
TCP-DCR: A Novel Protocol
for Tolerating Wireless Channel Errors

Sumitha Bhandarkar, Student Member, IEEE Computer Society, Nauzad Erach Sadry,

A.L. Narasimha Reddy, Senior Member, IEEE Computer Society, and

Nitin H. Vaidya, Senior Member, IEEE Computer Society

Abstract—This paper presents TCP-DCR, a set of simple modifications to the TCP protocol to improve its robustness to channel

errors in wireless networks. TCP-DCR is based on the simple idea of allowing the link-level mechanism to recover the packets lost, due

to channel errors, thereby limiting the response of the transport protocol to mostly congestion losses. This is done by delaying the

triggering of congestion response algorithms for a small bounded period of time � to allow the link-level retransmissions to recover the

loss due to channel errors. If at the end of the delay � the packet is not recovered, then it is treated as a packet lost due to congestion.

We analyze TCP-DCR to show that the delay in congestion response does not impact the fairness towards the native implementations

of TCP that respond to congestion immediately after receiving three dupacks. We evaluate TCP-DCR through simulations to show that

it offers significantly better performance when channel errors contribute more towards packet losses in the network with no or minimal

impact on the performance when congestion is the primary cause for packet loss. We also present an analysis to show that protocol

evaluation in the wireless networks is significantly influenced by the number of flows in the network.

Index Terms—Wireless network, channel errors, TCP, delayed congestion response, local recovery.

�

1 INTRODUCTION

THE popularity of wireless networking has increased
dramatically over the past few years. However, inte-

grating high delay, high channel error wireless networks
with existing wired networks still poses significant chal-
lenges to the research community. Incorporating end-to-end
congestion control for wireless networks is one of the
primary concerns. Considering that TCP is the most
prevalent congestion control protocol used on the wired
Internet, compatibility issues would necessitate its use on
wireless networks as well. But, TCP was designed to work
well in networks with low channel error rates and when
used in wireless networks which are generally character-
ized by larger channel error rates, the losses due to channel
errors also get treated as congestion losses, resulting in
suboptimal performance [1].

When both congestion losses and losses due to the

transmission errors can occur, a simple solution would be

to let the link-layer mechanisms recover the losses due to

transmission errors and the transport protocol to recover the

losses due to congestion. In order to maintain the segrega-

tion between the different layers of the TCP/IP stack, the

link layer should not be required to know the semantics of

the transport level protocol and the transport layer should
not expect explicit notification about the type of the loss from
the network layer. Based on these ideas and the additional
requirement that the solution should be simple and
incrementally deployable, in this paper, we propose Delayed
Congestion Response TCP protocol (TCP-DCR).

TCP-DCR works in conjunction with a simple link-level
protocol to provide the benefits of standard TCP imple-
mentations without the associated degradation in perfor-
mance due to channel errors in wireless networks. In TCP-
DCR, the response to the receipt of duplicate acknowl-
edgements (henceforth referred as dupacks) is delayed by a
short bounded period � . If the packet is recovered by link-
level retransmission before the end of the delay period �
(indicated by the receipt of a cumulative acknowledgement
acknowledging the lost packet), TCP-DCR proceeds as if the
packet loss never occurred. However, if the packet is not
recovered by link-level retransmission by the end of the
delay period, TCP-DCR protocol triggers the congestion
recovery algorithms of fast retransmission and recovery. By
doing this, we effectively change the paradigm of TCP that
all losses are due to congestion to the paradigm that all losses
are due to channel errors for a period of � . It may be noted here
that no changes need to be made for the TCP at the receiver
and base stations are not required to maintain any TCP-
related state information.

The rest of the paper is organized as follows: In Section 2,
we take a brief look at some of the existing solutions to
improve performance of TCP over wireless networks. In
Section 3, we provide the detailed analysis and discussion
of TCP-DCR. In Section 4, we present an evaluation of the
TCP-DCR protocol using simulations. Section 5 wraps up
the paper by taking a look at the conclusions and open
issues regarding TCP-DCR.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005 517

. S. Bhandarkar and A.L.N. Reddy are with the Department of Electrical
Engineering, Texas A & M University, College Station, TX 77843-3128.
E-mail: {sumitha, reddy}@ee.tamu.edu.

. N.E. Sadry is with Z-Force Incorporated, Laguna Hills, CA 92637.
E-mail: nauzads@cs.tamu.edu.

. N.H. Vaidya is with the Department of Electrical and Computer
Engineering, and Coordinated Science Laboratory, University of Illinois,
Urbana-Champaign, IL 61801. E-mail: nhv@uiuc.edu.

Manuscript received 20 Feb. 2003; revised 28 Oct. 2003; accepted 16 Feb.
2004; published online 27 July 2005.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0021-0203.

1536-1233/05/$20.00 � 2005 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

2 RELATED WORK

Over the past few years, several solutions have been
proposed to improve the performance of TCP over wireless
networks. These solutions fall in one of the following broad
categories: split connection approaches, link-layer schemes,
explicit loss notification approaches, receiver-based ap-
proaches, and modifications to TCP. In split connection
approaches, the connection between the sender and receiver
is split into two separate connections, one between the fixed
sender and the base station and the other between the base
station and the mobile receiver. The losses that are not
related to congestion are recovered by the connection
between the base station and the mobile host and, hence,
hidden from the fixed sender. I-TCP [2], MTCP [3], M-TCP
[4], and METP [5] are examples of this approach. Some of
these approaches do not maintain the end-to-end semantics
of TCP. These protocols may require state to be maintained
and packets to be buffered at the base station.

In the link-layer schemes, the losses due to transmission
error are recovered locally by the link layer. Such schemes
can be purely local such as [8] or aware of the semantics of
the TCP protocol such as [6], [7].

The explicit loss notification approaches like ELN [9],
ECN [10] and ETEN [11] provide the TCP sender with
explicit notification that a loss has occurred. The sender can
then decouple congestion control from retransmission to
recover the packets lost, based on the type of notification.
These schemes require that the receivers/network routers
be able to distinguish the channel errors from congestion
losses and be capable of marking the acknowledgements
with appropriate notification. The senders then respond to
the notification. Such approaches require modifications to
network infrastructure, the receivers, and the senders.

WTCP for WWANs [12] is a receiver-based approach
where receiver computes the desired sending rate using
rate control algorithm and notifies the sender of this rate
using the acknowledgements. The receiver has to do
considerable processing to compute the statistical informa-
tion regarding losses and observed RTT. Another receiver-
based approach is the Delayed Dupack scheme [13] which
closely imitates the snoop protocol [6] at the receiver, so that
the link-level scheme need not be TCP-aware. In this
scheme, the third and subsequent dupacks are delayed for a
bounded period of time to allow the link-layer time to
recover the packet. If the packet is recovered within the
delay period, the dupacks are not sent, otherwise, all the
dupacks are released.

It has also been shown that, by using TCP-SACK [14] or
TCP-Westwood [15] instead of TCP Reno, performance can
be improved. However, the performance improvement
gained by using TCP-SACK protocol, is due to its ability
to recover from multiple losses in one RTT and does not
necessarily indicate robustness to channel errors. TCP-
Westwood (referred henceforth as TCPW) aims at distin-
guishing the losses due to congestion in the network from
other random losses. In TCPW, a rate estimator that
estimates the fair rate by sampling and exponentially
filtering the acknowledgements dictates the window reduc-
tion. TCPW algorithm has been shown to perform better
than TCP Reno when the transmission loss rate is large. In

this paper, we advocate the use of TCP-DCR modifications
with the TCP-SACK flavor. The simplicity of this approach,
in our opinion, makes it a far more compelling solution than
other TCP-based solutions or non-TCP-based solutions for
improving the robustness of TCP to channel errors in the
wireless networks.

3 DISCUSSION

In this section, we provide a detailed description for the
Delayed Congestion Response TCP (TCP-DCR) modifica-
tions. Traditional implementations of TCP assume that
packet losses are primarily due to congestion in the
network. As a result, when a packet loss is indicated either
by the receipt of three DUPACKs or a time-out of the
retransmission timer, it embarks on congestion control and
packet recovery. This may not be appropriate in a wireless
network, where a significant amount of the losses in the
network could be due to channel errors. The TCP-DCR
modifications aim to remedy this by changing the time at
which the fast retransmit/recovery algorithms are triggered.
The receipt of dupacks is assumed to be caused by channel
errors, for a bounded delay period � . If the packet loss is
indeed due to channel errors and the link layer supports
local recovery, then the packet is recovered by the link-level
retransmission, and our presumption is correct. However, if
by the end of the delay period, the packet is still not
recovered, the presumption that the packet loss is due to
channel errors is abandoned and the packet is recovered
using the fast retransmission and recovery algorithms.

The delay in responding to congestion determines the
performance of TCP-DCR and the choice of � is a critical
aspect for the TCP-DCR modifications. In this section, we
look at the behavior of TCP-DCR under different types of
losses, the choice of � , the implementation details, assump-
tions about the link-level retransmission scheme, and the
analysis of the steady state bandwidth for TCP-DCR.

3.1 Behavior of TCP-DCR

Fig. 1 shows the graphical representation of TCP-DCR
when a) the loss of a packet is due to transmission errors
and b) the loss of a packet is due to congestion. The
TCP-DCR sender sends packets 1 through 5. However, due
to channel error, say, packet 2 is lost. This is communicated
by the link layer to the base station, say, by a negative
acknowledgement (NACK). The base station immediately
retransmits packet 2. But, before packet 2 is recovered by
link-level retransmission, the TCP receiver sends dupacks
for packet 2. In the case of the traditional implementations
of TCP, three dupacks would trigger an immediate
retransmission of packet 2 at the TCP sender, followed by
an unnecessary window reduction. However, in the case of
TCP-DCR, a delayed response timer of one RTT is started at
the sender when the first dupack is received. During this
delay period, packet 2 is recovered via link-level retrans-
mission causing the TCP receiver to generate a cumulative
acknowledgement acknowledging packet 2. On the receipt
of this acknowledgement, the TCP-DCR sender cancels the
delayed response timer, and the unnecessary retransmis-
sion of packet 2 and reduction in congestion window is
avoided. Also, TCP-DCR sends one new packet on the

518 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

receipt of each dupack, if allowed by the congestion
window, similar to the proposed standard “Limited
Transmit Algorithm” [25]. This ensures that, during the
delay � , the sending rate of the TCP-DCR is the same as it
was when the first dupack arrived.

In the case of a congestion loss, the packet cannot be
recovered through link-level retransmission. Upon the
receipt of the first dupack, the delayed response timer is
started. However, since the packet is dropped by an
intermediate router due to congestion, a cumulative
acknowledgement for the lost packet is not received. When
the timer expires, packet 2 is retransmitted and the
congestion window is reduced to half. An important fact
to remember here is that the delay of � does not cause the
TCP-DCR sender to dramatically oversend packets because
the protocol is still ACK-clocked. That is, a new packet is
sent only upon the receipt of a dupack and the sending rate
during the delay period is atmost the sending rate when the
first dupack arrived.

3.2 Choice of �

It is clear from the discussion above that the choice of the
delay � determines the performance of TCP-DCR. Too large
a delay would mean that the protocol responds too
sluggishly to congestion in the network. Too small a delay
would not allow the link layer sufficient time to recover
from the losses due to channel errors. Hence, choosing the
correct value for the delay is important. It is essentially a
trade off between unnecessarily inferring congestion and
unnecessarily waiting for a long time before retransmitting
a lost packet. In this section, we provide guidelines for
choosing reasonable bounds on the delay to make it useful,
without adversely modifying the TCP behavior. Note that
the current practice of waiting for three dupacks at the
sender is merely a heuristic.

Fig. 2 shows a general scenario where the TCP receiver is
connected to a base station over a wireless link. The wired
path between the base station and the TCP sender could
consist of several hops, but would not affect the discussion
here and so is shown as a single hop. The round-trip time
between the base station and wireless link is indicated by
rtt and the end-to-end round-trip time between the TCP
sender and the TCP receiver is indicated by RTT .

In the above scenario, if we ignore ambient delays (e.g.,
interpacket delay, queuing delay, etc.), a packet sent by the
TCP sender at some time t0 reaches the base station at t0þ
ðRTT=2� rtt=2Þ and the receiver at time t0þRTT=2.
Suppose a packet k sent at time t0 is lost on the wireless
link due to channel errors. Then, at t0þRTT=2þ rtt=2, the
base station receives indication that the packet k is lost. If it
immediately retransmits the packet, then the packet k is
recovered at the receiver at time t0þRTT=2þ rtt. The
sender receives an acknowledgement for the packet k at
t0þRTT=2þ rttþRTT=2. Hence, the sender would have
to delay the congestion response by at least rtt time units
after receiving three dupacks, to allow the link layer to
recover the packet. In practice, the interpacket delays are
nonzero and the TCP sender may not know the value of rtt.
Hence, a simple solution would be to set the lower bound
on the delay in congestion response to one RTT .

The TCP protocol uses two mechanisms for identifying
congestion in the network—the receipt of three dupacks
and the retransmission timeout (RTO). The receipt of three
dupacks is considered to be an indication of mild conges-
tion in the network and, hence, the response to it is the
triggering of fast retransmission/recovery algorithms. An
RTO, on the other hand, is treated as an indication of severe
congestion in the network and, so in response to it, the
congestion window is reset to 1 and the window evolution
starts over with a slowstart. This is an extremely expensive
operation. The choice of � should be such that unnecessary
retransmission timeouts are avoided. Thus, the upper
bound on the delay � is imposed by the retransmission
timer of TCP. The RTO is usually set to RTT + 4 times the
measured variance in RTT. The standard recommends a
minimum of 1 second for the RTO, but many TCP
implementations have a much smaller minimum, e.g.,
100 milliseconds. A choice of one RTT or less for the delay
� can ensure that RTO can be avoided. Thus, the upper limit
on the value of � is one RTT.

Based on the discussion above, we conclude that a choice
of waiting for one RTT after the first dupack before
responding to congestion is reasonable. By setting the delay

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 519

Fig. 1. Behavior of TCP-DCR.

Fig. 2. Analysis of TCP-DCR with no congestion losses.

to one RTT, rather than a fixed value, we also provide
inherent robustness to fluctuations in the queuing delays
ensuring that we do not get into RTO timeout even during
sudden changes in the network load.

3.3 Implementation Details

The TCP-DCR modifications need to be applied only to the
sender. The receiver remains unmodified. The congestion
response is delayed only during the congestion avoidance
phase and, hence, does not modify the behavior during the
slow start phase. During the congestion response delay, the
congestion window continues to evolve as indicated by the
congestion avoidance algorithm (additive increase). How-
ever, only one new packet is transmitted in response to each
dupack received. This is similar to the proposed standard
limited transmit algorithm [25]. This ensures that TCP-DCR
remains ack-clocked during the congestion response delay
period and a new packet is put on the network only when
indication is received that one of the previously sent packets
has left the network. Thus, the sending rate of the TCP-DCR
sender during � remains at best, the same as when the first
dupack was received.

If the congestion response delay timer expires, the fast
retransmit/recovery algorithms are triggered. The ssthresh
and the congestion window are set to half the current value
of the congestion window just as it would be in a traditional
implementation of TCP.

The sender can implement the delay either by using a
timer or by modifying the threshold on the number of
dupacks to be received before triggering the congestion
recovery algorithms (dupthresh). The timer-based imple-
mentation is quite straightforward, but depends on the
clock granularity. In the dupack-based delay implementa-
tion, the sender could delay responding to congestion for a
window of packets, with the window corresponding to the
delay required. Thus, when � is chosen to be one RTT, the
sender would wait for the receipt of W dupacks, before
responding to congestion, where W is the sending window
when the first dupack is received. The implementation of
the delay should take care that a faulty implementation
does not end up resulting in an RTO. So, for the timer
implementation, we suggest that the timer be set to one RTT
as indicated by the smoothed_rtt estimate since the RTO
estimate is computed based on the smoothed RTT. In case of
the dupack-based implementation, the number of dupacks
correspond to the estimate of current_instantaneous_rtt and,
so, we suggest that the new value for dupthresh be scaled by
the factor ðsmoothed rttÞ=ðcurrent instantaneous rttÞ.

The TCP-DCR modifications work with most flavors of
the TCP protocol. However, in this paper, we advocate the
use of TCP-DCR with TCP-SACK to ensure that the
performance can be maintained high even under the
conditions of multiple losses per round-trip time. When
used with TCP-SACK, the only thing modified by TCP-DCR
is the time at which the fast retransmit/recovery algorithm is
triggered in response to dupacks generated by the first loss
within a window of packets. All subsequent losses within
the same window (irrespective of whether they are due to
congestion or channel errors) are handled in exactly the
same way as TCP-SACK would in the absence of TCP-DCR
modifications. If the receiver is not SACK-capable, however,

then the sender will have to use TCP-DCRwith other flavors
such as NewReno. If several packets are lost in one RTT, then
the number of dupacks being received is less and, because of
the ack-clocked nature of the sender, it implicitly forces the
sender to reduce its sending rate.

Use of delayed_acks will not intervene with the
TCP-DCR modifications, provided that the implementation
of delayed acks follow the guidelines in [24] that the
dupacks (or SACKs) are not delayed.

3.4 Receiver Buffer Requirement When TCP-DCR Is
Used

When TCP-DCR is used, the receiver will need to have
additional buffer space to accommodate the extra packets
corresponding to the delay � , when a packet is lost due to
congestion. Having these extra buffers allows TCP-DCR to
achieve the best performance. However, if the buffers are
not available, it does not degrade the performance
drastically, but the maximum performance improvement
is not achieved. This is because, apart from congestion
control, TCP also provides flow control such that a faster
sender does not flood a slow receiver. The flow control is
achieved by using a receiver advertised window, such that
at any point, the TCP sender may not send more packets
than that allowed by minðcwnd; rwndÞ, where cwnd is the
congestion window and rwnd is the receiver advertised
window. When the buffer space is not available, the receiver
advertised window is small. As a result, during the delay �
even though the limited transmit and congestion window
allows a packet to be transmitted, it will not be sent if the
rwnd (and, hence, the receiver buffer) does not allow it.
However, the TCP sender can still delay the congestion
response by � allowing the local recovery mechanism to
recover from losses due to channel errors.

3.5 Link-Level Retransmission Scheme

The performance benefits to be gained from using the TCP-
DCR modifications depend heavily on the existence of an
underlying scheme for recovering the losses due to channel
errors. In this paper, we assume that the underlying
mechanism is a simple link-level retransmission scheme,
possibly NACK-based, that does not attempt in-order
delivery. Some of the recent research in the area of
networking for multimedia [22] also advocate the use of
link-level retransmission schemes that do not attempt in-
order delivery. Alternatively, FEC (Forward Error Correc-
tion) schemes could also be used.

A link-layer protocol that does not attempt in-order
delivery in combination with the TCP-DCR protocol is well
suited for satellite connections which are characterized by
large round-trip delays. The wireless link continues to
transmit subsequent packets while it waits for the ACK/
NACK for a particular packet, thereby keeping the pipe full.
If the packet is lost due to channel errors, then it is
retransmitted and recovered at the link level without
unnecessary reduction in sending rate at the transport level.

3.6 Analysis of Steady State Bandwidth

In this section, we present an analysis of the steady state
bandwidth of TCP-DCR. The analysis is conducted along
the similar lines of that presented in [19], [20]. This is an

520 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

approximate model aimed at capturing the behavior of
TCP-DCR in networks with mild congestion, such that the
protocol is mostly in the congestion avoidance state. When
the TCP-DCR modifications are applied to the TCP-SACK
variant, timeouts are largely avoided and this assumption is
close to the real behavior of the protocol. The time between
two successive packet losses is assumed to be deterministic.
Under these assumptions, the congestion window behavior
of TCP is cyclical and easier to analyze. This simplified
model for analyzing TCP-DCR provides us with the
relationship between the throughput and the packet loss
rate and allows us to compare the same with a standard
implementation of TCP under similar assumptions.

The congestion window for TCP-DCR can be repre-
sented using two functions f1ðtÞ and f2ðtÞ, where f1ðtÞ
determines the window behavior before the time tdrop when
a packet is dropped and f2ðtÞ determines the behavior after
the packet drop. The function f1ðtÞ is the additive increase
function just as in traditional flavors of TCP. The function
f2ðtÞ has two components. For the time period � between
tdrop and tdropþ� , f2ðtÞ continues with the additive increase
function. Immediately after the congestion delay timer
expires, i.e., at tdropþ�þ�, the congestion window is decreased
multiplicatively. These two functions can be represented as
follows:

f1ðtÞ : wtþRTT wt þ �;� > 0

f2ðtÞ : wtþRTT wt þ �;� > 0; tdrop < t < tdrop þ �

wtdropþ� � � wtdropþ��� ; � > 0; t ¼ tdropþ� ;

ð1Þ

where wt is the congestion window at time t, RTT is the
round-trip time, � is the delay in congestion response, and �
and � are constants. Fig. 3 shows the graphical representa-
tion of the congestion window against time.

Let TD be the time between two successive drops and let
ND be the number of packets sent by the protocol in this
time. From (1), using continuous fluid approximation and
linear interpolation of the window between wt and wtþRTT ,
we get

dw

dt
¼ �

RTT
) w ¼ �t

RTT
þ C: ð2Þ

As can be seen from Fig. 3, the parameters TD and ND

are independent from time shifting the curve along the

horizontal (time) axis. This implies that one can arrange it
such that a downward interpolation of the curve passes
through the origin. That is, without loss of generality and
with no change to TD and ND, one can set C ¼ 0. Thus,
we have,

w ¼ �t

RTT

) t ¼ wRTT

�
:

The throughput � (in packets per second) can be given
by the number of packets that can be sent between two
successive drops (ND) divided by the time interval between
two successive drops (TD). From Fig. 3, we have,

TD ¼ t02 � t01 ¼ t2 � t1

¼ RTT

�
w2 � w1ð Þ:

The window reduction is determined by the constant �.
Hence, we have w1 ¼ �w2. Substituting this in the above
equation, we get,

TD ¼ RTT

�
� w2 � 1� �ð Þ: ð3Þ

ND is the shaded area under the curve in Fig. 3. Hence,

ND ¼
Z t2

t1

wðtÞ dt

RTT
¼ 1

2�
� w2

2 � 1� �2
� �

: ð4Þ

However, since ND is the number of packets between
two consecutive drops, the steady state drop probability
p ¼ 1=ND.

1

p
¼ ND ¼

1

2�
� w2

2 � 1� �2
� �

:

Thus; w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�

p 1� �2ð Þ

s
:

ð5Þ

Substituting these values in the throughput equation,

� ¼

ffiffiffiffiffiffiffiffiffiffiffi
� 1þ�ð Þ
2 1��ð Þ

q
RTT

ffiffiffi
p
p : ð6Þ

It is evident from the above result that the throughput of
the TCP-DCR protocol is similar to that of a standard
implementation of TCP that responds to congestion signals
immediately after the receipt of three dupacks [19] and is
not affected by the choice of � . Even though, the TCP-DCR
protocol continues to increase the congestion window and
seems more aggressive than TCP during the delay period � ,
the window reduction at the end of RTT þ � results in a
larger decrease than the reduction at the end of RTT . So, the
overall characteristics of the protocol are similar to that of
TCP. However, in practice, increasing � arbitrarily is not a
recommended action, as this would delay relieving the
congestion in the network. Moreover, it would delay the
recovery of the lost packet by the TCP-DCR sender. Our
analysis only applies to the case where a single packet is lost
in a congestion window and an arbitrarily large � would
negate that assumption.

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 521

Fig. 3. Analysis of TCP-DCR with no channel errors.

Based on the analysis in Section 3.2, we hypothesize that
setting the delay in congestion response to one RTT would
be an appropriate choice. This would allow sufficient time
for the base station to recover the lost packet at the link
layer, while relieving the congestion quickly.

3.7 Sender-Based Delay versus Receiver-Based
Delay

Postponing the decision that the dupacks are caused by a
packet loss due to congestion can be done at either the
sender or the receiver. However, in the receiver-side
transport layer scheme such as [13], it is difficult to find
an optimal value for the delay since the receiver is unaware
of sender’s RTT estimates.

Also, when the delay is implemented at the receiver, be it
at the transport layer or at the link layer [8], the ack-clock at
the sender is lost. As a result, during the delay while the
losses due to channel error are recovered, the sender does
not send any packets and the flow remains idle.

In the case of small hand-held receivers, it may not be
feasible to perform complicated processing at the receiver.
In order to keep the receiver simple, it may be desirable to
leave the processing to the sender. In addition, if the
architecture is a client-server, by modifying one server, all
the clients could benefit from improved performance.

Traditionally, in the design of TCP algorithms, most of
the intelligence of flow and congestion control has been at
the sender. It would be in tune with this practice to include
the modifications at the sender.

4 SIMULATION RESULTS

In this section, we present the evaluation of the TCP-DCR
protocol based on simulations on the ns-2 simulator [21].
The TCP-DCR agent is implemented by modifying the TCP-
Sack1 agent in ns-2. Timer-based delay is used for delaying
the triggering of the fast retransmit/recovery algorithms.
The TCP clock resolution is set to 10 ms (similar to Linux
TCP). Upon receiving the first dupack, the congestion
response delay timer is set. If a cumulative acknowl-
edgement is received acknowledging the packet perceived
to be lost, then the timer is reset. If the timer expires and the
fast retransmit/recovery algorithms are triggered then, any
additional “holes” are treated in exactly the same way as
TCP-SACK would, irrespective of whether the holes are due
to channel errors or congestion losses. The TCPSink agent is
used for the receivers. The buffersize available at the
receivers (indicated by the receiver advertised window) is
set to at least twice the highest possible congestion window,
to ensure the maximum performance improvement during
the delay � . Link-level retransmission is simulated by
modifying the error model and the queue objects provided
by ns-2. The error model is exponential, and the corrupted
packets are buffered at the base station and retransmitted
after a delay corresponding to the rtt of the wireless link,
thus simulating link-level retransmission. The packet to be
retransmitted is added at the head of the queue that holds
the packets awaiting transmission. FTP sources are used to
generate traffic, which start sending data at time 0. In
experiments where the topology consists of several flows,
the start time of the different sources are staggered by

1 second to avoid synchronization. All simulations are run
for 1,100 seconds, but data is collected only after the first
100 seconds to ensure that steady state is reached.

In these simulations, we compare the performance of
TCP-DCR with the performance of TCP-SACK. Since
TCP-DCR is the TCP-SACK protocol with the delayed
triggering of the fast retransmit/recovery algorithm, the
results give us an idea of the extent of performance
improvements to be gained by simply delaying the conges-
tion response by one RTT. It has been shown by earlier work
[18], [16] that the impact of a slowly responding protocol on
fairness, goodput, droprates, etc., are better when the
bottleneck link router uses an active queue management
scheme like RED. Since the aim is to find if, and by how
much the behavior of TCP-DCR impacts unmodified TCP-
SACK or the network, we have chosen to use Droptail queue
management in our experiments. To be complete, we have
carried out some experiments using RED as well and some
of these results are reported in Section 4.2.6 and Section 4.2.7.

The results of the simulations are presented in three
separate categories:

1. Experiments with no congestion losses. This cate-
gory of simulations helps us understand the effect of
channel errors on the performance of the protocols
with and without the delayed congestion response.

2. Experiments with only congestion losses. It is
important to evaluate how the TCP-DCR behavior
differs from the behavior of the TCP-SACK protocol
in the presence of congestion losses. In order to
avoid interference from channel errors, in this
category, we present results of simulations where
the network has only congestion losses.

3. Other Experiments. This category presents results
for scenarios where the network has both channel
errors and congestion losses for low-delay wireless
links as well as high-delay satellite links. In this
category, we also present the results of the compar-
ison with the TCP-Westwood [15] protocol.

By evaluating the TCP-DCR protocol in different scenar-
ios, we aim to provide a comprehensive understanding of
the protocol behavior with delayed congestion response.

4.1 Experiments with No Congestion Losses

The simple network topology shown in Fig. 4 is used for
these experiments. The source S is connected to the router R1
which in turn is connected to the base station by wired links.
The receiver R is connected to the base station by wireless
links. The wired link bandwidth and delay is fixed at

522 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 4. Network topology for experiments with no congestion losses.

100Mbps and 5milliseconds, respectively, and the buffersize
is set to the delay-bandwidth product. The wireless link
bandwidth, delay, and the buffersize are as shown in each
individual simulation. The source S performs a single bulk
data transfer to the receiver R with a packet size of
1,000 bytes.

4.1.1 Performance Comparison at Different Channel

Error Rates

For this experiment, the wireless link bandwidth and delay
are fixed at 1 Mbps and 20 milliseconds. The wireless link
bandwidth is much smaller than the wired link bandwidth.
In order to ensure no congestion losses occur, the receiver
advertised window is fixed at 40 packets and the wireless
link buffersize is fixed at 50 packets. In Fig. 5, the X-axis
shows the channel error rates in percentage of the packets
corrupted and the Y-axis shows the throughput in Mbps.

The experimental topology has been chosen to allow the
TCP flows to maximize the link utilization without causing
any drops due to congestion. However, in the case of
TCP-SACK, since the source responds to the channel errors
by reducing the sending rate, the throughput starts to
deteriorate as the channel error rate increases. Even though
the link capacity is small and the delay is relatively short,
resulting is a relatively small rtt, the TCP-SACK flow cannot
fully utilize the link. On the other hand, due to delayed
congestion response algorithm, TCP-DCR postpones the
window reduction upon loss notification. This allows the
link-layer retransmission scheme time to recover the lost
packets thereby making a window reduction unnecessary.
Thus, when there is no congestion in the network, the
performance of TCP-DCR is better than that of TCP-SACK
and even at high channel error rates, it is comparable to the
performance when there are no channel errors at all.

4.1.2 Performance Comparison at Different Wireless

Delays

Some of the wireless networks, such as local wireless LANs,
have delays of the order of a few milliseconds to a few with
tens of milliseconds while the satellite links are character-
ized by much larger delays in the order of hundreds of
milliseconds [26], [27]. In this section, we show the effect of
the wireless delay on the performance of the different
protocols. The wireless link bandwidth is fixed at 1 Mbps
and the receiver advertised window and the wireless link
buffersize are adjusted to maximize the link utilization even
at large delays, without incurring congestion losses

(125 packets and 150 packets, respectively). Fig. 6 shows
the results. Throughput is plotted on the y-axis. The x-axis
shows the different wireless delays.

It can be seen from the graph that the performance of
TCP-DCR does not vary much when the wireless delay is
varied. The performance of TCP-SACK, on the other hand,
deteriorates drastically as wireless delays are increased.
This is because at larger wireless delays, when the
window is reduced, it takes a long time for the protocol
to increase it back to the optimal value. This results in
fairly degraded performance at higher link delays.
TCP-DCR is more robust in the face of large wireless
delays even at high channel loss rates.

4.1.3 Performance Comparison at Different Wireless

Bandwidths

Improvement in wireless technology has been constantly
raising the bar on how much bandwidth the wireless
channels offer. We evaluate the impact of channel band-
width on protocol performance. The wireless link delay is
fixed at 20 milliseconds. The buffer size and the receiver
window are adjusted for each simulation to allow max-
imum link utilization, without causing any congestion. Fig. 7
shows the results.

It can be seen from the graph that the TCP-SACK flows
cannot utilize the link bandwidth well. At higher channel
errors, due to persistent reduction in the sending rate the
congestion window remains small, and nomatter howmuch
network bandwidth is available, the throughput of the
TCP-SACK flow stays almost constant at a small value. TCP-
DCR, on the the other hand, avoids reducing the congestion
window for channel errors and, hence, is capable of utilizing
the available bandwidth much more efficiently.

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 523

Fig. 5. Throughput versus channel error rate. Fig. 6. Throughput versus wireless link delay.

Fig. 7. Throughput versus wireless bandwidth.

4.1.4 Performance Comparison with Varying Number of

Flows

At this point, we take a slight deviation to inspect an
important factor to be considered while evaluating the new
flavors of TCP protocol—the effect of the number of flows on
the simulation results. An important observation made
during the above experiments was that TCP-SACK flow
was not able to completely utilize the bandwidth at high
channel error rates and high wireless delays. It would seem
intuitive then that, as the number of flows in the network is
increased, the utilization of the link could be improved,
because when one flow backs off in response to a packet loss,
some other flow could utilize the link. So, we conducted a
simulation where the wireless link bandwidth and delay
were fixed at 6 Mbps and 20 milliseconds, but the number of
flows between the source S and the receiver R was increased.
The receiver advertised window and the buffersize are
adjusted so that a single flow without any losses can almost
fully utilize the link. However, note that, when the number of
flows is increased, the congestion losses no longer remain
zero. The results are presented in Fig. 8.

As expected, the link utilization does improve at higher
number of flows. We have included these results in this
paper to demonstrate an important point: Results for new
protocols shown for just a fixed number of flows are not
sufficient. In this case, for the network topology that we
have chosen, by having a fixed number of flows greater
than 8, TCP-SACK could be shown to provide very good
performance even at very high channel error rates.

Another perspective on this issue can be provided by
the following argument. It has been shown in [19] that
the throughput of the TCP protocol is proportional to

1
RTT� ffiffi

p
p (when timeouts are ignored), where p is the loss

rate seen by a TCP flow and RTT is the round-trip time
perceived by the TCP sender. When there is no conges-
tion in the network, p represents only channel errors for
TCP-SACK. These losses do not depend on the number of
flows in the network and are fixed relative to the number
of flows in the network. Then for any particular value of
p and RTT , the throughput obtained by a TCP source is
fixed, say at T . The fair share of bandwidth for any
particular flow when there are n different flows in the
network is B=n. When the value of n is chosen such that
B=n � T , it will appear as if the protocol is making the
best utilization of the available bandwidth, irrespective of
how the protocol treats the channel errors.

Consider TCP-DCR on the other hand. As shown in the
(6), the throughout of a TCP-DCR flow is also proportional
to 1

RTT� ffiffi
p
p . However, in this case, p primarily represents the

loss rate due to congestion in the network. As a result, when
congestion in the network is zero, the throughout is only
controlled by the receiver’s window. In other words, when
there is no congestion in the network, TCP-DCR can
effectively utilize all the available bandwidth, irrespective
of the number of flows in the network.

It might be tempting at this point to suggest that all we
need, to improve the performance of TCP on a wireless
network, is to fill up the pipe with many flows such that all
the bandwidth can be utilized. This could probably be a
feasible solution if we can ensure that at all times, there will
be enough flows in the network to keep it fully utilized.
However, if that is not the case, and we wish to have
maximum utilization irrespective of how many flows are in
the network, then we would require modifications to
existing TCP protocols. Also, wireless technology is im-
proving at a rapid rate, and as new technology becomes
available, the bandwidth keeps increasing. The higher
bandwidth would require a larger number of flows to keep
the link fully utilized for the same channel error rate. It
would be unreasonable to depend only on the number of
flows in the network to make the best use of the available
bandwidth.

4.2 Experiments with Only Congestion Losses

In this section, we present the results from the simulations,
where the losses are only due to congestion. The TCP-DCR
protocol was designed with the goal of providing robust-
ness to wireless channel errors, with minimal modifications
to the core TCP behavior. Hence, in the absence of channel
errors, we would like the TCP-DCR protocol to behave
similar to the TCP-SACK protocol. In this section, we
evaluate this issue at three different levels:

1. Flow level—throughput (relative fairness) when
TCP-SACK and TCP-DCR flows compete with each
other, time taken to relieve and reclaim bandwidth
for sudden changes in available bandwidth and
interaction with Web-like transfers.

2. Protocol level—Packet Delivery time and RTT
estimation for individual flows.

3. The network level—average queue lengths and drop
rates at the bottleneck link.

The topology used for these experiments is as shown
in Fig. 9. The links between the sources and the router
are high-capacity wired links with bandwidth 100 Mbps,
delay 5 milliseconds and buffersize equal to the delay-
bandwidth-product. The link between the router and the
base station is the wired bottleneck link of capacity
10 Mbps and delay 5 milliseconds. The links between the
base station and the receivers are wireless with capacity
1 Mbps, delay 20 milliseconds, and queue-length of
50 packets. Congestion level on the bottleneck link is
modified by varying the buffersize on the link between
the router and the base station. The receiver advertised
window is set such that in the absence of congestion at
the bottleneck link, the per-flow throughput does not
exceed the wireless link capacity to ensure that the
congestion happens only on the link between the router

524 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 8. Throughput versus number of flows.

and the base station. Each source performs a single bulk
data transfer to the corresponding receiver with a packet
size of 1,000 bytes. The duration for the ftp transfer for
most experiments in this paper is set to 1,100 seconds,
but for the experiments inspecting the behavior at the
flow level and the queue level, the transfer duration is
smaller—200 seconds—due to the large amount of data
being collected. The total number of flows in the network
is 24 (unless otherwise mentioned).

4.2.1 Performance Comparison at Different Congestion

Loss Rates

In this experiment, we evaluate the interaction between
12 TCP-DCR and 12 TCP-SACK flows. Fig. 10 shows the
average throughput of the TCP-DCR flows in comparison
with the average throughput of the TCP-SACK flows.

As can be seen from the graph, the TCP-DCR flows share
the bottleneck link with the TCP-SACK flows in a relatively
fair manner. For long-term flows, delaying the congestion
response by one RTT does not make TCP-DCR more
aggressive compared to the TCP-SACK flows. TCP-DCR is
observed to respond to congestion faster than some of the
other proposed protocols [16], [18] which are shown to be
TCP-compatible. The earlier studies have shown that, even
in dynamic network conditions, the slowly responding
protocols are fair and safe for deployment [17]. Since
TCP-DCR responds to congestion faster than these earlier
protocols, we expect TCP-DCR will be safe even in dynamic
network conditions.

4.2.2 Performance Comparison for Sudden Changes in

Available Bandwidth

In this experiment, we evaluate the performance of TCP-
DCR in comparison with TCP-SACK for sudden changes in

the available bottleneck bandwidth. The network consists of
24 flows. Half the flows do long-term ftp transfer starting at
time 0 seconds using the protocol being evaluated. The
other half of the flows carry shorter ftp transfer (referred
henceforth as traffic) using TCP-SACK starting at 50 seconds
and lasting for 50 seconds. Thus, 50 seconds after the long-
term flows are started, the available network bandwidth
goes down by 50 percent. At 100 seconds, the traffic stops,
and the available bandwidth, doubles back to the original
level. The average link droprate over the period of the
simulation is about 2 percent. Fig. 11 shows the aggregate
throughput of the long-term flows and the traffic (com-
puted with 1 second bins) against time. From the figure, it is
clear that the response of TCP-DCR to sudden fluctuations
in traffic is similar to that of TCP-SACK.

In order to quantify the reaction time to sudden changes in
load, we computed the time it takes for existing flows to drop
down to 55 percent of the link capacity, thus allowing the
new flows to achieve 45 percent of the link capacity. The time
to reach (55 percent, 45 percent) allocation for TCP-SACK
was 5.89 seconds and for TCP-DCR, it was 3.80 seconds. This
shows that TCP-DCR is not worse than TCP-SACK in
responding to sudden increases in traffic load.

4.2.3 Interaction with Web-Like Traffic

In this section,we evaluate the performance of TCP-DCR and
TCP-SACK when competing with a traffic mix of several
short-term flows simulating Web transfers. The network
consists of eight long-term ftp flows (TCP-SACK or TCP-
DCR) and 500Web-like flows (TCP-SACK). The transfers are
started at around 0 secondswith a staggering of 1ms to avoid
synchronization. Each short-term flow sendsN packets after
T seconds from the start of its previous transfer. N is drawn
from a uniform distribution between 10 and 20 and T is
drawn from a pareto distribution with mean 15 seconds,
simulating the different request sizes and user think times.
The random variable generators for the short-term flows are
seeded with the flow id, so that any given flow has a fixed
pseudorandom sequence. This ensures that when the
simulation is first run with TCP-SACK ftp transfers and
then repeated with TCP-DCR ftp transfers, the random
variables used in simulating the Web transfers, have the
same value. The average link droprate over the period of the
simulation is 3 percent. Fig. 12 shows the aggregate
throughput of the long-term flows and the traffic (computed
with 1 second bins) against time.

In the case of TCP-SACK, the aggregate throughput of
TCP-SACK flows over the simulation period is 4.76 Mbps,
and that for the Web traffic is 4.84 Mbps. The aggregate
throughput of TCP-DCR flows is 4.73 Mbps and that for the
Web traffic is 4.82 Mbps. This indicates that the interaction
of the TCP-DCR flows with short-term Web traffic is similar
to that of TCP-SACK.

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 525

Fig. 9. Network topology for experiments with congestion losses.

Fig. 10. Throughput versus congestion loss rate.

Fig. 11. Throughput versus time for sudden changes in traffic.

4.2.4 Packet Delivery Time

In this section and the next, we take a look at some of the
protocol-level dynamics. Since the TCP-DCR protocol
delays the triggering of the congestion recovery algorithms
by one RTT, it is possible that the packet delivery time
during congestion is increased by upto one RTT. When
there is no congestion in the network, the packet delivery
time is unaffected. In this section, we present the results of
simulations verifying the packet delivery time for the
TCP-DCR flows in comparison to the TCP-SACK flows.
Three separate simulations are considered—in the first, all
24 flows are TCP-SACK, in the second all 24 flows are TCP-
DCR, and, in the third, half the flows (i.e., 12 flows) are
TCP-SACK and the other half are TCP-DCR. This allows us
to compare the packet delivery time for TCP-DCR with that
of TCP-SACK, and also examine the effect of TCP-DCR
flows on the packet delivery time of TCP-SACK flows when
the workflows consists of a mix of the two flavors. The
average congestion droprate at the bottleneck link is
maintained at about 3.3 percent by using a buffersize of
70 packets at the bottleneck link. Fig. 13 shows the plot of
packet delivery times for a randomly chosen TCP-DCR/
TCP-SACK flow against the packet sequence number.

The plots show that the packet delivery times are
scattered in two regions. The dense population of points
around 60-100 milliseconds represent the packets that are
delivered normally. The points with larger delay represents
packets delayed due to larger instantaneous queue lengths
and the packets that are recovered through retransmission.
In the first simulation where all the flows are TCP-DCR, the
average packet delivery time for packets of the sample flow
recovered via retransmission is 398 milliseconds. In the
second simulation where all the flows are TCP-SACK flows,
it is 302ms. In the third simulation where 50 percent flows
are TCP-DCR and the other 50 percent are TCP-SACK, the
average packet delivery time for retransmitted packets of
the sample TCP-DCR flow is 356 milliseconds and for

TCP-SACK, it is 296 milliseconds. We notice from these
observations that the recovery time for a retransmitted
packet in case of the sample TCP-DCR flow is about one
RTT more than that of the sample TCP-SACK flow. Also, we
notice that when the workload consists of a mix of TCP-DCR
and TCP-SACK flows, the time to recover a packet through
retransmissions for TCP-SACK is not affected, compared to
the simulation with all TCP-SACK flows.

4.2.5 RTT Estimates

As explained in the above section, delaying the congestion
response of TCP by one RTT can increase the packet
recovery time of lost packets. The packet delivery time for
the rest of the packets is similar to that in any standard
implementation of TCP. According to Karn’s algorithm
used by most standard implementations of TCP, a
retransmitted packet is not used in estimating the round-
trip time. Thus, the delayed congestion response of
TCP-DCR does not affect the rtt estimation of TCP. Fig. 14
shows the plot of instantaneous rtt, smoothed rtt, and rtt
variance for a randomly chosen TCP-DCR/TCP-SACK flow
against the packet sequence number. The results agree with
the discussion presented here.

4.2.6 Effect on Network Queue Lengths

In this section, we evaluate the effect of TCP-DCR flows on
the bottleneck link queue length. The network topology is
similar to that in the above section. The average bottleneck
link drop rate is about 3.3 - 3.4 percent. Fig. 15 shows the
plot of the instantaneous and the average queue length at
the bottleneck link.

With 24 flows in the network, the droptail queue at the
bottleneck link is almost full all the time irrespective of
whether the flows are TCP-DCR or TCP-SACK. Thus, it is
hard to evaluate the impact of TCP-DCR on the queue
lengths. The average queue length varies slightly (51 packets
when all flows are TCP-DCR, 50 packets when all the flows
are TCP-SACK, and 52 packets for the mixed workload), but
the difference is negligible.

To further investigate this matter, we replaced the queue
management scheme at the bottleneck link router with RED.
The minthresh_ and maxthresh_ parameters are set to 25 and
75 percent of the total buffersize. Fig. 16 shows the plot of
the instantaneous and the average queue length at the
bottleneck link.

It can be seen from this graph that the queue length does
not change much. The average queue lengths are 36, 34, and
35 packets, when all flows are TCP-DCR, TCP-SACK, or a
mixture of the two, respectively.

526 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 12. Interaction with Web-like traffic.

Fig. 13. Packet delivery time.

Fig. 14. RTT estimation.

4.2.7 Effect on Bottleneck Link Congestion Loss Rate

One of the primary concerns when protocol characteristics
are modified is the effect the modifications have on the
network. TCP-DCR delays the response to loss notification.
Hence, it is interesting to study how an increase in the
offered load effects the congestion droprate on the bottle-
neck link. For this simulation, we keep all the other
parameters constant and vary the number of flows in the
network and study the congestion droprate at the bottle-
neck link. Note that the receiver window is adjusted such
that the per-flow throughput is always less than the
capacity of the wireless link and, hence, the congestion
occurs only at the bottleneck link. The buffersize at the
bottleneck link between the router and the base station is
fixed at 50 packets to ensure that a wide range of congestion
droprates may be observed, as the number of flows is
varied. The simulations were conducted across the three
traffic workloads considered in the earlier sections. The first
graph in Fig. 17 shows the results. TCP-SACK (100, 0), TCP-
DCR (0, 100) represent the average link droprate when all
the flows in the network are TCP-SACK and TCP-DCR,
respectively. TCP-SACK (50, 50) and TCP-DCR (50, 50)
represent the average droprates observed by TCP-SACK
flows and TCP-DCR flows, respectively, when the work-
load consists of a mix of both the flows. It can be seen from

the graph that the average congestion loss rate observed for
TCP-DCR is similar to that of TCP-SACK.

Again, in the interest of being comprehensive, we
repeated this experiment with RED queue management
scheme at the bottleneck link. The second graph in Fig. 17
shows the results. In the previous section, we noticed that
the average queue length is slightly different in the three
cases. In an RED queue, the drop probability depends on
the average queue length and, hence, the average drop
probability varies slightly for the three cases, but the
difference is fairly negligible.

4.3 Other Experiments

In this section, we present results for the simulations where
the network has both wireless channel errors and conges-
tion losses as well as results for comparison with TCP-
Westwood. The topology for these networks is similar to
that of experiments with congestion losses only.

4.3.1 Performance Comparison at Different Channel

Error Rates and Congestion Losses

In this section, we present the results when the network has
both channel errors and congestion. The network has
24 flows and the buffersize at the bottleneck link router is
modified to obtain different levels of congestion. Half of the
flows use TCP-SACK and the other half use TCP-DCR.
Fig. 18 shows the results. In the graph, congestion loss rates
of less than 1 percent are labeled as low error, in the range
of 2.5-3.5 percent are labeled as moderate congestion and
greater than 3.5 percent are labeled as high congestion.

It can be seen from the figure that, when the congestion
loss rate is low, the average throughput of the TCP-DCR
flows is far more than that of TCP-SACK flows. This is not
because the TCP-DCR flows are more aggressive than TCP-
SACK. Rather, it is due to the fact that the TCP-DCR flows
can make use of the link bandwidth not utilized effectively by
the TCP-SACK flows. Recall from the discussion in
Section 4.1.1 that the TCP-SACK flows cannot utilize the

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 527

Fig. 15. Bottleneck link queue length with droptail queue management.

Fig. 16. Bottleneck link queue length with RED queue management.

Fig. 17. Bottleneck link congestion loss rate versus number of flows.

Fig. 18. Throughput versus channel error rate with congestion in the

network.

available bandwidth completely at high channel errors
because of persistent window reductions. The TCP-DCR
flows claim this share of the bandwidth not used by the
TCP-SACK flows. So, when the congestion in the network is
low, the TCP-DCR flows help improve the link utilization
without starving the TCP-SACK flows.

The throughput achieved by TCP-DCR flows is inversely
proportional to the congestion loss rate in the network,
whereas the throughput of the TCP-SACK flows is inversely
proportional to the sum of the congestion loss rate and the
channel error rate. So, as the congestion loss rate in the
network increases, the difference in the average throughput
of the TCP-DCR flows in the network compared to that of
the TCP-SACK flows becomes narrower.

4.3.2 Performance Comparison on Satellite Links

Satellite links are characterized by very high wireless delays,
with the one way delays being as large as 250 milliseconds
[26]. With such high delays, when the congestion window is
reduced unnecessarily in response to channel errors, it takes
a long time to recover the window back to the optimal size.
Thus, the performance of TCP-SACK degrades drastically in
satellite networks as the channel error increases. In this
section, we present the results of the simulations for
performance comparison on satellite links. The network
topology is similar to that above, except that the wireless link
has a large one way delay of 250 milliseconds, making the
end-to-end RTT 520ms. The average link droprate due to
congestion is in the range of 0.1 - 0.4 percent. Fig. 19 shows
the results, demonstrating the performance improvements
with TCP-DCR.

4.3.3 Comparison with Other TCP Flavors

We have conducted extensive simulations to compare the
performance of TCP-DCR with TCP-Reno and TCP-West-
wood [15]. Our simulations show that the performance of
TCP-DCR is much better than that of TCP-Reno in the
presence of channel errors. Due to lack of space, we have
included only one of the results, showing the performance
comparison of TCP-DCR with TCP-Westwood at different
wireless delays and channel error rates in Fig. 20. The
WestwoodNR agent was used in this simulation in the
ns-2.26 version. The topology for this simulation is the same
as explained in Section 4.1.2. The simulations indicate that
at low channel errors and low delays, the performance of
both the protocols flavors are similar. At higher channel
error rates and large delays, TCP-DCR performs better.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed Delayed Congestion
Response to improve the performance of TCP over wireless
networks that support link-level recovery mechanisms. The
main advantage of the TCP-DCR protocol is the simplicity
with which the scheme can be implemented. Since
modifications need to be made only to the TCP at the
sender, the deployment may be easier than other schemes
that require modifications to network infrastructure, the
receivers and the sender. The base station does not have to
maintain any state other than that required for a rudimen-
tary link-level retransmission scheme. We have implemen-
ted TCP-DCR on the Linux 2.4.x network stack and are
currently evaluating it on a realistic testbed.

An interesting benefit of using TCP-DCR is that it
provides inherent robustness against loss of degradation
due to packet reordering in the network [23]. This has led us
to further investigate the possibility of using TCP-DCR as a
unified solution for recovering from different types of
noncongestion events.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Sally Floyd for her
invaluable comments and helpful suggestions. They would
also like to thank Pradeep Kyasanur for his suggestions.
This work is supported in part by US National Science
Foundation (NSF) grants ANI-0196413, NSF ANI-9909229,
Texas Higher Education Board, Texas Informatics and
Telecom Infrastructure Task Force (TITF), and Intel Corp.

REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R.H. Katz, “A
Comparison of Mechanisms for Improving TCP Performance over
Wireless Links,” IEEE/ACM Trans. Networking, 1997.

[2] A. Bakre and B.R. Badrinath, “I-TCP: Indirect TCP for Mobile
Hosts,” Proc. 15th. Int’l Conf. Distributed Computing Systems
(ICDCS), May 1995.

[3] R. Yavatkar and N. Bhagawat, “Improving End-to-End Perfor-
mance of TCP over Mobile Internetworks,” Proc. Workshop Mobile
Computing Systems and Applications, Dec. 1994.

[4] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular
Networks,” ACM Computer Comm. Rev., vol. 27, no. 5, 1997.

[5] K.-Y. Wang and S.K. Tripathi, “Mobile-End Transport Protocol:
An Alternative to TCP/IP over Wireless links,” Proc. IEEE
INFOCOM ’98, vol. 3, p. 1046, 1998.

[6] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving
TCP/IP Performance over Wireless Networks,” Proc. ACM
MOBICOM, Nov. 1995.

[7] H.M. Chaskar, T.V. Lakshman, and U. Madhow, “TCP over
Wireless with Link Level Error Control: Analysis and Design
Methodology,” IEEE Trans. Networking, vol. 7, no. 5, Oct. 1999.

528 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 19. Performance comparison over satellite links. Fig. 20. Performance comparison of TCP-DCR versus TCP-Westwood.

[8] D.A. Eckhardt and P. Steenkiste, “Improving Wireless LAN
Performance via Adaptive Local Error Control,” Proc. IEEE Int’l
Conf. Network Protocols (ICNP), Oct. 1998.

[9] H. Balakrishnan and R.H. Katz, “Explicit Loss Notification and
Wireless Web Performance,” Proc. IEEE GLOBECOM, Nov. 1998.

[10] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit
Congestion Notification (ECN) to IP,” RFC 2481, Jan. 1999.

[11] R. Krishnan, M. Allman, C. Partridge, and J.P.G. Sterbenz,
“Explicit Transport Error Notification for Error-Prone Wireless
and Satellite Networks,” BBN Technical Report No. 8333, BBN
Technologies, Feb. 2002.

[12] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bhargavan,
“WTCP: A Reliable Transport Protocol for Wireless Wide-Area
Networks,” Proc. ACM MOBICOM, Aug. 1999.

[13] N.H. Vaidya, M. Mehta, C. Perkins, and G. Montenegro, “Delayed
Duplicate Acknowledgement: A TCP-Unaware Approach to
Improve Performance of TCP over Wireless,” J. Wireless Comm.
and Mobile Computing, special issue on reliable transport protocols
for mobile computing, Feb. 2002.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” RFC 2018, Oct. 1996.

[15] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth Estimation for Enhanced Transport over
Wireless Links,” Proc. ACM MOBICOM, 2001.

[16] D. Bansal and H. Balakrishnan, “TCP-Friendly Congestion
Control for Real-Time Streaming Applications,” Proc. INFOCOM
’00, Apr. 2000, also available at “Binomial Congestion Control
Algorithms,” Proc. IEEE INFOCOM, 2001.

[17] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic
Behavior of Slowly Responsive Congestion Control Algorithms,”
Proc. ACM SIGCOMM, Sept. 2001.

[18] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based
Congestion Control for Unicast Applications,” Proc. ACM SIG-
COMM, 2000.

[19] M. Mathis, J. Semske, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithms,” ACM
Computer Comm. Rev., vol. 27, no. 3, July 1997.

[20] T.V. Lakshman and U. Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random
Loss,” IEEE/ACM Trans. Networking, vol. 5, no. 3, June 1997.

[21] ns-2 Network Simulator, http://www.isi.edu/nsnam/, 2004.
[22] R. Han and D.G. Messerschmitt, “A Progressively Reliable

Transport Protocol For Interactive Wireless Multimedia” ACM/
Springer-Verlag Multimedia Systems J., vol. 7, no. 2, Mar. 1999.

[23] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A
Reordering-Robust TCP with DSACK,” ICSI Technical Report TR-
02-006, Berkeley, Calif., July 2002.

[24] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control,” RFC 2581, Apr. 1999.

[25] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss
Recovery Using Limited Transmit,” RFC 3042, Proposed Stan-
dard, Jan. 2001.

[26] M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP over
Satellite Channels Using Standard Mechanisms,” RFC 2488, Jan.
1999.

[27] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations,” RFC 3135, June 2001.

Sumitha Bhandarkar received the BE degree in
electrical engineering from Sri Jayachamarajen-
dra College of Engineering, Mysore University,
India, in 1997 and the MS degree in computer
engineering from the Texas A&M University,
College Station, Texas, in 2001. She was
awarded the National Merit Scholarship from
the Government of India during 1991-1997 and
she worked as a senior software engineer at
Tata Unisys Ltd. (India) from 1997-1999. Cur-

rently, she is pursuing a PhD at the Texas A&M University. Her research
interests are in the areas of high-performance networking, Internet
congestion control, and network security. She is a student member of
the ACM and the IEEE Computer Society.

Nauzad Erach Sadry received the BE degree in
computer engineering from Bombay University,
India, in September 1999. In Dec. 2002, he
received the MS degree in computer science
from Texas A&M University. He was awarded
The Dorab Tata and J.N. Tata Merit Scholar-
ships for Academic Excellence in 2000, India.
Currently, he works as a software engineer at
Z-Force Incorporated, Laguna Hills, California,
where he is engaged in developing a high-

performance file switch that aggregates multiple NAS devices. His
research interests include wireless networking, storage area networks
and distributed processing systems.

A.L. Narasimha Reddy (M’87-SM’97) received
the BTech degree in electronics and electrical
engineering from the Indian Institute of Technol-
ogy, Kharagpur, India, in August 1985 and the
MS and PhD degrees in computer engineering
from the University of Illinois at Urbana-Cham-
paign in May 1987 and August 1990, respec-
tively. At the University of Illinois at Urbana-
Champaign, he was supported by an IBM
Fellowship. He is currently an associate profes-

sor in the Department of Electrical Engineering at Texas A&M
University. He was a research staff member at IBM Almaden Research
Center in San Jose from August 1990 to August 1995. Dr. Reddy’s
research interests are in network security, network QoS, multimedia, I/O
systems, and computer architecture. Currently, he is leading projects on
building scalable multimedia storage servers and partial-state-based
network elements. While at IBM, he coarchitected and designed a
topology-independent routing chip operating at 100 MB/sec, designed a
hierarchical storage management system and participated in the design
of video servers and disk arrays. Dr. Reddy is a member of ACM
SIGARCH and is a senior member of IEEE Computer Society. He
received a US National Science Foundation CAREER Award in 1996.
He received an outstanding professor award at Texas A&M University
during 1997-1998 and 2003-2004

Nitin H. Vaidya received the PhD degree from
the University of Massachusetts at Amherst. He
is presently an associate professor of electrical
and computer engineering at the University of
Illinois at Urbana-Champaign (UIUC). He has
held visiting positions at Microsoft Research,
Sun Microsystems, and the Indian Institute of
Technology-Bombay. His current research is in
the areas of wireless networking and mobile
computing. His research has been funded by

various agencies, including the US National Science Foundation,
Defense Advanced Research Projects Agency, BBN Technologies,
Microsoft Research, and Sun Microsystems. Dr. Vaidya is a recipient of
a CAREER award from the US National Science Foundation. He has
served on the program committees of several conferences and
workshops, and served as program cochair for the 2003 ACMMobiCom.
He has served as editor for several journals, and presently serves on the
IEEE Transactions Mobile Computing editorial board, and as editor-in-
chief of ACM SIGMOBILE periodical MC2R. He is a senior member of
the IEEE Computer Society and a member of the ACM. For more
information, please visit http://www.crhc.uiuc.edu/~nhv/.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BHANDARKAR ET AL.: TCP-DCR: A NOVEL PROTOCOL FOR TOLERATING WIRELESS CHANNEL ERRORS 529

