
On the Path Coverage Properties
of Random Sensor Networks

S. Sundhar Ram, Student Member, IEEE, D. Manjunath, Member, IEEE,

Srikanth K. Iyer, and D. Yogeshwaran

Abstract—In a sensor network, the points in the operational area that are suitably sensed are a two-dimensional spatial coverage

process. For randomly deployed sensor networks, typically, the network coverage of two-dimensional areas is analyzed. However, in

many sensor network applications, e.g., tracking of moving objects, the sensing process on paths, rather than in areas, is of interest.

With such an application in mind, we analyze the coverage process induced on a one-dimensional path by a sensor network that is

modeled as a two-dimensional Boolean model. In the analysis, the sensor locations form a spatial Poisson process of density � and the

sensing regions are circles of i.i.d. random radii. We first obtain a strong law for the fraction of a path that is k-sensed, i.e., sensed by

ð� kÞ sensors. Asymptotic path-sensing results are obtained under the same limiting regimes as those required for asymptotic

coverage by a two-dimensional Boolean model. Interestingly, the asymptotic fraction of the area that is 1-sensed is the same as the

fraction of a path that is 1-sensed. For k ¼ 1, we also obtain a central limit theorem that shows that the asymptotics converge at the

rate of �ð�1=2Þ for k ¼ 1. For finite networks, the expectation and variance of the fraction of the path that is k-sensed is obtained. The

asymptotics and the finite network results are then used to obtain the critical sensor density to k-sense a fraction �k of an arbitrary path

with very high probability is also obtained. Through simulations, we then analyze the robustness of the model when the sensor

deployment is nonhomogeneous and when the paths are not rectilinear. Other path coverage measures like breach, support, “length to

first sense,” and sensing continuity measures like holes and clumps are also characterized. Finally, we discuss some generalizations

of the results like characterization of the coverage process of m-dimensional “straight line paths” by n-dimensional, n > m, sensor

networks.

Index Terms—Sensor networks coverage, path tracking, Boolean models, exposure.

Ç

1 INTRODUCTION

SENSOR networks are formed from a large number of

randomly deployed sensor nodes. These sensor nodes

sense a phenomenon, possibly process the collected sensing
data in a collaborative manner, and route the results to an

end user. The phenomenon that is being sensed could be a

localized event, e.g., an acoustic point source, or it could be

a spatial phenomenon spread throughout the operational

area of the sensor network, e.g., target tracking and

atmospheric monitoring. Each sensor node will have a

footprint over which it can perform the measurements and

a random sensor network may not sense the entire
operational area. The accuracy of processing the sensor

network depends on its sensing ability.
Consider a sensor network for target tracking. A typical

trajectory estimation algorithm for tracking of a moving

target would work as follows: Whenever the target can be

sensed by a sufficient number of sensors, point estimates of

the location are obtained. These estimates are then appro-
priately filtered to estimate the trajectory for the times when
the target is not sufficiently sensed. The quality of the
trajectory estimates will depend on the fraction of the
trajectory that is being sensed by a specified minimum
number of sensors, which therefore is a measure of the
tracking ability, or trackability, of the sensor network. If the
complete trajectory is not being sufficiently sensed, then an
immediate measure of trackability is the “length to first
sense,” i.e., the distance traveled by the target in the

operational area before it is sensed. This can also be
interpreted as the time to detect an intruder in an intrusion
detection network. Another measure of trackability would
be the length of a continuous segment that is tracked by a
given number (or a given minimum number) of sensors, a
measure of the “sensing continuity.” We can see that the
above properties are indicators of the accuracy with which
the network can track the target, i.e., the trackability of the
network.

Notice that the trackability measures that we discussed
above are essentially statistics of the coverage of a path
rather than the coverage of an area. Thus, in measuring the
trackability of a random sensor network, we need to obtain

the coverage induced on a one-dimensional path by a two-
dimensional coverage process. This is the focus of this
paper—we analyze the path-coverage induced by an area
coverage process in a random sensor network and obtain
the trackability measures defined here. In addition to
obtaining the aforementioned measures, after formally
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defining them, we also obtain other measures that have
been defined in the literature, like breach and support [1].

It is to be noted that this paper is not about tracking an
object as it moves in the operational area of the sensor
network. The literature on tracking, e.g., [2], [3], has an
algorithmic flavor and the objective in such papers is to
estimate the position of a target (source) as a function of
time. In contrast, our interest in this paper is in trackability,
i.e., in knowing if a sensor network will sense a path,
possibly for tracking an object moving on it (or an event that
is represented by points in a one-dimensional set), as
opposed to measure some attribute of the event—we just
want to know if we can measure it at all! It may be noted
here that characterizing a tracking algorithm requires
analysis that will be based on the accuracy of the
measurement. Thus, this paper is in the same spirit as
those that study area coverage and path sensing, e.g., [4],
[5], [6], [7] and not along the lines of those that provide
tracking algorithms or analysis, e.g., [2].

We use the following sensing model: The sensors are
deployed according to a spatial Poisson process. The
sensing area of each sensor is a circle of random radius
and a point is considered sensed if and only if it is in the
sensing area of at least k sensors. Thus, the coverage of the
operational area by the sensors is a two-dimensional
coverage process of a Boolean model. (For brevity, we will
call this coverage process the two-dimensional Boolean
process.) We analyze the properties of the coverage process
on an arbitrary straight line path. Thus, our interest is in the
statistical properties of the coverage of a one-dimensional
path induced by a two-dimensional coverage process of the
sensors. The trackability measures are essentially the
coverage statistics of this one-dimensional process. While
the straight line path was chosen for simplicity, the
asymptotic scaling laws that we derive are applicable to
curvilinear paths too.

The area coverage properties have been extensively
studied in the literature, most notably in [8]. The properties
of the induced one-dimensional process seem to have not
received the same attention and we develop a method to
analyze such a process. To the best of our knowledge, this is
the first such analysis. The two are clearly intimately related
because nontrivial coverage of the two-dimensional region
will be required to obtain nontrivial coverage of one-
dimensional paths. However, the nature of the relationship
is not clear and we explore it in this paper. We will obtain
asymptotic results for the one-dimensional path process
under the same limiting regime as those required for
obtaining nontrivial coverage results for a two-dimensional
area process.

1.1 Summary of Results and Organization of the
Paper

We formally define the trackability measures and discuss
related literature in Section 2. We then prove in Section 3
that the sensing process on any straight line path L in the
two-dimensional Boolean field is a one-dimensional Boo-
lean process or, equivalently, a M=G=1 queue.

Using this, we obtain asymptotic and finite network
results for the fraction of a straight line path that is k-sensed

i.e., sensed by k or more sensors, in Section 4. We first

obtain a strong law for the fraction of a path that is k-sensed.

The asymptotic results are obtained under the same limiting

regimes as those required for asymptotic coverage by a two-

dimensional Boolean process. Interestingly, the asymptotic

fraction of the path that is k-sensed is the same as the

fraction of the area that is k-covered by the sensors. Clearly,

this equality needs to be proved. For the case when k ¼ 1,

we complement the strong law with a central limit theorem.

Based on this, we conclude that, for k ¼ 1, the asymptotics

converge at the rate of �ð�1=2Þ, where � is the sensor

density. This convergence rate is different from that of area

coverage. For finite networks, expectation and variance of

the fraction of the path that is k-sensed is obtained where,

once again, we see that the second order statistics are

different from that of area coverage. We then obtain a

critical sensor density to k-sense a fraction �k of an arbitrary

path with very high probability. Through simulations, we

also extend this result to weakly nonhomogeneous fields

and curvilinear paths.
Other trackability measures like “length to first sense”

and sensing continuity measures like holes and clumps are

characterized in Section 5. Measures that do not depend

on the sensing radius like breach and support are

characterized in Section 6. These measures cannot be

obtained from a area coverage analysis. Finally, we discuss

some generalizations of the results like characterization of

the coverage process of m-dimensional “straight line paths”

by an nð> mÞ-dimensional sensor network in Section 7. We

conclude with a brief discussion in Section 8.

2 PERFORMANCE MEASURES AND SYSTEM MODEL

Let � be the operational area of the sensor network and let

fsig be the set of sensors with sensor si located at Xi 2 �.

The following two measures of the “goodness” of deploy-

ment with respect to sensing a path are defined in [1]. For a

given deployment and a path L � �, the breach of L, BrðLÞ,
is defined as

min
i

min
x2L

kXi � xk

and the support for the path L, SuðLÞ, is defined as

SuðLÞ ¼ max
x2L

kx�Xi�k:

Here, Xi� is the location of the sensor closest to path L and

the norms above are the euclidean norms. Observe that

these measures are independent of the sensing radius. We

will obtain the mean and variance of breach and support in

Section 6.
To develop other trackability measures, we first define

the sensing process. For every ðsi; xÞ, x 2 �, the sensing

function, �ðsi; xÞ, captures the ability of sensor si to sense a

target at point x. Note that �ðsi; xÞ could be a random

variable. This leads us to define a sensor intensity function

 ðx; �; �Þ ¼ 1 if V �ðs1; xÞ; �ðs2; xÞ; . . .ð Þ � �
0 otherwise:

�
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Here, V is some operator and � is some constant.  ðx; �; �Þ
captures the summary effect of all the sensors at point x and
we consider a point to be sensed only when  ðx; �; �Þ ¼ 1.
�ð�Þ and  ð�Þ defined above lead us to the next measure

of trackability that we consider in this paper—exposure of a
path L.

Definition 1. The exposure, X ðLÞ, of a path L in � is the

X ðLÞ ¼
R
x2L  ðx; �; �Þ dx

jLj ;

where jLj denotes the length of the path L. This is essentially
the same as that defined in [9] except that we also normalize it
to the length of the path.

In this paper, we will primarily discuss thresholded
sensing, where we assume that sensor si has a random
sensing radius Ri within which it can sense perfectly and
beyond which it cannot sense, i.e., if the location of the si is
Xi, then

�T ðsi; xÞ ¼
1 if kx�Xik � Ri

0 otherwise:

�

The subscript T refers to thresholded sensing. Further,
we can specialize thresholded sensing into k-thresholded
sensing, where we define

 T ðx; kÞ ¼
1 if

P
i �T ðsi; xÞ � k

0 otherwise:

�

Here, point x is sensed only if it is in the sensing range of at
least k sensors. An example of the use of such a sensor
intensity function is in position localization that requires
range estimates from at least three sensors.

Observe that when the sensor locations form a random
process and the sensing radii are random, f

P
i �T ðsi; xÞ >

kg will be a random event and, hence, f T ðx; kÞgx2L will be
a random process. The measures of trackability which we
define next are essentially statistics of this random process.
Thus, exposure is the fraction of the path that will be
sensed. A measure of sensing continuity is a clump that is
defined as follows for this model:

Definition 2. For k-thresholded sensing, a clump on a path L is
a contiguous segment of L for which  T ðx; kÞ ¼ 1. Any
segment of L between two consecutive clumps is a hole.

The length to first sense can be defined as follows:

Definition 3. For k-thresholded sensing, we define the length-
to-first-sense for a path L, LF ðLÞ, as the distance to the first
point on L where  T ðx; kÞ ¼ 1. We will say that LF ðLÞ ¼ l0
if L is not sensed, l0 being the length of L.

The above notions are illustrated in Fig. 1.
When �ðsi; xÞ is a continuous function, the sensing

process is said to be nonthresholded. The trackability
measures for the nonthresholded sensing can be lower
bounded by the measures for an appropriately defined
thresholded sensing case. We discuss this connection in
detail in Section 8.

We let � be <2 and fXig, the set of sensor locations, form
a spatial Poisson process in <2 of density �. An excellent

discussion on the physical interpretations of this model is
available in [8]. Further, the Poisson process has been
extensively used to model the sensor locations, e.g., [4], [5].
fRigfi>0g is assumed to be a sequence of positive i.i.d.
random variables whose density has bounded (or compact)
support. Without loss of generality, we assume the support
to be [0, 1]. Let fRi

ðrÞ denote the density of Ri and let
� :¼ EðRiÞ. Therefore,  T ðx; kÞ, x 2 <2, is the coverage
process formed by placing random circles in <2 with the
location of the circle centers drawn from a spatial Poisson
process. This is a special case of the two dimensional
Boolean process or the “germ-grain” process studied in [5],
[8], [10]. Formally,

Definition 4. An n-dimensional Boolean process is a collection of
random setsXi þ Ci, whereXi 2 <n are the points of a Poisson
point process, Ci are identically distributed, independent
random subsets of <n, and Xi þ Ci � fXi þ x : x 2 Cig [8].

However, as we have mentioned earlier, our interest in this
paper is to study the properties of  T ðx; kÞ, x 2 L, where L
is an arbitrary straight line path in �. These properties
depend on the statistics of one-dimensional sets embedded
in a two-dimensional space. We mention here that, although
much of the paper is on sensor networks in <2, extensions
of some of the results to bounded � are discussed in
Section 7.

Prior work on trackability is primarily on intruder
detection and on algorithmic studies. A notable exception
is [4], where the notion of detectability, the probability that
an object on a path L is detected, is discussed and some
asymptotic results are given. Algorithmic results have been
described in [1], [9], [11] to identify the best and worst
sensed paths in a network when the sensor locations and
the sensing radii are known. Statistical results via simula-
tion are also presented in these papers. In [12], the same
properties for the case of a network with a single sensor are
studied. Further, [13] obtains the probability of detecting a
target and uses this to develop a sequential deployment
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Fig. 1. The figure shows an instance of a sensor network that performs
thresholded sensing. The dots represent the sensors and the circle is its
sensing area. Path L is the segment ½0; l0	. The dotted parts of L are the
clumps on it and the thick parts are its holes. LF ðLÞ is the length to its
first 1-sense, Xi� the location of the closest sensor to L, BrðLÞ is its
breach, and SuðLÞ is its support.



strategy to meet a QoS defined by the false alarm

probability. Note that the detectability of [4] is the same

as the exposure of [13]. Coverage, while maintaining

connectivity, is studied in [14], [15]. In [14], it is proven

that if the radio-range is at least twice the sensing range,

complete coverage implies connectivity and, in [14], [15],

algorithms are proposed to schedule sleep intervals in

large-scale networks while meeting the required degree of

coverage and connectivity requirements.

3 SENSING PROCESS ON A STRAIGHT LINE PATH

Let L 2 � be an arbitrary straight line path of finite length.

Let L be the line obtained by extending L in both directions.

Since the Boolean process is shift and rotation invariant

(since the random sets Ci are circles), without loss of

generality, we can take L to be the X-axis of the coordinate

axes. Since Ri has a support of [0, 1], only sensors within a

perpendicular distance of 1 from L may sense any part of L

and are of interest to us.
Construct a point process on L as follows: Mark all

sensors that track some part of L, i.e., mark a sensor if and

only if its perpendicular distance to L is less than its sensing

radius Ri. Project all the marked sensors onto L along the

perpendicular to it. Denote the resulting point process on L
by �F . For convenience, we will refer to the points of �F as

arrivals.

Lemma 1. �F is a Poisson point process on L with rate �� ¼ 2��.

Proof. We prove the lemma by showing that the probability

of an arrival in any differential length dl of L is ��dlþ oðdlÞ
and that the arrivals have the independent increment

property.
For any l, there is an arrival of �F in ½l� dl=2; lþ dl=2	

if there is a marked sensor in the differential strip, dP ,
of thickness dl. Since the sensing radius has support in
[0, 1], the length of the strip over which a marked
sensor could be present is within 1 unit on either side of

L. We restrict dP to this range. This strip is centered at
l 2 L. This is shown in Fig. 2.

A sensor being present in dP and it being marked are
independent events. Thus, the probability that there is a
marked sensor in dP is the product of the probability of
there being a sensor in dP , ð�2dlþ oðdlÞÞ, and the
probability that this is marked. We obtain this latter
probability next.

If there is a sensor (say, s with sensing radius R) in dP ,
then from the Poisson distribution of the sensors, its
location is uniformly distributed in dP . This implies that
the perpendicular distance of the sensor in dP to L, say,
Y , will be uniformly distributed in [0, 1]. For s to be
marked, its R must be greater than Y . Therefore,

Pr ðs is markedÞ ¼
Z 1

0

PrðY � rÞfRðrÞ dr

¼
Z 1

0

rfRðrÞ dr ¼ �

and

Pr Arrival in l� dl
2
; lþ dl

2

� �� �
¼ 2�� dlþ oðdlÞ:

To prove the independent increment property, consider

two nonoverlapping segments on L, L1, and L2. Arrivals

of �F in L1 and L2 are decided by the presence of marked

sensors in the rectangular regions B1 and B2 of height 2

and width equal to the width of L1 and L2 and centered

at L1 and L2. Clearly, B1 and B2 are nonoverlapping and,

by the independent increment property of the Poisson

process of the sensor deployment, the point process �F

has the independent increment property. tu
Consider an arbitrary marked sensor s located at X and

having sensing radius R. Let Y be the perpendicular

distance of s to L and �X be the projection of X on L. Note

that both R, Y are random variables and �X 2 �F . Recall that,

for thresholded sensing, s will sense all points that are
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Fig. 2. The figure shows the projection of a sensor onto L. The dots represent the sensors and the circles their sensing area. The region enclosed by

vertical dotted lines is the differential region dl.



within a distance of R from it. This means that, on L, s will
sense the segment ½ �X � �R; �X þ �R	, where �R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Y 2
p

.
See Fig. 2.

Lemma 2. �R is independent of �X and its density, f �Rð�rÞ, is

f �Rð�rÞ ¼
�r
�

R 1
�r

fRðrÞffiffiffiffiffiffiffiffiffi
r2��r2
p dr for 0 � �r � 1

0 otherwise:

�

Proof. Since sensor s is marked, R � Y . As discussed above,

the segment on L sensed by s is ½ �X � �R; �X þ �R	, where
�R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Y 2
p

. Since the sensor nodes are distributed as

a homogeneous Poisson process, Y is independent of �X.

Further, R is independent of X and it follows that �R is

independent of �X. By a simple transformation of random

variables, the distribution function of �R, F �Rð�rÞ, can be

written as

F �Rð�rÞ ¼
Z
r;y:

ffiffiffiffiffiffiffiffiffi
r2�y2
p

��r

ffR;Y jR�Y gðr; yÞ dr dy: ð1Þ

Here, fR;Y ð�; �Þ is the joint density of R and Y . The joint
density conditioned on the event that the sensor is
marked can be written as

ffR;Y jR�Y gðr; yÞ ¼
fR;Y ðr; yÞ

PrðR � Y Þ :

Recall from the proof of Lemma 1 that the probability
that a sensor within a distance of 1 from L is marked is �.
Further, as discussed before, Y is uniformly distributed
in [0, 1] and is independent of R. Therefore,

fðR;Y jR�Y Þðr; yÞ ¼
fRðrÞ
�

:

Substituting for fðR;Y jR�Y Þ in (1) and then differentiating
with respect to �r, we get the density function of �R as

f �Rð�rÞ ¼
�r
�

R 1
�r

fRðrÞffiffiffiffiffiffiffiffiffi
r2��r2
p dr for 0 � �r � 1

0 otherwise:

�
ð2Þ

tu

The “regions” on L that are sensed are the collection of

segments f �Xi þ �Iig, where f �Xig is a Poisson process, Ii is

the random interval ½� �Ri; �Ri	, and �Ris are i.i.d. random

variables. Therefore, the sensing process on L is a one-

dimensional Boolean process. This means that the track-

ability of any straight line path can be studied as the

coverage of a straight line of equal length by an appro-

priately defined one-dimensional Boolean process. It is easy

to see that the latter is just an M/G/1 queue where the

projected sensors are akin to the customer arrivals and the

sensed segment of the path is the corresponding service

time. There is one difference though. For the one-dimen-

sional Boolean process described above, the centers of the

sensing intervals are derived from a Poisson process,

whereas, in the M/G/1 queue, the left endpoints of the

service period form a Poisson process. Fortunately, from the

discussion in [8, p. 80], there is a statistical equivalence

between the two processes and the following can be shown.

Lemma 3. Consider a one-dimensional Boolean process
fXi þ Cig, where fXig is a Poisson process, Ci is the random
interval ½�Ti; Ti	, and the Tis are i.i.d. positive random
variables. Then, fXi þ Cig has the same laws as the one-
dimensional Boolean process fXi þ C0ig, where C0i is the
random interval ½0; 2Ti	.

The above discussion now leads us to state the key theorem
of this paper:

Theorem 1. For thresholded sensing, the projected point process
and the collection of sensed segments form a one-dimensional
Boolean process with laws identical to the one-dimensional
Boolean process f �Xi þ �Cig, where f �Xig is a Poisson point
process of density �� ¼ 2��, �Ci is the random interval ½0; 2 �Ri	,
and the �Ris are i.i.d. random variables with density as in (2).

From the M/G/1 analogy, the theorem also says that
the sensing process on L is statistically equivalent to an
M/G/1 queue with arrival rate �� ¼ 2�� and service time
density given by

gðxÞ ¼
x
4�

R 1
x
2

fRðrÞffiffiffiffiffiffiffiffiffi
r2�x2

4

p dr for 0 � x � 2

0 otherwise:

(

It can be shown that Eð �RÞ ¼ �EðR2Þ
4EðRÞ . For the special case

when the sensing radii are degenerate with R � 1,

f �Rð�rÞ ¼ �rffiffiffiffiffiffiffiffi
1��r2
p for 0 � �r � 1 and 0 outside. Further, � ¼ 1

and Eð �RÞ ¼ �
4 .

4 EXPOSURE—FRACTION SENSED

In this section, we derive the critical sensor density that is
required to k-sense a fraction �k of a path L. We first look for
asymptotic results and obtain a strong law for k-sensing and
a central limit theorem for k ¼ 1. For finite networks, we
obtain the expected fraction k-sensed and also the variance
for k ¼ 1. Finally, through simulations, we investigate the
robustness of the results to mild deviations from the system
model.

4.1 Asymptotic Analysis

From the previous section, the event that a fraction � of
the line segment is sensed by exactly k sensors corre-
sponds to the event that, in an M/G/1 queue, for a
fraction � of an observation period of duration l0, there are
exactly k customers in the system. From the ergodicity of
the M/G/1 queue, as l0 !1, this probability has a

Poisson distribution with mean � :¼ ��2Eð �RÞ ¼ ��EðR2Þ.
Therefore, for a straight line path L of length l0, as l0 !1,
the limiting fraction of a path that will be k-sensed isP1

i¼k
�ie��

i! .
We now obtain asymptotic results for finite length paths

with increasing density of sensor nodes and decreasing
sensing radii. The sensing radii are scaled by 	 (i.e., the
sensing radii are distributed as 	R) such that 	2�! 
,
0 � 
 <1, as �!1. This scaling of the sensing radii
allows us to derive sensing properties in the large density
limit. With this scaling, the sensing statistics of the finite
length segment L will be the same as the limiting statistics

450 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 5, MAY 2007



of L as l0 !1 in a network where 	 ¼ 1 and the sensor
density is fixed at 
. This follows from the discussion on the
scaling properties of Boolean processes in [8]. From this, we
can state the following strong law:

Theorem 2. Let �
 ¼ �
EðR2Þ. Let 	! 0 and �!1 such that
	2�! 
, 0 � 
 <1. Then, with probability 1,

�k :¼ X T ðx;kÞðLÞ !
X1
i¼k

�
ie��


i!
: ð3Þ

The limiting value of �1 for any path is ð1� e��
EðR2ÞÞ
with probability 1. From Theorem 3.6 in [8], this is also the

fraction of any finite area that is almost surely 1-covered in

the same limiting regime! In fact, from Theorem 2 of [5], this

equality also extends to k > 1. While this seems reasonable,

it is not obvious that this should be the case.

We next obtain a central limit theorem for 1-sensing to

complement the almost sure convergence in Theorem 2. On

scaling the sensing radii by 	, it is easy to see that the density

of the induced coverage process on L, ��, is also scaled by 	.

Therefore, �� ¼ 2��	. Therefore, scaling R by 	 such that

�2	! 
 as �!1 and 	! 0 implies that 	 ��! 2�
. From

Theorem 3.5 in [8], where a central limit theorem for the

length of the path that is not 1-sensed is derived, we can

obtain a central limit theorem for X T ðx;kÞðLÞ.
Theorem 3. If 	! 0 as �!1 such that 	2�! � lnð1��Þ

�EðR2Þ , thenffiffiffiffiffiffiffiffiffiffiffi
2�	�

p
X T ðx;1ÞðLÞ � �
� 	

! Nð0; �2Þ;

where

�2 ¼ 4� lnð1� �Þ
�EðR2Þð1� �Þ2l0



Z 1

0

exp
�2� lnð1� �Þ

�EðR2Þ

Z 1
x

ð1� F �RðyÞÞdy
� �

� 1

� �
dx

ð4Þ

and F �Rð�Þ is the distribution function of �R from Theorem 1.

We make two observations: The speed of convergence of

the asymptotics is of the order of �
1
2. Though the asymptotic

mean for a two-dimensional area coverage and one-dim-

ensional path coverage are the same, the normalized

variances, �2, in (4) and in Theorem 3.5 of [8] are not equal.

4.2 Finite Network Analysis

For finite �, we can obtain the expectation and variance
of X T ðx;1ÞðLÞ by a simple application of the results of
Section 3.2 of [8]:

EðX T ðx;1ÞÞðLÞ ¼ 1� e���EðR2Þ

VARðX T ðx;1ÞÞðLÞ ¼
2e�2��EðR2Þ

l20



Z l0

0

ðl0 � xÞ e2��
R1
x
ð1�F �RðyÞÞdy � 1


 �
dx:

Observe that EðX T ðx;1ÞÞðLÞ has the same form as the

asymptotic EðX T ðx;1ÞÞðLÞ value except for 
 being replaced

by �. We plot VARðX T ðx;1ÞÞðLÞ as a function of l0 for

different � in Fig. 3. Observe that, even for small values of �

and l0, the variance is small compared to the mean. Thus, in

a realization of a network, the fraction of a path L that will

be 1-sensed will not be very different from the mean. Thus,

to 1-sense a fraction � of a path L, the sensor density must

be � ¼ 1� e��
EðR2Þ.
For a general k, from the queuing analogy and the

ergodicity of the M/G/1 queue, it follows that the

expected fraction of a path L that will be k-sensed in a

network of density � is

EðX T ðx;kÞÞ ¼
X1
i¼k

�EðR2Þ�ð Þie��EðR2Þ�

i!
: ð5Þ

However, a closed form expression for the variance of

X T ðx;kÞ is not available and we cannot conclude, as we did

for k ¼ 1, that the fraction of L that will be k-sensed in a

realization of a network will be close to the expected value.

We therefore perform simulations to evaluate the variance.

We simulate 10,000 network deployments and obtain the

fraction of the path L that is k-sensed. We fix � ¼ 0:5. For

k ¼ 1; 2; 3; 4; 5, the expected fraction of L that will be

k-sensed can be obtained from (5) to be 0.4076, 0.0974,

0.0162, 0.0021, and 0.0002, respectively. Fig. 4 plots the

sample variance of the fraction of L that was k-sensed as a

function of l0 for k ¼ 1; 2; 3; 4; 5. We see that the variance is

less than 5 percent when l0 ¼ 10 and further decreases

exponentially with l0. A similar behavior has been observed

for other values of �. We can therefore conclude that, in a

network realization, the fraction of a path L that will be

k-sensed will be close to the expected value. Therefore, (5)

can be solved to obtain �cð�kÞ, the minimum � required to

sense at least a fraction � ð0 < � � 1) of L. �cð�kÞ can be

written as

�cð�kÞ ¼
��cð�kÞ
�EðR2Þ ;
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Fig. 3. The variance of X T ðx;1ÞðLÞ as a function of l0, the length of the

path for a finite lambda for R � 1.



where ��cð�kÞ is the solution to (3). Equation (3) can be

explicitly solved to obtain a closed form for ��cð�kÞ only for

k ¼ 1. Doing this, we get

�cð�kÞ ¼
� lnð1� �Þ
�EðR2Þ :

For 2 � k � 6, (3) is numerically solved to obtain ��cð�kÞ. A

plot of ��cð�kÞ as a function of � is plotted in Fig. 5. For these

k, we observe that ��cð�kÞ is approximately proportional to �

for 0:1 � � � 0:8. When � is close to one (complete

tracking), any incremental increase in the requirement of

� will result in a steep increase in the requirement of �.

Also, for a given �, ��cð�kÞ is also proportional to k.
Let us now investigate the increase in ��cð�kÞ, � ��cð�kÞ,

that is required to achieve a given increase in �k. Fig. 6

shows � ��cð�kÞ as a function of � for different k to increase

the fraction of the path sensed from � to �þ 0:05. While the

plot for k ¼ 1 is strictly increasing, the plots for k > 1 have a

minimum. The reason for this is as follows: For a given ��,

from the stationary distribution of the M/G/1 queue, the

difference between the fraction of L that is k-sensed and the

fraction that is ðkþ 1Þ-sensed is e�
�� ��k

k! , which is just the

fraction of the line that is sensed by exactly k sensors. This
difference has a maximum at �� ¼ k. This implies that, for
low values of ��, increasing the sensor density by a fixed
amount will convert a larger portion of the area from being
k-sensed to becoming ðkþ 1Þ-sensed up to �� ¼ k, after which,
the additional fraction added decreases.

4.3 Robustness to the Model Assumptions

We analyze the robustness of the results derived above
when the model assumptions do not hold. Specifically, we
consider two departures from the assumptions—curvilinear
paths and nonhomogeneous sensor density.

4.3.1 Curvilinear Paths

The asymptotic results derived for straight line paths also
extend to piecewise linear and curvilinear paths. This can
be seen as follows: As 	! 0, a sensor can sense at most one
segment of a piecewise linear path. Hence, the sensing
properties of each linear segment of the path are indepen-
dent and can be analyzed separately. A curvilinear path can
be approximated by piecewise linear segments. Thus, the
asymptotic results obtained for straight line paths extend to
curvilinear paths also.

We now consider finite networks and curvilinear paths
which are arcs of circles of different radii, denoted by Rc,
over a chord of length 100. These paths are shown in Fig. 7.
We obtain the fraction that is k-sensed for and compare it
with EðX T ðx;kÞÞ derived in (5) for straight line paths. We fix
� ¼ 0:5 and R � 1. The results are summarized in Table 1.
We see that the mean fraction of the curvilinear paths that is
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Fig. 5. The figure shows the plot of ��cð�kÞ with � for 1 � k � 6.

�cð�kÞ ¼
��cð�kÞ
�ER2 .

Fig. 6. Plot of � ��cð�kÞ as a function of � for different k. � ��cð�kÞ is the

increase in ��cð�kÞ that is required to increase the fraction of a line that is

sensed by 5 percent, i.e., the increase in ��cð�kÞ required to increase the

fraction sensed from � to �þ 0:05.

Fig. 7. Paths of curvature Rc ¼ 102:5; 103; 103:5; 104. The sensor density is

fixed at � ¼ 0:5 and R � 1.

Fig. 4. Sample variance against l0 for k ¼ 1; 2; 3; 4; 5 and � ¼ 0:5.



k-sensed is very close to the fraction of straight line paths

k-sensed. Further, the mean square deviation between the

actual fraction of the curvilinear path that is k-sensed and

the expected fraction of a straight line path that is k-sensed is

less than 5 percent. Thus, �cð�kÞ can be used as the critical

density to k-sense a fraction of �k of curvilinear paths.

4.3.2 Nonhomogeneous Networks

We next consider nonhomogeneous networks. We assume

that the sensors form a spatial nonhomogeneous Poisson

process with density �ðx; yÞ ¼ �e��ðjxjþjyjÞ. Through simula-

tions, we obtain the fraction of a straight line path that is

k-sensed. To obtain a comparable result for the homoge-

neous network, we use

� ¼ 1

kAk

Z
A

�ðx; yÞdx dy

in (5). Here, A is the area around L where the sensors can

sense L and kAk is the area of A. The expected fraction

sensed for the two cases are plotted in Fig. 8 as a function of

� for different l0. � is fixed at 0:5 and R is assumed to be

uniform in [0, 1]. We see that the mean fraction of the path

k-sensed in the nonhomogeneous network is close to the

expected fraction k-sensed in the homogeneous network. As

expected, as � reduces, the deviation also reduces.

5 1-SENSING: LENGTH TO FIRST SENSE AND

SENSING CONTINUITY

Since the Boolean process is shift invariant, without loss of

generality, L can be taken to be the segment ½0; l0	. Also, in

the following, we consider networks with finite �.

5.1 Length to First Sense

Let the regions x < 0, 0 � x < l0, and l0 � x in <2 be

denoted by W1, W2, and W3, respectively. Define the regions

WiðdÞ i ¼ 1; 2; 3 as follows: W1ðdÞ is the rectangle with ð0; dÞ
and ðl0;�dÞ as the opposite corners. W2ðdÞ and W3ðdÞ are

the semicircular regions of radius d with centers at (0,0) and

ð0; l0Þ, respectively. See Fig. 9.
Let Eu :¼ E1 \ E2 \E3, where Ei, i ¼ 1; 2; 3, is the event

that no part of L is 1-sensed by any sensor in Wi. Let Ed be

the complement of Eu, i.e., the event that L is 1-sensed.

Since the Wis are nonoverlapping, the Eis are independent

and PrðEuÞ is the product of the probabilities of the Ei. We

calculate these probabilities next.
Since the sensing radius has support in [0, 1], only

sensors in Wið1Þ can sense any part of L. Further, since the

sensor locations form a spatial Poisson process of density �,

the number of sensors in W1ð1Þ, N1, will be a Poisson

random variable with mean 2l0� and, from the proof of
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TABLE 1
Sample Mean of the Fraction of Curvilinear Paths That Was k-Sensed for Different Rc

Rc ¼ 1 corresponds to the straight line. We also show the mean square deviation (MSD) from that of the straight line path.

Fig. 8. Plot of fraction k-sensed against decay constant for different

values of l0 and k. The dashed line is the fraction sensed in a

homogeneous network.

Fig. 9. The dotted lines mark the boundary of the regions W1ðdÞ, W2ðdÞ,
and W3ðdÞ. The two lines x ¼ 0 and x ¼ l0 also mark the boundary of

W1, W2, and W3.



Lemma 1, the probability that any of these sensors will
sense L is �. Therefore,

PrðE1Þ ¼ Eðð1� �ÞN1Þ ¼ e�2l0��:

From symmetry, the probabilities of E2 and E3 are equal
and we evaluate the probability of E2. Given that a sensor
is in W2ð1Þ, its location is uniformly distributed in that
region. Hence, the probability that this sensor does not
sense (0, 0) is

1

2

Z 1

0

fRðrÞð1� r2Þdr ¼ 1� EðR2Þ
2

:

N2, the number of sensors in W2ð1Þ, is a Poisson random
variable with mean � �

2 . Therefore,

PrðE2Þ ¼ Eðð1� EðR2ÞÞN2Þ ¼ e��2�EðR2Þ:

Therefore, it follows that

PrðEdÞ ¼ 1� e��ð�EðR2Þþl0EðRÞÞ: ð6Þ

We use this to obtain the distribution of LF ðLÞ, FLF ðLÞðxÞ.
Clearly, PrðLF ðLÞ < xÞ is 0 for x < 0 and 1 for x > l0. For
x 2 ½0; l0Þ, FLF ðLÞðxÞ is the probability that ½0; xÞ is sensed,
which can be obtained from (6) by replacing l0 by x.
Therefore,

FLF ðLÞðxÞ ¼
0 if x < 0
1� e���EðR2Þ��EðRÞx if 0 � x < l0
1 if x > l0:

8<
:

From above, notice that the probability density of LF ðLÞ
has point masses at 0 and l0 corresponding to the
probabilities of the beginning of the path being sensed
and the path not being sensed at all. Observe that this is just
the truncated exponential distribution.

In Figs. 10 and 11, we show the expectation and variance
of LF ðLÞ conditioned on the path being sensed for the
degenerate case of R � 1. As expected EðLF ðLÞÞ decreases
with � for the case of R � 1. The conditional expectation
and variance of LF ðLÞ decreases exponentially with �.
Observe that, even for moderate �, the conditional expecta-
tion and the variance of LF ðLÞ do not significantly depend

on l0. Further, for large l0, the dependence on � is also not
very strong.

5.2 Sensing Continuity: Clumps and Holes

Since the sensing process on the path is a one-dimensional
Boolean process, for 1-sensing, the hole lengths are clearly
exponentially distributed with rate ��, i.e., the the hole
length density is fHðxÞ ¼ ��e�

��x. From Theorem 2.2 of [8],
the characteristic function, 


Z
ðsÞ, of length of a clump, Z, is


ZðsÞ ¼
��þ s

��
� ��

Z 1
0

exp �st� ��

Z t

0

ð1�F �RðxÞÞdx
� �

dt

� ��1

:

The expectation of the clump length is EðZÞ ¼ ���1ðe2 ��Eð �RÞ �
1Þ and its variance is

VARðZÞ ¼ � ���2ðe2 ��Eð �RÞ � 1Þ2

 �

þ

þ 2e2 ��Eð �RÞ

��

Z 1
0

exp ��

Z 1
y

f1� F �RðxÞgdx
� �

� 1

� �
dy:

Fig. 12 is a log-plot of the variance of the length of a clump
length as a function of �. Observe that the plot is a straight
line, which means that the VARðZÞ increases exponentially
with �. This means that, for high � and, hence, for high �,
i.e., in the high tracking regime, the durations for which the
target would be tracked continuously varies a lot around
the mean clump length even though the total proportions of
time it is tracked may not vary a lot. This in turn implies
that a target will encounter a large number of small clumps
or a small number of large clumps. This implies that, in
spite of ensuring high coverage, there is a lot of variability
in the quality of tracking.

Theorems 2.3 and 2.4 [8, p. 141] can be used to obtain

limiting distributions for the clump lengths.

Theorem 4. As �!1, the distribution of Z
EðZÞ goes to an

exponential with mean 1.

Further, observe that

logx

Z 1
x

f1� F �RðrÞg ! 0
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Fig. 10. The conditional expectation of LF ðLÞ given that the path is
sensed is plotted as a function of � for different values of l0.

Fig. 11. The conditional variance of LF ðLÞ given that the path is sensed
is plotted as a function of � for different values of l0.



as x! 0. Here, F �RðrÞ is the distribution function of �R.

Therefore, from Theorem 2.4 in [8], we have:

Theorem 5. If the sensing radii R are scaled by 	, 	! 0, and if

�!1 such that

4Eð �RÞ��	2 ¼ ln
2�	�

u

� �
þ oð1Þ;

then, in the limit, the distribution of Z goes to an exponential

with mean u, a constant.

We next obtain asymptotic results for the number of holes

and clumps in L. A one-dimensional Boolean process is

essentially a renewal process on L, with renewal cycle

length, D, equal to H þ Z. Since H and Z are independent,

EðDÞ ¼ EðHÞ þ EðZÞ ¼ e
�EðR2Þ�

2��

and VARðDÞ ¼ 1
��2 þVARðZÞ. The number of holes, NHðLÞ,

and clumps, NZðLÞ, in L will be equal to or 1 less than the

number of renewals in L. Therefore, from the renewal

theorem as l0 !1, NH ðLÞ
l0

and NZðLÞ
l0

will converge to

2��e���EðR2Þ. This result, as in Section 4, can be extended

to obtain asymptotics for NHðLÞ and NZðLÞ when l0 is finite
by scaling R to 	R such that 	! 0 and 	2�! 
.

Theorem 6. If 	! 0 and �!1 such that 	2�! 
,
0 � 
 <1, then, with probability 1,

NHðLÞ
l0

¼ NZðLÞ
l0

! 2
�e��
EðR2Þ:

Further, it is possible to derive a central limit theorem for
NH and NZ from the central limit theorem for number of
renewals. Additional statistics may be obtained by suitably
using the results from [8, ch. 4].

6 BREACH AND SUPPORT

Recall that breach is the distance of the closest sensor to L.
Therefore, FBrðLÞðdÞ is the probability that there is at least
one sensor within a distance of d from L. The latter is the
probability that there is at least one sensor in the region
WiðdÞ

S
W2ðdÞ

S
W3ðdÞ, which is of area 2l0dþ �d2 (see

Fig. 9). Since the sensor locations form a spatial Poisson
process, we get

FBrðLÞðdÞ ¼ 1� e�ð��d2þ�l0dÞ:

Fig. 13 and Fig. 14 plots the expected value and variance of
breach, respectively, as a function of � for different values
of l0. Observe the exponential decrease of both with �. For a
fixed �, the relative change in the expected breach is higher
for lower l0, while this is not so pronounced for the
variance. Further, the relative change in the variance with
change in l0 is higher for higher �, which is not the case for
the expectation.

To calculate the support , we first derive the distribution
of Bi, the distance to L of the closest sensor in Wi. Let NiðdÞ
denote the number of sensors in WiðdÞ and EiðdÞ denote the
event that NiðdÞ 6¼ 0.

Observe that, in the limit as d!1, the region WiðdÞ
approaches Wi and the probability of EiðdÞ approaches 1.
Thus, the density of Bi can be obtained by first conditioning
on EiðdÞ and then taking the limit d!1. We use this
strategy below to calculate the densities.

Given that there are sensors in W1ðdÞ, they will be
uniformly distributed in W1ðdÞ. This means that the
perpendicular distance of the sensors to L, which is also
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Fig. 13. Plot of EðBrðLÞÞ against � for different values of l0.

Fig. 14. Plot of VARðBrðLÞÞ against � for different values of l0.
Fig. 12. The variance of Z, the clump length, is plotted as a function of �.



their shortest distance to L, has a uniform density in ½0; d	.
Therefore, conditioned on E1ðdÞ and N1ðdÞ, B1 will be the
minimum of N1ðdÞ random variables that are independent
and uniformly distributed in ½0; d	.

fB1jE1ðdÞðxÞ ¼
E N1ðdÞ

d 1� x
d

� 	N1ðdÞ�1

 �

if x < d;

0 otherwise:

(

Further, conditioned on E1ðdÞ, the density of N1ðdÞ is

pðN1ðdÞjE1ðdÞÞðnÞ ¼
ð�l0dÞne��l0d
n!ð1� e��l0dÞ :

From the above,

fB1jE1ðdÞðxÞ ¼
�l0e

�l0�x

1�e��l0d if x < d;
0 otherwise:

�

As before, we obtain the marginal density of Bi by taking
the limit as d!1.

fB1
ðxÞ ¼ �l0e�l0�x: ð7Þ

Clearly, B2 and B3 will be identically distributed. Further,
given that there are N2ðdÞ sensors in W2ðdÞ, they will be
independently and uniformly distributed in the region. This
means that their distance from the origin, which is also their
shortest distance to L, will have a density 2x

d2 in ½0; d	 and 0
outside. As in the case of B1, we obtain fB2

ðxÞ by first
conditioning on N2ðdÞ, E2ðdÞ and evaluating the marginal.
This turns out to be

fB3
ðxÞ ¼ fB2

ðxÞ ¼ ��x e���x
2

2 : ð8Þ

Recall that support SuðLÞ is the maximum euclidean
distance of the closest sensor from the path L. In the case
of straight line paths, this will essentially be the distance of
the closest sensor to the farthest end point of the straight line.

Let Ec denote the event that the closest sensor is in W1

and Ec
c the complement event. The density of the support,

fSuðLÞðxÞ, can therefore be obtained as

fSuðLÞðxÞ ¼ PrðEcÞ fSuðLÞjEcðxÞ þ PrðEc
cÞ fSuðLÞjEc

c
ðxÞ:

The event Ec is the event that B1 is less than B2 and B3.
Therefore,

Pr ðEcÞ ¼
Z 1
x¼0

fB1
ðxÞð1� FB2

ðxÞÞð1� FB3
ðxÞÞ dx:

Also, given Ec, SuðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

1 þ �T 2

q
. Here, �T is the

distance of the point �X, the projection of the closest sensor

onto L, to the farthest end point of L (see Fig. 9). Since the

sensors are deployed as a homogeneous Poisson process, �X

is uniformly distributed in ½0; l0	, which means �T is

uniformly distributed in ½l02 ; l0	. Therefore,

fSuðLÞjEcðxÞ ¼
Z x

l0=2

2xfB1
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2
p

Þ
l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2
p dt:

In the case when the closest is in W2 or W3, the support can
be written as

SuðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 sinð�ÞÞ2 þ ðl0 þB2 cosð�ÞÞ2

q
:

Here, � is the angle made by the line joining the closest
sensor to the closest end of L. Since the sensor will be
uniformly distributed in the semicircular regions, � will be
uniform in ½0; �	.

We have not been able to obtain a closed form expression

for either the distribution or the moments of the support.

We therefore perform simulations to obtain numerical

results. Fig. 15 plots EðSuðLÞÞ against � for different l0.

The variation across � decreases as l0 increases. Thus, for

large l0, the support is dominated by l0 and it does not

appear to be a very useful measure of the “goodness” of

deployment.

7 GENERALIZATIONS

So far, we have analyzed the thresholded sensing of straight
line paths. In this section, we extend these results to more
general settings.

7.1 Paths and Networks in Higher Dimensions

Our first generalization is to extend the results for networks

and paths of higher dimensions. As an example, consider a

network deployed in three-dimensions that is used to track

the movement of a fleet of airborne objects, say, a flock of

birds, and also to track a specific object or bird. Since the

“cross section” of the fleet or flock will be significantly

higher than a single object, we may treat the latter as a

point object and the former as a planar set. To track the

fleet, the three-dimensional sensor network must sense a

“two-dimensional path” while, in tracking the individual

element, a one-dimensional path must be sensed.

Consider an m-dimensional straight line path L. When

m ¼ 1, L is a straight line and, when m ¼ 2, it is a rectangle.

For a general m, L will be an m-dimensional hypercuboid.

Let fXi; Cig form an n-dimensional Boolean process. Here,

fXig is an n-dimensional Poisson process of intensity �, Ci is

a hypersphere of radius Ri and Ri are i.i.d. random

variables with density fRð�Þ with support in [0,1]. We are

interested in the coverage/sensing properties of L by
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Fig. 15. Plot of EðSuðLÞÞ against � for different values of l0.



fXi; Cig. Let L be the plane obtained by extending L along

the m directions in which it is has a nonzero measure. As

before, we project marked points, i.e., a point at Xi, onto L if

the set Xi þ Ci intersects L. This results in a point process

f �Xig. Let �Ci be the intersection of Xi þ Ci and L.

The following results can be obtained as above. See the

Appendix for the details of the proof.

Lemma 4. The point process, f �Xig, on L is a Poisson process of
intensity 2�n�m�, where �n�m ¼ EðRn�m

i Þ.
Lemma 5. The set �Ci is an m-dimensional hypersphere centered

at �Xi and has a radius �Ri, where the density of Ri is

f �Ri
ð�rÞ ¼

ðn�mÞ�r
�n�m


R 1
�r fRðrÞðr2 � �r2Þ

n�m�2
2 dr if 0 � �r � 1

0 otherwise:

8><
>:

Theorem 7. The projected point process f �Xig and the sets f �Cig
constitute an m-dimensional Boolean process.

7.2 Nonthresholded Sensing

Recall that, in nonthresholded sensing, �ðXi; xÞ is a

continuous function that decreases as the distance of the

point from the sensor increases. In general, �ðXi; xÞ is taken

to be �
dðXi;xÞ
 and a point is considered sensed only ifP

i
�

dðXi;xÞ
 � �. Here, dðXi; xÞ is the euclidean distance

between Xi and x.

Recall that breach and support are not dependent on the

sensing model and will remain the same. Further, it is

shown in [4] that the region sensed by a network under the

1-thresholded model with the sensing radii is fixed at ð��Þ
1=


will be a subset of the region sensed by the network when

the sensing is nonthresholded. Therefore, the exposure and

the clump lengths for the nonthresholded model are lower

bounded while the length to first sense is upper bounded by

their values obtained for 1-thresholded sensing.

7.3 Finite Operational Area

Consider a square A in which sensors are deployed in a

Poisson manner, i.e., the number of sensors in R � A is a

Poisson random variable and is independent of the number

of sensors in any nonoverlapping region. Let P be a straight

line path with the two end points on opposite edges of A.

Since the sensors are distributed only inside A, the results

we have derived above upper bound the sensing properties

of P . Further, the results derived in the limit 	! 0 hold, as

in that limit, even if sensors are deployed outside A, the

length sensed by these sensors will be negligible.

8 DISCUSSION

We have analyzed the properties of a two-dimensional

Poisson sensor network in regard to its ability to track a

path in the field. We obtain asymptotic and finite

network statistics. We have shown that the fraction of a

path that is 1-sensed is the same as the fraction of an area

that is 1-sensed. It is not clear if this result carries over to

k > 1 and we leave that question open.

APPENDIX A

PROOF OF LEMMA 4

Proof. Consider a differential element dS on L of

m-dimensional volume dV . The process f �Xig is a Poisson

point process on L if the probability there is a projected

point, i.e., �Xi for some i in dS is ��dV , and the arrivals

also have the independent increments property.
There is a projected point in dS if there is a

corresponding X in the n-dimensional differential ele-
ment, dP , centered at dS and of a 2 units length along the
n�m directions that are perpendicular to L. The
probability of this event is the product of the probability
that there is a sensor in dP (which is �dV þ oðdV Þ) and
the probability that this sensor is marked. We calculate
this next.

Given that a sensor (say, s of sensing radiusR) is in dP ,
it will be uniformly distributed there and the perpendi-
cular distance of s from L, say, Y , will have a density

fY ðyÞ ¼ ðn�mÞyn�m�1 0 � y � 1
0 otherwise:

�
ð9Þ

Therefore, the probability that s is marked is

Pr ðs is markedÞ ¼
Z 1

0

PrðY � RÞfRðrÞdr

¼
Z 1

0

rn�mfRðrÞdr ¼ �n�m:

The argument for independent increment property is
identical to the argument in proof of Lemma 1. tu

APPENDIX B

PROOF of LEMMA 5

Proof. Consider a marked sensor S at X with a sensing

radius R. Let Y be its perpendicular distance from L.

Note that as the sensor is marked R > Y .
The region on L sensed by S will be the hypersphere

with radius �R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Y 2
p

. As before, by a transforma-
tion of random variables we have the distribution
function, F �Rð�Þ, can be written as

F �Rð�rÞ ¼
Z
r;y:

ffiffiffiffiffiffiffiffiffi
r2�y2
p

¼�r

fðR;Y jR�Y Þðr; yÞ dr dy: ð10Þ

The probability that a sensor, which is within a unit
distance from L, is marked is �n�m (proof of Lemma 4).
Further, Y is independent of R and its is density is given
by (9). Therefore,

fðR;Y jR>Y Þðr; yÞ ¼
ðn�mÞfRðrÞyn�m�1

�m�n
: ð11Þ

Substituting for fðR;Y jR>Y Þðr; yÞ in (10) and differentiat-
ing with respect to �r, we get

f �Ri
ð�rÞ ¼

ðn�mÞ�r
�n�m


R 1
�r fRðrÞðr2 � �r2Þ

n�m�2
2 dr if 0 � �r � 1

0 otherwise:

8><
>:

tu
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