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Abstract

We study the problem of using path diversification to provide low probability of
packet loss (PPL) in wireless networks. Path diversification uses erasure codes and
multiple paths in the network to transmit packets. The source uses Forward Error
Correction (FEC) to encode each packet into multiple fragments and transmits the
fragments to the destination using multiple disjoint paths. The source uses a load
balancing algorithm to determine how many fragments should be transmitted on each
path. The destination can reconstruct the packet if it receives a number of fragments
equal to or higher than the number of fragments in the original packet.

We study the load balancing algorithm in two general cases. In the first case, we
assume that no knowledge of the performance along the paths is available at the source.
In such a case, the source decomposes traffic uniformly among the paths; we call this
case blind load balancing. We show that for low PPL, blind load balancing outperforms
single-path transmission. In the second case, we assume that a feedback mechanism
periodically provides the source with information about the performance along each
path. With that information, the source can optimally distribute the fragments. We
show how to distribute the fragments for minimized PPL, and maximized efficiency
given a bound on PPL. We evaluate the performance of the scheme through numerical
simulations.

Index Terms: wireless communication, fault tolerance, network monitoring,
algorithm/ protocol design and analysis, linear programming

1 Introduction

In this paper, we study the problem of using path diversification to provide probabilistic

guarantees on quality-of-service (QoS) in multihop wireless networks. The QoS guarantees
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are bounds on the end-to-end delay and probability of packet loss (PPL). Path diversification

has two components: Forward Error Correction (FEC) and load balancing. The source uses

FEC to encode each packet into M + K fragments [1], where M is the number of fragments

in the original packet and K is the number of parity fragments. The source then transmits

subsets of fragments over multiple disjoint paths. The allocation of fragments on each

path is determined with a load balancing algorithm. The destination node attempts to

reconstruct the packet with fragments it receives in less than Dmax seconds after the original

transmission. The reconstruction is possible with the FEC code if the destination receives M

or more fragments. Our objective, is to devise a load balancing algorithm, which minimizes

the probability that the destination receives less than M fragments (i.e. minimizes PPL),

when the delay is fixed.

Examples of wireless networks where path diversification can be used are cellular networks

with multihomed mobile hot-spots [2], mesh networks with roaming users [3, 4], sensor

networks [5], and intelligent transportation systems [6]. In the sequel, we discuss the first

two examples. A multihomed mobile hot-spot is connected to the backbone network through

multiple receivers, and each receiver is connected to a different service provider [2, 7]. The

home agent on the wired side of the network sends IP packets to different addresses of the

multihomed remote agent at the mobile hot-spot. The reason for multiple interfaces is to

get better coverage and higher bandwidth when available. The problem with this type of

data transmission is that TCP may timeout due to disparate round trip times (RTTs) on

the paths or enter fast retransmission mode due to out-of-order packets. In both cases, the

TCP congestion algorithm is invoked needlessly [7]. This problem is accentuated in wireless

networks where packets may be lost frequently at the link level, requiring retransmissions,

which introduce larger path delay than the delay in wired networks.

For multihomed mobile hot-spots, path diversification can be implemented on top of

the pre-existing architectures to provide guaranteed delay in the network layer [7, 2]. The

delay guarantee improves the performance of TCP. Connection stripping for multihomed
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mobile hosts was also proposed in the transport layer [8]. Although, our approach can work

with either layer, in the subsequent discussion we assume that the implementation is in the

network layer. The advantage of implementing path diversification in the network layer is

that no modifications are required in the TCP and IP protocols.

Mesh networks [9, 10, 3] are wireless ad hoc networks that can provide broadband wireless

access with high data rates. A mesh network is made of many wireless routers interconnected

with wireless links. Each router also serves as an access point for users in its vicinity. There

are two problems with this type of network. First, the mesh connections may be implemented

with IEEE 802.11 protocol, which decreases TCP throughput due to the exposed station

problem, and collisions, which cause the link-layer to retransmit packets [11]. Second, it may

be difficult to provide a guaranteed QoS to mobile users in mesh networks. For example,

mobile IP hand-offs introduce delay that deteriorates TCP performance [12].

We propose path diversification as the solution to both problems in mesh networks. First,

we assume that the link layer does not retransmit any packets since path diversification

provides end-to-end reliability. Second, we assume that the source uses a multipath routing

protocol and sends fragments along multiple disjoint paths to several access points in the

user’s vicinity.1 The user listens to the access points and reconstructs the packets as soon as

it receives M or more fragments. This scheme can be thought of as “information raining” to

mobile users in the mesh network [13, 14]. The erasure code allows the user to reconstruct

the packet even if some of the fragments are lost due to channel impairments or because the

user is traveling between access points.

In both examples of wireless networks, TCP does not perform well due to high end-to-

end PPL. For example, using the results of [15], it can be easily shown that a decrease in

reliability from 0.999 to 0.95 (a decrease of 5%), decreases the throughput more than 5 times

(80%). Note that reliability of 0.95 corresponds to a PPL of 0.05. So, it is important to

achieve low PPL or high reliability in wireless networks for TCP to perform well.

1The paths may have to be frequency disjoint to have independent fragment transmissions over different
paths.
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Path diversification is a difficult problem to solve in the general case, which involves

optimizing the routing and load balancing at the same time. For example, finding the optimal

set of QoS constrained multiple disjoint paths is computationally hard [16]. The problem is

more difficult in wireless networks where the channel conditions and node connectivity change

with time. If, in addition, the solution should be implemented on the time scale of packet

transmissions the problem becomes even harder. Therefore, we assume that the system is

composed of two separate sub-layers. The first sub-layer is responsible for creating and

maintaining multiple disjoint paths. Several solutions have been proposed for this problem

in the literature [17, 18, 19, 20, 21, 22]. The second sub-layer distributes the fragments over

the paths. In this paper, we focus on the latter sub-layer.

We address the problem of achieving low PPL in two steps. First, we assume source can-

not collect any information about the path performance. In this case, the source distributes

the fragments uniformly over the parallel paths. We call this case blind load balancing. We

will show that blind load balancing outperforms single-path transmissions for low values of

PPL. Second, we assume that some performance metrics about the parallel paths are avail-

able at the source. This can be the case if the destination moves slowly. The metrics are

provided by a feedback from the network to the source, or by some form of probing initiated

by the source; we assume that the metrics are updated periodically. The source node uses

the information about the paths to periodically change the load on each path.

For the second case, where the source has information about the paths, we discuss two

different optimization problems: minimization of packet loss and maximization of efficiency

subject to a fixed packet loss. The optimum way to allocate the packets to minimize PPL is

to use a greedy algorithm. The greedy algorithm allocates the maximum possible number of

packets possible to the path with the smallest PPL and then the maximum possible number

of packets to the path with the second smallest PPL, and so on. We show that in order to

make this method robust, we need to limit the number of fragments on each path.

The second optimization maximizes the efficiency of the scheme. The efficiency is defined
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as the ratio of the size of the original packet to the amount of the transmitted data. We

give an algorithm that performs a linear search for the smallest K fragments for which the

minimum required reliability is satisfied. The algorithm increases K until it reaches the

reliability threshold. We also examine the probability that the network may not be able

to provide service at a given guaranteed reliability and efficiency; that is connections are

blocked due to lack of resources.

We give a model of path diversification in Section 2 and use it in the subsequent sections

to solve the optimization problems. Blind path diversification is analyzed in Section 3. We

minimize PPL in Section 4, using two different techniques. The first technique uses an

exact algorithm that calculates PPL under ideal conditions. The second technique uses the

Poisson cumulative distribution function allowing us to account for non-ideal conditions in

our optimization. We maximize efficiency in Section 4.3. Simulation results are given in

Section 5 to illustrate the benefits of path diversification. Finally, we conclude the paper in

Section 6. Next, we review the related literature.

1.1 Related Work

First, we review the related work in the QoS implementations for wireless networks and

multipath routing, and then in path diversification. The work closest to ours is [24, 25] and

we review this work in more details. We will also point out the differences between that

work and our approach in the subsequent sections.

Generally, it is difficult to provide QoS in wireless networks. [26, 27] use reservation

to guarantee QoS. However, the reservations are not effective since the source reserves the

resources on a single path. If there is a serious impairment on the path or the path is

broken because of mobility, the reservations and the packets on that path are lost. Another

approach to improve QoS is multipath routing. The primary use for multipath routing has

been to reduce route discovery time in ad hoc networks [17, 18, 19]. For example, in [17, 18]

the source node finds multiple paths to the destination, but it only uses a single path for
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transmissions. The other paths are on standby and are only used if the main path fails.

The usage of secondary paths reduces route discovery time, however it does not address the

problem of unreliable links.

Other multipath schemes use multiple paths simultaneously. However, even if the mul-

tiple paths are used simultaneously, the performance of TCP decreases [20, 21]. [20] used

connection splitting in ad hoc networks to transmit parts of a packet simultaneously over

multiple links. However, this approach was shown in [21] to be inappropriate for TCP con-

nections due to disparate delays on the disjoint paths. This is because packets get reordered

or lost due to the discrepancy in the quality of the paths.

[28] introduced path diversification for wired networks. In that work, path diversification

was called dispersity routing. However, this method is actually load balancing with FEC

coding, so we use the term path diversification. In [28], a single fragment is transmitted on

each path. The focus of the work was to analyze the decrease in delay due to load balancing,

introduced with path diversification. The approach of [28] may not be appropriate for

wireless multihop networks, especially if the wireless network is sparse, so that only a few

disjoint paths are available between the source and the destination.

[24, 25] investigate path diversification in wireless multihop networks. In that work, the

authors apply the path diversification of [28] to minimize packet loss in highly mobile ad

hoc networks. The authors allow for multiple fragment transmissions on each path. The

model of the path transmission used in [24, 25] is that if a fragment is lost on a path all of

the fragments on that path are also lost. This model may be appropriate in highly mobile

networks where path breakage means that all corresponding fragments are lost. However,

the model is not appropriate in wireless networks with lossy connections.

Our work is appropriate for wireless networks with lossy connections. First, we assume

that the source transmits each fragment individually. Second, we assume that the links are

highly unreliable. In wireless networks, with mobile users, this is the case if there is fast

fading or collisions in the physical channel, and if the link layer does not retransmit the lost
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packets. In this type of networks, the fragment losses can be approximated as independent

or loosely correlated. In such a scenario, the load balancing of [24, 25] is not appropriate

since there it is assumed that the fragment losses are completely correlated. Therefore, a

new load balancing algorithm should be designed.

In addition to having a model distinct from [24, 25], we give a load balancing algorithm

that maximizes the efficiency when the minimum packet loss is bounded. This algorithm

is more practical than the algorithm that minimizes PPL since it allows the connections

to specify the QoS, in terms of PPL, beforehand and then it minimizes the cost of the

connection.

2 Path Diversification

In this section, we propose our version of path diversification for multihop wireless networks.

We first describe path diversification and then we give the details of how information is

collected at the source node. Finally, we give the wireless model used in the rest of the

paper.

Fig. 1 shows how path diversification works. Assume that the source has multiple paths

to the destination and that the paths are independent (i.e. the fragment delay is statistically

independent on each of the paths.) This assumption is true if the networks, which carry

the paths, are owned by different service providers [7], as in the example of multihomed

mobile hot-spots, or if each access point in a mesh network can use multiple frequencies

to forward fragments to other nodes. In the latter case, the paths should be arc-disjoint

as well as frequency disjoint2 for the statistical independence. An example of this is when

wireless nodes have multiple network interface cards, each operating on different physical

channels. For example, in the case of IEEE 802.11a, channels are created with different

carrier frequencies and there are a total of 11 channels available.

2Two arc-disjoint paths have no nodes or edges in common [16], but in wireless environments they still
have the first and the last edges in common. However, if the paths are frequency disjoint, the first and the

7



Network 1

A
KI

E

F
C

B

G J

H

D

Path 1 {
Path 2 {
Path 3 {

} Path 1

} Path 2

} Path 3

Network 3

Network 2

3

7
8
9

2
1

6
5
4

3
2
1 3

1

3

1

3

7
8

1

6
5
4

7
8
9

7
8
9

7
8
9

6
5
4 6

5
4

6
5
4

Figure 1: Path diversification.
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Figure 2: Mathematical model for path diversification

The network layer on the source node receives an Mb bit packet every Dmax seconds.

The network layer encodes each packet with the FEC code into M + K fragments each of

size b.3 In Fig. 1, M = 7 and K = 2. The fragments are distributed on the paths and

transmitted one-by-one to the destination. The destination listens to the paths and tries to

reconstruct the packet from the fragments it receives in Dmax seconds; some of the fragments

may be lost before they arrive at the destination. For example, in Fig. 1, fragment 2 is lost

on node B and fragment 9 is lost on the last hop from node J to the destination. However,

the destination can still reconstruct the packet since it has received 7 fragments.

We show the mathematical model of path diversification in Fig. 2. Let us assume that n

parallel and independent paths are available between the transmitter and the receiver. The

M + K fragments are subdivided into n non-overlapping sets with mi fragments in each

last hop should also behave independently.
3There are many ways to implement an erasure code like this. For example, [1] uses integer modulus alge-

bra while [29] uses the more efficient modulo-2 algebra. The actual implementation details are not important
for this paper; we use erasure codes to increase reliability without duplicating transmitted information.
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set. mi is the number of fragments transmitted on path i. PPL is given as the probability

that the destination receives less than M fragments; or equivalently that more than K

fragments are lost. In the rest of the paper, we will use the probability of success Psucc in

our optimizations instead of PPL. Psucc is the probability that at least M of the fragments

are received successfully:

Psucc = Pr[W ≤ K] = Pr

[

n
∑

i=1

mi
∑

j=1

Ii(j) ≤ K

]

(1)

where W is a random variable indicating the total number of lost fragments, and Ii(j) is an

indicator random variable corresponding to an unsuccessful transmission of fragment j on

path i; that is, Ii(j) = 1 if fragment j on path i is lost and Ii(j) = 0 if the segment arrived

at the destination within Dmax seconds.

Path diversification introduces overhead in the network in terms of buffering costs and

increased traffic, however this cost can be justified with the benefits of path diversification.

The buffer overhead is comparable to the cost of IP fragmentation. The destination needs

a buffer of Mb bits to hold the fragments before they are discarded. The traffic is increased

both with the increase in the transmitted information and with the increased header cost. We

measure the increase in the transmitted information with efficiency of path diversification:

η
∆

=
Effective Throughput

Actual Throughput
=

M

M + K
. (2)

The total header overhead introduced with path diversification is h(M + K), where we

assume that header size in the network layer is h. In order to decrease the traffic cost, we

maximize η, which decreases the total number of parity fragments K and the total number

of fragments transmitted by the source. Nevertheless, the overhead can be justified by the

decrease in PPL that we get with our scheme. As we showed in Section 1, a relatively small

decrease in PPL substantially increases the TCP throughput.
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2.1 Collection of Information

If the network status does not change very often, the source and the destination can collect

information about the paths. This information can be used in the two optimization tech-

niques that we will present in later sections. We show this in Fig. 2 as information collection

moving in the opposite direction of traffic flow. We assume that the status of the paths is

communicated to the source by a periodic feedback mechanism. This information can be

transmitted to the source as a part of routing or as a separate probing mechanism. If path

diversification is used in conjunction with routing, each node can collect its own statistics

about fragment loss [30] and this information can be carried to the source as a part of routing

information.

Alternatively, path diversification can be implemented separately from routing with an

ingress probing technique similar to [31] or an egress probing technique such as [32] to collect

statistical information at the source. Ingress probing is initiated by the source sending a series

probing packets to the destination. The destination bounces all of the probes back to the

source, allowing the source to find out the delay and packet loss statistics on a path. Egress

probing, is a more passive technique in which the destination collects the delay and loss

statistics of each data packet and occasionally sends information to the source. The network

measurements are updated every Tw seconds. Ideally, this period is less than the network

variation time and close to the maximum transmission time Dmax.

2.2 Wireless Model

We model wireless connections with a Markov chain model [33] with multiple “GOOD”

and “BAD” states. A GOOD state corresponds to a high probability of successful segment

transmission, qi(j)
∆

= Pr [Ii(j) = 0], and a BAD state corresponds to a high probability

of failure pi(j)
∆

= 1 − qi(j). If only two states are considered, we arrive at the Gilbert-

Elliott model [34]. An alternative model uses multiple states and has been proposed in

[35] to replace the Gilbert-Elliott model. In each state, we model the fragment losses as
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independent, meaning that Ii(j) are independent Bernoulli random variables. Nevertheless,

we also consider the case where Ii(j) are dependent and show in Appendix A how to account

for dependence in our optimizations.

This model is different from the model in [24, 25] where it is assumed that the Ii(j) on

a path are fully dependent, i.e.:

mi
∑

j=1

Ii(j) =

{

mi, with probability qi

0, with probability pi.
(3)

The assumption (3) may be true if the fragments are lost only due to path disconnections.

However, in this paper, we model the paths as highly unreliable wireless connections due to

fast-fading and collisions in the physical layer. We also assume that there are no retrans-

missions in the link layer so that the reliability in the network is provided end-to-end with

erasure coding.

3 Blind load balancing

In blind load balancing, no knowledge of the performance of parallel paths is available at the

transmitter. Assume that there are M fragments offered by the connection and K parity

fragments generated by the source node. In blind load balancing, the source deploys M+K
n

fragments on each path; for simplicity, we assume that M+K
n

is an integer number. In this

section, we show that blind load balancing has a higher probability of success than the

single-path transmission as Psucc → 1. However, we also show that blind load balancing is

suboptimal and motivate the need for optimum methods in Section 4.

We study blind load balancing in two extreme cases using the Markov chain models. In

the first case, we assume that K is very small as compared to M . This case corresponds

to a high value of efficiency. For a channel that is in a BAD state, most of the transmitted

fragments will be lost. In a multiple-path transmission, since K is small, to reconstruct the

original packet, we will need most of the fragments from each path to arrive at the destination.
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Figure 3: Performance of Blind Diversification

Intuitively, we will need to have all parallel paths to be in GOOD state simultaneously. Since

the paths move independently among the states, the probability of this event will be small.

On the contrary, for a single-path transmission, when the channel is in GOOD state, most

of the fragments will succeed. Since the probability of having a GOOD state along a single

path is higher than the probability of having simultaneous GOOD states across multiple

paths, we can conclude that single path transmission will result in better performance. Note

that in this case, since K is small, the erasure coding is not effective.

In the second case, we assume that K is large compared to M . This case corresponds to

a low value of efficiency. For large values of K, the packet can be reconstructed even if a

fewer number of channels are in GOOD state. Note that the probability of having a single

channel in the BAD state is more than that of having multiple channels simultaneously in

the BAD state. Therefore, we can expect that for higher K, multipath transmission will

perform better.

We have performed a simulation in which we transmit N = 5000 packets over a Gilbert-

Elliott channel. The channel has a GOOD and a BAD state. In GOOD state, qi = 0.7,

and in BAD state qi = 0.3, giving the average probability of error of qi = 0.5. We have

used M = 100; the value of K can be found from K = 1−η
η

M . The transitions from the
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GOOD state to the BAD state form a Markov Chain. For simplicity, we assume that the

channel only changes states between the transmissions of packets. We distribute the packets

uniformly over the n paths. In Fig. 3, we show the likelihood of packet recovery, Psucc, as

the number of paths increases for the full range of Psucc of [0, 1.0]. However, if we consider

the performance of TCP over this channel, the region of interest is [0.9, 1.0]. It is clear that

in the region of interest, the performance of the erasure code increases with the number of

paths. Note that for a given Psucc > 0.9 the efficiency converges to a maximum value with

increasing n the number of paths.

We now find maximum efficiency achievable with blind path diversification, as the number

of paths n increases. We note that as n becomes large, the maximum number of fragments

that will be sent on each path approaches 1 while M + K ≤ n. So, j = 1 for all Ii(j) in (1)

when M + K ≤ n, and

Psucc =
n → ∞

Pr

[

M+K
∑

i=1

Ii ≤ K

]

, (4)

where Ii are i.i.d. Bernoulli random variables. Here, we have assumed that the paths are

independent and have identical statistical properties. For large M + K ≤ n, we can use the

Central Limit Theorem (C.L.T.) to further approximate Psucc as:

Psucc ≈
M + K → ∞

Φ

(

K − (M + K)p
√

(M + K)pq

)

= Φ

(
√

M

η

1− η − p√
pq

)

,

(5)

where Φ(x)
∆

= 1/2π
∫ x

−∞
e−t2/2dt is the cummulative distribution function of the standardized

normal random variable and Pr[Ii = 1] = p = 1 − q. So, for a given Psucc the maximum η

that can be achieved is given by the roots of:

η +

√

pq

M
Φ−1(Psucc)

√
η + p− 1 = 0. (6)
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We show the performance of blind load balancing as n→∞ in Fig. 3. As a check, we also

show the performance of path diversification for n = 1000 paths. It is clear from the figure

that the C.L.T. approximates Psucc closely for large values of n and relatively large Psucc.

From the C.L.T. approximation, we see that blind load balancing cannot achieve efficiency

higher than η = 0.5. For Psucc > 0.9 and for single path transmission, the efficiency is

η = 0.28. Increasing the number of paths to n = 10, increases the efficiency to η = 0.42, and

increasing the number of paths to n =∞ increases the efficiency to 0.47. Clearly, blind load

balancing is better than single path transmission, however simply increasing the number of

paths is not the best way to increase reliability in the network.

In Fig. 3, we also show a case in which at each time instant all fragments are transmitted

on the path with the lowest probability of fragment loss pi. This case has been denoted by

“Optimum” in the graph. Note that transmitting the fragments in this way substantially

increases the performance. The notable gain obtained for the optimum curve in Fig. 3

motivates us to investigate the problem for cases where a performance metric along each

path is available at the source.

We also show the performance of multipath diversity in Fig. 4 for a five-state Markov

Chain channel. In this model, the channel changes gradually between the GOOD and BAD

states, and the states form a Markov Chain. Note that for this channel, we will also need to

have multiple paths to achieve both high probability of success and acceptable efficiency.

So far, we have assumed that no knowledge of the performance along the parallel paths

is available at the source node. We saw in Fig. 3 that with this approach it is not possible

to increase the efficiency for large values of reliability. We saw in the figure that if we

could collect performance indexes along each path and use them to distribute fragments

over multiple paths, we could have achieved much higher efficiency. In the rest of the paper,

we assume that some performance metrics are available at the source node and use these

metrics to devise optimum schemes for the distribution of fragments along parallel paths.
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Figure 4: Performance of Blind Diversification

4 Optimum Load Balancing

We characterize QoS in the network in terms of delay and packet loss. We assume that the

maximum delay in the network is fixed to Dmax and that all fragments received after this

time are considered to be lost. This allows us to characterize path’s QoS behaviour in terms

of just one parameter for each path in the network, namely fragment loss. We assume that

the network has a mechanism that allows us to collect statistical information, such as path

failure and delay statistics about the paths. The information allows us to improve on blind

load balancing and minimize PPL.

The optimization is performed every Tw seconds, when a new vector of estimated packet

loss statistics q becomes available. Ideally, Tw should be updated before every packet trans-

mission. First, we show how Psucc can be calculated with an exact algorithm. The algorithm

is valid when subsequent fragment losses are independent. Second, we use an approximation

of Psucc, with the Poisson cumulative distribution function (c.d.f), which also allows us to

account for the possible dependency between successive fragment losses. Third, we show that

Psucc can be maximized with a “greedy” algorithm. In the ideal case, when the fragment

losses are independent, both the Poisson approximation and the exact algorithm have the

same solution.
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We also give the maximization of efficiency of the scheme subject to minimum reliability.

This optimization takes into account how the network operates. First, QoS of service pa-

rameters must be satisfied, this is the minimum reliability constraint. Second, the network

optimizes the usage of resources with maximum efficiency.

In order to simplify the calculations in subsequent sections, we will assume that pi(j) = pi

and qi(j) = 1 − pi. We will use q = [q1, q2, . . . , qn]T to denote the vector of qi’s. This as-

sumption will allow us to express the optimization problems as integer optimization problems

with n variables. However, we can easily modify the integer programming optimizations, into

{0, 1}-integer optimizations with M + K variables to take into account the differing values

pi(j) on a single path.

4.1 Calculation of Psucc

The calculation of the exact value for Psucc is directly related to the calculation of the relia-

bility of algebraic structures, which in general is computationally hard [24]. However, we use

the special properties of k-out-of-n structures to calculate Psucc [36]. The algorithm is based

on the use of the moment generating function for the sum of M + K independent Bernoulli

random variables. The technique is similar to the direct calculation of the probability of

failure of k-out-of-n structures with independent component reliabilities [37]. We model the

transmission of fragments by the independent Bernoulli random variables Ii(j). By (1), the

moment generating function for the number of lost packets, W , is given by:

GW(z) =
n
∏

i=1

(qi + piz)Mi =
M+K
∑

i=0

ciz
i. (7)

So, we can calculate Psucc by using the moment generating function as follows:

Psucc = Pr[W ≤ K] =
K
∑

i=0

ci (8)
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where each ci is given by (7). Therefore, if the qi, i = 1, . . . , n are known, the reliability can

be calculated from (8) using M + K recursions, one for every transmitted fragment. We use

the following recursion to find the coefficients at each iteration, [37]:

c
(k+1)
j = qk+1c

(k)
j + pk+1c

(k)
j−1. (9)

We now use the cumulative distribution function of the Poisson random variable to bound

the reliability. Psucc can be approximated with the Poisson distribution, [38], as:

Q(λ(m), K) ≤ Psucc ≤ Q(λ(m), K) +
1

2

n
∑

i=1

mi ln
2(qi) (10)

where,

Q(λ(m), K) =
K
∑

j=0

e−λ(m)[λ(m)]j

j!

λ(m) =
n
∑

i=1

ln(q−mi

i ) = −mT ln(q)

(11)

and ln(q) = [ln(q1), ln(q2), ..., ln(qn)]T is the natural logarithm of the vector of probabilities

of success. The Poisson approximation is a good replacement for the exact algorithm since

very good values of Psucc can be obtained in relatively few steps. For example, with just 10

iterations we can calculate Q(λ(m), K) with precision of less than 10−6 (note 10! > 3×106).

The other advantage of the Poisson approximation is that we can model the dependence

of successive fragment losses. So far, we have approximated the consecutive packet losses in

the time period Tw as independent in order to calculate the probability of successful packet

transmission Psucc. Using the Poisson approximation (11), it is possible to find the estimates

for qi that minimize the error of approximating the dependent variables Ii(j) as independent

([38] gives one such estimate). However, we use a different approach by expressing the error
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in dependance on each path with:

Q(λ(m), K)− 2
n
∑

i=1

mi
∑

j=2

pi ≤ Psucc. (12)

We derive the relation in Appendix A.

We make two observations about (12). First, the error in approximation depends on the

total number of transmitted fragments M + K, meaning that the load balancing algorithm

should be robust if M +K is relatively small. Second, the error is 0 if each path only carries

a single fragment. This means that the load balancing is more robust to the dependance of

fragment transmissions if the number of fragments transmitted on each path is small. The

second observation can be used in the two optimizations in this paper by limiting the number

of fragments transmitted on each path.

4.2 Minimum PPL (Maximum Psucc)

In this section, we give an algorithm that finds the allocation vector m = [m1,m2, ..,mn]T

for which Psucc is maximized. We note that Psucc is a monotonically increasing function of

K. This is clear from (1) since Psucc is defined as the c.d.f of the random variable W . So,

we will assume that K is fixed since Psucc can always be increased by increasing K.

The optimization of Psucc is constrained by the maximum number of fragments that can

be transmitted on each path. The optimization is given as:

Maximize:
m

Psucc(m, K,q) (13a)

Subject to: mT1 = K + M (13b)

0 �m �Mth (13c)

where 1 is a vector of all 1’s, 0 is a vector of all 0’s, Mth = [M
(th)
1 ,M

(th)
2 , . . . ,M

(th)
n ] is the

maximum number of fragments that can be transmitted on each path, and � indicates a
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memberwise comparison.

Constraint (13b) assures that the total number of fragments on the paths is M +K. The

second constraint (13c) limits the number of fragments on each path. Note that increasing

the number of fragments transmitted on a path also increases the delay and congestion on

that path. Therefore, we assume that the maximum number of fragments transmitted on

each path is limited, where the limit is determined either through statistical properties of

the end-to-end delay determined with our probing mechanism or by letting each node locally

determine the number of fragments it can transmit and then taking the minimum of these

numbers on every path. We also assume that Mth is kept small to make the algorithm more

robust to the dependence of fragment losses on each path. The optimization (13) can be

solved with a “greedy” algorithm. We give a proof for the correctness of this algorithm in

[39].

In comparison to the solution with the greedy algorithm, the Poisson approximation

has the same optimum allocation vector. If we use the Poisson approximation for Psucc,

optimization (13) becomes:

Maximize:
m

Q(m, K) (14a)

Subject to: mT1 = K + M (14b)

0 �m �Mth. (14c)

It can easily be shown that Q(λ(m), K) is a decreasing function of λ(m) for a fixed K.4

This means that we can maximize the probability of success by minimizing λ(m). The

4Taking the derivative of Q(λ(m),K) with respect to each mi gives:

∂Q

∂mi

= −∂λ(m)

∂mi

e−λ(m) [λ(m)]
K

K!
< 0, (15)

since λ(m) is a positive function.
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optimization then becomes:

Maximize:
m

mT ln(q) (16a)

Subject to: mT1 = K + M (16b)

0 �m �Mth (16c)

Optimization (16) can be solved exactly for m ∈ R
n with the use of greedy algorithm since

the sort of ln (q) and q result in the same ordering of paths in the network. So, the Poisson

approximation of Psucc and the exact optimization of Psucc yield the same resource allocation.

In [25], the optimization of Psucc was performed by approximating Psucc as the normal

c.d.f with CLT. This approximation is more appropriate with the complete dependence of

fragment losses on each path. With the Normal approximation, one may also interpret the

objective function of [25] in terms of path failure. However, there are still two problems with

this approach. First, CLT approximates Psucc only when there are a large number of paths.

Since Psucc in [25] is the c.d.f of a sum of n integer random variables the approximation

becomes increasingly better with larger n. Second, it is difficult to know how good the

normal approximation is since the best known bound for it is the Berry-Essen bound; this

bound is loose for small n [40].

We use an example to further illustrate the differences between our scheme and that of

[24, 25]. Suppose, there are three paths available to transmit fragments between the source

and the destination with q = [0.9, 0.8, 0.8] and M = 2 and K = 1. With the assumption

of independent fragment loss, we assign all three fragments to path 1 to get Psucc = 0.95.

The algorithm in [25] assigns each fragment on a separate path to get Psucc = 0.928. On

the other hand, if the fragment losses on each path are fully dependent, as assumed in [25],

our allocation results in Psucc = 0.9 and the allocation with the algorithm from [25] results

in Psucc = 0.928. The normal approximation evaluates Psucc for the allocation with the

algorithm in [25] as 0.999, for both the independent fragment allocation and the dependent
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fragment allocation. The normal approximation calculates that our allocation evaluates Psucc

as 0.9927, which is also incorrect.

4.3 Maximization of Efficiency (η)

In this section, we show how the efficiency η can be maximized. As we explained earlier in

Section 2, η is important since it is directly related to the amount of overhead introduced

by the scheme. We perform the optimization with a constraint on the minimum network

reliability Psucc ≥ ε where ε is a QoS parameter supplied by the connection. The efficiency

should be maximized to decrease the cost of the connection, however the packet loss should

be bounded to guarantee QoS to the connection.

The optimization problem is given by:

Maximize:
m,K

η(m, K) =
M

M + K
(17a)

Subject to: Psucc(m, K,q) ≥ ε (17b)

mT1 = M + K (17c)

0 �m �Mth (17d)

We first note that η(m, K) is a monotonically decreasing function of K since M is constant.

So, η(m, K) is maximized when K is minimized and the equivalent optimization is:

Minimize:
K

K (18a)

Subject to: Psucc(m, K,q) ≥ ε (18b)

mT1 = M + K (18c)

0 �m �Mth (18d)

We assume that η(m, K) ≥ δ, where δ is a parameter used to put a bound on the
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complexity of the optimization. So, the maximum number of parity checks that can be used

is

Kmax =
1− δ

δ
M. (19)

We can perform the optimization (18) with a simple linear search over at most Kmax

items. Algorithm 1 shows how to perform the linear search. At every step, if the solution is

not found, the algorithm adds one more parity packet and assigns it to a path with the lowest

probability of failure with available resources. The algorithm ensures that the search finds

the optimal number of extra parity packets K since it assigns the packets in the most optimal

way. The algorithm uses the function Maximize-Psucc (note shown here in the interest

of space) to allocate the fragments for maximum Psucc with the optimization (13). The

algorithm may not find a solution for K in 0 ≤ K ≤ Kmax. In such a case, we declare that

the packet cannot be transmitted in the network. This case corresponds to the probability

of blocking.

The algorithm checks the validity of the solution by evaluating Psucc using the methods

proposed in Section 4. Here, we note that more efficient implementations of Algorithm 1

can be obtained if we use the recursive relationship (9). We will not discuss these techniques

here. We show the correctness of the algorithm in [39].

5 Numerical Results

We created several simulation scenarios to examine the performance of path diversification.

First, we show the results for unconstrained optimization, which gives the optimal perfor-

mance for independent fragment losses. Second, we limit the maximum number of fragments

that can be transmitted on each path Mth to account for the delay and dependence between

fragments. We examine the impact of the constraints on the efficiency of the load balancing

algorithm. Third, we show that the robustness of the algorithm when qi are not accurate.
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Algorithm 1 Optimize-Utilization(Mth,q, ε, δ)

Require: ∀i > j, qi ≥ qj

Ensure: mT1 ≤MT
th1, i ≤ n

1: Mtotal = 0, m = 0
2: m←Maximize-Psucc(q,M, 0,Mth)
3: i← min{∀j : 1 ≤ j ≤ n,Mj 6= 0} − 1
4: Kmax ← b1−δ

δ
Mc

5: repeat
6: if i < n ∧K ≤ Kmax ∧Mi < M

(th)
i then

7: K ← K + 1
8: Mi ←Mi + 1
9: else

10: i← i + 1
11: end if
12: until Psucc(m, K,q) < ε
13: if i > n ∨K > Kmax then
14: return m← ∅
15: else
16: return m← {M1,M2, ..,Mn}
17: end if

Fourth, we give results for the maximization of efficiency.

Table 1: The Log-Normal Transformation
log10

(

α
1−α

)

α log10

(

α
1−α

)

α

0.0 0.500 0.7 0.834
0.1 0.557 0.8 0.863
0.2 0.613 0.9 0.888
0.3 0.666 1.0 0.909
0.4 0.715 2.0 0.990
0.5 0.759 3.0 0.999
0.6 0.799 4.0 0.9999

5.1 Unconstrained Maximization of Psucc

We evaluate the unconstrained maximization of Psucc. In the unconstrained optimization

(13), constraint (13c) is not taken into account (i.e., Mth = ∞). We simulate 200 packet

transmissions for n = 5 paths. The qi’s are selected before each transmission from the

uniform distribution [q̄−0.1, q̄+0.1] where the average probability of fragment success (PFS)
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is q̄ = 0.5, 0.7, 0.8, 0.9. Fig. 5a shows η on the horizontal axis and the average value for Psucc

on the vertical axis. Path diversification is an efficient way to ensure network reliability. For

example, for q̄ = 0.8, we can achieve the reliability of 0.999 with the efficiency of 57%.

In Fig. 5b, we show the same plot of Psucc as in Fig. 5a in the log-odd scale. The values

in the log-odd scale are plotted as log(α/(1− α)) in place of α. The log-odd scale allows us

to map the set [0, 1] uniformly to the set [−∞,∞], so that we can observe the asymptotic

effect of Psucc → 0 or Psucc → 1. For example, a value of Psucc = 0.999, would translate

to a value of 3 in the log-odd scale. We show some other mappings to the log-odd scale in

Table 1.
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Figure 5: Reliability vs. Efficiency

Our work differs from [25] in two aspects. First, our load balancing algorithm is different

from the load balancing algorithm in [25] and second we calculate Psucc differently from

[25], giving us a more accurate way to validate the performance of either load balancing

algorithm. Here, we compare our work with [25]. In our simulations, the source transmits

200 packets each decomposed into M = 100 fragments over n = 5 paths, with the average

PFS of q̄ = 0.8.

We show the results of the simulations in Fig. 6. The “Optimum Solution” and the
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“Optimum Poisson” curves, show the performance of our load balancing algorithm. We used

the exact algorithm to calculate Psucc for the “Optimum Solution” curve and the Poisson

approximation (10) to calculate Psucc for the “Optimum Poisson” curve. The Poisson ap-

proximation gives a very good estimate of Psucc. So, the Poisson approximation is a good

candidate to replace the exact algorithm since very good values of Psucc can be obtained

in relatively small number of steps. For example, with just 10 iterations, we can calculate

Q(λ(m), K) with precision of less than 10−6.

In Fig. 6, the “Normal Approximation” curve shows the performance of the load bal-

ancing scheme in [25] evaluated with the normal c.d.f., which was used in [25] to evaluate

Psucc. We can see that the approximated values of Psucc in the “Normal Approximation”

curve are inaccurate. The “Optimum Normal” curve shows the performance of the load

balancing scheme in [25] evaluated with the exact algorithm for the evaluation of Psucc that

was proposed in this paper. We see that the transmission of packets using our load balancing

scheme outperforms the load balancing in [25].
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5.2 Constrained Optimization of Psucc

Ideally, the source should distribute all the fragments on the path with the highest PFS.

However, this is only possible without the constraint (13c) in optimization (13), that is

Mth =∞. In this section, we assume that Mth on each path is limited.

We perform a simulation with 1000 packets transmitted on n = 5 paths with a fixed

PFS on each path and Mth given by a Poisson distribution with the parameter µ. The PFS

was fixed to q = [0.85, 0.7, 0.7, 0.7, 0.7]; these are the same values used in [23]. Without the

upper bound on Mth, the optimum strategy is to distribute all the fragments on path 1 with

qi = 0.85. However, the upper bound on Mth forces the source to distribute the fragments

on more than one path.

Fig. 7 demonstrates the effect of the upper bound Mth on Psucc. We plot Psucc for different

values of the Poisson parameter µ. We see, from the figure, that limiting the number of

fragments on each path makes the load balancing algorithm less efficient. For example,

for Psucc = 0.999, the efficiency decreases 18% when the source uses 3 paths on average,

µ/M = 0.3, and 15% when the source uses 2 paths on average, µ/M = 0.5. However, this

also means that if the transmission must be distributed among many paths due to constraints

on each path, the source can still increase reliability by increasing K.
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5.3 Robustness of the Optimization of Psucc

Previously, we assumed that the system can accurately estimate the current PFS on each

path. In order to test the effect of inaccurate PFS on the optimization (13), we implemented

an estimator for the fragment loss on each path using the Exponentially Weighted Moving

Average (EWMA) estimator [41]. The EWMA estimator uses the following relation to

calculate the current estimate q̂new
i , from the previous estimate q̂old

i :

q̂new
i = q̂old

i + α(qi − q̂old
i ) (20)

where qi is the latest estimate received from the network. Coefficient α dictates the influence

of old samples on the current estimate; a smaller α means that the old samples have a larger

impact on the current estimate.

Here, we simulate the fragment losses as a Markov chain, where the states correspond

to the probability of successful fragment transmission qi. For simplicity, we assume that the

state changes at every packet transmission. We ran the simulation for N = 5000 packets.
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Figure 8: Robustness of the Load Balancing Algorithm

Fig. 8a shows Psucc when an EWMA estimator is used over a two state Markov chain,
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where qi goes through the states [0.7, 0.9] to give an average PFS of q̄ = 0.8. We perform

the experiment for α = 0.2 and α = 0.6. The performance of the estimator for α = 0.6 is

very close to that of the optimum since the estimates of qi(j) are more accurate. However,

the estimator does not perform as well with α = 0.2 since it emphasizes the old values of

qi(j) on the fast varying channel. Fig. 8b shows Psucc for a five state Markov chain where

qi goes through the states [0.7, 0.75, 0.8, 0.85, 0.9]. In this case, both estimators have similar

performance, but they are not as accurate as in the case of the two state Markov chain.

The performance of the load balancing is not sensitive to inaccurate estimates of qi. For

example, for the two state Markov chain scenario the estimate with α = 0.2 is only 2% less

efficient than the optimum solution for Psucc = 0.999. The reduction in efficiency for the

same value of Psucc in the five state Markov chain scenario scenario is 5%.

Fig. 8 also shows the performance of the blind load balancing algorithm and the single

path solution. We note that the load balancing performs better than the single path solution,

regardless of the accuracy of qis. The load balancing algorithm also performs better than the

blind load balancing algorithm for moderate values of Psucc. For example, for the five state

Markov chain scenario blind path diversification performs better than the load balancing

algorithm for Psucc > 0.99999. However, for more practical values of reliability 0.99 ≤

Psucc ≤ 0.999 the load balancing algorithm outperforms the blind load balancing algorithm,

even with inaccurate values of qi.

5.4 Optimization of Efficiency

In this section, we examine the efficiency of the load balancing algorithm when the source

uses optimization (17). We perform simulations for a scenario with n = 5 paths where we

have set M = 100. The source transmits 40, 000 packets in which we fix the PFS of each path

for 200 transmissions and then we choose another set of PFSs for the next 200 transmissions

and so on; the average PFS for all transmissions is q̄ = 0.8. We perform 200 sets of 200

packet transmissions. For each set of 200 packet transmissions, we select the upper bound
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on the number of fragments on each path from a Poisson distribution with the parameter µ.

Fig. 9 shows the maximum efficiency that can be achieved for different values of minimum

reliability ε. The “Optimum” curve is obtained by examining the unconstrained optimization

(17), i.e. Mth =∞. This case corresponds to the maximum efficiency that can be achieved

with path diversification. We note that for the minimum reliability ε = 0.999 the efficiency

is η = 0.76. This means that the overhead of path diversification with optimization (17) is

59% lower than the overhead of the optimization (13).5

We also see that the effect of using multiple paths is mitigated with the optimization.

For example, if the source is forced to use 2 paths on average (µ/M = 0.2) the efficiency

decreases 4%; this is better than the optimization (13) where the reduction in efficiency was

15%. We also see from the figure that it will be reasonable to expect the efficiency in the

network to be η > 0.70 if the source does not need to use more than 3 paths.

5We have shown in Section 5.1 that η = 0.57 for Psucc = 0.999, when the source uses optimization (13).
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6 Conclusions

In this paper, we have proposed a new approach to increase reliability in wireless networks.

The proposed technique uses multipath routing complemented with erasure codes. The

technique can achieve high reliability when no information is known about the network per-

formance. However, we have shown that by collecting information about network behaviour,

we can achieve high reliability efficiently and without using a high number of paths in the

network.

First, we have given a polynomial time algorithm to find the path allocation that mini-

mizes PPL. We have used numerical simulations to illustrate the effectiveness of this tech-

nique. The simulations have shown that the algorithm is robust to delay constraints on the

paths and inaccurate information about the network performance. We have also compared

the performance of our algorithm with the load balancing algorithm in [25]. We have shown

that our algorithm performs better than the algorithm in [25].

Second, we have given a polynomial time algorithm to find the maximum efficiency of

the scheme for a given maximum allowed PPL. This algorithm is necessary to allow for

provisioning of QoS in the network. We have shown through simulations that this algorithm

achieves better efficiency than the first algorithm.

Appendices

A Lower Bound with Dependent Packet Losses (Proof

of (12))

We examine the impact of fragment loss dependence on the lower bound for reliability in

(10). We use the indicator random variables I∗i (j) to represent the true loss on the path

including the arbitrary dependence between consecutive losses. Note that I∗i (j) is a random
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variable indicating the loss of segment j on path i and Pr[I∗i (j) = 1] = p∗i (j) = 1 − q∗i (j).

This is analogous to the random variables Ii(j) in (1). The difference is that Ii(j) random

variables approximate the losses as independent. In the rest of this section, we will find

the error in approximating the sum of I∗i (j)’s with Ii(j)’s and show the change that this

approximation introduces in (10).

We define the dependence of fragment loss on path i with a sequence of random variables

θi(j):

θi(1) = Pr[I∗i (1) = 1] = p∗i (1)

θi(j) = Pr[I∗i (j) = 1|Fi(j − 1)]

(21)

where Fi(j − 1) is a σ-algebra on the set Ωi(j − 1) = {I∗i (1), .., I∗i (j − 1)}. This makes θi(j)

a random variable on the probability space (Ωi(j−1),Fi(j−1), Pθi(j)), where Pθi(j) gives the

probability that a specific sequence of losses and successes precedes the jth transmission.

The random variables θi(j) allows us to use the results of [38] and change the lower bound

on Psucc in (10) to include the dependence of fragment losses, as follows:

Q(λ(m), K)−
n
∑

i=1

mi
∑

j=1

E|θi(j)− pi(j)| ≤ Psucc. (22)

The extra term is the error from approximating the dependent random variables I∗i (j) with

arbitrary independent random variables Ii(j). It is shown in [38] that pi(j) = Pr[Ii(j) = 1]

can be chosen arbitrarily. We approximated these values with the average value of p∗

i (j) over

all transmissions, pi, as follows:

pi =
1

mi

mi
∑

j=1

Ep∗i (j). (23)

The optimum value in terms of dependence would be to use the median of each θi(j). How-

ever, this is not important for this discussion.

In order, to give a better idea of what the lower bound may actually be, we now calculate
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the expected value on the summation in (22), conditional on a fixed value of p∗

i (j). Recall

that p∗i (j) is a random process, so this means that we are only looking at a single realization

of the process. We can calculate the expected value of E|θi(j)− pi|, for mi > 1 with:

E|θi(j)− pi| =
∫

Ωi(j−1)

|θi(j)− pi| dPθi(j)

≤
∫

Ωi(j−1)

θi(j)dPθi(j) +

∫

Ωi(j−1)

pidPθi(j)

= Pr[I∗i (j) = 1] + pi

= p∗i (j) + pi.

(24)

Note that for mi = 1, E|θi(j)− pi| = 0.

If we take the expected value of E|θi(j)− pi(j)| over p∗i (j), sum up the results for all the

fragments on all the paths, and combine this with (23), (22) becomes:

Q(λ(m), K)− 2
n
∑

i=1

mi
∑

j=2

pi ≤ Psucc. (25)
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