. For more information on the design of nanoantennas,
we refer interested readers to the works in [3] and [19].

Cells have receptor proteins that bind to signaling molecules
and initiate physiological responses. In our model, we consider
our protein as a G-protein-coupled receptor located on the
cell’s exterior. When the receptor protein receives the nanoan-
tenna signal, it undergoes a conformational change.

Fig. 1: System model depicting a communication link: a
nanoantenna Tx, a protein Rx and a channel composed of
particles. The model is created with BioRender.com.

Consider the blood vessel as depicted in Fig. 1. For an
x̂ polarized plane wave propagating in the +ẑ direction, the
electric field is given as [20]

E(z, t) = Re
[
E(z)e−jωt

]
x̂

= Eoe
−κzRe

[
ej(ωt−β̄z)

]
x̂

= Eoe
−κz cos(ωt− β̄z)x̂,

(1)
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where E(z) = Eoe
−φzx̂ is the linearly polarized electric field

vector phasor, φ = κ + jβ̄ is the complex wave number,
z is the propagation distance between the nanoantenna and
the protein, κ is the attenuation constant (Nepers/m), β̄ is the
phase propagation constant (rad/m). Since the human body is a
lossy medium, κ and β̄ have the following general forms [20]

κ = ω

√√√√√√
 µ̈ε′m

2

√1 +

(
ε′′m
ε′m

)2

− 1


, (2)

β̄ = ω

√√√√√√
 µ̈ε′m

2

√1 +

(
ε′′m
ε′m

)2

+ 1


, (3)

where ω = 2πf is the angular frequency, ε′m and ε′′m are
the real and imaginary parts, respectively, of the complex
permittivity of the medium (ε∗m = ε′m − jε′′m), which we
consider as a combination of plasma and RBCs, respectively;
and µ̈ is the relative permeability that acquires a value of
one since most organic materials are non-magnetic at THz
frequencies [21].

When a polarized object is subjected to the electric field
given in (1), it induces a dipole moment. If the electric field
is inhomogeneous, the field strength, and therefore the force,
acting on each side of the particle will differ. Dielectrophoresis
(DEP) is the force that arises from the interaction of a
dielectric particle with the spatial gradient of an electric field.
In our system, we model the protein as a sphere, which is a
common approach for describing the DEP force acting on a
particle [22].

The strength of the induced force, exerted on each end of
the dipole, depends on both the medium and the protein’s
electrical properties, on the protein’s shape and size, as well
as on the frequency of the electric field. The time-averaged
force acting on the protein is therefore given as [22]

fo = 2πr3εmRe {K}∇|Erms|2, (4)

where Erms is the root mean square value of the electric field
given in (1) and |Erms|2 = 1

2 |E
2
o |e−2κz . In addition, ∇ is the

mathematical Del vector operator (∇ = ∂
∂x x̂+ ∂

∂y ŷ + ∂
∂z ẑ),

and ∇|Erms|2 = −κ|E2
o |e−2κz . From (4), r is the protein

radius, εm = εoε
∗
m is the absolute permittivity of the medium,

and K is the frequency-dependent polarization coefficient
given by

K =
ε∗p − ε∗m
ε∗p + 2ε∗m

, (5)

where ε∗p is the complex permittivity of the protein sam-
ple [23].

III. PROPAGATION MODEL

When an object is illuminated by a wave, the incident power
experiences both absorption and scattering effects caused by
particles. These phenomena contribute to power losses com-
pared to the line-of-sight (LOS) component of the channel.
In our specific propagation scenario, we utilize a first-order

multiple scattering model to describe the propagation of THz
waves [24]. This model accounts for the absorption and
scattering that occur along the ray path. It is particularly
applicable when particles primarily exhibit absorption rather
than scattering behavior. This situation arises when the particle
scattering albedo, which represents the ratio of scattering to
total attenuation, is less than 0.5 [25].

A. Signal Transmission

In our scenario, the nanoantenna transmits power Pt through
a distance z. Since the THz beams are narrow, the beam pattern
can be approximated by a Gaussian function. As such, the
nanoantenna beam pattern is given by [26]

Gt(θt) = exp

[
−4 ln 2

(
θt
θb

)2
]
, (6)

where θt is the angle measured from the horizontal direction,
and θb is the 3 dB beamwidth angle. The Rx in our system
is a protein. We treat it as a point Rx with a unity gain, i.e.,
Gr(θr) = 1. The received power is therefore given as

Pr =
Ptλ

2
gGt(θt)Gr(θr)

(4πz)2
e−γ . (7)

Here, γ is given by

γ =

∫ z

0

ρ ⟨σt⟩ ds, (8)

where the density of the molecules ρ(s) and the total cross-
section σt(s) can be functions of the position along the path
from the Tx to the Rx [24]. In specific, σt = σabs + σsca is
the sum of both the absorption and scattering cross-sections,
and ⟨·⟩ represents the average over the size distribution. The
absorption cross-section, σabs, and the scattering cross-section,
σsca, have been derived in [27].

To take into account the effect of the particle size distribu-
tion, we have

ρ ⟨σt⟩ =
∫ ∞

0

σt(xd)n(xd, r) dxd, (9)

where n(xd, r) is the number of RBCs per unit volume located
at r having a range of sizes, in this case, the diameter of
the RBC, between xd and xd + dxd. Therefore, the number
density distribution as a function of the particle size follows
a log-normal distribution given by [28]

n(xd, r) =
1

xd

√
(2π) ln(σg)

e
− (ln(xd)−ln(rg))2

2 ln(σg)2 , (10)

where rg is the mean geometric diameter of the scatterers,
and σg is the corresponding standard deviation. We note that
skewed distributions are particularly common when values
cannot be negative due to the physical aspects of the problem.
In (7), λg = λ/n′(ω), where n′(ω) is the real part of the
protein refractive index. We compute n′(ω) using the protein
permittivity expression given in [23].
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B. Path-Loss and Shadowing

The dynamic nature of intra-body communications results
in random shadowing events. These events occur when the
transmitted EM waves encounter obstacles, in this case, parti-
cles, that obscure the direct LOS signal path. The severity of
shadowing depends on factors such as the size and material
properties of the obstructing objects, the frequency of the
signal, and the distance between the Tx and Rx.

According to the central limit theorem, the attenuation, Xσ ,
can be modeled as a Gaussian random variable in the log-
scale, referred to as log-normal shadowing. Hence, Xσ has
the following distribution

f(Xσ) =
1√
2πσ2

X

e
− (Xσ−µX )2

2σ2
X , (11)

where µX and σ2
X are the mean and variance in dB of the

shadowing variable, respectively. In this paper, the parameters
defining the pdf of Xσ are extracted by implementing Monte
Carlo simulations [27]. By incorporating the effect of shadow-
ing and knowing the power received from (7), the path-loss
can be formulated as

[LLOS ]dB =

[
(4πz)2

λ2
gGt(θt)Gr(θr)

eγ

]
dB

+Xσ. (12)

IV. MODELING PROTEIN DYNAMICS

A. Langevin Equation

To model protein dynamics, we analyze the forces acting
on the system. These forces include impacts from the external
force exerted by the nanoantenna, which is subject to channel
randomness, as well as forces arising from the Brownian
motion of the surrounding particles. By solving the Langevin
equation, researchers can gain insights into the behavior and
dynamics of proteins, including their diffusion properties, con-
formational changes, and interactions with their surroundings.
Therefore, we deploy the Langevin stochastic equation, driven
by these forces as follows [29]

m
d2x

dt2
+ β̈

dx

dt
+ kx(t) = fex(t) + fζ(t), (13)

where x = x(t) is the protein coordinate, m is the protein
mass, k is the protein spring constant, and β̈ is the damping
coefficient. In addition, fex(t) is the external driving nanoan-
tenna force, which can be represented as

fex(t) = fo cos(ωat+Θ), (14)

while fζ(t) is the internal force acting on the protein due to
the random motion of the particles suspended in the medium.

1) Nanoantenna External Force: To relate the nanoantenna
external force, fex(t), to the propagation model, we first ex-
ploit the relationship between the received power, Pr, absorbed
by the protein and the impinging nanoantenna electric field
strength, Eo. This is given as [20]

Pr =
1

2Re {η∗c}
E2

oAr, (15)

where η∗c is the intrinsic impedance in a lossy medium, given
by [20]

ηc =

√
µ̈

ε′m

(
1− j

ε′′m
ε′m

)− 1
2

. (16)

In addition, Ar is the receiving cross-section for the THz wave
incident on the protein. It is given as

Ar =
λ2
g

4π
Gr(θr). (17)

We then find the relationship between the incident electric field
and the force stimulating the protein by solving for E2

o . This
is done by equating (7) to (15), which yields

E2
o =

2PtGt(θt)Gr(θr)Re {η∗c}
LLOS Ar

. (18)

Finally, we substitute (18) in (4) to obtain

f2
o =

(
−4πr3εmRe {Kη∗c}κPtGt(θt)Gr(θr)e

−2κz

LLOSAr

)2

.

(19)
We note here that the randomness in the nanoantenna force
stems from the path-loss, LLOS , experienced by the channel
due to the large number of molecules.

Using COMSOL Multiphysics® software, we built a phys-
ical model that mimics our intra-body scenario and fitted f2

o

as demonstrated in Fig. 2. Among the candidate distributions,
the gamma distribution was the best fit, as indicated by the
log-likelihood value provided in Table I. The log likelihood
criterion is a measure of goodness of fit for any model, in
which the higher the log-likelihood value, the better the model.

Fig. 2: Fitting f2
o values obtained from the received EM field

strength in COMSOL, where α = 2.5× 10−17 and β = 1.9.

TABLE I: Comparison of distributions for the best-fit of f2
o

Distribution Best-Fit Log likelihood
Gamma 1 7.167e+04
Lognormal 2 7.163e+04
Weibull 3 7.161e+04
Nakagami 4 7.155e+04
Exponential 5 7.143e+04
Rayleigh 6 7.135e+04
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Thereby, f2
o follows a gamma distribution given by

g(f2
o ;α, β) =

f
2(α−1)
o e−βf2

oβα

Γ(α)
. (20)

The gamma distribution is a two-parameter family of contin-
uous probability distributions, comprising a shape parameter
α and a rate parameter β. Changing α alters the shape of the
probability density function, while adjusting β either stretches
or compresses the range of the gamma distribution. It’s worth
noting that varying the density, ρ, and size, xd, of the RBCs
results in different values for α and β.

When α = 1, the resulting gamma distribution is equivalent
to the exponential distribution. Interestingly, single exponen-
tial decays serve as a natural starting point for analyzing
protein relaxation phenomena, as they are phenomenological
descriptors of simple dashpots—dampers that exhibit frictional
resistance to motion. In addition, the distribution of protein
abundances in a cell is well described in the literature by a
gamma distribution [30].

Moreover, Θ in (14) is a random variable uniformly dis-
tributed between [−π, π], and ωa is the nanoantenna frequency.
Since the amplitude and phase in (14) are independent, we
can prove that fex(t) is a wide-sense stationary process, by
computing its mean and autocorrelation function. For a gamma
distribution, the mean and variance are given by E[f2

o ] =
α
β

and V ar[f2
o ] =

α
β2 , respectively. The auto-correlation func-

tion, for time-lag τ , yields

Rfex(τ) =
α

2β
cos(ωaτ). (21)

2) Force due to Brownian Motion: In (13), the internal
stochastic force fζ(t) is governed by a white-noise fluctuation-
dissipation relation as follows [31]

fζ(t) =
√
Γζ(t). (22)

Here, ζ(t) is a white, Gaussian, random process with mo-
ments [31]

⟨ζ(t1)⟩ = 0

⟨ζ(t1)ζ(t2)⟩ = δ(t1 − t2).
(23)

In (22), Γ = 2γ̄mkbT (kb is Boltzmann’s constant and T is
the temperature in Kelvin) denotes the strength of the noise
ζ(t). It fixes the amplitude of the fluctuation in the random
force in terms of both the temperature and the dissipation
coefficient [31].

The Green’s function is a powerful mathematical tool to
solve inhomogeneous differential equations. For an arbitrary
forcing term, the solution to the equation is formulated by
integrating the Green’s function against the forcing term. To
solve (13), we first re-write it as

d2x

dt2
+ γ̄

dx

dt
+ ω2

ox(t) =
1

m

[
fex(t) + fζ(t)

]
, (24)

where γ̄ = β̈/m and ω2
o = k/m [32]. Here, ωo is the natural

frequency of the protein, and γ̄ is the damping constant that
governs the magnitude of the protein vibrational resonances.

In the context of modeling proteins, the interatomic forces
are often approximated using harmonic potentials. This ap-
proximation is based on the assumption that the potential

energy between atoms within the protein can be described as
a harmonic oscillator potential. In fact, in [33], the author
showed that the vibrational modes of protein molecules are
not significantly modified when interactions are replaced by
Hookean springs, for all atom pairs whose distance is smaller
than a given cut-off value.

The frequency-domain solution of the Green’s function
corresponding to (24) is found as [34]

G(ω) =
1

m [−ω2 − jγ̄ω + ω2
o ]
, (25)

where G(ω) represents the transfer function of the protein
dynamics. The solution of (24) can be decomposed into two
parts, one related to the nanoantenna external force fex(t) and
the other is related to the stochastic force fζ(t), resulting in
x(t) = xex(t) + xζ(t).

In our model, we consider ωo > γ̄
2 . Physically, this

condition satisfies protein collective vibrations, where protein
modes in the THz frequency range have been shown to be
underdamped even in aqueous solutions [35], [36].

B. Energy of Driven Protein

Proteins are dynamic entities capable of adopting various
conformations to perform their biological functions. These
conformational changes are often triggered by the exchange
of energy between the protein and its environment. The
requirement for energy transfer to induce a conformational
change highlights the importance of connecting THz band
signals with protein molecules to initiate resonance. When an
external harmonic excitation has a frequency that matches one
of the natural frequencies of the system, resonance occurs,
leading to an increase in the vibrational amplitude of the
structure [32].

In protein folding, the energy landscape and the resulting
folding pathway play a crucial role in determining the proba-
bility of a protein adopting its native conformation. To assess
the impact of THz signaling on protein folding probability, we
must first calculate the total energy absorbed by the protein
when subjected to both the nanoantenna force and the force
resulting from the surrounding Brownian motion. To do so,
we sum the kinetic and potential energy contents [37]

⟨Etot⟩ss =
1

2
m
〈
v2(t)

〉
ss

+
1

2
k
〈
x2(t)

〉
ss
. (26)

We denote by ⟨·⟩ss the statistical average value in steady-state,
where all transient effects die out.

To evaluate the potential energy, we find the average steady-
state squared displacement of the protein,

〈
x2(t)

〉
ss

, which is
decomposed into〈

x2(t)
〉
ss

=
〈
x2
ex(t)

〉
ss

+
〈
x2
ζ(t)

〉
ss
. (27)〈

x2(t)
〉
ss

is a measure of the spatial extent of the protein

motion. As detailed in [17],
〈
x2
ζ(t)

〉
ss

yields kbT
k . In terms

of
〈
x2
ex(t)

〉
ss

, we start by examining fex(t) given in (14).
Since the latter is a wide-sense stationary random process with
autocorrelation function Rfex(τ), its power spectral density
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(PSD) Sex(ω) is introduced as the Fourier transform of
Rfex(τ). This relationship is given by

Sex(ω) =

∫ ∞

−∞
Rfex(τ)e

−jωτdτ

=
πα

2β

[
δ(ω − ωa) + δ(ω + ωa)

]
.

(28)

Using the PSD of the driving force and the frequency-domain
solution of Green’s function in (25), the output PSD is given
by

Sx(ω) = |G(ω)|2 · Sex(ω). (29)

Finally, from (29), the average squared displacement as a result
of the nanoantenna force,

〈
x2
ex(t)

〉
ss

, is found as〈
x2
ex(t)

〉
ss

=
1

2π

∫ ∞

−∞
Sx(ω)dω

=
1

2π

πα

2β

∫ ∞

−∞

(δ(ω − ωa) + δ(ω + ωa))

m2[(ω2
o − ω2)2 + (ωγ̄)2]

dω

=
α

2βm2[(ω2
o − ω2

a)
2 + (ωaγ̄)2]

.

(30)

To calculate the kinetic energy, we need to compute the
average steady-state squared velocity of the protein,

〈
v2(t)

〉
ss

,
which is decomposed into〈

v2(t)
〉
ss

=
〈
v2ex(t)

〉
ss

+
〈
v2ζ (t)

〉
ss
. (31)

From the derivation in [17], we know that
〈
v2ζ (t)

〉
ss

yields
kbT
m . Further, the steady-state average squared velocity result-

ing from the nanoantenna force can be found from the Fourier
transform of the derivative of the displacement. From (30), we
have〈

v2ex(t)
〉
ss

=
1

2π

∫ ∞

−∞
Sx(ω)ω

2dω

=
1

2π

απ

2β

∫ ∞

−∞

ω2(δ(ω − ωa) + δ(ω + ωa))

m2[
(
ω2
o − ω2)2 + (ωγ̄

)2
]

dω

=
αω2

a

2βm2[(ω2
o − ω2

a)
2 + (ωaγ̄)2]

.

(32)

Finally, we find the total steady-state energy of the driven
protein motion by substituting (27) and (31) in (26) to yield

⟨Etot⟩ss =
α

4βm[(ω2
o − ω2

a)
2 + (ωaγ̄)2]

(ω2
a + ω2

o)︸ ︷︷ ︸
THz Contribution

+ kbT︸︷︷︸
Noise Effect

.

(33)

If we compare ⟨Etot⟩ss in (33) to our previous work in [17],
we can observe the influence of the gamma distribution
parameters, specifically α and β, on the energy expression. α
represents the amplitude of the squared force, while β governs
the extent of path-loss. This clearly underscores the influence
of the channel on the incident nanoantenna force, with the
values of α and β determining the amount of energy absorbed
by the protein particle.

C. Boltzmann Distribution

Energy functions are linked to molecular conformation
through the Boltzmann distribution. This distribution provides
the probability of a system being in a specific state based on
the energy of that state and the system’s temperature [38].
In the context of protein folding, the Boltzmann distribution
aids in understanding the equilibrium populations of different
folding states. At a given temperature, protein states with lower
energies are more likely to be populated, while states with
higher energies have lower probabilities. The state with the
lowest energy corresponds to the protein’s native conforma-
tion, while higher energy states represent various unfolded or
partially folded conformations.

In this work, we model the protein as having two states,
unfolded and folded. Through the folding structure, the protein
acquires a conformation that is biologically functional. The
rate of protein folding is given by [39]

rf = r0 exp

(
−Ef

kbT

)
, (34)

where Ef denotes the free-energy associated with the folded
protein state, and r0 is a scale factor which preserves detailed
balance. In our case, we amend (34) to incorporate (33) as
follows

rf = r0 exp

(
−Ef + ⟨Etot⟩ss

kbT

)
. (35)

The unfolding transition is a relaxation process, which returns
the protein to the unfolded state. This process is considered
independent of the imposed signal [40] and is given by

ru = r0 exp

(
−Eu

kbT

)
, (36)

where Eu denotes the free-energy associated with the unfolded
protein state. Consequently, the rate of change in the protein
folding probability is given by

d

dt
pf (t) = −rupf (t) + rf (1− pf (t)). (37)

Here, pf (t) is the probability that the protein is in the folded
state at time t (the corresponding probability of the unfolded
state is given by pu(t) = 1−pf (t)). From (37), the steady-state
solution can be found as

pF =
rf

rf + ru
. (38)

Substituting (35) and (36) in (38) yields

pF =
1

1 + exp
(

∆E−⟨Etot⟩ss
kbT

) , (39)

where ∆E = Ef − Eu is the protein free-energy.
The state of a single protein can be regarded as a Bernoulli

random variable with a probability of success, pF . When
considering a system composed of n proteins, the random
number of folded proteins, nF , follows a binomial distribution.
Due to the large diversity of proteins seen in an intra-body
environment, the binomial distribution can be approximated
by a normal distribution with mean, µ = npF , and variance,
σ2 = npF (1 − pF ). Finally, we define protein population as
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the number of copies of a protein molecule in a cell. Hence,
the number of folded proteins of each protein population, i,
can be expressed as a normal distribution as follows

nF,i ∼ N
(
npF,i, npF,i(1− pF,i)

)
. (40)

V. THE IMPACT OF FADING ON THZ-INDUCED PROTEIN
INTERACTIONS

Fading refers to the attenuation of the THz nanoantenna
signal caused by the presence of RBCs. Furthermore, due to
the mobility of RBCs, fading varies over time. This variation
has implications for controlling the dynamics of the desired
protein population and places certain requirements on the
system parameters. To understand the impact of the channel on
the receiver, we need to determine how quickly the commu-
nication channel changes relative to the protein folding time.
Therefore, we use the coherence time, denoted as Tc, as a
metric to characterize the nature of the channel in the time
domain [41]. Tc is inversely proportional to the maximum
Doppler spread, fm. We have Tc ≈ 1

fm
, where fm is computed

using [41]
fm =

v

c
fc. (41)

Here, fc is the center frequency of the nanoantenna (in our
case it is the resonant frequency of the protein of interest), v
is the velocity of RBCs, and c is the speed of light.

Fast fading occurs when the channel impulse response
changes rapidly within the symbol duration Ts. In this case,
high Doppler spread is observed, where Tc ≪ Ts [41], and
Ts represents the protein folding time. Since fast fading is
characterized by the rapid fluctuations of the signal over small
distances, it is considered an ergodic process that allows
the use of average metrics for its assessment. Therefore, to
compute the probability of the protein in a folded state, we
use the form of the probability pF given in (39). Basically,
⟨Etot⟩ss in (39) represents the averaged energy, which captures
the incident wave randomness that is changing very fast.

On the other hand, slow fading arises when the channel
impulse response is considered roughly constant over the
period of use [41]. In slow fading, low Doppler spread is
observed, where Tc ≫ Ts. Slow fading is a long-term fading
effect that changes the mean value of the received signal. To
compute the probability of the protein in a folded state under
such conditions, we take the expectation of pF as

E[pF ] =

∫ ∞

0

1

1 + exp(∆E−Ei

kbT
)
g(Ei;α, β) dEi, (42)

where the instantaneous energy Ei follows a gamma distribu-
tion, g(Ei;α, β), stemming from the fact that Ei ∝ f2

o .
In (42), Ei = fo×∆x results from the interaction between

the nanoantenna force, fo, and the protein molecule, where
∆x corresponds to a conformational change in the protein
structure. From the relationship between fo, ∆x and the
protein stiffness k, we can write ∆x = fo/k. Finally, from
the vibrational frequency of the protein structure, we have
k = mω2

o [32]. The instantaneous energy therefore yields

Ei =
f2
o

mω2
o

, (43)

where f2
o is given in (19).

A. Selectivity in Fading Scenarios

Selectivity refers to the nanoantenna’s ability to induce
a conformational change in the desired protein population
without affecting the conformation of other untargeted proteins
in the system. It is a metric that assesses the controllability of
THz signals over protein networks. In our previous work [17],
we proposed the selectivity metric as

S(µd, µud) =
µd − µud

max(µd, µud)
, (44)

where µd = ndpF,d and µud = nunpF,ud are the means of
the desired and undesired protein populations, respectively.
The developed selectivity metric has several properties which
makes it a powerful tool for evaluating protein interactions in
the system as discussed in [17]. Most importantly, as the metric
relies on the stationary probability difference, it encompasses
both the system’s mechanical parameters and the energy stored
in the THz-stimulated protein.

Nevertheless, the presence of fading has an impact on the
system’s selectivity by potentially causing the reception of
a weak signal. This weak signal may lead to a temporary
disruption in the communication link between the nanoantenna
and the target protein due to a significant decrease in power.
This, in turn, affects the system’s ability to target the desired
protein population. Although fading in an intra-body scenario
is characterized by its unpredictability and stochastic nature,
our metric can still be optimized to ensure that the system
achieves the highest level of selectivity possible. Understand-
ing the interactions between proteins and components within
the bloodstream, and how these interactions influence disease
progression, can aid in identifying potential therapeutic targets.
By concentrating on proteins involved in specific pathways,
researchers can develop therapies that selectively modulate
processes associated with the disease.

In our model, the nanoantenna Tx power, Pt, and frequency,
ωa are the only system parameters that can be controlled. We,
therefore, formulate a joint optimization problem to maximize
the selectivity with respect to Pt and ωa. In a fast-fading
scenario, the optimization problem yields

max.
Pt,ωa

S(µd, µud)

subject to 0 ≤ pF,d ≤ 1

0 ≤ pF,ud ≤ 1.

(45)

The optimization problem is first solved by expressing pF in
terms of Pt and ωa. Then, using the fixed point iteration
method [42], we numerically solve the joint optimization
problem in (45), where the optimal values that maximize the
selectivity are retrieved.

B. Probability of Selectivity Outage

In the case of slow fading, the selectivity is given as

S(E[µd], E[µud]) =
E[µd]− E[µud]

max(E[µd], E[µud])
, (46)



8

where E[µ] = nE[pF ] and E[pF ] is solved using (42). The
optimization problem is formulated as

max.
Pt,ωa

S(E[µd], E[µud])

subject to 0 ≤ pF,d ≤ 1

0 ≤ pF,ud ≤ 1.

(47)

Similar to the previous case, (47) is numerically solved using
fixed point iteration and the optimal Pt and ωa are found.

It’s important to note that in conditions of slow fading, the
wireless channel is categorized as non-ergodic, meaning that
the capacity of the channel becomes a random variable [41].
In such scenarios, a measure of the channel’s quality is the
outage probability, which represents the likelihood of the
information rate falling below the required threshold rate. To
maintain acceptable communication performance, a minimum
signal level is necessary, ensuring that the received signal
maintains sufficient strength during “non-fade intervals”. How-
ever, if the signal level drops below this threshold, the system
will experience insufficient signal strength, resulting in what
is commonly referred to as an “outage.”

The concept of ergodicity is often employed in the context
of protein dynamics to describe the statistical properties of
conformational changes over time. However, certain protein
systems exhibit non-ergodic behavior, indicating that their
conformational dynamics cannot be easily sampled or de-
scribed by a single trajectory or ensemble of conformations.
Non-ergodicity and slow fading are related in the sense that
slow fading can lead to non-ergodic behavior in wireless
communication channels. To study slow fading in an intra-
body scenario, we define selectivity outage as a situation
where the selectivity falls below a certain threshold, i.e.,
S(E[µd], E[µud]) < γo. Selectivity can drop below the defined
threshold when either the desired protein population receives a
minimal amount of power, insufficient for folding the targeted
proteins, or when the system receives a substantial amount of
power, causing all proteins to fold. In both cases, we lose the
ability to target a specific protein.

In this context, we introduce the probability of selectivity
outage as the probability of attaining a selectivity below
the defined threshold, i.e., Pr(S(E[µd], E[µud]) < γo). A
trade-off must exist between the selectivity threshold and
the outage probability since the higher the threshold, the
higher the probability of selectivity outage. When an outage
occurs in the system, the nanoantenna must re-transmit the
signal. This not only results in unconstrained delays but also
sacrifices the system’s energy by consuming more power.
Different medical applications often require varying degrees
of selectivity depending on the specific goals and requirements
of the application. Therefore, the application must dictate
whether or not the system can sustain being in an outage.

The probability of selectivity outage serves as a metric
for assessing the quality of nanoantenna transmission in an
intra-body network under slow fading conditions. By setting
a threshold value, the best performance achievable by the
nanoantenna is to maintain a selectivity level equal to that
threshold. Reliable controllability is achieved when this thresh-
old is met; otherwise, an outage occurs.

TABLE II: Simulation Parameters

Parameters Value Ref.
Rhodopsin resonant frequency 1.36 THz [43]
Rhodopsin stiffness 3 N/m [44]
Rhodopsin mass 1.62× 10−24 kg -
Bacteriorhodopsin resonant frequency 1.13 THz [43]
Bacteriorhodopsin stiffness 1.9 N/m [44]
Bacteriorhodopsin mass 1.48× 10−24 kg -
Damping constant (γ̄) 0.3 THz [35]
Free energy (∆E) 6 kbT [45]
Tx Power (Pt) 35 µW -
Tx Gain (Gt) 1.5 (1.76 dBi) -
Protein radius (r) 5 nm -
Particle density (ρ) 1000 particles/mm3 -

VI. RESULTS

A. COMSOL Model

We constructed a physical system that replicates our intra-
body scenario using COMSOL Multiphysics®. For our analy-
sis, we utilized the simulation parameters provided in Table II.
Specifically, our model focuses on the transmission of an EM
wave from a nanoantenna to the protein population of interest
within a segment of a blood vessel. In our representation,
we employed the Electromagnetic Waves, Frequency domain
interface to depict the nanoantenna as a short dipole, which
is a realistic assumption for short-range communication be-
tween nanomachines [18]. We configured the nanoantenna’s
frequency to match the vibrational frequency of the target
protein, rhodopsin (i.e., 1.36 THz). The protein’s radius was
set at 5 nm, and we considered a population of 1000 proteins
arranged in a cylindrical shape. Furthermore, we incorporated
random particles that mimic RBCs into the field. These
particles have a radius of 4 µm and dielectric properties as
described in [46].

Fig. 3 illustrates the electric field strength received by the
targeted protein population at a distance of z = 500 µm,
ensuring that we are operating in the far-field. From the ob-
tained electric field values, we calculated the force impinging
on the protein particles using (19). Then, by sampling the
force realizations every 2 ms, we found the distribution of the
force that best fits the data based on a maximum likelihood
estimation approach.

Fig. 3: Electric field pattern in V/m for propagation at
1.36 THz.
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TABLE III: Fading scenarios in an intra-body environment.

Scenario Velocity of RBCs Channel Coherence Time
Fast Fading 200 mm/s Tc = 1 ms
Slow Fading 5 mm/s Tc = 44 ms

The objective of this work is to demonstrate the influence
of a channel composed of a large number of moving particles
on protein folding probability. This is accomplished by deter-
mining the values of both the steady-state energy, ⟨Etot⟩ss,
and the instantaneous energy, Ei, required to compute pF
in (39) and E[pF ] in (42), respectively. To create a dynamic
environment, we utilized the Particle Tracing for Fluid Flow
module in COMSOL. We varied the velocity of RBCs to
establish a time-varying channel within the range of 0-150
milliseconds (ms). Notably, according to the Protein Folding
Kinetics Database, the folding timescales of most proteins
are on the order of milliseconds, with a median of 5 ms for
two-state proteins [47]. Therefore, we set the protein folding
time in our system to Ts = 5 ms. Then, we calculated Tc as
summarized in Table III. It’s worth noting that the speed of
RBCs reaches approximately 2-3 mm/s in brain capillaries, 10
mm/s in brain arterioles, and exceeds 20-30 mm/s in larger pial
vessels. Standard scanning systems typically provide scanning
velocities ranging from 5 to 20 mm/s [48].

Fig. 4 shows the received power in dB versus time for
a single EM signal realization under fast and slow fading
scenarios. These scenarios are achieved by varying the velocity
of RBCs. In fact, every time the nanoantenna transmits an EM
signal, the strength of the impinging electric field is computed,
and accordingly, the received power is calculated using (15).

Fig. 4: Power received in dB by the protein under fast and
slow fading conditions.

In addition, Figs. 5(a) and 5(b) illustrate the mean number
of folded proteins (µ = npF ) versus time for the fast and
slow fading scenarios, where n = 1000. Under fast fading,
we can notice from Fig. 5(a) the impact of the fluctuating
channel response on the protein folding probability. Since fast
fading is an ergodic process, we are interested in the time-
average value, represented by the orange line in Fig. 5(a).
Consequently, from Fig. 5(a), the average number of proteins
in the folded state is µ = npF = 772.

In Fig. 5(b), we observe the effect of slow fading, character-
ized by a roughly constant amplitude and phase on the number
of proteins in the folded state. In this case, the number of
folded proteins averaged over time is µ = nE[pF ] = 848. The
lower number of folded proteins observed under fast fading
conditions, compared to the slow fading case, can be attributed
biologically to the velocity of RBCs. The high velocity limits
the cellular volume accessible to a protein polypeptide chain,
thereby affecting its ability to attain a folded state. While
one might argue that the velocity of RBCs in the fast fading
example is high compared to real-world scenarios, different
combinations of RBC and protein timescales can lead to fast-
fading scenarios. Therefore, the provided example offers a
clear visualization of its impact.

While the mean number of folded proteins is higher in the
slow fading case, there is a noticeable drop in the number
of folded proteins between 110 and 150 ms. This decline
can be attributed to the fact that slow fading may affect the
protein’s configuration, causing it to become trapped in an
intermediate state within a restricted region of phase space. In
other words, the protein may become stuck in an intermediate
state, preventing it from achieving a fully folded conformation.
In such a scenario, the system would require the nanoantenna
to re-transmit the signal, resulting in uncontrolled delays
and stringent power requirements on the link between the
nanoantenna and the targeted protein population.

(a)

(b)

Fig. 5: Mean number of proteins in a folded state (a) under
fast fading scenario. (b) under slow fading scenario.
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B. Selectivity under Fading Scenarios

To further investigate this phenomenon, we examine the
impact of slow fading on the system’s selectivity. Therefore,
we introduce another protein population, bacteriorhodopsin,
in the vicinity of the targeted rhodopsin population to simu-
late a realistic protein network. The vibrational frequency of
bacteriorhodopsin and its mechanical properties can be found
in Table II. To calculate the selectivity, we use (44), where
we initially compare the mean number of folded proteins
under slow fading conditions for both populations within the
network, as illustrated in Fig. 6(a). It’s worth noting that the
nanoantenna frequency is tuned to the vibrational frequency
of the rhodopsin (targeted) protein population.

Fig. 6(b) demonstrates the selectivity of protein rhodopsin,
with the orange line representing the threshold we have set
for this example, γo = 0.6. As expected, we can clearly
observe a correlation between the performance in Fig. 6(a) and
Fig. 6(b). In cases where the mean number of folded proteins
of both populations is comparable, the selectivity is low, while
in cases where the the mean number of folded proteins in both
populations differs significantly, the selectivity is high.

(a)

(b)

Fig. 6: (a) Mean number of folded proteins of rhodopsin
(targeted) and bacteriorhodopsin. (b) Selectivity of rhodopsin
(γo= 0.6).

Fig. 7 displays the outage status, i.e. whether we have an
outage in the selectivity results provided in Fig. 6(b) or not,
versus the window number. To create Fig. 7, we averaged the
selectivity values over windows of size Ts = 5 ms. Since our

TABLE IV: Outage state vs Window Number

Threshold Number of Windows
with Outage

Probability of Selectivity
Outage

0.2 2 0.067
0.4 3 0.1
0.6 9 0.3
0.8 20 0.67

simulations span 150 ms, this results in 30 windows. We then
determined, based on the assigned threshold, whether each
window experienced an outage by checking if the selectivity
value fell below the threshold.

For γo = 0.6, we observed that out of the 30 windows,
9 windows experienced an outage. This results in a selec-
tivity outage probability of 0.3, indicating a 30% chance
that the system cannot differentiate between the rhodopsin
and bacteriorhodopsin populations. Essentially, there exists a
trade-off between the selectivity threshold set for the system
and the potential for outages. A higher threshold leads to
higher selectivity values but increases the likelihood of system
outages, which imposes additional power constraints.

Fig. 7: Outage versus window number when γo = 0.6. A value
of zero indicates an outage, while a value of 1 indicates no
outage.

C. Selectivity Optimization Results

Experimental design, careful optimization, and validation
are essential to ensure selectivity and minimize off-target
effects. In fact, to design a system with maximum selectivity,
we must determine the optimal values for both the nanoan-
tenna transmit power and the operating frequency, as these are
the controllable parameters. Therefore, we formulate a joint
optimization problem for these parameters, as explained in
Sec. V, for both fast and slow fading scenarios.

1) Fast Fading: Fig. 8(a) provides a pseudo-color plot for
the selectivity of the targeted rhodopsin population in the
presence of that of bacteriorhodopsin. The plot discriminates
regions that should be targeted (given in yellow) from those
that should be avoided (given in blue) in order to activate
the correct protein population. From Fig. 8(a), we conclude
that by tuning the nanoantenna to the resonant frequency
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(a)

(b)

Fig. 8: (a) Selectivity of rhodopsin (a) under fast fading
scenario. (b) under slow fading scenario.

of rhodopsin, i.e. 1.36 THz, and to a Tx power of 30 µW,
maximum selectivity is achieved.

2) Slow Fading: Moving to the slow fading scenario,
Fig. 8(b) demonstrates a pseudo-color plot for the selectivity
of the targeted rhodopsin population. We notice here that in
comparison to Fig. 8(a), the system needs higher Tx power,
around 38 µW, to achieve a maximum selectivity score. This
power is required to overcome the possible outages in the
system that may occur in occasions of deep fades. Through the
presented results, one can determine the amount of power that
will prevent outages and concurrently prevent the activation
of the untargeted protein population. Hence, when designing
biosensors for targeted therapy applications, engineers must
carefully take into account all these tuning parameters.

It should be noted that operating nanonetworks at power
levels in the microwatt range enables the creation of energy-
efficient, miniaturized devices with improved heat dissipation
capabilities. This approach aligns with the unique requirements
and constraints associated with nanoscale communication and
integration, making it feasible to deploy nanonetworks in var-
ious applications, ranging from healthcare and environmental
monitoring to industrial and scientific domains.

VII. CONCLUSIONS

In this work, we analyze the influence of fading on THz-
induced protein interactions. We investigate how the atten-

uation in the transmitted THz signal affects the ability to
achieve selective protein folding behaviors in the desired
protein population. Under fast fading channel conditions, we
observed that the protein folding probability is lower than in
the case of slow fading, primarily due to the variability in the
channel response

While it’s easier to track the changes imposed by the
channel under slow fading conditions, the system may still
experience outages, resulting in significant delays in receiving
the nanoantenna signal and placing additional demands on the
power requirements of the system.

Through the examination of various fading scenarios
achieved by varying the velocity of RBCs, we illustrate the
influence of the cellular environment on protein dynamics.
This analysis can provide insights into the effects of molecular
crowding and hindered diffusion on protein folding. By taking
into account channel variability, we can design biosensors and
nanoantennas that align with medical requirements and fully
harness the potential of the intra-body communication channel.

However, one of the current limitations of the developed
model is the absence of experimental validation. While the-
oretically, THz antennas could be miniaturized due to the
short wavelength of THz-EM waves, current systems often
rely on larger and more obtrusive equipment, such as tabletop
microscopes and spectroscopy systems. These factors create
barriers that constrain the potential and possibilities of this
emerging field. Research efforts are therefore needed to ad-
dress these challenges and enhance the feasibility of intra-body
THz experiments for clinical applications. Advancements in
nanotechnology offer a promising solution, as they provide
diverse opportunities to enhance the performance, sensitivity,
and applicability of THz experiments across various fields.

REFERENCES

[1] H. Elayan, A. Eckford, and R. Adve, “The Impact of Slow Fading on
THz-Induced Protein Interactions,” (accepted for publication in the IEEE
International Conference on Communications, 2023).

[2] I. F. Akyildiz and J. M. Jornet, “The internet of nano-things,” IEEE
Wireless Communications, vol. 17, no. 6, pp. 58–63, 2010.

[3] J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-
antenna for terahertz band communication in nanonetworks,” IEEE
Journal on selected areas in communications, vol. 31, no. 12, pp. 685–
694, 2013.

[4] K. Yang et al., “Numerical analysis and characterization of THz propa-
gation channel for body-centric nano-communications,” IEEE Transac-
tions on Terahertz Science and technology, vol. 5, no. 3, pp. 419–426,
2015.

[5] H. Elayan, R. M. Shubair, J. M. Jornet, and P. Johari, “Terahertz channel
model and link budget analysis for intrabody nanoscale communication,”
IEEE transactions on nanobioscience, vol. 16, no. 6, pp. 491–503, 2017.

[6] R. Indrawijaya and T. Kürner, “Simulation of terahertz intrabody wire-
less nano sensor networks in the presence of noise and interference,”
12th European Conference on Antennas and Propagation, 2018.

[7] Q. H. Abbasi et al., “Terahertz channel characterization inside the
human skin for nano-scale body-centric networks,” IEEE Transactions
on Terahertz Science and Technology, vol. 6, no. 3, pp. 427–434, 2016.

[8] A. Sangwan et al., “Increasing the communication distance between
nano-biosensing implants and wearable devices,” in 2018 IEEE 19th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). IEEE, 2018, pp. 1–5.

[9] J. M. Jornet and A. Sangwan, “Nanonetworking in the Terahertz Band
and Beyond,” IEEE Nanotechnology Magazine, 2023.

[10] L. Wei et al., “Application of terahertz spectroscopy in biomolecule
detection,” Frontiers in Laboratory Medicine, vol. 2, no. 4, pp. 127–
133, 2018.



12

[11] A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure
and function,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 14, no. 1, pp. 180–190, 2008.

[12] A. M. Stadler et al., “Picosecond to nanosecond dynamics provide a
source of conformational entropy for protein folding,” Physical Chem-
istry Chemical Physics, vol. 18, no. 31, pp. 21 527–21 538, 2016.

[13] W. A. Eaton, P. A. Thompson, C.-K. Chan, S. J. Hage, and J. Hofrichter,
“Fast events in protein folding,” Structure, vol. 4, no. 10, pp. 1133–1139,
1996.

[14] K. Dave and M. Gruebele, “Fast-folding proteins under stress,” Cellular
and Molecular Life Sciences, vol. 72, no. 22, pp. 4273–4285, 2015.

[15] H. Elayan, A. Eckford, and R. Adve, “Toward establishing molecular
interfaces using terahertz radiation,” in 2022 IEEE 16th International
Symposium on Medical Information and Communication Technology
(ISMICT). IEEE, 2022, pp. 1–6.

[16] H. Elayan, A. W. Eckford, and R. S. Adve, “Information rates of
controlled protein interactions using terahertz communication,” IEEE
Transactions on NanoBioscience, vol. 20, no. 1, pp. 9–19, 2020.

[17] ——, “Selectivity of protein interactions stimulated by Terahertz sig-
nals,” IEEE Transactions on NanoBioscience, 2022.

[18] P. Johari and J. M. Jornet, “Nanoscale optical wireless channel model for
intra-body communications: Geometrical, time, and frequency domain
analyses,” IEEE Transactions on Communications, vol. 66, no. 4, pp.
1579–1593, 2017.

[19] A. Sangwan and J. M. Jornet, “Beamforming optical antenna arrays
for nano-bio sensing and actuation applications,” Nano Communication
Networks, vol. 29, p. 100363, 2021.

[20] D. K. Cheng et al., Field and wave electromagnetics. Pearson Education
India, 1989.

[21] Y.-S. Lee, Principles of Terahertz Science and Technology. Springer
Science & Business Media, 2009, vol. 170.

[22] D. Kim, M. Sonker, and A. Ros, “Dielectrophoresis: From molecular
to micrometer-scale analytes,” Analytical chemistry, vol. 91, no. 1, pp.
277–295, 2018.

[23] J. Knab, J.-Y. Chen, and A. Markelz, “Hydration dependence of confor-
mational dielectric relaxation of lysozyme,” Biophysical journal, vol. 90,
no. 7, pp. 2576–2581, 2006.

[24] A. Ishimaru, Wave propagation and scattering in random media. Aca-
demic press New York, 1978, vol. 2.

[25] C. Enjamio, E. Vilar, and F. Perez-Fontan, “Rain scatter interference in
mm-wave broadband fixed wireless access networks caused by a 2-D
dynamic rain environment,” IEEE transactions on wireless communica-
tions, vol. 6, no. 7, pp. 2497–2507, 2007.

[26] A. Holt, R. McGuinness, D. Charlton, P. Thompson, and M. Mehler,
“The development of a model to estimate the bistatic transmission
loss associated with intersystem interference,” IEEE transactions on
antennas and propagation, vol. 41, no. 10, pp. 1422–1431, 1993.

[27] H. Elayan, A. W. Eckford, and R. S. Adve, “Terahertz Intra-body
Propagation through LOS and NLOS Links,” in ICC 2022 - IEEE
International Conference on Communications, 2022, pp. 1716–1721.

[28] C. E. McLaren, G. M. Brittenham, and V. Hasselblad, “Analysis of the
volume of red blood cells: application of the expectation-maximization
algorithm to grouped data from the doubly-truncated lognormal distri-
bution,” Biometrics, pp. 143–158, 1986.

[29] J. McCammon, “Protein dynamics,” Reports on Progress in Physics,
vol. 47, no. 1, p. 1, 1984.

[30] L. Cai, N. Friedman, and X. S. Xie, “Stochastic protein expression in
individual cells at the single molecule level,” Nature, vol. 440, no. 7082,
pp. 358–362, 2006.

[31] V. Balakrishnan, Elements of nonequilibrium statistical mechanics. Ane
Books, 2008, vol. 3.

[32] A. Carpinteri et al., “Terahertz mechanical vibrations in lysozyme:
Raman spectroscopy vs modal analysis,” Journal of Molecular Structure,
vol. 1139, pp. 222–230, 2017.

[33] M. M. Tirion, “Large amplitude elastic motions in proteins from a single-
parameter, atomic analysis,” Physical review letters, vol. 77, no. 9, p.
1905, 1996.

[34] F. W. Byron and R. W. Fuller, Mathematics of classical and quantum
physics. Courier Corporation, 2012.

[35] D. A. Turton et al., “Terahertz underdamped vibrational motion governs
protein-ligand binding in solution,” Nature communications, vol. 5,
no. 1, pp. 1–6, 2014.

[36] G. Acbas et al., “Optical measurements of long-range protein vibra-
tions,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

[37] H. Elayan, A. W. Eckford, and R. Adve, “Enabling Protein Interactions
Using Terahertz Signals for Intra-body Communication,” in Proceedings

of the 19th ACM Conference on Embedded Networked Sensor Systems,
2021, pp. 603–609.

[38] A. V. Finkelstein et al., “Why do protein architectures have Boltzmann-
like statistics?” Proteins: Structure, Function, and Bioinformatics,
vol. 23, no. 2, pp. 142–150, 1995.

[39] F. Sachs and H. Lecar, “Stochastic models for mechanical transduction,”
Biophysical journal, vol. 59, no. 5, pp. 1143–1145, 1991.

[40] C. B. Anfinsen, “Principles that govern the folding of protein chains,”
Science, vol. 181, no. 4096, pp. 223–230, 1973.

[41] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[42] A. Cegielski, Iterative methods for fixed point problems in Hilbert
spaces. Springer, 2012, vol. 2057.

[43] R. Balu et al., “Terahertz spectroscopy of bacteriorhodopsin and
rhodopsin: similarities and differences,” Biophysical journal, vol. 94,
no. 8, pp. 3217–3226, 2008.

[44] K. T. Sapra, P. S.-H. Park, K. Palczewski, and D. J. Muller, “Mechanical
Properties of Bovine Rhodopsin and Bacteriorhodopsin: Possible Roles
in Folding and Function,” Langmuir, vol. 24, no. 4, pp. 1330–1337,
2008.

[45] C. J. Benham et al., Mathematics of DNA structure, function and
interactions. Springer Science & Business Media, 2009, vol. 150.

[46] C. B. Reid et al., “Terahertz time-domain spectroscopy of human blood,”
IEEE journal of biomedical and health informatics, vol. 17, no. 4, pp.
774–778, 2013.

[47] B. Manavalan, K. Kuwajima, and J. Lee, “PFDB: a standardized protein
folding database with temperature correction,” Scientific reports, vol. 9,
no. 1, pp. 1–9, 2019.

[48] E. Chaigneau et al., “Unbiased analysis method for measurement of red
blood cell size and velocity with laser scanning microscopy,” Frontiers
in neuroscience, p. 644, 2019.


