
Nomadic Service Assignment
Edward Bortnikov, Israel Cidon, and Idit Keidar

Abstract—We consider the problem of dynamically assigning application sessions of mobile users or user groups to service points.

Such assignments must balance the trade-off between two conflicting goals. On the one hand, we would like to connect a user to the

closest server in order to reduce network costs and service latencies. On the other hand, we would like to minimize the number of

costly session migrations, or handoffs, between service points. We tackle this problem using two approaches. First, we employ

algorithmic online optimization to obtain algorithms whose worst-case performance is within a factor of the optimal. Next, we extend

them with opportunistic heuristics that achieve near-optimal practical average performance and scalability. We conduct case studies of

two settings where such algorithms are required: wireless mesh networks with mobile users and wide-area groupware applications with

or without mobility.

Index Terms—Mobile communication systems, online computation, distributed networks.

Ç

1 INTRODUCTION

RECENT advances in network technology, along with the
increasing demand for real-time networked applica-

tions, are bringing application service providers to deploy
multiple geographically dispersed service points, or ser-
vers. This trend is expected to further expand with the
explosion of new applications and the expansion of services
to larger domains. In such settings, a given application
session is typically associated with some server. In real-time
applications, the association selection is driven by quality of
service (QoS) considerations, which may depend, e.g., on
the network distance of the user from the server. As many
of these applications are becoming increasingly available to
mobile users and dynamic user groups, the factors that
dictate the server selection can vary with time. For example,
due to a user’s movement, a server providing optimal QoS
at some point may later provide poor QoS, rendering it
desirable to migrate the application session from one
physical server to another. We therefore believe that many
future distributed service infrastructures will employ
nomadic service points and will transparently manage such
dynamic session assignments.

One important domain where nomadic service points
can be exploited to serve mobile users is wireless mesh
networks (WMNs) [1], [12], [14]. WMNs provide an
increasingly popular solution for Internet access from
residential areas with a limited wired infrastructure. These
networks are built around multiple stationary wireless
routers. Some of them, called access gateways, are wired to
the Internet. The mesh access protocol typically routes the
traffic of each mobile node through a single access gateway.
As the node travels away from its original location, the
network delay between it and the gateway grows, and the

protocol can reroute the traffic through a different gateway
to improve the QoS. For example, a greedy protocol would
always route the traffic via the closest gateway. However,
this optimization is not always adequate for highly mobile
users, which suffer from QoS degradation caused by
frequent handoffs. Intelligent nomadic service assignment
algorithms can mitigate the trade-off between access delay
and session interruptions.

Server assignment quality also has special importance in
collaborative groupware applications like instant messa-
ging, push-to-talk, and massively multiplayer online games,
where the impact of a bad association can be magnified
with the group’s scale. The infrastructure for these applica-
tions is typically based on servers that both maintain the
application state and act as forwarding proxies. Intuitively,
the server should reside close to the group’s centroid in
order to serve the group best. In groups with a highly
dynamic membership, the optimal server selection changes
as users join or leave the group. Thus, there is a trade-off
between the cost of assignment to a suboptimal server (e.g.,
increased delay) and the cost of state transfer incurred upon
the reassignment.

In this paper, we study the problem of optimizing the
dynamic assignment of sessions to service points. Such a
service assignment should balance the trade-off between
connecting sessions to the closest servers at all times and
minimizing the number of session migrations. We capture
this trade-off by assuming two types of service costs: a setup
cost, incurred whenever the session is assigned to a new
server, and a hold cost, incurred every unit of time the server
is being used. The former reflects one-time expenses like
signaling overhead and application state transfer, whereas
the latter captures continuous expenses like buffer space,
processing power, network latency, and bandwidth. For
simplicity, we focus on the case where the setup costs do
not vary over time and are identical for all servers. The hold
costs may vary in both aspects. For example, in a mobile
WMN, connection transfers are done through wired
infrastructure of predictable performance. In this context,
the setup cost is fixed, since it does not depend on the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007 1

. The authors are with the Department of Electrical Engineering, The
Technion—Israel Institute of Technology, Technion City, Haifa 32000,
Israel. E-mail: ebortnik@techunix.technion.ac.il,
{cidon, idish}@ee.technion.ac.il.

Manuscript received 5 Dec. 2005; revised 21 June 2006; accepted 17 Oct.
2006; published online 7 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0361-1205.
Digital Object Identifier no. 10.1109/TMC.2007.1043.

1536-1233/07/$25.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

location of the source and target gateways. The hold costs,
which capture user-gateway distances, are variable.

The nomadic service assignment optimization problem is to
find a sequence of server assignments that minimizes the
total cost. Obviously, we are interested in the online version
of this problem in which the service costs are received on
the fly. We treat the problem both as a theoretical online
optimization problem and as a practical system question.
We first handle the generic nomadic service assignment
problem and then examine it more closely in two specific
case studies pertaining to specific example domains.

We formally define the problem in Section 3. Then, in
Section 4, we present an offline algorithm, OPT, which
computes the optimal solution assuming that the costs are
known in advance. This algorithm’s time and space compu-
tation complexity is linear in the number of servers k and in
the algorithm’s duration. While this result has little practical
importance, it serves as a baseline for evaluating the online
algorithms described in later sections.

In Section 5, we study nomadic service assignment as an
online optimization problem. A common metric for an
online algorithm is its competitive ratio, which is the worst-
case ratio between the cost produced by the algorithm and
the optimal cost. We first prove a lower bound of k on the
competitive ratio of any deterministic online assignment
algorithm. We then present two simple online algorithms,
DTrack (deficit tracker) and CTrack (cost tracker), para-
meterized by policies governing when transitions happen
and which server is chosen upon a transition. DTrack

transitions from its currently assigned server when the
session accumulates “significantly more” hold cost than it
would have paid had it been assigned to some other server,
whereas CTrack simply transitions when the session
accumulates “enough” hold cost at the currently assigned
server. We show that, when instantiated with certain
policies, these algorithms achieve competitive ratios within
a constant factor of the lower bound. Specifically, when
using a round-robin (RR) policy to choose the next assign-
ment, DTrack achieves a competitive ratio of 2k, i.e., at
most twice as bad as the lower bound, whereas CTrack

achieves a competitive ratio of ð2þ aÞk, where a is an upper
bound on the ratio between the hold and setup costs.

Although, as our lower bound shows, a worst-case cost
ratio that is linear in the number of servers is inevitable in
the general case, achieving such costs is hardly useful for
large-scale services that employ thousands of servers
worldwide. From a practical perspective, it is more
interesting to examine average costs in common scenarios
and, moreover, it is highly desirable for costs not to increase
significantly with the number of servers. We address these
practical issues in Sections 6 and 7 via empirical case
studies of a WMN with mobile users and an Internet
chatroom with dynamic groups, respectively. Interestingly,
the competitive versions of DTrack and CTrack, which
achieve the best worst-case costs, are not very promising in
practice. However, opportunistic versions of these algo-
rithms, which select the next assignment based on current
or past offered costs (rather than in a round-robin manner),
achieve excellent results. Their costs are at most 50 percent
above the optimum in the average case in the WMN (for a

widely accepted random waypoint mobility model, e.g.,
[22]), and at most 20 percent above optimal in the
groupware service (for uniformly distributed users with a
Poisson arrival process). More importantly, this ratio, as
well as the total cost, remains almost constant as the
problem size scales.

There is a trade-off between our two algorithms:
Although DTrack achieves better results (lower overall
costs), it has a higher computational time complexity and
requires discovering the hold costs of a large number of
servers every time unit. In contrast, CTrack has a constant
per-unit time complexity and does not need to probe other
servers for their costs except when it decides to transition.

In Section 6.1, we propose two motion-aware heuristic
algorithms, named TargetAware and DirectionAware.
TargetAware assumes knowledge of the mobile node’s
current target and speed, whereas DirectionAware only
requires the knowledge of the node’s current direction,
which is used to estimate the target and speed. These hints
can be received either from a higher-level application or
from a positioning system like GPS. Although their look-
ahead window is quite small (the node’s next target), both
motion-aware algorithms yield significant cost improve-
ments. Their costs are typically within 10 percent above the
optimum and exhibit perfect scalability.

2 RELATED WORK

Handoff optimizations in mobile systems have been
extensively studied since the early 1990s, mostly in the
context of cellular networks with the advent of the GSM
standard [11], [19], [21]. This research targeted increasing
network capacity as the primary goal. Handoffs in cellular
systems are driven by physical metrics, like signal strength
and transmission power, and are handled at the link layer.
They cannot be avoided when user location changes
significantly, and optimizing their cost is a secondary
design goal (e.g, [9]). Our work is fundamentally different
because we consider the network layer and above. In this
context, handoffs are optional, and they improve the QoS in
the long run, but their cost is substantial. For example,
migrating a host connection between two WMN gateways
can affect packet delivery order and temporarily degrade
the TCP performance.

Initial mesh networking research mostly focused on
problems that are specific to fixed wireless, e.g., defining
routing metrics [12], exploiting the broadcast nature of the
medium [6], and harnessing multiple radio interfaces
through smart cross-layer design [2]. More recently, Amir
et al. presented the design and implementation of a
prototype WMN with mobility support [3]. The algorithms
presented in this paper can be integrated into such a
system for handoff decisions. Lavi et al. [15] proposed
employing an overlay service network for supporting
groupware in mobile networks. Their architecture sug-
gested associating every mobile user with the closest server
and efficiently maintaining the group membership infor-
mation between multiple servers. In contrast with this
approach, we focus on applications (including possibly
groupware) that associate a session with a single server.

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

The problem of dynamic session management was
studied in the context of routing virtual circuits in mobile
ATM networks [4] with a similar model of setup and hold
costs. However, these costs were defined per link, and the
algorithm had to decide whether to retain or to release a
redundant link. This model allowed reusing part of the
links after the rerouting, thus allowing for lower total costs
than in our model where no reuse is possible. Indeed, their
algorithms exhibit better competitive behavior than the best
possible for nomadic service assignment.

Nomadic service assignment is closely related to the
classical metrical task system (MTS) problem [8]. In this
context, there is a set of k states and a matrix of interstate
transition costs (the cost of a self-transition is zero). A
schedule for a sequence of tasks is a sequence of states in
which these tasks are processed. The cost of a schedule is
the sum of all task processing (hold) and transition (setup)
costs. For symmetric cost matrices subject to the triangle
inequality, there is a deterministic online algorithm with a
competitive ratio of 2k� 1, and this bound is tight.
Nomadic service assignment closely resembles a special
case of this problem with uniform transition costs, except
that, in our problem, the initial assignment always incurs a
cost. However, the online MTS algorithm [8] makes use of
the entire history of setup and hold costs until the
scheduling decision, which makes it impractical to imple-
ment. We use a very different algorithmic technique, which
requires OðkÞ operations per decision regardless of the
history length. In a specific setting of a WMN with mobile
users in which the hold costs are defined as user-gateway
distances, the computation overhead of our algorithm can
be further reduced by an order of magnitude through the
use of spatial data structures.

Optimal center location for a group of users is an
instance of the well-studied facility location problem [18],
which, given a set of facility locations and a set of customers
in a metric space, chooses which customers should be
served from which facilities so as to minimize the total
service cost. Facility location was studied as an online
problem [17] and was used for various applications,
including optimizing the delivery of Web content in CDN’s
[13], [20], maintenance of mobile centers in ad hoc networks
[5], and adaptive server selection in online games [16]. The
problem differs from ours in that multiple facilities are used
per group, and the online algorithm is allowed to add
facilities over time instead of migrating sessions among
existing ones.

3 SYSTEM MODEL

Consider an application session that can be hosted by any
one of k servers S ¼ fs0; . . . ; sk�1g. The session is assigned
to some server at the beginning of the session but can be
reassigned to a different server at each discrete time slot.

There are two types of nonnegative costs charged for the
session: a setup cost that is paid when the session is assigned
to a new server, including the initial one, and a hold cost,
paid for each time slot the session is assigned to some
server. From a session’s perspective, different servers offer
different costs at a given time slot and may also change
them at the beginning of each slot. We denote the setup cost

offered by server s at time t by setupðs; tÞ and the hold cost
by holdðs; tÞ.

The assignment schedule �ðtÞ in a time interval I is a
function, � : I ! S, which assigns the session to server s 2
S at each discrete time t 2 I . For convenience, we define
�ðtÞ ¼? for t =2 I . We define the set of transitions on an
interval I as

T ð�; IÞ ¼ ft j t 2 I ^ �ðtÞ 6¼ �ðt� 1Þg:

In particular, the initial assignment is also considered a
transition.

The assignment schedule � on an interval ½t1; t2Þ incurs a
total hold cost

holdð�; ½t1; t2ÞÞ ¼
4 Xt2�1

t¼t1
holdð�ðtÞ; tÞ;

a total setup cost

setupð�; ½t1; t2ÞÞ ¼4
X

t2T ð�;½t1;t2ÞÞ
setupð�ðtÞ; tÞ;

and a total overall cost

costð�; ½t1; t2ÞÞ ¼4 setupð�; ½t1; t2ÞÞ þ holdð�; ½t1; t2ÞÞ:

The optimal nomadic service assignment problem for interval
½0; T Þ is to compute an assignment schedule �� that
minimizes costð��; ½0; T ÞÞ.

The presence of positive setup costs is what makes the
problem nontrivial. Otherwise, the session would always
associate with the server that offers the minimum hold cost.
Hence, we always consider positive setup costs.

4 AN OPTIMAL OFFLINE ALGORITHM

In this section, we describe an optimal offline algorithm for
the assignment problem, i.e., assuming that the setup and
hold cost functions are known in advance. The algorithm is
linear-time in the interval length T and the number of
servers k.

We first identify the structure of the optimal solution ��.
Let ��s;t : ½t; T Þ ! S be a lowest cost schedule among those in
which s is the initial assignment, that is, ��s;tðtÞ ¼ s. We
observe that, if ��s;tðtþ 1Þ ¼ s0, then

costð��s;t; ½tþ 1; T ÞÞ ¼ costð��s0;tþ1; ½tþ 1; T ÞÞ:

In other words, the cost of an optimal schedule for ½tþ
1; T Þ that assigns s0 at tþ 1 is identical to the cost of the
½tþ 1; T Þ-suffix of the optimal schedule for ½t; T Þ with the
same assignment. Otherwise, the global optimality is
violated. If s0 ¼ s, then setupðs0; tþ 1Þ does not contribute
to costð��s;t; ½t; T ÞÞ.

The problem can be represented as a layered directed
acyclic graph. Node i in layer t stands for ��si;t, for 1 � i � k,
0 � t � T . There is an edge between every pair of nodes
ði; tÞ and ðj; tþ 1Þ, which represents a possible transition
from si to sj at time t. The cost of this edge is holdðsj; tþ 1Þ
if i ¼ j and holdðsj; tþ 1Þ þ setupðsj; tþ 1Þ otherwise. The
optimal solution’s cost is the weight of the shortest path in
the graph. While this weight can be computed in linear time

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 3

in the number of edges, i.e., Oðk2T Þ, the time complexity can

be optimized to OðkT Þ by exploiting the optimal solution’s

structure, as we now explain.
We define the tail contribution function for t < T as

follows:

tailðs; s0; ½t; T ÞÞ¼4 costð��s;t; ½t; T ÞÞ � setupðs; tÞ if s ¼ s0
costð��s0;t; ½t; T ÞÞ otherwise:

�

Then, costð��s;t; ½t; T ÞÞ for t < T can be expressed as

costð��s;t; ½t; T ÞÞ ¼ setupðs; tÞ þ holdðs; tÞ
þmin

s02S
tailðs; s0; ½tþ 1; T ÞÞ:

We define tailðs; s0; ½T; T ÞÞ ¼4 costð��s;t½T; T ÞÞ ¼
4

0. For t < T ,

we get

costð��s;t; ½t; T ÞÞ ¼ setupðs; tÞ þ holdðs; tÞ

þmin min
s02S

costð��s0;tþ1; ½tþ 1; T Þ
� �

; costð��s;tþ1; ½tþ 1; T ÞÞ

� setupðs; tþ 1ÞÞ:

An optimal solution can be computed through dynamic

programming [10] using the above recurrence. The algo-

rithm employs a two-dimensional table Table½1::k; 0::T �,
where an entry Table½s; t� holds the value of costð��s;t; ½t; T ÞÞ
and the identity of s0 ¼ ��s;tðtþ 1Þ. The table is computed

column by column from T � 1 down to 0. Column T is

initialized by zeroes. During the processing of column t, the

value of

min
s02S

costð��s0;t; ½t; T ÞÞ ¼ min
1�s�k

Table½s; t�

is computed once to be used in computing all entries of

column t� 1. After the whole table is filled, the overall

optimal cost is computed as

costð��; ½0; T ÞÞ ¼ min
0�s�k�1

Table½s; 0�

and an optimal schedule is built by tracing the algorithm’s

choices through the columns 0 . . .T � 1.
The computation of a single table entry requires a

constant number of operations thanks to the precomputa-

tion of the previous column’s minimum cost and, therefore,

the algorithm’s time complexity is OðkT Þ. The space

complexity is also OðkT Þ � the table’s size.

5 ONLINE SERVER ASSIGNMENT

In a realistic scenario, the costs are not known in advance.

This is especially true for the hold cost, which can reflect

dynamic network conditions like user mobility, group

membership, etc. In this section, we study server assign-

ment as an online optimization problem [7]. The cost for a

time slot becomes known at the beginning of that slot, and

the algorithm must produce a new scheduling decision. We

restrict ourselves to the case where the setup costs are

identical and constant, that is, setupðs; tÞ ¼ C for all s and t,

whereas the hold costs are dynamic. We denote the

schedule produced by the optimal algorithm OPT as ��

and the schedule produced by an online algorithm ALG as �.

The competitive ratio is the common performance measure

for online algorithms. In our problem, an online algorithm

ALG is called rðALGÞ-competitive if there is a constant � such

that, for all finite intervals I and for all setup and hold costs,

costð�; IÞ � rðALGÞ � costð��; IÞ þ �:

The rest of this section is structured as follows: In

Section 5.1, we show that no deterministic online algorithm

can achieve a competitive ratio better than k. In Section 5.2,

we present a generic online algorithm called DTrack

(deficit tracker). A version of this algorithm termed

DTrack-RR, that is, DTrack with round-robin selection

of server assignments, achieves a competitive ratio of 2k

with a certain parameter choice. DTrack needs to track the

cost of up to k servers every time slot and may thus have a

large control message overhead in a distributed implemen-

tation. In Section 5.3, we present a simple and efficient

algorithm called CTrack (cost tracker), which yields a

competitive ratio of ð2þ aÞk for a certain parameter choice,

assuming that a server’s per-slot hold cost never exceeds

aC. The competitive version of CTrack, called CTrack-RR,

probes the cost of only one server every slot. In Section 5.4,

we present opportunistic versions of these algorithms,

called CTrack-F, DTrack-F, and DTrack-B, which are

not competitive but greatly improve the cost in the average

case and achieve good scalability.

5.1 A Lower Bound of k on the Competitive Ratio

Theorem 1. No deterministic server assignment algorithm can

achieve a competitive ratio of less than k.

Proof. Consider k symmetric servers that offer the same

setup cost C > 0 and a zero hold cost each at t ¼ 0, that

is, holdðsi; 0Þ ¼ 0. Consider the following simple adver-

sary strategy against any deterministic algorithm ALG.

When ALG connects to si at time t, set holdðsi; tþ 1Þ ¼ 1.

When ALG disconnects from the server at time t0, set

holdðsi; t0 þ 1Þ ¼ 0. Regardless of what the online algo-

rithm is, it will have to transition to a different server at

some point if it wishes to remain competitive. This

process continues until k� 1 moves happen. At this

point, the adversary stops the run.
If ALG has visited every server exactly once, let s� be

its last assignment. Otherwise, there exists a server s�

that has never been picked by ALG. The best offline
algorithm, OPT, assigns the session to server s� at time 0
and never changes the assignment.

OPT pays only C for the initial setup, whereas ALG

pays kC for setup and zero or more for hold. Therefore,
rðALGÞ � kC

C ¼ k, and the algorithm’s competitive ratio
has a lower bound of k. tu

5.2 DTrack—A 2k-Competitive Online Algorithm

We present a simple online algorithm called DTrack (deficit

tracker). It is parameterized by factor � � 0, which controls

when transitions happen, and a subroutine nextchoice(),

which controls which server is chosen upon transition. In

this section, we focus on a 2k-competitive version of

DTrack, called DTrack-RR, obtained by a round-robin

nextchoice() policy. Its pseudocode appears in Fig. 1.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

We begin with some definitions. The deficit between the

servers s and s0 during the interval ½�; tÞ is the greatest total

difference between the total hold costs in a suffix ½t0; tÞ:

defðs; s0; ½�; tÞÞ ¼4 max
��t0�t�1

ðholdðs; ½t0; tÞÞ � holdðs0; ½t0; tÞÞÞ:

Let us denote the current assignment by sc. A server s for

which defðsc; s; ½�; tþ 1ÞÞ > 0 is called a leader at time t.
The algorithm’s code maintains the following variables: t

is the current time, � is the last transition’s time, c is the

current assignment’s id, Leaders is the set of the current

leaders’ ids, and Def is the vector of deficit values between

sc and the other servers. The algorithm maintains that at

time t, Def½s� ¼ defðsc; s; ½�; tþ 1ÞÞ.
DTrack maintains an invariant that the deficit between

sc and any other server s never exceeds �C. Initially,

DTrack makes an assignment to the server with the

minimal hold cost. It then keeps tracking the deficit versus

the other servers. A server becomes a leader when it offers a

smaller hold cost than sc and stops being one when the

cumulative deficit value becomes negative. Since the hold

costs are published at the beginning of each time slot,

DTrack makes its decision using a single-slot lookahead.

When some server is about to accumulate significantly less

hold cost than the current choice (a deficit of above �C), the

algorithm changes its assignment. Due to the lookahead

mechanism, the updateðÞ procedure that updates the deficit

values is invoked twice at transition times. First, for the

current choice in order to decide whether to transition, and
then for the new choice, which does not necessarily offer the
best hold cost, hence the new deficit must be computed.

In the instance of DTrack we consider now, termed
DTrack-RR, nextchoice() selects the next assignment in
a round-robin way among servers whose a priori deficit
versus any other server (that is, the hold cost gap) does not
exceed �C.

The intuition behind DTrack is that the current server
must be provably bad (costing �C more than the best) in
order to change the choice, and the next server must also not
be provably bad (not costing �C more than any other
server). When instantiated with � ¼ 0 (this algorithm is
termed Greedy), DTrack immediately changes the assign-
ment when some other server offers a better hold cost. At
the other extreme, when � ¼ 1, it never changes its initial
assignment. It is clear that the algorithm is not competitive
in either of these extreme cases.

In Appendix A.1, we provide a detailed competitive
analysis of DTrack-RR and get the following result:

Theorem 2. The competitive ratio of DTrack-RR is bounded as
follows:

rðDTrack� RRÞ < k 1þ 1

�

� �
� � 1

rðDTrack� RRÞ < 1þ ðk� 1Þ�þ k � � 1:

Corollary 1. For � ¼ 1, DTrack-RR achieves a competitive
ratio of 2k.

The crux of the algorithm’s competitiveness lies in the
round-robin selection policy and can be informally ex-
plained as follows: If we consider a schedule � by DTrack-
RR that overtakes (that is, either leaves or skips) every server
while the optimal schedule �� does not change its assign-
ment s�, then � overtakes s� exactly once. This overtake
implies that the total hold cost incurred by �� during the
interval exceeds �C. The total hold cost incurred by �

exceeds the one incurred by �� by at most ðk� 1Þ�C. The
subtle point in this proof is the deficit bookkeeping because,
upon transition, the hold cost lookahead affects the assign-
ment but does not contribute to the total hold cost. The total
setup cost incurred by � during this period is at most kC,
whereas �� pays C upon the assignment to s�. A careful
analysis of the worst-case ratio between the total costs
concludes the proof.

5.3 CTrack—An Efficient Online Algorithm

At each slot, DTrack checks the hold cost of every server,
which results in linear time complexity per slot. Since the
number of servers can be large, sublinear complexity is
desirable to achieve efficiency of communication in a
distributed implementation.

We now present a simple online algorithm CTrack (cost
tracker), which achieves constant computation time complex-
ity at the expense of a weaker competitive guarantee under
the assumption of an upper bound on the ratio between the
hold and the setup costs. CTrack is also parameterized by
a factor � and a subroutine nextchoice(). Initially, it

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 5

Fig. 1. DTrack-RR—an online algorithm for server assignment.

assigns the server with the minimal hold cost. The assign-
ment changes when the total hold cost since the last
transition exceeds �C (e.g., for � ¼ 0, it transitions every
time slot). The rationale behind this policy is controlling the
fraction of the setup cost in the total cost. It only requires
receiving the hold cost of the current assignment every time
slot, which leads to constant per-slot time complexity.

In Appendix A.2, we provide a detailed competitive
analysis of CTrack-RR, the round-robin version of
CTrack, and get the following result:

Theorem 3. If holdðs; tÞ � aC for all s and t, then
rðCTrack-RRÞ < ð2þ aÞk for � ¼ 1.

5.4 Opportunistic Heuristics

While the competitive ratio is an accepted metric for
measuring the worst-case performance of an online algo-
rithm, the average-case performance is more important in
practice. An algorithm that behaves 2k times worse than the
optimal solution in the average case is impractical in
systems accommodating thousands of servers.

In this section, we introduce opportunistic versions of
CTrack and DTrack, in which nextchoice() selects an
assignment that is locally optimal for some metric instead of
the round-robin traversal. This approach exploits the well-
known locality principle to achieve good performance in
typical scenarios. Note that, although locality is common in
practice, it is not a property that holds in all possible runs
and, hence, the cost of using opportunistic selection policies
is that they yield worse competitive ratios than the round-
robin ones.

In the forward heuristics DTrack-F and CTrack-F,
nextchoice() picks the server with the current minimal
hold cost. The backward heuristic DTrack-B augments
DTrack-RR’s selection policy with the following rule: The
deficit between the next choice and the previous assignment
is greater than �C for some �1 � � � �. Using any � > 0

allows the algorithm to choose the next server from those
that presented good behavior since the last transition. For
� ¼ �1, the resulting algorithm is DTrack-RR. For � ¼ 0,
Dtrack-B chooses the next server from the leader set. For
� ¼ �, it selects a leader that triggered the transition.
Theorem 2 can be generalized to describe Dtrack-B’s
worst-case behavior (the proof appears in Section A.3):

Theorem 4. The competitive ratio of Dtrack-B is bounded as

follows:

rðDTrackÞ < k 1þ 1

�

� �
� � 1 and � � 0

rðDTrackÞ < 1þ ðk� 1Þ�þ k � � 1 and � � �� 1

rðDTrackÞ < 1þ ðk� 1Þ�þ k

�� � maxð0; �� 1Þ � � � �:

Corollary 2. For � ¼ 1 and � � 0, Dtrack-B achieves a
competitive ratio of 2k.

The worst-case competitive ratio achieved by DTrack-F

and Dtrack-B with � ¼ � is not limited by the problem
size k (see Appendix A.4 for the proof):

Theorem 5. The competitive ratio of DTrack-F and
DTrack-B with � ¼ � is �ðCÞ.

6 CASE STUDY: MOBILE USERS IN A WMN

In this section, we study nomadic service assignment in an
urban WMN environment. The results of the optimal
algorithm OPT are used as a comparison baseline. For each
algorithm ALG, we measure its cost as well as performance
ratio, which is the average ratio between the total costs
incurred by ALG and OPT during multiple runs. We average
over 20 simulations, each 10,000 slots long. This metric is
analogous to the competitive ratio, the theoretical worst-
case metric.

The simulated network spans a square grid with
uniformly distributed wireless routers. The number of
routers that populate a 1;000 m� 1;000 m grid is 100; that
is, a single router spans an average area of 100 m� 100 m. A
mobile node moves using the random waypoint mobility
model [22]. The node uniformly chooses the destination and
moves toward it at a constant urban driving speed of 10 m/
sec (36 km/hour). The time slot is one second.

We assume that the wireless infrastructure is the main
bottleneck, whereas the gateway resources are abundant
and, hence, the end-user QoS is not affected by the
congestion among multiple connections. The hold cost
between mobile node n and router r is defined as dðn;rÞ

100 , i.e.,
a normalized euclidean ðL2Þ distance. Under these para-
meters, the average hold cost offered by the closest router is
roughly 0.5. The setup cost is 50.

Our main interest is in the scalability of the online
solutions, i.e., how the total cost per second and the
performance ratio are affected as the problem size grows.
For this purpose, we gradually increase the grid size from
1;000 m� 1;000 m to 5;000 m� 5;000 m and correspond-
ingly increase the number of routers from 100 to 2,500,
keeping the router density fixed. We study the performance
of different versions of CTrack and DTrack with different
selections of �, �, and nextchoice().

Our first goal is to study the performance of CTrack-RR
and DTrack-RR with � ¼ 1, which have the best proven
worst-case ratios. Fig. 2 shows that both algorithms scale
poorly with the network size (their costs grow approxi-
mately as

ffiffiffi
k
p

, whereas OPT’s cost remains nearly constant).

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

Fig. 2. CTrack-RR and DTrack-RR with � ¼ 1 do not scale well with the

network size.

This is intuitive, since the round-robin selection policy
tends to assign a session to a random server and the average
distance grows as Oð

ffiffiffi
k
p
Þ.

DTrack-B requires selecting the � parameter for a given
�. Contrary to the worst-case analysis, our results show that
the algorithm’s performance improves as � becomes closer
to �. Fig. 3 depicts the results for � ¼ 1. The curves for all �
values from 0.2 to 1 are barely distinguishable. Hence, a
good worst case ratio can be guaranteed by selecting small
� values without compromising the average performance
by much (for example, for � ¼ 1 and � ¼ 0:2, the compe-
titive ratio is bounded by 2:5k� 0:25).

Figs. 4a and 4b depict the results of simulating the
opportunistic algorithms Greedy, CTrack-F, DTrack-F,
and DTrack-B with � ¼ 1 and � ¼ 1. The performance
curves of CTrack-F and DTrack-F are almost indistin-
guishable. The algorithms’ performance ratios remain
constant as the problem scales—around 50 percent above
the optimum. The total cost per second also remains
constant since OPT itself is very scalable. Greedy, which
takes the opportunistic heuristic to the extreme, exhibits a
weaker performance ratio (more than three times the
optimum), although it scales well. In this setting, Greedy’s
reasonable behavior can be explained by the moderate
speed (hence, the hold cost changes are slow) and by the

moderate setup cost (hence, the penalty for making a wrong

decision is limited). The fact that DTrack-F consistently

produces better results than DTrack-B can be explained by

the motion’s nature. Since the motion is random, the deficit

values exhibit poor locality. The result could have been

different had the motion happened around a small number

of stationary points (home, office, cab station, etc).
Fig. 4c depicts the results of the same experiment with an

average simulated speed 25 m/sec (90 km/hour). In this

setting, DTrack-F starts producing a consistently lower

total cost (by 5-6 percent) than CTrack-F. This happens

because, at higher speeds, the hold cost changes faster and

the total cost becomes a worse transition indicator than the

deficit. This phenomenon cannot be further magnified at

reasonable driving speeds, but can be clearly demonstrated

in a different application (Section 7). As expected, Greedy

performs worse at higher speeds (above five times the

optimum).
Further simulations (Fig. 5) show that � values

between 0.5 and 2.0 exhibit nearly the same average-case

performance.
DTrack’s computation overhead can be significantly

improved in a WMN environment since the hold cost

monotonically increases with distance. Therefore, maintain-

ing the deficit values requires accessing the hold costs of the

servers that are closer to the user than the current

assignment, as well as the servers that already have a

positive deficit. This can be achieved by using data

structures that support efficient nearest neighbor queries

in a multidimensional space like KD-trees or R-trees [18].

Fig. 6 depicts the percentage of hold costs that need to be

accessed by DTrack-F and DTrack-B with � ¼ � ¼ 1. We

can see that the fraction of hold costs that must be accessed

to maintain the positive deficit values is very low.

6.1 Motion-Aware Heuristics

In order to achieve a better practical performance, we

employ two simple online heuristics tailored specifically to

the mobile user environment. These heuristics exploit the

near-term motion pattern and, therefore, can project the

hold costs better than DTrack, which has only a single-slot

lookahead.

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 7

Fig. 3. Choosing a � value for DTrack-B with � ¼ 1:0. The values

between 0.2 and 1 exhibit very close behavior and scale well with the

network size.

Fig. 4. Scalability of CTrack-F, DTrack-F, and DTrack-B in a WMN with mobile users, � ¼ 1:0 and � ¼ 1:0. (a) Average total cost/second,

speed ¼ 10 m=s. (b) Performance ratio, speed ¼ 10 m=s. (c) Performance ratio, speed ¼ 25 m=s.

The first heuristic is called TargetAware. It requires
information regarding the mobile node’s current target and
speed. This target information can be provided from a
higher-level system, e.g., a car navigation system, where the
user can indicate the current status (e.g., “driving home”).
TargetAware is informed every time the mobile node
changes its target and applies OPT as a subroutine in order
to compute the assignment schedule until the next target is
reached. Every time the target changes, TargetAware

selects the best of two choices: running OPT with the fixed
first assignment that is identical to the current one (i.e., no
setup cost is incurred for it) or letting OPT pick an arbitrary
first assignment.

If the target information is not available, a mobile node
equipped with a positioning system (e.g., GPS) can use the
direction information provided by it. In this context, we
propose the second heuristic that is called Direction-

Aware. It receives information about the grid size as well as
the mobile node’s estimated current direction and speed,
which are received upon the node’s direction changes. The
algorithm projects the next target as the clipping point of its
current trajectory and the grid’s boundary and applies
TargetAware as a subroutine.

Fig. 7 depicts the scalability of both motion-aware
heuristics in the same environment as the previous

simulation. Both TargetAware and DirectionAware

are clearly superior to CTrack-F and DTrack-F. Their
performance ratios are less than 10 percent and 18 percent
above the optimum, respectively. As expected, Target-
Aware performs slightly better than DirectionAware

because it uses an accurate motion forecast. The motion-
aware heuristics scale even better than OPT because their
lookahead window grows as the grid scales up.

We also evaluated DirectionAware’s capability to
handle inaccurate predictions by supplying it with direction
estimates that are normally distributed around the real
direction with variance ". The values of " ranged from
0 degrees (exact prediction) to 30 degrees (Fig. 7). As
expected, the algorithm’s performance ratio grows with ".
However, this growth is limited by 25 percent above the
optimum, i.e., only 7 percent above the algorithm with a
perfect direction forecast. Therefore, DirectionAware is
quite tolerant to moderately inaccurate direction estimates.

Note that both heuristics perform very well despite their
small lookahead window. In the context of the offline
assignment problem, this means that a practically good
solution can be achieved with constant space complexity
without the need to capture the entire data stream before
running the dynamic programming algorithm.

7 CASE STUDY: WIDE-AREA CHATROOM SERVICE

The second environment studied is an Internet-scale
groupware application service [15], [16], e.g., chat. The
service overlay network consists of 100 servers uniformly
selected among the nodes of a random network. Groups of
users run a chatroom application, where each group is
assigned to a single server. The users are stationary and
their locations are uniformly distributed in the network.
The user arrival to a group is described by a Poisson process
with a mean of �, and the membership lifetime is
distributed exponentially with a mean of T (that is, the
average number of users in a group is �T). The hold cost
between group G and server s is proportional to the
maximal network distance between the server and some
node in the group, which reflects the application’s buffer
space requirements affected by the maximal delay. In this
context, the server is seen as the group’s center, and the

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

Fig. 5. Scalability of CTrack-F, DTrack-F, and DTrack-B in a WMN with mobile users, speed ¼ 10 m=s, with different � values. (a) Performance

ratio, � ¼ 0:5. (b) Performance ratio, � ¼ 1:5. (c) Performance ratio, � ¼ 2:0.

Fig. 6. Percentage of useful hold cost accesses per second for

DTrack-F and DTrack-B with � ¼ 1 and � ¼ 1.

maximal distance is the group’s radius. We study the same
instances of CTrack-F, DTrack-F, and DTrack-B as in
Section 6 (that is, � ¼ � ¼ 1). We explore the algorithms’
scalability with both the number of servers and the average
group size.

In the first experiment, we increase the number of
servers (in parallel with the network’s size) from 100 to
2,500 without increasing the number of users. We set � ¼
0:1 users/second and T ¼ 30 seconds, yielding three users
in the chatroom on average. Fig. 8a depicts the simulation
results. Both versions of DTrack are within 15-20 percent
above the optimal cost. DTrack-F consistently outperforms
CTrack-F because individual join or leave events in a
small group trigger fast changes in the hold costs. This is the
same phenomenon that happens in WMNs at high speeds
(Fig. 4c), but it is more significant since the hold cost
changes are faster.

In the second experiment, depicted in Fig. 8b, we scale
the average group size up from three to 75 (a large-scale
conference) by increasing both � and T . The network size is
not changed. Both versions of DTrack exhibit a perfor-
mance ratio of under 5 percent above the optimum for
groups with more than 10 members and converge to the
optimal cost as the group scales. This happens because, in
dense groups, individual join and leave events do not

considerably affect the group radius. Therefore, the algo-

rithms perform fewer transitions.
Finally, we study the algorithms’ scalability to large

groups in large networks. For this purpose, we gradually

increase both the number of servers and the group size by

the same factor. The results depicted in Fig. 8c show that,

when the number of servers grows from 400 to 2,500 and

the number of users grows from 12 to 75, the performance

ratios of both versions of DTrack remain constant at less

than 5 percent above the optimum, whereas the perfor-

mance ratio of CTrack-F also remains constant but exceeds

the optimum by 30 percent.

8 CONCLUSION

In this paper, we have studied a problem of service point

assignment to mobile users or user groups in a distributed

infrastructure with multiple service points. This problem

will naturally arise in several emerging practical environ-

ments. We have provided a rigorous theoretical study

which includes competitive online algorithms and a lower

bound on the competitive ratio of deterministic algorithms.

Following this, we studied the performance of the proposed

algorithms when applied in an urban WMN and in a wide-

area chatroom service. We gave practical algorithms that

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 9

Fig. 7. Scalability of the motion-aware algorithms in a WMN with mobile users. (a) Average total cost/second, speed ¼ 10 m=s. (b) Performance ratio,

speed ¼ 10 m=s.

Fig. 8. Scalability of CTrack-F, DTrack-F, and DTrack-B in a wide-area chatroom application service, � ¼ 1:0 and � ¼ 1:0. (a) Scalability with

number of servers. (b) Scalability with group size. (c) Scalability with number of servers/group size.

exhibit near-optimal performance and scale well with the
network size.

APPENDIX A

COMPETITIVE ANALYSIS

A.1 A Competitive Analysis of DTrack-RR

In this section, we give a competitive analysis of the worst-
case performance of DTrack-RR and derive the parameter
value of � for which the best competitive ratio is obtained.

Claim 1. Let t be a time and s a server. Let � be the time of the
latest transition before tþ 1. DTrack-RR maintains that
Def½s� ¼ defðsc; s; ½�; tþ 1ÞÞ.

Proof. Immediate from the code (Lines 14-15 stand for the
initialization upon assignment and Lines 18-24 stand for
the maintenance between assignments). tu

Lemma 1. Let t be a time and s be a server. Let � be the time of
the latest transition before tþ 1. Then,

defð�ð�Þ; s; ½�; tþ 1ÞÞ � �C:

Proof. By induction on t. For t ¼ 0, the claim holds because
the server with the minimal hold cost is selected (Line 3).
For t > 0, if there is no transition at t, then the
invariant is maintained by the algorithm’s code (Line 7).
Assume that a transition occurs at time t, i.e., � ¼ t.
By the induction hypothesis, defð�ð� 0Þ; s; ½� 0; tÞÞ � �C,
where � 0 is the previous transition time. However,
since a transition happened at t, then, for some s,
defð�ð� 0Þ; s; ½� 0; tþ 1ÞÞ > �C. Hence, there exists some
server s such that holdðs; tÞ < holdð�ð� 0Þ; tÞ, that is,
holdð�ð� 0Þ; tÞ is not the minimal hold cost at time t.
Therefore, some identity s 6¼ �ð� 0Þ can be found such
that defðs; s0; ½t; tþ 1ÞÞ � �C for all s0 (Line 28), e.g., the
server with the minimal hold cost at t satisfies this
requirement. tu

Corollary 3. If nextchoice() is invoked at time t, it returns
an identifier that is different from �ðt� 1Þ.

We term an interval ½�; � 0Þ between two consecutive
transitions of algorithm ALG or between ALG’s last transi-
tion and the end of the run as ALG-round. Where ALG is clear

from the context, we simply say round. It is convenient to
describe the assignment choices made by DTrack-RR with
time as a movement in a circular server identifier space
with a clockwise direction from s to ðsþ 1Þ mod k. We say
that � overtakes s at time t if s is encountered while moving
clockwise from �ðt� 1Þ to �ðtÞ and s 6¼ �ðtÞ. In other words,
either �ðt� 1Þ is s or s is skipped at t.

We now consider a DTrack-RR-round and an ALG-
round of an arbitrary algorithm ALG. We analyze the
competitive ratio of DTrack-RR for different values of � by
comparing the cost it incurs with the cost incurred by ALG

during a single ALG-round ½�i; �iþ1Þ and then generalizing
for the whole run. We denote ALG’s schedule by �0 and
ALG’s assignment during this ALG-round by s0 (if ALG

isOPT, the notations are �� and s�, respectively).
We define two partitions of the interval ½�i; �iþ1Þ into

subintervals. The first one partitions the interval to phases
fPi;j ¼ ½ti;j; ti;jþ1Þg, defined as follows: The first phase starts
at �i. A phase completes at the earlier between the time
when � overtakes s0 and �iþ1. The second partition is to
shifted phases fPi;j

�!g, defined as follows: The first shifted
phase starts at �i. A shifted phase completes at the earlier
between one slot after the completion of the corresponding
phase and �iþ1.

Fig. 9 depicts the above definitions for an OPT-round
[10, 30), in which s� ¼ s4. The first phase ends at time 18
when the algorithm chooses s6 and overtakes s4, which was
its previous assignment. The second phase ends at time 25
when the algorithm chooses s5 and overtakes s4 for the
second time without choosing s4 in this phase.

Lemma 2. Consider an ALG-round ½�i; �iþ1Þ with p phases
produced by DTrack-RR. Then,

costð�; ½�i; �iþ1ÞÞ � holdð�0; ½�i; �iþ1ÞÞ þ pCðkþ ðk� 1Þ�Þ:

Proof. Consider a DTrack-RR-round ½t; t0Þ 	 Pi;j and
denote s ¼ �ðtÞ.

If s ¼ s0, then holdð�0; ½t; t0ÞÞ ¼ holdð�; ½t; t0ÞÞ. Other-
wise, by the definition of def,

holdð�; ½t; t0ÞÞ � holdð�0; ½t; t0ÞÞ � defðs; s0; ½t; t0ÞÞ:

By Lemma 1, defðs; s0; ½t; t0ÞÞ � �C. Therefore,

holdð�; ½t; t0ÞÞ � holdð�0; ½t; t0ÞÞ � �C:

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

Fig. 9. Definition of phases for DTrack-RR.

There are at most k� 1 rounds during Pi;j in which the
assignment is different from s0 and, hence,

holdð�;Pi;jÞ � holdð�0;Pi;jÞ � ðk� 1Þ�C:

DTrack-RR performs at most k transitions during Pi;j,
paying at most kC for setup. Therefore,

costð�;Pi;jÞ � holdð�0;Pi;jÞ þ ðk� 1Þ�C þ kC:
fPi;jg is a partition of ½�i; �iþ1Þ and, hence,

costð�; ½�i; �iþ1ÞÞ ¼
Xp
j¼1

costð�;Pi;jÞ �
Xp
j¼1

holdð�0;Pi;jÞ

þ pCðkþ ðk� 1Þ�Þ
¼ holdð�0; ½�i; �iþ1ÞÞ þ pCðkþ ðk� 1Þ�Þ:

tu
Lemma 3. Consider an ALG-round ½�i; �iþ1Þ with p phases

produced by DTrack-RR, such that either �ð�i � 1Þ 6¼ �0ð�iÞ
or �ð�iÞ 6¼ �0ð�iÞ. Then, holdð�0; ½�i; �iþ1ÞÞ � ðp� 1Þ�C.

Proof. If p ¼ 1, the claim trivially holds because the hold
costs are nonnegative.

Otherwise, consider a phase Pi;j such that j < p. This
phase ends at ti;jþ1, which is strictly smaller than �iþ1. We
first prove a claim that holdð�0;Pi;j

�!Þ > �C. Consider
DTrack-RR’s assignment s during the last DTrack-RR-
round ½t; ti;jþ1Þ in Pi;j; that is, s ¼ �ðtÞ and � overtakes s0

at time ti;jþ1. By definition, Pi;j
�!

ends at time ti;jþ1 þ 1.
Consider two possible cases:

1. If s 6¼ s0, then the algorithm considers picking s0

upon the transition from s at ti;jþ1 and does not
select it because there exists a server ~s such that

holdðs0; ti;jþ1Þ � holdð~s; ti;jþ1Þ > �C;

hence, holdðs0; ti;jþ1Þ > �C. By the definition of

a shifted phase, ½ti;jþ1; ti;jþ1 þ 1Þ 	 Pi;j
�!

. It follows

that holdð�0;Pi;j
�!Þ > �C and the claim holds.

2. Otherwise, s ¼ s0. Since the algorithm transitions
from s0 at time ti;jþ1, there exists ~s such that
defðs0; ~s; ½t; ti;jþ1 þ 1ÞÞ > �C, that is,

holdð�0; ½t; ti;jþ1 þ 1ÞÞ > �C:

Assume that Pi;j is the first phase in ½�i; �iþ1Þ. Since

either �ð�i � 1Þ 6¼ �0ð�iÞ or �ð�iÞ 6¼ �0ð�iÞ, DTrack-
RR’s assignment to s0 did not happen before �i, i.e.,

t� �i. Hence, ½t; ti;jþ1þ 1Þ 	 Pi;j
�!

by the definition of

a shifted phase. Otherwise, consider the preceding

phasePi;j�1. By definition,�overtakes s0 at time ti;j.

In particular, �ðti;jÞ 6¼ s0. Since at least one time slot

is spent at every assignment, � transitions to s0 at

time ti;j < t < ti;jþ1, that is, ½t; ti;jþ1 þ 1Þ 	 Pi;j
�!

. It

follows thatholdð�0;Pi;j
�!Þ>�C and the claim holds.

It follows that holdð�0;Pi;j
�!Þ > �C. fPi;j

�!g is a partition of
½�i; �iþ1Þ and, therefore,

holdð�0; ½�i; �iþ1ÞÞ �
Xp�1

j¼1

holdð�0;Pi;j
�!Þ > ðp� 1Þ�C:

tu

Lemma 4. Consider an ALG-round ½�i; �iþ1Þ, such that either

�ð�i � 1Þ 6¼ �0ð�iÞ or �ð�iÞ 6¼ �0ð�iÞ. Then,

costð�; ½�i; �iþ1ÞÞ
costð�0; ½�i; �iþ1ÞÞ

< k 1þ 1

�

� �
� � 1

costð�; ½�i; �iþ1ÞÞ
costð�0; ½�i; �iþ1ÞÞ

< 1þ ðk� 1Þ�þ k � � 1:

Proof. ALG pays the setup cost C for a single transition

during ½�i; �iþ1Þ (at �i) and, therefore,

costð�0; ½�i; �iþ1ÞÞ ¼ C þ holdð�0; ½�i; �iþ1ÞÞ:

Substituting the ratio’s numerator from Lemma 2, we

receive

costð�; ½�i; �iþ1ÞÞ
costð�0; ½�i; �iþ1ÞÞ

� holdð�0; ½�i; �iþ1ÞÞ þ pCððk� 1Þ�þ kÞ
C þ holdð�0; ½�i; �iþ1ÞÞ

< 1þ pCððk� 1Þ�þ kÞ
C þ holdð�0; ½�i; �iþ1ÞÞ

:

Substituting the denominator from Lemma 3,

costð�; ½�i; �iþ1ÞÞ
costð�0; ½�i; �iþ1ÞÞ

< 1þ pCðkþ ðk� 1Þ�Þ
C þ ðp� 1Þ�C

¼ 1þ pððk� 1Þ�þ kÞ
1þ ðp� 1Þ� :

We denote %ð�; pÞ ¼4 1þ pðkþðk�1Þ�Þ
1þðp�1Þ� . In order to compute p

which produces the maximum ratio for a given �, we

derive @%
@p . We get that @%

@p ¼ 0 for � ¼ 1, that is, the

function is constant when � ¼ 1 : %ð1; pÞ ¼ 2k for all p.

The derivative is strictly positive for � < 1 and strictly

negative for � > 1; therefore, the function is monotoni-

cally increasing for � < 1 and monotonically decreasing

for � > 1. For � < 1,

sup
1�p<1

%ð�; pÞ ¼ lim
p!1

%ð�; pÞ ¼ 1þ ðk� 1Þ�þ k
�

¼ k 1þ 1

�

� �
;

whereas, for � > 1,

sup
1�p<1

%ð�; pÞ ¼ %ð�; 1Þ ¼ 1þ ðk� 1Þ�þ k:

tu
Theorem 2. The competitive ratio of DTrack-RR is bounded as

follows:

rðDTrack� RRÞ < k 1þ 1

�

� �
� � 1;

rðDTrack� RRÞ < 1þ ðk� 1Þ�þ k � � 1:

Proof. We prove the upper bound on DTrack-RR’s

competitive ratio for every OPT-round and conclude

the same result for the entire run.

Consider the local ratio between the costs incurred by

DTrack-RR and OPT during a single OPT-round

½�i; �iþ1Þ, that is, costð�;½�i;�iþ1ÞÞ
costð��;½�i;�iþ1ÞÞ . If either �ð�i � 1Þ 6¼ �ð�iÞ or

�ð�i � 1Þ 6¼ �ð�iÞ, the claim follows immediately from

Lemma 4. Otherwise, �ð�i � 1Þ ¼ �ð�iÞ ¼ ��ð�iÞ ¼ s�. If

DTrack-RR never transitions during the OPT-round, then

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 11

costð�; ½�i; �iþ1ÞÞ ¼ holdð�; ½�i; �iþ1ÞÞ ¼ holdð��; ½�i; �iþ1ÞÞ
< costð��; ½�i; �iþ1ÞÞ;

and the claim trivially holds. Otherwise, let �i < t < �iþ1

be the first time after �i such that �ðtÞ 6¼ s�. Consider a
schedule �0 that is obtained from �� by shifting the
assignment to s� from �i to t (assume that this schedule
is produced by some algorithm ALG). Note that
holdð��; ½�i; tÞÞ ¼ holdð�; ½�i; tÞÞ � 0 and

costð�; ½t; �iþ1ÞÞ ¼ costð�; ½�i; �iþ1ÞÞ � holdð�; ½�i; tÞÞ
� costð��; ½�i; �iþ1ÞÞ � holdð�; ½�i; tÞÞ
¼ costð�0; ½t; �iþ1ÞÞ � 0:

By applying a well-known inequality aþx
bþx � a

b for 0 � b �
a and x � 0 to the sought ratio, we get:

costð�; ½�i; �iþ1ÞÞ
costð��; ½�i; �iþ1ÞÞ

¼ holdð�; ½�i; tÞÞ þ costð�; ½t; �iþ1ÞÞ
holdð�; ½�i; tÞÞ þ costð�0; ½t; �iþ1ÞÞ

� costð�; ½t; �iþ1ÞÞ
costð�0; ½t; �iþ1ÞÞ

:

Since s� ¼ �ðt� 1Þ ¼ �0ðtÞ 6¼ �ðtÞ, the bound from
Lemma 4 is applicable to the ALG-round ½t; �iþ1Þ, and
the claim follows. tu

A.2 A Competitive Analysis of CTrack-RR

Theorem 3. If holdðs; tÞ � aC for all s and t, then
rðCTrack-RRÞ < ð2þ aÞk for � ¼ 1.

Proof. Consider an OPT-round ½�i; �iþ1Þ with p phases
produced by CTrack-RR as defined in Appendix A.1,
in which s� is OPT’s choice.

Consider a CTrack-RR round ½t; t0Þ in which server s
is CTrack-RR’s choice. If t < t0 � 1, then

holdð�; ½t; t0ÞÞ ¼ holdð�; ½t; t0 � 1ÞÞ þ holdðs; t0 � 1Þ
� holdð�; ½t; t0 � 1ÞÞ þ aC:

holdð�; ½t; t0 � 1ÞÞ � �C since no transition happened at
t0 � 1 and, hence, holdð�; ½t; t0ÞÞ � ð�þ aÞC. If t ¼ t0 � 1,
the same result holds trivially. There are p phases in
½�i; �iþ1Þ and at most k rounds in each phase. Summariz-
ing over all CTrack-RR’s rounds, we get

costð�; ½�i; �iþ1ÞÞ � pkC þ holdð�; ½�i; �iþ1ÞÞ
� pkð�þ aÞC þ pkC ¼ pkð�þ aþ 1ÞC:

Consider the last CTrack-RR round ½t; t0Þ in phase Pi;j
such that j < p. By definition, s� is the algorithm’s
choice in this round. A transition happens, therefore,
holdð�; ½t; t0ÞÞ > �C. Hence, holdð��; ½t; t0ÞÞ > �C. Sum-
marizing over all phases in ½�i; �iþ1Þ, we get

costð��; ½�i; �iþ1ÞÞ ¼ C þ holdð��; ½�i; �iþ1ÞÞ
> ð1þ ðp� 1Þ�ÞC:

Hence,

costð�; ½�i; �iþ1ÞÞ
costð��; ½�i; �iþ1ÞÞ

< k
pð�þ aþ 1Þ
1þ ðp� 1Þ� :

For � ¼ 1, this ratio is smaller than ð2þ aÞk for all p. Since
this upper bound limits the algorithm’s competitive ratio
for every OPT-round, we conclude the same result for the
entire run. tu

A.3 A Competitive Analysis of DTrack-B

In this section, we prove the upper bound on the competitive

ratio of DTrack-B for arbitrary � values. The following

lemma is an adaptation of Lemma 3 for DTrack-B:

Lemma 5. Consider an ALG-round ½�i; �iþ1Þ with p phases

produced by DTrack-B such that either �ð�i � 1Þ 6¼ �0ð�iÞ or

�ð�iÞ 6¼ �0ð�iÞ. Then,

holdð�0; ½�i; �iþ1ÞÞ � ðp� 1ÞCminð�; �� �Þ:

Proof. Like in Lemma 3, we consider a phase Pi;j such that

j < p, which ends at ti;jþ1. We first prove a claim that

holdð�0;Pi;j
�!Þ > maxð�; �� �ÞC. Consider DTrack-B’s

assignment s during the last DTrack-B-round ½t; ti;jþ1Þ
in Pi;j, that is, q, and � overtakes s0 at time ti;jþ1. Consider

the case when s 6¼ s0. This happens for one of two

reasons:

1. There exists a server ~s such that

holdðs0; ti;jþ1Þ � holdð~s; ti;jþ1Þ > �C

and, therefore,

holdðs0; ti;jþ1Þ > �C:

½ti;jþ1; ti;jþ1 þ 1Þ 	 Pi;j
�!

, hence, holdð�0;Pi;j
�!Þ > �C

and the claim follows.
2. defðs; s0; ½t; ti;jþ1 þ 1ÞÞ � �C. There exists a server

~s that triggered the transition and, therefore,

defðs; ~s; ½t; ti;jþ1 þ 1ÞÞ > �C. Hence,

defðs0; ~s; ½t; ti;jþ1 þ 1ÞÞ > ð�� �ÞC;

that is, holdð�0;Pi;j
�!Þ > ð�� �ÞC and the claim

follows.

The rest of the proof is identical to that of Lemma 3. tu

Theorem 4. The competitive ratio of DTrack-B is bounded as
follows:

rðDTrackÞ < 1þ ðk� 1Þ�þ k � � 1 and � � �� 1; ð1Þ

rðDTrackÞ < k 1þ 1

�

� �
� � 1 and � � 0; ð2Þ

rðDTrackÞ < 1þ ðk� 1Þ�þ k

�� � maxð0; �� 1Þ � � � �: ð3Þ

Proof. Consider the local ratio between the costs incurred

by DTrack-RR and OPT during a single OPT-round

½�i; �iþ1Þ. Similarly to the proof of Theorem 2, we derive

costð�; ½�i; �iþ1ÞÞ
costð��; ½�i; �iþ1ÞÞ

< 1þ pððk� 1Þ�þ kÞ
1þ ðp� 1Þminð�; �� �Þ :

We denote %ð�; �; pÞ¼4 1þ pððk�1Þ�þkÞ
1þðp�1Þminð�;���Þ . If minð�; ��

�Þ � 1 (i.e., � � 1 and �� � � 1), then the derivative @%
@p is

nonnegative and, hence,

sup
1�p<1

%ð�; �; pÞ ¼ %ð�; �; 1Þ ¼ 1þ ðk� 1Þ�þ k

if � � 1 and � � �� 1:
ð1Þ

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

If minð�; �� �Þ � 1, then @%
@p is nonpositive and, hence,

sup
1�p<1

%ð�; �; pÞ ¼ lim
p!1

%ð�; �; pÞ ¼ 1þ ðk� 1Þ�þ k
minð�; �� �Þ :

Consider the case when minð�; �� �Þ ¼ �, i.e., � � 0.

Combining this with � � 1, we get

sup
1�p<1

%ð�; �; pÞ ¼ 1þ ðk� 1Þ�þ k
�

¼ k 1þ 1

�

� �

if � � 1 and � � 0:

ð2Þ

Consider the case when minð�; �� �Þ ¼ �� �, i.e.,

� � 0. Combining this with �� � � 1 and � � � (by

definition), we get:

sup
1�p<1

%ð�; �; pÞ ¼ 1þ ðk� 1Þ�þ k
�� �

if maxð0; �� 1Þ � � � �
ð3Þ

and the claim follows. tu

A.4 Noncompetitiveness of Opportunistic Algorithms

In this section, we show that the opportunistic versions of

DTrack are not competitive; that is, the worst-case

competitive ratio depends on C, rather than on the problem

size k.

Theorem 5. The competitive ratio of DTrack-F and

DTrack-B with � ¼ � is �ðCÞ.
Proof. Assume wlog that C is a positive integer (otherwise,

the theorem can be proved for C0 ¼ bCc). Let " be a small

number such that 0 < " < �
Cþ2 . Consider three servers s0,

s1, and s2. Let holdðs2; tÞ ¼ " for all t, whereas holdðs0; tÞ
and holdðs1; tÞ are defined as follows for integer values

of 0 � i < dC2e:

holdðs0; tÞ ¼
ð2iþ 3Þ" t ¼ ð2iþ 1ÞðC þ 1Þ
� 2iðC þ 1Þ < t < ð2iþ 1ÞðC þ 1Þ
0 otherwise

8<
:

and

holdðs1; tÞ¼
ð2iþ 2Þ" t ¼ 2iðC þ 1Þ
� ð2iþ 1ÞðC þ 1Þ < t < ð2iþ 2ÞðC þ 1Þ
0 otherwise:

8<
:

The hold costs during the interval ½0; 3C þ 3� are
depicted in Fig. 10. Note that, for 0 � i < dC2e, it holds
that ð2iþ 3Þ" � ðC þ 2Þ" < �. Therefore, holdðs0; tÞ � �
and holdðs1; tÞ � � for all t during this interval. tu

Lemma 6. Both DTrack-F and DTrack-B assign s0 at times
t ¼ 2iðC þ 1Þ and s1 at times t ¼ ð2iþ 1ÞðC þ 1Þ for
0 � i < dC2e.

Proof. By induction on i. At time t ¼ 0, both algorithms
choose s0 because it offers the minimal hold cost. The
induction step considers two cases:

1. t ¼ ð2iþ 1ÞðC þ 1Þ. Both algorithms transitioned
to s0 at 2iðC þ 1Þ by the induction hypothesis. We
compute defðs0; s1; ½2iðC þ 1Þ; tÞÞ and

defðs0; s2; ½2iðC þ 1Þ; tÞÞ:

defðs0; s1; ½2iðC þ 1Þ; ð2iþ 1ÞðC þ 1Þ þ 1ÞÞ
¼ �ð2iþ 2Þ"þ �C þ ðð2iþ 1Þ þ 2Þ"
¼ �C þ " > �C;

whereas

defðs0; s2; ½2iðC þ 1Þ; ð2iþ 1ÞðC þ 1Þ þ 1ÞÞ
¼ �"þ Cð�� "Þ þ ðð2iþ 1Þ þ 2� 1Þ"
< �C � "ðC � ð2iþ 1ÞÞ � �C:

Note that both defðs0; s1; ½2iðC þ 1Þ; t0Þ and
defðs0; s2; ½2iðC þ 1Þ; t0Þ are strictly smaller than
�C for t0 < t. Therefore, the transition happens at
ð2iþ 1ÞðC þ 1Þ for the first time since 2iðC þ 1Þ.

2. t ¼ ð2iþ 2ÞðC þ 1Þ. This case is proved analog-
ously to the previous one.

Upon each transition, DTrack-F selects the server with
the zero hold cost, i.e., s0 at times 2iðC þ 1Þ and s1 at times
t ¼ ð2iþ 1ÞðC þ 1Þ. DTrack-B selects the server that
achieves the largest deficit, i.e., it makes the same choice.tu

BORTNIKOV ET AL.: NOMADIC SERVICE ASSIGNMENT 13

Fig. 10. An example of hold costs for which DTrack-F and DTrack-B with � ¼ � are �ðCÞ-competitive.

Consider a run of DTrack-F and DTrack-B during the

interval ½0; C2 � 1Þ. Both algorithms behave identically. They

transition C times during this interval (at t ¼ iðC þ 1Þ for

0 � i � C � 1). Hence, the total setup cost is C2. The total

hold cost exceeds �C2 since a hold cost of above �C is

incurred between every two transitions. Hence, the total cost

during the interval exceeds ð�þ 1ÞC2. In the same setting,

OPT selects s2 at t ¼ 0 and never changes its assignment,

thus paying a total setup cost of C and a total hold cost of

"ðC2 � 1Þ < �C. Hence, the competitive ratio of both online

algorithms is �ðCÞ. tu

ACKNOWLEDGMENTS

The authors thank Seffi Naor for stimulating discussions.

They also thank the anonymous reviewers for many insight-

ful comments. A preliminary version of this paper appeared

in the Proceedings of IEEE INFOCOM 2006. This research

was supported in part by the Israeli Ministry of Science.

REFERENCES

[1] I.F. Akylidiz, X. Wang, and W. Wang, “Wireless Mesh Networks:
A Survey,” Computer Networks J., Mar. 2005.

[2] M. Alicherry, R. Bhatia, and L. Li, “Joint Channel Assignment and
Routing for Throughput Optimization in Multi-Radio Wireless
Mesh Networks,” Proc. MobiCom, 2005.

[3] Y. Amir, C. Danilov, M. Hilsdale, R. Musaloiu-Elefteri, and N.
Rivera, “Fast Handoff for Seamless Wireless Mesh Networks,”
Proc. Fourth Int’l Conf. Mobile Systems, Applications, and Services
(MobiSys ’06), 2006.

[4] Y. Bejerano, I. Cidon, and J. Naor, “Dynamic Session Management
for Static and Mobile Users: A Competitive On-Line Algorithmic
Approach,” Proc. Sixth Int’l Workshop Discrete Algorithms and
Methods for Mobile Computing and Comm. (DIALM ’00), 2000.

[5] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and M. Segal,
“Mobile Facility Location,” Proc. Sixth Int’l Workshop Discrete
Algorithms and Methods for Mobile Computing and Comm. (DIALM
’00), 2000.

[6] S. Biswas and R. Morris, “ExOR: Opportunistic Multi-Hop
Routing for Wireless Networks,” Proc. Conf. Special Interest Group
Data Comm. (SIGCOMM ’05), 2005.

[7] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge Univ. Press, 1998.

[8] A. Borodin, N. Linial, and M. Saks, “An Optimal On-Line
Algorithms for Metrical Task System,” J. ACM, vol. 39, pp. 745-
763, 1992.

[9] M.-H. Chiu and M.A. Bassiouni, “Predictive Schemes for Handoff
Prioritization in Cellular Networks Based on Mobile Positioning,”
IEEE J. Selected Areas in Comm., vol. 18, no. 3, pp. 510-522, 2000.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. The MIT Press, 1990.

[11] S.K. Das, R. Jayaram, and S.K. Sen, “An Optimistic Quality-of-
Service Provisioning Scheme for Cellular Networks,” Proc. IEEE
Int’l Conf. Distributed Computing Systems, 1997.

[12] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-
Hop Wireless Mesh Networks,” Proc. MobiCom, 2004, http://
research.microsoft.com/mesh.

[13] S. Jamin, C. Jin, D. Raz, and Y. Shavitt, “Constrained Mirror
Placement on the Internet,” Proc. INFOCOM, 2001.

[14] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling Large-Scale
Wireless Broadband: The Case for TAPs,” Proc. Workshop Hot
Topics in Networks (HotNets ’03), 2003.

[15] N. Lavi, I. Cidon, and I. Keidar, “MaGMA: Mobility and Group
Management Architecture for Real-Time Collaborative Applica-
tions,” Wiley J. Wireless Comm. and Mobile Computing (WCMC ’05),
vol. 5, pp. 749-772, Nov. 2005.

[16] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive Server Selection for
Large Scale Interactive Online Games,” Proc. Int’l Workshop
Network and Operating System Support for Digital Audio and Video,
(NOSSDAV ’04), 2004.

[17] A. Meyerson, “Online Facility Location,” Proc. Ann. Symp.
Foundations of Computer Science (FOCS ’01), 2001.

[18] P.B. Mirchandani and R.L. Francis, Discrete Location Theory,
J. Wiley & Sons, 1990.

[19] G.P. Pollini, “Trends in Handover Design,” IEEE Comm. Magazine,
1996.

[20] L. Qiu, V.N. Padmanabham, and G.M. Voelker, “On Placement of
Web Server Replicas,” Proc. INFOCOM, 2001.

[21] R. Ramjee, D. Towsley, and R. Nagarajan, “On Optimal Call
Admission Control in Cellular Networks,” Wireless Networks,
vol. 3, no. 1, pp. 29-41, Jan. 1997.

[22] J. Yoon, M. Liu, and B. Noble, “Sound Mobility Models,” Proc.
MobiCom, 2003.

Edward Bortnikov received the BA (1995,
summa cum laude) and MSc (1998) degrees in
computer science from the Technion, Israel
Institute of Technology. He is currently a PhD
student with the Faculty of Electrical Engineering
at the Technion. His PhD dissertation focuses on
dynamic service management in mobile net-
works. His research interests broadly span
networking technologies (especially mobile net-
works) and distributed architectures (especially

the issues of locality, scalability, and fault-tolerance). He has a six-year
track record in both global and start-up high-tech companies (Tandem/
Compaq, Sangate, Mellanox, and IBM) in many technical leadership
positions. He holds two US patents in the area of large-scale distributed
database engines.

Israel Cidon received the BSc (summa cum
laude) and DSc degrees in electrical engineering
from the Technion, Israel Institute of Technol-
ogy, in 1980 and 1984, respectively. He is a Tark
Professor and the dean of the Electrical En-
gineering Faculty at the Technion. His research
interests include converged wireline and wire-
less networks and network on chip. In 1985-
1994, he was a research member and the
manager of the Network Architecture and Algo-

rithms Group at the IBM T.J. Watson Research Center, New York,
where he led the first implementations of converged packet networks
and metropolitan optical packet rings. He received IBM outstanding
innovation awards for his work on the PARIS project (1989) and
topology update algorithms (1993). In 1994-1995, he founded and
managed the high-speed networking group at Sun Microsystems Labs.
He cofounded Micronet Ltd. (1981), Viola Networks (1998), and Actona
Technologies (2000), which was acquired in 2004 by Cisco Sysytems.
He was a founding editor for the IEEE/ACM Transactions on Networking
and an editor for the IEEE Transactions on Communications. He is the
coauthor of 20 US patents.

Idit Keidar received the BSc (summa cum
laude), MSc (summa cum laude), and PhD
degrees from the Hebrew University of Jerusa-
lem. She is a faculty member in the Department
of Electrical Engineering at the Technion, Israel
Institute of Technology, and a recipient of the
National Alon Fellowship for new faculty mem-
bers. She was a postdoctoral research associate
at the Massachusetts Institute of Technology’s
Laboratory for Computer Science, where she

held postdoctoral fellowships from Rothschild Yad-Hanadiv and US
National Science Foundation CISE. Dr. Keidar has consulted for BBN
Technologies (a Verizon Company) in the area of fault-tolerance and
intrusion tolerance and for Microsoft Research in the area of fault-
tolerant storage systems. Her research focuses on reliability in
distributed algorithms and systems. She is the academic head of
Software Systems Laboratory at the Technion. She served as a member
of the steering committee of the ACM Symposium on Principles of
Distributed Computing (PODC), has served on numerous program
committees of leading conferences in the area of distributed and parallel
computing, has twice served as a vice-chair for the IEEE International
Conference on Distributed Computing Systems (ICDCS), and once
served as a vice-chair for Euro-Par.

14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 7, JULY 2007

