Chameleon: Application Level Power Management
with Performance Isolation

Xiaotao Liu , Prashant Shenoy andMark Corner

Department of Computer Science,
University of Massachusetts Amherst.

Abstract speed to be varied dynamically based on the workload and re-
duces energy consumption during periods of low utilization
In this paper, we present Chameleon—an application-levgi4, 15, 28]. In general, such techniques must be carefelly d
power management approach for reducing energy consumgigned to prevent the processor slowdown from degrading the
tion in mobile processors. Our approach exports the entirgesponsiveness of the application.
responsibility of power management decisions to the applic pvFS techniques proposed in the literature fall into three
tion level. We propose an operating system interface that caategories. Hardware approaches such as Longrun [9] mea-
be used by applications to achieve energy savings. We cQfiye processor utilization at the hardware level and vaey th
sider three classes of applications—soft real-time, mtéve Cpy speed based on the measured system-wide utilization.
and batch—and design user-level pOWer management Stra%ftware approaches_implemented primarily in the Operat_
gies for representative applications such as a movie player jng system—measure the current processor demand in soft-
word processor, a web browser, and a batch compiler. We injgare and determine an appropriate processor speed setting
plement our approach in the Linux kernel running on a Sonpg, 7, 16, 17]. Cooperative software approaches involve OS-
Transmeta laptop. Our experiments show that, compared fgyplication interactions and allow applications to previtse-
the traditional system-wide CPU voltage scaling approachefy| information to the OS, thereby enabling the OS to make
Chameleon can achieve up to 32-50% energy savings Whi{ore informed power management decisions [5, 31].
delivering comparable or better performance to applicatio This paper explores a fourth approach, namely application-
Further, Chameleon imposes small overheads and is very gy power management. We argue that applications know
fective at scheduling concurrent applications with dieees- oot what their resource and energy needs are, and conse-

ergy needs. quently, applications can implement better power manage-
ment policies than the operating system. We propose an ap-
1 Introduction proach where applications are given complete control over
their CPU power settings—an application is allowed to spec-
1.1 Motivation ify its CPU power setting independently of other applicasip

. . and the operating system isolates an application from the se
Recent technological advances have led to a proliferation "
|Egs used by other applications. Our approach resembdes th

mobile devices such as laptops, personal digital asssstant :
(PDAs), and cellular telephones with rich audio, video, anfl llosophy of theExokeme] where the OS grants complete

imaging canabilities. While the processing. storage. am-co control of various resources to the applications and only en
mungicaqtionpca abiIi'.[ies of thespe devicesg ,have ?m, roved A%rces protection to prevent applications from harming one
P P :Ianother [6]. The Exokernel project successfully demotestira

predicted by Moore’s law, these advances have significanttx . o : .
. . o e benefits of application-level networking, applicatlewel
outpaced the improvements in battery capabilities. Conse- L .
X . emory management, application-level file systems and CPU
qguently, energy continues to be a scarce resource in such de: ! : . o
: AT Scheduling [12]. Our work extends this notion to applicatio
vices. The situation is exacerbated by the resource—hunqr
_— . eiY{eI power management.
nature of many applications, such as movie players and batC
compilations.
Modern mobile devices use energy judiciously by incorpot 2 Research Contributions
rating a number of power management features. For instance,
modern processors such as Intel's XScale and Pentium-Mhe notion of application-level power management opens up
and Transmeta’s Crusoe incorporate dynamic voltage and fi@ realm of possibilities that are infeasible using existapg

guency scaling (DVFS) capabilities. DVFS enables the CPproaches.

e Performance:Our approach enables each application to
make local power management decisions based on its
processor demand and processor availability. We exper-

User—level ’—‘ ’—‘
M App 1 App 2
Monitor Speed Query Speed

Processor settings CPU usage settings
Demands 9 9 9

Kernel Space | User Space

imentally show that local decisions by individual appli- \ Chameleon 0S __Interface |

cations can globally optimize system-wide energy con-

sumption and is better than choosing a single system- OPU Denecuer

wide power setting for all applications. per-process speed settng I
Schedule Speed

processes settings

e Flexibility: Such an approach enables each application
to implement a power management policy that closely |
matches its energy and performance requirements. Dif-
ferent applications can choose different policies and yet
coexist with one another concurrently. Legacy applica-

tions or those applications that do not wish to implement \yia <onsider three common classes of applications—soft

their own strategy can delegate this task to a user-levgly| time, interactive, and batch—and show how soft-rezéti

power manager that chooses appropriate settings basgfjications such as movie players, interactive appboati
on observed behavior. such as word processors and web browsers, and batch appli-

e Generality:Our approach is general and unlike some exeations such as “make” can each'implement a different power
isting approaches, does not make specific assumptiof&nagement strategy. We specifically demonstrate hOW these
about the nature of applications. Any application Caﬁpphcatlons can coexist concurrent_ly and yet globallyi-opt
make use of the power management interface to managjéZ€ system-wide energy consumption.

its energy needs, and we demonstrate such strategies foVe have implement a prototype of Chameleon in the Linux
several different applications. kernel 2.4.20-9 and evaluates its effectiveness on a Sony

Vaio laptop equipped with Transmeta’s Crusoe TM5600-667
e Modest implementation costsVe show that user-level processor [27]. Our experiments compare Chameleon with
power management policies can be implemented by athree existing OS-level DVFS approaches, namely PAST [28],
plications at modest cost. The cost of implementing OUPEAK [15] andAV G,, [14] and with LongRun, a hardware-
policies varied from 40 to 239 lines of code, a relativelhased DVFS approach. Our experiments with individual
minor modification to applications that contained tens osower-aware applications show that Chameleon can extract
hundreds of thousands of lines of code. up to a 32% energy savings when compared to LongRun

At first glance, it may appear that an application-levefd UP 0 50% savings when compared to OS-based DVFS

power management approach loses the ability to couple tRBProaches, without any performance degradation to time-

power management strategy with the CPU scheduling alggt_ansitive multimedia and intgracﬁve applications. Oyresx
rithm. At least one recent approach has advocated such Impnts with conCL_Jr_rent gppllca'uons ShO\.N that local power
integrated approach for power management and scheduIiﬂglr,“"‘gement decisions dehameIeon yr:eld EO'5O% ent'arg?/
[31, 32]. Contrary to intuition, we show that it is indeed poss Ings over LongRun and OS approaches that use a single

sible to implement such couplings between the scheduler a@awer_ setting for_ al appl|cat|o_ns, _thereby demonstrating

the power manager using our application-level framewor€N€fits of allowing each application to use a custom power

We demonstrate the feasibility of doing so by implementing€ting that is most appropriate to its needs. _

the GraceOS technique [31, 32] in our system. By carefully The rest of th|§ paper is organized as fOI!OWS' Sectlon 2

exporting resource usage statistics from within the keanel presents an overview of the Chameleon architecture. $rsct|o_

using a flexible power management interface, we show hog@d 4 present the user-level power management strategies

the power management policy can be implemented in uséP-r various appllca_ltlons and _the de_5|gn of an user-leve!qm_ow

space while retaining the ability to interact with the saried ~ M2nager, respectively. Section 5 discusses implementatio
Chameleon, our application-level power management aégesl. Section 6 presents our experimental results. Emally

proach consists of three components: (§aamon OS inter- ections 7 and 8 presents related work and our conclusions.

facethat can be used by power-aware applications to measure

their CPU usages and adjust their CPU speed settings, @) Chameleon Architecture

a modified kernelCPU scheduletthat supports per-process

CPU speed settings and ensures performance isolation am@tgameleon consists of three key components (see Figure 1).

processes (the terms applications and processes are tesed ifrirst, Chameleon consists of &8 interfacehat enables ap-

changeably in this paper), and (iiilspeed adaptethat maps plications to query the kernel for resource usage stadisticl

these CPU speed settings to the nearest speed actually sopsonvey their desired power settings to the kernel. The de-

ported by the hardware. tails of the interface are presented in Section 5. In general

DVFS-enabled Processor ‘

Figure 1 : The Chameleon Architecture.

processor demand ¢ processor availability e
-_—= _ =

a user-level power management strategy will combine OS-
level resource usage statistics with application domaowkn =
edge to determine a desirable CPU power setting. This can (askarva) (deadine) processor demand o
be achieved in one of two ways. An application can use @trc>d o bye<c
the Chameleon interface to directly modify its own power processor avelely S

settings. Alternatively, an application can delegate #Hek t =
of power management to a user-level power manager. Such I T——

a power manager can use resource usage statistics and any ©@t+e<de<e
application-supplied information to adjust the applioats . . o
power settings on its behalf. Figure 2: Three scenarios for task execution in a soft real-

Second, Chameleon implements a modified CPU schedulfépe application.
that supports per-process CPU power settings and applicati

isolation. The scheduler maintains the cur.rent powerrggti the processor at half speed and spread its CPU demand over
for each process and conveys these settings to the undeE € available time. In contrast, if the processor demand and

ing processorwhe'neve'r the process i§ scheduled for'executthe processor availability are roughly equal, the appiticat
(ie., at contgxt switch tlm_e). Th_e application’s pov_vertlag's may choose to run the processor at full speed.
can be modified at any time via system calls, either by the |, the rest of this section, we show how these ideas can be

?ppglcﬁ t'l?n i;self orl_by ? u§er-level povt\/gr manigerﬁac;;ng Snstantiated for four specific applications that belonghi@é
IS behall. An application’s power se tmgs take eftedly itrarent application classes—soft real-time, interaetest-
when it is scheduledand further, applications get the SaMetort and batch

share of the CPU regardless of their power settings. Conse-
qguently, applications are isolated from one another anah fro .
the settings used by malicious or misbehaving applications-1 MPEG Video Decoder

Kernel support for per-process power settings and applicay MpEG video decoder is an example of a soft real-time ap-
tion isolation does not require any direct modificationshte t plication. Many multimedia applications such as DVD play-
QPU sche'duling.algorithm itself,'and as a result, Chamelemck, audio players, music synthesizers, video capturednd
is compatible with any scheduling algorithm. \We experijiors helong to this category. A common characteristic efth
mentally demonstrate Chameleon with Linux time sharing—gyjications is that data needs to be processed with tigssin
best-effort scheduler and with start time fair queuing—a Q0 onstraints. For instance in a video decoder frames neeal to b
aware proportional-share scheduler. decoded and rendered at the playback rate—in a 30 frames/s
Third, Chameleon implements a speed adapter that mapgeo, a frame needs to be decoded once every 33ms. The in-
application-specified power settings to the nearest CPBdspeypijity to meet timeliness constraints impacts applicatior-
actually supported by the hardware. In particular, an appligciness; playback glitches will be observed in a video de-
cation specifies the desired CPU speed as a fragtiafi the coder, for example.
maximum processor speed. The speed adapter maps this fraca goft real-time application can use the following general
tion to the nearest supported CPU speed; since differedt hagateqy for user-level power management. Assume that the
ware processors support different discrete speeds, su@P-an 5 pjication executes a sequence of tasks; the decoding of a

proach ensures portability across hardware. single frame is an example of a task. lcatenote the amount
of CPU time needed to execute this task at full processor
3 Application-level Power Management speed. Letl denote the deadline of this task anddetenote

the task begin time. Further, letdenote the amount of CPU
Regardless of the actual application, our user-level pow&me that will actually be allocated to the application fhist
management policies consist of three key stepsEgi)mate task before its deadline. The parametaraptures processor
processor demandn this step, a combination of application demand, while: captures processor availability by accounting
domain knowledge and past CPU usage statistics is used to &s-the presence of other concurrent tasks in the system. In a
timate processor demand in the near future.Hg)imate pro- time sharing scheduler, for instance, the larger the nurober
cessor availability: This step explicitly accounts for the im- runnable tasks, the smaller the valueeof In a QoS-aware
pact of other concurrent applications. In this step, thewamho scheduler that allows a fixed fraction of the CPU to be re-
of CPU time that will be available to the application in theserved for an application, the value otill be independent
presence of other applications is estimated. [igtermine of other tasks in the system.
processor speed settindhe third step chooses an speed set- Given the processor demandprocessor availability and
ting that attempts to “match” the processor demand to the prdeadlined, the processor speed can be chosen as follows.
cessor availability. For instance, if the actual demanchlg o Case 1.If ¢t + ¢ > d then it is impossible to meet the task
half of the available CPU time, then the application can rudeadline (see Figure 2(a)). Essentially, the task starieal “

late,” and neither the CPU scheduler not the power manageach frame type. These results corroborate the findings of a
ment strategy can rectify the situation. In such a scentré, prior study on MPEG-2 where an approximate linear relation-
appropriate policy is to choose the full processor speethfer ship between frame size and decode times was observed [1].

task. Using these insights, we constructed a predictor that tnses t
The next two scenarios assume that case 1 is not true ayge and size of each frame to compute its decode time. A
that it is possible to meet the task deadline. key feature of our predictor is that the prediction modelais p

Case 2:If e < ¢, then the processor demand exceeds preéameterized at run-time to determine the slope and intércep
cessor availability for this task (see Figure 2(b)). Altghut of the piece-wise linear function. To do so, the video decode
is feasible to meet the deadline by allocating sufficient CPBtores the observed decode times of the previotdsames,
time to the task, the CPU scheduler is unable to do so duegoales these values to the full-speed decode time (since the
presence of other concurrent applications. Since apjitat observed decode times may be at slower CPU speeds), and
performance will suffer due to insufficient processor afzill uses these values to periodically recompute the slopesand t
ity, the power management strategy should not further worsétercepts of the piece-wise linear predictor. This notyonl
the situation. Thus, the application should run at full g®c enables the predictor to account for differences acrossovid
sor speed for this task. Any other strategy would violate owtlips (e.g., different bit rates require different lineaegic-
goal of isolation. tors), it also accounts for variations within a video (estpw

The final scenario assumes that neither cases 1 or 2 are tn@ving scenes versus fast moving scenes in a video). The pa-

Case 3:If ¢t + ¢ < d then task can finish before its dead-+ameterized predictor is then used to estimate the decode ti
line at full processor speed (see Figure 2(c)). In this ctse, of each frame at full processor speed. Additional detaitsuof
policy should slow down the CPU such that the demarisl predictor including its experimental validation may beridu
spread over the amount of time the task will execute on thg the appendix section.

CPU, while still meeting the deadline. The CPU frequericy Estimating processor availability: Using the Chameleon

should be chosen as interface, the application can obtain the start times aed th
c end times of the previouk instances where the application
= min(e,d —1) * fmaz was scheduled on the CPU. This history of quantum durations

and the start times of the quanta provide an estimate of how
where ;... is the maximum processor speed (frequency). Much CPU time was allocated to the application in the recent

This strategy is applicable to a variety of soft real-time apP@St: An exponential moving average of these values can be
plications, so long as the notion of a task is defined appropf#Sed to determine the amount of CPU time that s likely to be
ately. In a video decoder, (i) decoding of each frame repréllocated to the application per unit time, and this yiels t
sents a task, (i} denotes the time to decode the next fram@rocessor availability over the next- ¢ time units.
at full speed, (ii)e denotes the estimated duration for which D€termining processor speed: Given an estimate of the
the decoder will scheduled on the CPU until the frame dea"y-ame decode time anglof the processor availability, the ac-

line, and (iii) d denotes the playback instant of the frame (asual CPU frequency is chosen irmplayeras follows:

determined by the playback rate of the video). Fmas ift+e>d
While d is known, parametersande need to be estimated f={ frae ife<é (1)
for each frame. mm(m fmaz) Otherwise

Estimating processor demand: Processor demand is de-
termined by estimating frame decode times. We considerheref is a correction factor that is used to account for past
MPlayer an open-source video decoder that supports bohrors in frame decode times. It the actual decode times are
MPEG-2 and MPEG-4 playback. Note that, MPEG-2 igonsistently overestimated or underestimated by the gierdi
widely used for DVD playback, while MPEG-4 is used bythe factor can be used to correct this error. The Chameleon
commercial streaming systems such as QuickTime and Wispeed adapter then maps the compuytdd the closest sup-
dows Media; mplayer is representative of these applica-ported CPU speed that is no less than the requested speed.
tions. Usingmplayer we encoded a nhumber of MPEG-2 and Implementation: We modifiedmplayerto implement the
MPEG-4 video clips at different bit rates and different spaframe decoding time predictor and the speed setting strateg
tial resolutions. These video clips were decoded by anunstrOur modifications were primarily restricted to the begimnin
mentedmplayerthat measured and logged the decode time @nd end of frame decoding method nmplayer We used
each frame at full processor speed. We analyzed the resget t i meof day to measure the frame decoding time and
ing traces by studying the first order and second order statthe Chameleon interface to estimate the processor avdilabi
tics of the decode times and frame sizes for each frame ty@gher modifications involved using the Chameleon interface
(i.e., I, P, B). Our analysis, the details of which may beto set the CPU speed using Equation 1. In all, the implemen-
found in the appendix section, showed a piece-wise linear ration of frame decoding time predictor involved 221 linés o
lationship between the decode times and the frame sizes forcode, and the implementation of speed setting strategy in-

event process

volved 18 lines of C code. This indicates that user-levelgrow arrival runs Percepion
management strategy can be implemented at relatively hodes i !
effort.

event processing

3.2 Word Processor 50-p

, . . I
A word processor from an Office suite is an example of an 50 ms

interactive best-effort application. Many applicationsls as
editors, shell terminals, web browsers and games fall mto t
category. We consideXbiWord a popular open-source word
processor from the Gnome Office suite. AbiWord is an evengation, the CPU speed is increased yet again and a new timer
driven application that works as follows. Upon an event sucls set. Thus, the processor is gradually accelerated until e
as a mouse click or key stroke, the word processor needster the event processing is complete or the maximum CPU
do some work to process the event. For example, when tBgeed is reached. In order to ensure adequate interactive pe
user clicks on a menu item, the application must display fdarmance, the maximum CPU speed is always used when the
drop-down menu of choices. When the user types a sentenggent processing time exceeds the perception threshold.
each character representing a keystroke needs to be disiplay To understand how to instantiate this policy in practice,
on the screen. The window needs to redrawn wherdthe/ suppose that the event arrives at timand the application
event arrives. The speed at which these events are procesgegktually scheduled on the CPU at tiigalthough the ap-
by the word processor greatly impacts the user’s experiencglication becomes runnable as soon as the event arrives, oth
Studies have shown that there exists a human percefncurrent applications can delay the scheduling of thidi-ap
tion threshold under which events appear to happen instagation). From the perspective of the user, a response i& desi
taneously [2]. Thus, completing these events any fastetdvouable from the application no later than+ 50 ms. Since the
not have any perceptible impact on the user. While the egpplication actually starts executing at timigit needs to pro-
act value of the perception threshold is dependent on the usess the event within the remainibig— 3 ms, whered = ' —t
and the type of task being accomplished, a valugOofis is (see Figure 3). To do so, we chooséimers, which have val-
commonly used [2, 7, 8, 16, 17]. We also use this perceptiarest, ¢, ...,t,, andd_ -, t; = 50 — 3. After the expiration
threshold in our work. of theith timer, the processor speed is increased tovhere
An event-driven interactive application should choose CPY; denotes a fraction of the maximum speed. The values of
speed settings such that each event is procességter that f; are chosen such that the processor speed increases progres-
the human perception threshol®ne possible strategy to dosively andf,, = f... = 1. Thus, the application runs at
so is to (i) estimate the processor demand of an event, (fi)ll processor speed if the event processing continuesrizkyo
estimate the processor availability in the next 50 ms, ari — 8 ms. Observe that, rather than explicitly estimating the
(iii) choose a speed such that the demand is spread over firecessor demand of the event, the GPA technique monitors
available CPU time while still meeting the 50 ms percepthe progress of the event processing and adjusts the poocess
tion threshold. Since an event-based application may prepeed accordingly. Furthes, implicitly captures the impact
cess many different types of events, estimating processor af other concurrent applications in the system.
mand for each event will require the approach to be explicitl Analysis: It is possible to bound the maximum slowdown
aware of different event types and their computational aeedncurred by an application in the GPA technique by carefully
Such a strategy can be quite complex for applications such eésoosing timer values and CPU speeds. To see how, observe
browsers or a word processors that support a large numbertét if the processor were running at full speed, the amount
event types. of work done in the intervalt’, ¢ + >, ¢;] will take only
Instead we propose a different technique that can meet the.-_, f;¢; at full processor speed. If the actual full-speed pro-
human perception threshold without requiring explicitwho cessing time of the event is smaller than this value, thenteve
edge of various events types. Our technique referred to fisishes before th80 — 3 ms perception threshold in the GPA
gradual processor acceleration (GPArcounts for the pro- technique, and thus the user does not perceive any perfor-
cessor demand and the processor availabitigylicitly. mance degradation. For any event requiring more than this
Upon the arrival of any event, the word processor is coramount of full speed execution time, the maximum possible
figured to run under at a low CPU speed, and a timer is sperformance degradation under our strategy is given by:
(the timer value is less that the perception threshold)héf t .
rocessing of the event finishes before the timer expires, th _ o
fhe applic?ation simply waits for the next event. Otherwise, degrade =50 = = Z firts 2)
it increases the CPU speed by some amount and sets another
timer. If the event processing continues beyond the timprex since the processor will run at full speed once the execution

Figure 3 : Event processing in a word processor

i=1

time exceeds the perception threshold. 3.4 Batch Compilations

To illustrate, suppose that an event in the GPA techniqu&)m ilations using a utility such amakeis an example of a
should not take more than 20ms longer than it would take gt X 9 y P

L2 : atch application. Unlike interactive applications whére
full processor speed. Let= 0 for simplicity. If we chose five response time is important, the completion time (or threugh
timers with values30ms, 5ms, 5ms, 5ms, andsms, and the b P ' b 9

processor speeds during these timer interval$5&6, 60%, put) is important for batch gppllcanons. Typicallpake
o,) . spawns a sequence of compilation tasks, one for each source

80%, 90%, and100%, respectively, then, from Equation 2, the) ;

. . . : cqde file. One possible user-level power management syrateg
maximum possible user-perceived degradation for any evenh . -
: o . S to estimate the processor demand for each compilati&n tas
is 20ms. This is the maximum slowdown for any event tha . . .

. oo and to choose an appropriate speed setting. However, since
requires more thab0ms of processing time.

. . i , each compilation task is a separate process that is rdiative
Implementation: We implemented GPA into AbiWord, a short-lived, gathering CPU usage statistics in order toenak

sophisticated word processor with a code base of hundreds,gfisonaple decisions for each process is difficult. Instsad
thousands lines of C code. Our implementation was straighiz|ieve the correct strategy is to allow the end-user toigpec

forward. We added code at the beginning of the AbiWOrg e yesired speed setting. System defaults can be used when
event handler to implement the GPA technique. The X13he user does not specify a setting.

server assigns a time-stamp to each new user event such aR/10st Unix-like operating systems support a thiee util-

mouse click or key-stroke. We extracted this time-starapd ity, which allows the end-user to specify a CPU scheduling

usedget t i meof day to determine the execution start tlmepriority prior for a new process. For instance, the user oan i

3 J’hiﬁ.aramite/ﬁlislcfppute?gs tk:je d_ilf_'fr(]arence t;e:]v\"akéndvoke the commandi ce -n N make to specify thaimake
andt. This took only Ines of C code. The rest of the modgy,q, 4 ryn at priorityN. A low priority enables the batch

o e D s e o e e ZBpicaon o n he bakground vihout e
P P reground interactive applications. A high priority cdsa

V(\;'E,'Xh tOEk 2|3 Lms of Cfc((:)de.dln a"’fthT lmpldemen:]anon be chosen if the new application is more important than cur-
took only 40 lines of C code—a fairly modest change. applications.

A similar strategy can be used for choosing CPU speed
settings. We implemented a utility callguhicethat enables
the end-user to specify a particular CPU speed setting for a
new process. For instance, the user can invoke the command

A web browser is another example of an event-driven interac-_.

tive application that needs to process various events sschy! €€ -n N make to specify that make and all compila-

a mouse click or a keystroke. When the user types a URL %Ens spawned by its Sh.OUId run at a fixed CPU. speed setting
data into a web form, the keystrokes need to be displayed on A Iowgr speeq setting enablgs energy savings at thg ex-
the screen. When the user clicks on a java-script menu o §nse of increasing the completion time, whereas a higher

web page, the menu needs to be expanded. When the moiguers the completion time at the expense of higher energy
' ' consumption.

is positioned over a hyperlink, visual feedback needs to be . . . :
Implementation ofpnicewas straightforward. The pnice

provided by changing the shape of the mouse cursor. When

the user clicks on a link, the browser needs to construct aRgPeCcess first changes its own speed setting to the specified

send out a HTTP request; when data arrives from the remo‘f@lueN using the Chameleon interface. Next, it involeec

server, it needs to parse and display the incoming data. AR run the specified command. This ensures that the appli-

though the network delay is beyond the control of the browse(‘ration inherits the speed setting of thaice process. The

all other “local” events should be processed within the hom Chameleon kernel impleme_:ntatipn ensures that any process
perception threshold for good interactive performancee T orkedby a parent process inherits the CPU speed setting of

GPA technique can be directly used for power managementt’ﬂe parent. _Since DVFS—enapIed processors suppor_t.a small
such a browser. number of discrete speed settings, the paranigtepecifies

We consideredDillo, a compact, portable open-sourceWhi.Ch of theN disgr_ete spegd settings to. use for the appli-
' ’ . f:a_mon. Thepnice utility was implemented in 125 lines of C

browser that runs on d_esktqps, Iaptops and PI.DAS. and Impéaode, again demonstrating that implementation of usestlev

mented the GPA technique mtq '_[hls.browser. Like in the ca%eoWer management policies take modest effort.

of the word processor, our modifications were restricteti¢o t

event handler in Dillo. First, we extracted the event afriva

time and the execution start time in the event handler to codd- A User-level Power Manager

pute 3. We then added code to set timers and increase the

processor speed upon timer expiration. In all, the implemefhe previous section demonstrated how many commonly used

tation of GPA into Dillo involved 46 lines of C code, againapplications can implement their own power management

demonstrating the modest nature of our modifications. strategy. However, implementing a user-level power manage

3.3 Web Browser

ment strategy requires modification to the source code,lwhi@ job should runs at the spegdwvhen it has used cycles.
may not be feasible for legacy applications. Such applicdhe DVFS algorithm monitors the cycle usage of the task.
tions can delegate the task of power management to a usérthe usage increases beyomdthe next speed setting is
level power manager. The power manager can use CPU usaj@sen. Observe that this technique has similarities with o
statistics and any application-supplied knowledge to fiyodi GPA technigue where the progress of a task is monitored and
CPU speed settings on behalf of the applications. A simptae speed is increased gradually. The key difference is that
user-level power manager may choose a single speed settihg durations: and speedg are computed at run-time using
for all applications based on current utilization; the spset- dynamic programming, whereas in GPA, they are statically
ting is varied with observed changes in system utilizatidn. chosen.
more complex strategy is to choose a different speed setting To implement GraceOS as a user-level power manager, we
for each individual application based on its observed behamust distinguish between the DVFS component and the CPU
ior; doing so requires usage statistics to be maintaineefoh scheduler. The DVFS algorithm is fully implemented in user
application. Multiple user-level power managers can cstexispace and uses the Chameleon interface to query usage statis
in the system, so long as each manages a mutually exclusties and monitor progress. The CPU scheduler and any in-
subset of the applications. Thus, it is feasible to implenaen teractions between the application and the scheduler neust b
different power manager for each class of application. implemented separately from Chameleon. Since Chameleon
The Chameleon interface enables the entire range of thedges not make any specific assumptions about the underly-
possibilities. To demonstrate the flexibility of our apprha ing scheduler, it is compatible with any CPU scheduling algo
we take a recently proposed DVFS approach—GraceOS[31thm, including EDF.
32]—and show how the proposed technique can be imple- Consequently, our implementation of the GraceOS in-
mented as a user-level power manager using Chameleon. @ludes three components: (i) a user-level daemon to cadcula
objective is two-fold. First, we show that many recently-prothe soft real-time task's demand distribution, cycle budge
posed approaches such as GraceOS that emplaykernel and speed schedule using dynamic programming (300 lines of
implementation can be implemented as user-level power maB-code); (ii) use of Chameleor/dev/syscpinterface driver
agers in our approach. Second, GraceOS advocates a cooperauery the actual usage of each soft real-time task (1@8 lin
tive application-OS approach, where applications pecaltli of C code); and (iii) three system calinterSRT ExitSRT
supply information to the OS and the OS chooses the procesid FinishJobthat allow an application to convey the begin-
sor speed setting based on this information and usage-statigrng and end of each soft real-time task (23 lines of C code).
tics. We show that such interactions between the applicati®bserve that the first two components relate to the DFVS al-
and the CPU scheduler are feasible using Chameleon. gorithm, while the third component is used by the CPU sched-
Implementation: We begin with a brief overview of the ulerin GraceOS. The GraceOS user-level power manager runs
GraceOS [31]. GraceOS is designed for periodic multimedit the highest CPU priority in our system. All soft real-time
applications that belong to the soft real-time class. GR&e applications run at the next highest CPU priority, and bést e
treats such applications differently from traditional effort ~ fort jobs run at lower priorities. EDF scheduling is emuthte
applications. Whereas best-effort applications are sdeddu by manipulating priorities of tasks; the task with the ezsti
using the Linux time-sharing scheduler and do not benefieadline is elevated in priority (analogous to the impletaen
from DVFS, soft real-time applications are scheduled usingon of EDF in GraceQOS).
a QoS-aware soft real-time scheduler and benefit from DVFS.
To handle soft reaI?time applications, GraceOS__ employs; Implementation of Chameleon
two key components: (i) a real-time scheduler and (ii) a DVFS
algorithm. The CPU scheduler is vanilla earliest deadlirst fi Our prototype of Chameleon is implemented as a set of mod-

(EDF); standard EDF theory is used to perform admissiqfies and patches in the Linux kernel 2.4.20-9. Our prototype
control of soft real-time tasks based on their worst case CRl| des the following components:

demands. Admitted soft real-time tasks have strict pyiorit
over best-effort tasks. Deadlines derived from the aptitioa 1. New system calls. We added four new system calls to
specified periods are used for EDF scheduling of these tasks. implement the Chameleon OS interface: dgt-speed

Three system callsEnterSRTEXitSRT andFinishJob—are which returns the current CPU speed of the specified
used to convey start and finish time of tasks (e.g., frame de- process or process group; (8gt-speedwhich sets the
code) to the scheduler. CPU speed of the specified process or process group;

The DVFS algorithm maintains a histogram of CPU usage (iii) get-speed-schedylehich returns processor budget
and derives a probability distribution of processor demand and speed schedule of the specified process, and (iv)
The processor demand and the application-specified periods set-speed-schedylehich sets the processor budget and
are used in a dynamic programming algorithm to derive a speed schedule of the specified task. The latter two sys-
list of speed scaling points. Each poift, y) specifies that tem calls enable sophisticated speed setting strategies,

where an application can specify ampriori schedule for five discrete frequency and voltage levels (see Table 1)rand i
changing the speed as it executes. plements thé_.ongRun[9] technology in hardware to dynam-
ically vary the CPU frequency based on the observed system-
2. Chameleon-enhanced /proc interface: The/procinter- wide CPU utilization. LongRun varies the CPU frequency be-
face in Linux enables applications to dynamically queryween a user-specified maximum and minimum values—these
a variety of kernel-level statistics. We enhanced this inzalues can be set by users by writing to two machine special
terface by adding a /proc/Chameleon sub-tree. This diegisters (MSR). By default, these values are s8dibMHZ
rectory holds one file for each Chameleon-driven processd677 MHz, enabling the full range of voltage scaling. Lon-
and allows applications to query for their CPU quantungRun can be disabled by setting the minimum and maximum
allocations in the recent past. register values to the same frequency (e.g., setting b@isto
MHz does not allow any leeway in changing the CPU fre-
3. Chameleon /dev interfaces: To support user-level quency, effectively disabling LongRun). This feature can b
power managers, we added two new /dev interfacegsed to implement voltage scaling éoftware—the power-

/dev/sysdvfand/dev/syscpu The system-wide utiliza- aware application can determine the desired frequencyetnd s
tion is reported viddev/sysdvisvhereas the CPU cycles the two registers to this value.

consumed by individual tasks is reported Adav/syscpu

Freq. (MHz) || Voltage (V) | Power (W)
4. Process control block enhancements. We add several 300 1.2 1.30
new attributes into the process control block in Linux: (i) 200 1.225 1.90
Chameleon-driven-flggvhich indicates if the process is 533 1.35 3.00
directly modifying its speed settings; (iurrent speed 600 15 4.20
which specifies the current speed setting for the pro- 667 16 530

cess; (iii)inheritable-flag which indicates if the speed
setting is inheritable by its children, (i\gycle counter Table 1: Characteristics of the TM5600-667 processor
which measures the CPU usage of a taskcfgle bud-
getwhich stores the number of allocated cycles, and (vi)
speed schedulehich stores a list and schedule of speeg Experimental Evaluation
scaling points.
We evaluated Chameleon on a Sony Vaio PCG-V1CPK lap-
5. DVSkernel module: The DVS kernel module is actually top equipped with a Transmeta Crusoe processor and 128MB
responsible for interfacing with the hardware in order toAM. The operating system is Red Hat Linux 9.0 with a
modify the processor speed. This is done by writing thgyodified version of Linux kernel 2.4.20-9. To compare
frequency and voltage to two machine special registetshameleon with other DVFS approaches, we implemented
(MSR). This module provides a clean separation betwegRree 0S-based DVFS techniques proposed in the literature:
the hardware-specific DVFS details and the rest of th@) PAST [28], (i) PEAK [15], and (iii)) AVG,, [14], all
Chameleon implementation. Chameleon can be appligdl which are interval-based system-wide DVFS techniques.
to any DVFS-enabled processor by implementing a DV®yr experiments involve running applications under six dif
kernel module specific to that processor. ferent configurations: (i) with DVFS disabled—the CPU al-
) . ways runs at the maximum speed (denoted as FULL), (ii)
6. Linux scheduler enhancements: We modified the stan- ging the hardwired LongRun technology, (iii) using PAST,
dard Linux schedu_ler to add cycle charging and Peliv) using PEAK, (v) usingdV'G,,, and (vi) using Chameleon
process speed settings. When the schedule() function{Snere L ongRun is disabled for power-aware applicatiorts bu
invoked, if there is no context switch (i.e., the currengnapied for legacy applications).
task is dispatched again), the Linux scheduler may in- The energy consumption of the processor during an inter-
crease the speed for the current task based on its spgggly ig computed as
schedule (if the task has one). In case of a context switch,
the Linux scheduler performs some book-keeping for the -
previous task (e.g., update its cycle counter, decrement energy = Zpiti ®)
cycle budget, etc.). The scheduler then sets the CPU =1
speed for the new task based on dtsrrent speedat- Wheren is the number of available frequency/voltage combi-
tribute. nations on the processar; denotes the power consumption
of the processor when running at thth frequency/voltage
Our implementation of Chameleon runs on a Sony Vaioombination, and; represents the time spent at thk fre-
PCG-V1CPK laptop with Transmeta Crusoe TM5600-66@uency/voltage combination during the interal We mod-
processor [27]. The Transmeta TM5600 processor suppoifg the Linux kernel to record the energy consumption of the

TM5600 processor using Equation 3 and Table 1. Given tl{@i) the Chameleon-awarmplayercan achieve an additional
energy consumption of the processor during an intefvahe 20.52% to 31.99% energy savings when compared to Lon-
average power consumption of the processor during this intgyRun.
val is computed as Although there are no user-perceived playback problems
energy (in terms of dropped frames or playback freezes) under the
(4) five configurations, we do observe jitter in the playback qual
T ity at the frame-level. Such small inter-frame jitter is in-
In our experimentsy we observed that PEAK a|Way5 CorﬁVitab|e in atime-sharing CPU scheduler, although itsotdfe
sumed the least processor energy among all the DVFS te@hi€ not perceptible at the user-levelplayerprovides statisti-
niques. However, it trades its energy savings with an ugal measurements of late frames—the number of frames that
acceptably high performance degradation for time-sensiti are behind their deadline by more th2ets of the frame in-
multimedia and interactive applications. For examplegwid terval. As shown in Figure 4(b), the number of late frames
decoding of 830 minutes clip took an extra 16.6 minutes, rein Chameleon is mostly comparable to PAST atidG,, and
sulting in poor performance. Therefore, we omit the resfits typically better than LongRun (while consuming the least en
PEAK in the rest of this paper and refer the readers to [30] f&gy). FULL has the least—although not zero—late frames at
these results. the expense of the highest energy consumption. The number
of late frames is small)(2 — 2.3%) in all configurations.

POWET ¢g =

6.1 Chameleon-aware Applications

. . 6.1.2 Web Browser and Word Processor
We first demonstrate the effectiveness of our four Chameleon

aware applications. Our experiments assume a lightlyddad\e ran the web browser and the word processor and measured
system that runs a single application with the typical backheir average power consumption, the average responsg time

ground system processes. and the percentage of late events (where event processiag ti
exceeds thé60ms threshold).
6.1.1 Video Decoder To eliminate the impact of variable network delays, our ex-

periments with the web browser consisted of a client request
We encoded several DVD movies at different bit-rates and reﬁ]g a sequence of web pages from a web server on a local area
olutions using Divx MPEG2/MPEGA4 video codec and MPetwork; the requested web pages consist of actual web con-
audio codec The characteristics of six such movies are:“ist%nt that was saved from a Variety of popu|ar web sites. Each
in Table 2. The bit-rates are depicted in the fam-b)Kbps, experiment consists of a sequence of requests to these web
wherea is the video and is the audio bit-rate. We recorded pages with a uniformly distributed “think-time” betweercsu
the energy consumed by the processor during playback @ssive requests. The experiments differ in the requested w
these movies at full speed, with LongRun, with Chameleopages and the chosen think times; each experiment is repeate
with PAST, and withAV G,,. under the five configurations, and we measure the mean for
each experiment.

The workload for the word processor emulates a user edit-
vove2 | saowara|_6i2s | 1as77| rs7z1zs0l 8 Ao S e e tems doc.
Movie 3 || 640x352| 7168s | 179168 | 679.7 +128.0 . . o el o
Vovie 2 1 640x352 | 6075 15003 | 8619+ 1280 mentls with a uniformly d|str|bl_Jted thmk—ume betwe_encsu
Movie 5 | 640x352 | 1755s | 42040 | 2456.9 + 192.0 cessive requests. The gxperlments differ in t.he ed!ted-docu
Movie 6 || 640x480 | 2394s | 57355 | 1674.6 + 384.0 ments and the chosen think times; each experiment is repeate
under the five configurations, and we measure the mean for

Table 2: Characteristics of MPEG 4 Videos each experiment.
Our results, depicted in Figure 5(a), show that LongRun

Our experiments show that all five configurations handleonsumes a factor of three less power than FULL. Chameleon
movie playback very well. The same playback quality isre able to extract an additiont).27% energy savings when
observed under these five configurations: identical execoempared to LongRun, while PAST is worse than LongRun.
tion times which equal the length of the movies, identicalVe also note that the average power consumption under
frame rates, no dropped frames, and no user-noticeablgsdelagChameleon is only).03W and0.06W higher than the power
However, the average CPU power consumption differs signiftonsumption at the slowest CPU spe@d0MHz) for the
cantly across the various configurations (see Figure 4t&)). browser and the word processor, respectively. Furthert mos
ure 4(a) shows that: (i) neither PAST ndi/G,, can outper- events finish in Chameleon without any performance degrada-
form LongRun; (ii) LongRun can achieve significant energyion. The percentage of late events is only 0.24% and 0.22%
savings (from27.36% to 57.26%) when compared to FULL; in the word processor and the browser, respectively, and is

Res. Length | Frames| Bit-Rate(Kbps)
Movie 1 || 640x272| 3360s 80387 | 1290.9 +179.2

b T T . - -
Il Chameleon
[l LongRun
EEPAST
[JAVGn

3%} [JFULL i

2%

=)

o
<
<

Percentage of Late Frames
1.30%

N

1%

Average Power Consumption in Watts
IS

=3

Qi”neg L

SIS =R

RS £

cERts REER
oS8 oofod

0 | | il | L]
Moviel Movie2 Movie3 Movie4 Movie5 Movie 6 Moviel Movie2 Movie3 Movied4 Movie5 Movie6
Movies Movies

(a) Average CPU Power Consumption (Watts) (b) % of Late Feame

Figure 4 : Average CPU power consumption and percentage of frame¢stbdate by more than 6.6ms (20% of the 33ms
deadline).

comparable to other approaches. Finally, the increaseoin piand then with the misbehaving version of the application. We
cessing times of late events is no more than 20ms (obtainetkasured its impact on the progress of the mplayer. As shown
by substituting the chosen timer values and CPU speedsimFigure 6, the progress made by mplayer is unaffected by the

Equation 2). rapid changes of CPU speed by the misbehaving application—
any change to the CPU speed by an application only impacts
6.1.3 Batch Compilations its own progress and has no impact on the CPU shares re-

ceived by other applications.
We compiled a portion of thes-2 network simulator using

makeand ourpnice utility. We chose different values of the
CPU speed ipniceand measured the power consumption an
completion times ofnake As expected, our results, depictedTo demonstrate that applications can make locally- and
in Table 3, show that the power consumption can be traded fglobally-optimal power management decisions in the pres-
completion time by appropriately choosing a speed settingnce of concurrent applications, we considered four applic
Faster speeds lower completion times at the expense ofthigien mixes: (i) video decoder and web browser (mix M1), (ii)

g.3 Impact of Concurrent Workloads

energy. video decoder and word processor (mix M2), (iii) video de-
_ coder and batch compilations (mix M3), and (iv) batch compi-
Freq. || Completion| Mean Power lations and word processor (mix M4). Note that, from the per-
('\gg'g) 12“7“2 Ci”;éwed spective of the video decoder, the background load incsease
S i progressively from mix M1 to M3.
400 1066s 1.96W .
£33 910s 3 00W Table 4 and Figure 7 show the average power consump-
600 812s 4.14W tion and the performance of these applications under variou
667 7765 5:15W power management strategies. Table 4 shows that Chameleon

always consumes the least energy among the five configura-
Table 3: Completion times and mean CPU power consumgions. The energy savings range frams81% to 31.19% when

tion for batch compilations. compared to LongRun, which itself extracts uptio89% re-
duction when compared to FULL. The performance degrada-
tion, depicted in Figure 7(a), shows that iteractive agplom
performance in Chameleon is comparable to the other tech-
niques. For instance, the average event processing tinire of t
We claim that Chameleon isolates an application from theord processor under mix M2 increases from 4.4ms in Lon-
power settings of other applications. To demonstrate the gfrun to 5.96ms in Chameleon and is well under the human
fects of such isolation, we ramplayerwith a misbehaving perception threshold of 50ms. A similar result is seen fer th
background application. The background application fgpidweb browser under mix M1. The percentage of late events
switches its CPU speeds from one setting to another evegmains well under 1% under all mixes (see Figure 7(b)).

few milliseconds. We ran mplayer with this application when Figure 7(c) plots the percentage of late frames in the video
it was well-behaved (it used a fixed CPU speed throughoutlpcoder for different mixes. The figure shows that the per-

6.2 Isolation in Chameleon

10

Average Power C ion of Interactive Application: % of Late Events in Interactive Applications

Il Chameleon
[l LongRun
EmPAST
IAVGn
0.6%) CIFuULL

IS

N
30
5.30

o

o
0.22%

0.24%

0.23%

o
N
S
E
0.13%
0.12%
0.16%
11%
0.12%

18%
0.20%

Average Power Consumption in Watts
N o
Percentage of Late Events
o
<
2

~

3
8 2 3
2 &
::Is g%I“H -
- — -
0 0
Web Broy

wser ~Word Processor Web Browser Word Processor
Interactive Applications Interactive Applications

(a) Average CPU Power Consumption (Watts) (b) % of Late Event

Figure 5: Average CPU power consumption and the percentage of latg®v

centage of late frames in Chameleon is comparable to other Progress of Frame Decoding in mplayer
approaches. As the background load increases from mix 1 to 16000 Well-behaved background fgad ‘
mix 3, we see that the percentage of late frames increages fro wogo [Mebehenobeegroundlosd
around 0.4% to more than 22%. For mix M3, all techniques, 12000

including FULL, incur 22% deadline misses. Decoding of the 10000

10 minutes clip takes an extra 20 seconds under all techniques,
resulting in poor performance. This is primarily due to in-

8000

Frame Number

6000 -

sufficient processor availability at higher loads, as oppdse 4000

deficiencies in the power management technique. Due to the 2000

background load imposed by the batch compilations in mix 0
M3, the time sharing scheduler is unable to allocate suificie Time(Seconds)

CPU time to the video decoder.
Figure 6 : Isolation from power settings of other applications.

Figure 8 shows the fraction of time spent by the video de-
coder at different CPU speed settings. In the absence of pny Chameleon| LongRun | PAST | AVG, | FULL
background load, the decoder is able to lower its speed séftix M1 2.25W 3.2TW | 3.98W | 4.42W | 5.3W
ting to the lowest speed for more than 90% of the time. AdMix M2 2.4TW 3.08W | 3.79W | 3.83W | 5.3W
the load increases, the fraction of time spent at higherdspeeMix M3 3.81W 5.27TW | 5.26W | 5.27TW | 5.3W
increases. For mix M3, more than 80% of the time is spent dfix M4 3.71IW 5.22W | 5.23W | 5.23W | 5.3W
_the highest spee_d (recall that insufficient processor aivil Table 4: Average CPU Power Consumption for various
ity causes the video decoder to run at full speed—Case 2 In

i mixes.

Section 3.1).

Under mix M3, the only possible solution is to use a Q0S6.4 User-level Power Manager Experiments
aware scheduler that guarantees a fixed fraction of the CPU
to the video decoder regardless of the background load. Wée modifiedmplayerto use the GraceOS system calls and
ran mix M3 with Chameleon on a proportional-share schedsed it to decode the movies in Table 2. The GraceOS user-
uler, namely Hierarchical Start Time Fair Queue (HSFQ) CPlével power manager was used to make power management
scheduler [13] In this experiment, we assigrigd4 fraction decisions on behalf of mplayer. We measure the energy con-
of CPU time to the batch compilationk /14 fraction of CPU sumed by mplayer and plot it in Table 5. Our results show
time to the video decoder and the X server, and the remainitigat Grace-OS can achie®e50% to 18.44% energy savings
1/14 to the other tasks. As expected, the percentage of lathen compared to LongRun. However, Chameleon outper-
frames in the video decoder fell to a very small value. Furtheforms GraceOS by 9-41%. This is because the Chameleon-
since processor availability is guaranteed in HSFQ, as showenhanced mplayer is able to estimate decode times of indi-
in Figure 8, the video decoder was able to speh@3% ofits vidual frames based on domain-knowledge, while GraceOS
execution time at the lowest frequency (300MHz) (compareetlies on external observations of the CPU usage of mplayer.
to 7.74% under time-sharing CPU scheduler). This causes tfiehis domain knowledge yields an extra 9-41% in Chameleon.
mean power consumption to fall to 2.1W, a 44.8% reductioRinally, note that the GraceOS technique is applicable to pe
when compared to the time-sharing scheduler. riodic multimedia applications, and hence, it is not fekestb

11

Average Response Time of Interactive Applications % of Late Events in Interactive Applications % of Late Frames in Movie Playback
30.0

P

. Il Chameleon I Chameleon Il Chameleon
2 BlLongRun ElLongRun LongRun $8 B8
S 1 506/ | EIPAST 25,00 |EIPAST 2R 28
- [CJAvGn °[|Javen Lo g
CIFuLL [CIFULL N

s
Y
b

20.0%|

10.0%

Average Response Time in milliseconds
Percentage of Late Events
°
g
X
Percentage of Late Frames
&
S
2

o
5
S

0.41%
= flo.42%
2.11%
1.87%
1.34%
1.40%
85%

B
=1
o
S

[Jo.46%
0.21%

—

0.

Mix M1 Mix M4 Mix M1 Mix M4 ix M.

2

Mix M3

Mix M2 Mix M2
Concurrent Workloads Concurrent Workloads

Mix M2
Concurrent Workloads

(a) Average Response Time (Milliseconds) (b) % of Late Event (c) % of Late Frames

Figure 7 : Performance of concurrent applications: average regpiime of interactive applications and the percentage of lat
events and frames.

Fraction of Time at Each Frequency Level VIdeO decoder 2738
E300MHz GPA technique 1149
[400MHz <
Eeoovis pnice 127
[1667MHz

100%

Table 6: Overhead of application-level power management
(in CPU cycles).

80%r

Percentage of Time
@
3
K

sl to frequency (MHz)
300 [400 | 533 | 600 | 667
al 300 1101 | 1099 | 1086 | 1066
Rio Background Load Mix ggncunem mesx M3 Mix M3 with H-SFQ from 400 1125 1095 1086 1066
frequency| 533 || 1117 | 1104 1073 | 1066
(MHz) [600 [1125 | 1101 | 1092 1066
Figure 8 : Fraction of time spent at various frequency levels 667 || 1117 | 1101 | 1088 | 1077
by mplayer
Table 7: Cost of Woltage and Frequency Scaling (in CPU
compare it to other Chameleon applications. cycles).
Movies || AVG. Power | Eng. Sav. to LongRun to Chameleon
Movie 1 211W 7.05% —97.88% sor before and after a specific operation, and taking therdiff
Movie 2 1.64W 13.68% —9.33% ence of the two values.
Movie 3 2.11W 15.94% —24.12% Table 6 reports the overheads of the video decoder, GPA
Movie 4 2.76W 3.50% —41.54% and pnice strategies. As shown, the overhead ranges from
Movie 5 3.00W 8.58% —33.77% 127-2738 CPU cycles, which is in the order of a few micro-
Movie 6 3.14W 18.44% —13.69% seconds.

_) Finally, we measure the cost of voltage and frequency scal-
Table 5: Average CPU power consumption of movie play{ng 1o do this, we adjusted the processor from one frequency
back under GraceOS to another frequency, and measure the number of cycles for
each change. The results in Table 7 show that the CPU can
change speed withih125 cycles (abouB.75 us under300
MHz and1.69 ps under667 MHz). This implies voltage and

We measured the overhead imposed by our application-leJ&gquency scaling incurs a tiny overhead.

power management strategies. We report cost in CPU cycles,

rather than time, since the elapsed time for an operatign, (.7 Related Work

an invocation of frame decode time estimator) depends on the

CPU speed, while the number of consumed cycles does mécently, power management techniques for mobile devices
change with the speed. We obtained the number of CPU dyave received increasing research attention. The proposed
cles by reading the special time-stamp register of the groceechniques either use dynamic voltage and frequency sgcalin

6.5 Implementation Overheads

12

(DVFS) [3, 18, 19, 22, 25, 31, 32] or application/middlewarea power-based API that allows a partnership between applica
based adaptation [10, 11, 24, 26] for energy savings. DVR®ns and the system in setting energy use policy. In the con-
approaches extract energy savings by varying the processext of this project, a Currentcy model that unifies energy ac
speed; the techniques do not affect the amount of processunting over diverse hardware components and enables fair
ing performed by the application—the processing is merelgilocation of available energy among applications [33f an
spread over longer time periods by lowering CPU speeds. pmototype energy-centric operating system, ECOSysteat, th
contrast, middleware-based adaptation approaches vaty qumplements explicit energy management techniques from the
ity or data fidelity and thus, the amount of processing pesystem point of view have been proposed [34]. Their goal is
formed by the application to extract energy savings. We rée extend battery lifetime by limiting the average disclearg

view related work in both categories. rate and to share this limited resource among competing task
Application or middleware-based adaptation techniqueaccording to user preferences.
trade the computational overhead for application quadity; An cooperative power management approach was pro-

ergy savings are extracted by reducing video quality [24, 2600sed in [20] to unify low level architectural optimizat®n
document quality [10] or data fidelity [11], and thus, the(CPU, memory, register), OS power-saving mechanisms (Dy-
processing overheads. Proxy-based adaptation for reglucimamic Voltage and Frequency Scaling) and adaptive middle
streaming video quality has been explored in [24, 26]. Pupechniques (admission control, optimal transcoding, netw
peteer adapts document quality (i.e. picture resolutiolgrc traffic regulation). In this technique, interaction paraens
depth, animation) for energy savings of office applicationbetween the different levels are identified and optimized to
[4, 10]. The impact of adapting the data fidelity on energgignificantly reduce power consumption.
savings of several applications has also been demonstrated Rather than a partnership between the OS and the applica-
the Odyssey system [11, 21]. tions, our Chameleon approach exports the entire burden of
In contrast, DVFS techniques do not reduce the amount Bpwer management to the user level.
processing overhead imposed by an application; instead the Finally, there has been some work on application-level
vary the CPU speed to match the CPU load and extract épewer management. Researchers have proposed several dif-
ergy savings [3, 18, 19, 22, 25, 31, 32]. DVFS techniquéié€rent application-controlled DVFS techniques for vides d
fall into four categories: hardware-based, OS-based, cooprding [3, 18, 19, 22, 25]. While some require offline estima-
erative application-OS-based, and application-direateth- tion of CPU demands for decoding [19], other can estimate
ods. Hardware-based approaches such as Longrun [9] m# CPU demands online [3, 18, 22, 25]. However, all of these
sure system utilization in hardware and choose a systera-witechniques implicitly assume only a single applicationxs e
speed setting based on the current utilization. An onlird-ha ecuting on the CPU and grant complete control of the pro-
ware approach for voltage and frequency control in multicessor settings to the video decoder. Unlike in Chameleon,
ple clock domain microprocessors has been proposed in [291her applications are not considered—the issue of conaturre
0OS-based approaches determine a system-wide CPU set@fjplications that might use a different speed setting isoot
based on the processor demands of the currently active taskgered in these efforts, nor is the issue of providing ismta
[7, 8, 16, 17, 23]. In this approach, individual applicaton across applications considered explicitly.
do not have any direct control over the CPU power settings. A
single system-wide CPU setting is determined, typicalseth g Conclusions
on the needs of the most resource-hungry application, even
when a mix of applications is executing on the processor. Furhjs paper proposed Chameleon, a new approach for power
thermore, the operating system needsnfer the processing management in mobile processors. We argued that applica-
needs of the applications using online measurements and grsh know best what their energy needs are and proposed an
incur estimation errors. approach that puts the entire burden of power management on
In cooperative application-OS approaches, the applicindividual applications. The operating system only enésrc
tion provides some domain-specific information to the kerneprotection and isolates applications from the power sgdtin
The OS kernel and the CPU scheduler use this informati@f other applications.
for CPU speed setting and/or scheduling. The GRACE-OS Our implementations of application-level power manage-
project [31, 32] proposes a cooperative application/OS ament policies into four applications demonstrated thahsuc
proach to save energy for periodic multimedia applicatidns policies impose a modest cost of tens of lines of code. Our
uses probability distributions of CPU usage of periodicliapp results showed that Chameleon can extract up to 32% en-
cations and knowledge of application periods (which is sugergy savings when compared to LongRun and up to 50% sav-
plied by the application) for choosing CPU speeds. Apedodings when compared to recently proposed OS-based DVFS
or non-real-time applications are currently not handledhey techniques, while delivering comparable performancanexi
approach. sensitive and interactive applications. Chameleon impose
Similarly, the Milly Watt project [5] explores the design of negligible overheads and is very effective at scheduling co

13

current applications with diverse energy needs. More Bypad|1g]
our results demonstrate the feasibility and benefits of powe
management at the application level.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[19]

[16]

[17]

[19]

A. Bavier, A. Montz, and L. Peterson. Predicting MPEG Execution Times. In
Proceedings of ACM Sigmetrics’98, Madison,, \Mges 131-140, June 1998.

S. K. Card, T. P. Moran, and A. NewellThe Psychology of Human-Computer [20]
Interaction Lawrence Erlbaum Associates, 1983.

K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-Based Dynamic Voltage and
Frequency Scaling for a MPEG Decoder. Rroceedings of the 2002 IEEE/ACM [21]
International Conference on Computer-aided Design (CAD’'02), San Jo&ge, C
pages 732-737, November 2002.

E. de Lara, D. Wallach, and W. Zwaenepoel. Puppeteer: Component-based Adap-
tation for Mobile Computing. IrProceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems (USITS'01), San Franciscopages 159— 1221
170, March 2001.

C. Ellis. The Case for Higher-level Power Managementtaceedings of the 7th
IEEE Workshop on Hot Topics in Operating Systems (HOTOS-VII), Rio Rigo, AR23]
pages 162-167, March 1999.

D. R. Engler, M.F. Kaashoek, and J. O'Toole Jr. Exokernel: An Operatysg S
tem Architecture for Application-Level Resource Management.Ploceedings

of the 15th ACM Symposium on Operating Systems Principles (SOSR@peIC

Mountain, CQ pages 251-266, December 1995.

(24]

K. Flautner and T. Mudge. Vertigo: Automatic Performance-Setting for Linnx.
Proceedings of the Fifth Symposium on Operating Systems Design aledirienp
tation (OSDI'02), Boston, MApages 105-116, December 2002.

(25]

K. Flautner, S. Reinhardt, and T. Mudge. Automatic Performance-Setting for Dy[26]
namic Voltage Scaling. IProceedings of the 7th ACM International Conference

on Mobile Computing and Networking (MobiCom’01), Rome, |talgges 260—

271, July 2001.

M. Fleischmann. LongRun Power Management - Dynamic Power Management
for Crusoe Processors. Technical report, Transmeta Corporation, 2001. [27]

J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach, and W. Zwaenepoel. Re-
ducing the Energy Usage of Office Applications.Rroceedings of the IFIP/ACM [28]
International Conference on Distributed Systems Platforms (Midatiev2001),
Heidelberg, GermanyNovember 2001.

J. Flinn and M. Satyanarayanan. Energy-aware Adaptation for Mobile égppli
tions. InProceedings of the 17th ACM Symposium on Operating Systems Prin
ples (SOSP’99), Charleston, Sgages 48-63, December 1999.

2

G R. Ganger, D R. Engler, M. F Kaashoek, H M. Briceno, R Hunt, and T Pinck-
ney. Fast and flexible Application-Level Networking on Exokernel Systex@i
Transactions on Computer Syster#8(1):49-83, February 2002. 30]
P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU Scheduler for Multingedi
Operating Systems. IRroceedings of the 2nd USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI'96), Seattle padfes 107-122,
October 1996. [31]

D. Grunwald, P. Levis, K.I. Farkas, C.B. Morrey Ill, and M. Neufald. Peli
for Dynamic Clock Scheduling. IRroceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI'00), San Diegqdgi&s
73-86, October 2000. [32]
K.Govil, E.Chan, and H. Wasserman. Comparing Algorithms for Dyn&@pieed-
setting of a Low-power CPU. IRroceedings of the 1st Mobile ACM/IEEE Inter-
national Conference on Computing and Networking Conference (Mob85ym
Berkeley, CApages 13-25, November 1995.

(33]

JR. Lorch and A J. Smith. Improving Dynamic Voltage Scaling Algamighwith
PACE. InProceedings of the 2001 ACM SIGMETRICS Conference, Cambridge,
MA, pages 50-61, June 2001. [34]

JR. Lorch and A J. Smith. Operating System Modifications for Task-BaseddSp

and Voltage Scheduling. IRroceedings of the 1st ACM/USENIX International
Conference on Mobile Systems, Applications, and Services (MobiSys'G8), S&5]
Francisco, CApages 215-229, May 2003.

14

Z.Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Corfthaoretic

Dynamic Frequency and Voltage Scaling for Multimedia WorkloadsPriyceed-

ings of the 3rd ACM/IEEE International Conference on Compilershitecture,

and Synthesis for Embedded Systems (CASE'01), Greenoble, Fpayes 156—
163, October 2002.

M. Mesarina and Y. Turner. Reduced Energy Decoding of MPEG Streams. In
Proceedings of the ACM/SPIE Multimedia Computing and Networkingetence
(MMCN), pages 73-84, January 2002.

S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Inte-
grated Power Management for Video Streaming to Mobile Handheld Devices. In
Proceedings of the 11th ACM International Conference on Multimedia’(8M
Berkeley, CApages 582-591, November 2003.

B. Noble, M. Satyanarayanan, and M. Price. = A Programming Interface
for Application-aware Adaptation in Mobile Computing. Proceedings of
the 2nd USENIX Symposium on Mobile and Location-independent Ciomgpput
(MLICS’95), Ann Arbor, M) pages 57-66, April 1995.

J. Pouwelse, K. Langendoen, I. Lagendijk, and H. Sips. Power-Aware \Ddeo
coding. InProceedings of the 22nd Picture Coding Symposium (PCS’01), Seoul,
Korea pages 303-306, April 2001.

J. Pouwelse, K. Langendoen, and H. Sips. Application-directed Voltegkn§.
IEEE Transactions on Very Large Scale Integration Systems (VIL$(}):812—
826, October 2003.

P. Shenoy and P. Radkov. Proxy-assisted Power-friendly Streaming téeMsbsi
vices. InProceedings of the 2003 Multimedia Computing and Networking Confer
ence (MMCN’03), Santa Clara, GAages 177-191, Janauary 2003.

D. Son, C. Yu, and H. Kim. Dynamic Voltage Scaling on MPEG Decodindro-
ceedings of the 10th IEEE International Conference on Parallel andribiged
Systems (ICPADS’01), KyongJu City, Korpages 633—-640, June 2001.

M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito. Energy-awareid
Streaming with QoS Control for Portable Computing DevicesPioceedings of
the 14th ACM International Workshop on Network and Operating SysBmport
for Digital Audio and Video (NOSSDAV'04), Cork, Irelangages 68-73, June
2004.

Data Sheet.

Crosoe TM5600 Processor Transmeta

http://www.transmeta.com.

Inc.,

M. Weiser, B. Welch, A.J. Demers, and S. Shenker. Scheduling for Reduced CPU
Energy. InProceedings of the 1st USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI'94), Monterey, @ages 13—-23, November 1994.

Q. Wu, P. Juang, M. Martonosi, and D. Clark. Formal Online Methods for
\oltage/Frequency Control in Multiple Clock Domain Microprocessors Pio-
ceedings of the 11th ACM International Conference on Architecturap&tjor
Programming Languages and Operating Systems (ASPLOS’04), Bddtss,
sachusettsOctober 2004.

X.Liu, P. Shenoy, and M. Corner. Chameleon: Application Controlieddt Man-
agement with Performance Isolation. Technical Report 04-26, University of Mas-
sachusets Amherst, 2004.

W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU Scheduling fo
Mobile Multimedia Systems. IfProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’'03), Bolton Landing, péges 149-163,
October 2003.

W. Yuan and K. Nahrstedt. Practical Voltage Scaling for Mobile Multimédia
vices. InProceedings of the 12th ACM International Conference on Multimedia
(MM’'04), New York, NYpages 924-931, October 2004.

H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem: Managing Bres\
First Class Operating System ResourcePtoceedings of the 10th Internatioan|
Conference on Architectural Support for Programming Languages@perating
Systems (ASLOS-X), San Jose, fa#ges 123-132, October 2002.

H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy: A Unifying Atastion
for Expressing Energy Management Policies. Pimceedings of 2003 USENIX
Annual Technical Conference, San Antonio, Tedase 2003.

J. Bendat and A. PiersolRandom Data Analysis and Measurement Procedures
Second EditionJohn Willey & Sons, 1985.

Appendix

for each frame type. These results corroborate the findifhgs o
a prior study on MPEG-2 where an approximate linear rela-

In this appendix, we present the details of our MPEGtonship between frame size and decode times was observed

2/4 frame decoding time predictor includeing its experitaén
validation.

(1].

We encoded a number of MPEG-2 and MPEG-4 videBesolution| Frame Type| Bit-Rate(kbps)| o, [vN —3w |
clips at different bit rates and different spatial resaos. | 352x288 I 1120.0 0.8956| 111.7280
These video clips were decoded by an instrumentpthyer | 352x288 P 1120.0 0.3443 | 47.7959
that measured and logged the decode time of each frame at fiffp2x288 B 1120.0 0.1808| 39.7774

processor speed. We analyzed the resulting traces by 8Qidyiy | o o relation Coefficients of MPEG 1/2 Standard
the first order and second order statistics of the decodestin\ehdeoS '

and frame sizes for each frame type (i%.P, B) as follows.

Let x andy be two random variables corresponding to the

frame size and the frame decoding time, respectively; and Resolution| Frame Type| Bit-Rate(kbps)]

1, ando, be the mean and standard deviation of the framggox220 T

size, respectively; and also Igt, and o, be the mean and

standard deviation of the frame decoding time, respegtivel 512x288

Thus the theoretical correlation coefficignt, between: and

y is given by:

El(x — pa)(y — py)]

()

Pzy =

Now assume we have obtainddpairs ofz andy values.

Ty | VN — 3w |

630.5 0.9045| 42.0324

352x240 P 630.5 0.7664 | 492.1438
| 705.5 0.8201| 40.9122

512x288 P 705.5 0.8084 | 455.9816
576x256 | 775.4 0.9162| 88.7301
576x256 P 775.4 0.7667| 389.0298
640x272 | 1290.9 0.8824| 48.3261
640x272 P 1290.9 0.6464| 216.6028
640x352 | 679.7 0.6861| 50.9520
640x352 P 679.7 0.8217| 486.8483

The correlation coefficieni,,, may be estimated from th¥
pairs data by:

S (2 —T)(yi — 9)

oy = 6
B e = O
For a particular function of,, given by:

_ 1 M (7)
2 =1y

From [35], the random variable has an approximately
normal distribution with a mean and variance of

_ 14 pay
[l = 2[17%3’ 8)
1
2 _
v T N3 ©

As shown in [35], the sampling distribution af given
pzy = 0 is normal with a mean of.,, = 0 and a variance
of o2 = ﬁ Hence the acceptance region of the hypothe
of zero correlation at the 0.02 level of significance is gibsgn
VN — 3ln[1 + Tay

—2.33 <
- 2 1—17ryy

] <2.33 (10)

Table 9: Correlation Coefficients of MPEG 4 Standard
Videos

Using these insights, we constructed a predictor that uses
the type and size of each frame to compute its decode time.
A key feature of our predictor is that the prediction model is
parameterized at run-time to determine the slope and eypérc
of the piece-wise linear function. To do so, the video decode
stores the observed decode times of the previodiames,
scales these values to the full-speed decode time (since the
observed decode times may be at slower CPU speeds), and
uses these values to periodically recompute the slopesand t
intercepts of the piece-wise linear predictor by usingdine
regression method. This not only enables the predictor+to ac
count for differences across video clips (e.qg., differetidies
require different linear predictors), it also accounts Vari-
ations within a video (e.g., slow moving scenes versus fast
moving scenes in a video). The parameterized predictor is
then used to estimate the decode time of each frame at full

SIS

processor speed.

For instance, given window size, suppose we have the
lastn | frame’s size and decoding time, then we start to decode
a new | frame and we already know the size of this new frame.
Let s; andd; denote the frame size and the full-speed decod-

If /N — 3w falls outside the acceptance region of zero corrdng time of theith frame, respectively,, ;1 denote the frame

lation, hence, there is reason to believe that significammeeo
lation exists between andy.

size of the new | frame anainﬂ Qenote the predicted full-
speed decoding time of it. Thus thg.; is given by Equation

Our correlation coefficient results of the above corretatioll:

analysis in Table 8 and 9 show that there is a piece-wise lin-
ear relationship between the decode times and the frame size

15

_ Z:]:l 54

S =
n

Z?:l di

d7 =
n
i1 (si = 8)d,;
p o= 2zl =9d . (11)
> i1 (s —5)
a = d—bs
dny1 = a+bsp

In the predictor shown in Equation 11, the window size
n has great impact on the performance of the predictor, thus
choosing an appropriate is important issue in the design of
such an linear regression predictor. To do this, we applied t
linear regression predictor to our collected traces byingry
the window sizen from 5 to 50, and then measured the accu-
racy of the linear regression predictor with different womad
sizes. The accuracy of the linear regression predictorgEqu
tion 11) is evaluated by thEumulative Distribution Function
(CDF) of its absolute error and the CDF of its relative error.
Under the same error level, the larger the CDF, the more ac-
curate the predictor. As shown in Figure 9 to 13, the linear
regression predictor achieves the best accuracy in moss cas
when the window size is less thari 0, and the accuracy level
has small variation in that area. Therefore, we choose the wi
dow size8 for our predictor since the division operations of
Equation 11 can then transformed to the shift operations to
reduce the cost.

Figure 14, 15, 16, 17 and 18 present the accuracy of our
predictors for all three different frame types (i.e, |, Pv#)h
window size8. Our experiments show that our MPEG frame
decode times predictor can achieve very good prediction ac-
curacy for all frame types. Figure 14 measures the accuffacy o
our predictor for MPEG 1/2 movie, and Figure 15 to 18 mea-
sure the accuracy of our predictor for MPEG 4 movies. Since
MPEG 4 standard only has two frame types (I and P), Figure
15 to 18 does not have the results for B type frame present.
Our results show that: (i) for the decode time of | type frame,
the absolute error of ové5% prediction is less thaims ex-
cept that the absolute error@% prediction under resolution
640x352 is less thadms, and the relative error of ove2%
prediction is less thafi%; (ii) for the decode time of P type
frame, the absolute error of ove2% prediction is less than
1ms, and the relative error of ov80% prediction is less than
10%; (iii) for the decode time of B type frame, the absolute
error of over95% prediction is less thaims, and the relative
error of over88% prediction is less thah0%.

16

100%

80%

60%

40%

20%

Cumulative Distribution Function

0%

Figure 9 : Variation of the Accuracy of MPEG 1/2 Frame Decode TimesiRRter under Resolution 352x288 with the Window

Size

100%
80%
60%
40%

20%

Cumulative Distribution Function

0%

Figure 10 : Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 352x240 with the Window

Size

100%
80%
60%
40%

20%

Cumulative Distribution Function

0%

Figure 11 : Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 512x288 with the Window

Size

The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size

TRl iiElA0E000500050000005000000000000005008
A A AALAAAMAAAAAANAALANALANALAGAAS
[| Type Frame —— |
P Type Frame —=—
. . . . B lypeFiame —=
5 10 15 20 25 30 35 40 45 50
Window Size

(a) Absolute Error

The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size

0o0088008ktbnblssnonohtonnnoonnaooREEogyaonn
| Type Frame ——
P Type Frame —=—
. h A .
5 10 15 20 25 30 35 40 45 50
Window Size

(a) Absolute Error

The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size

+ Gk 4
EELEEE] AL L et
o EDEEDDDDD”555”EDDDﬁDDMEDDnEuuunuunDS

| Type Frame ——
P Type Fr‘ame e

35 40 45

.
10 15 20 25 30
Window Size

(a) Absolute Error

50

The Accuracy of Frame Decode Times Predictor
Under Relative Error 5% with Different Window Size

100% T T T T T T T T

T R S R TR,
8
T 80% r 9
c
c

B8paoo
§ goy [°0 0t eensa il 77 n0ma9m0000000000000000004
Z
8 40% 1
[
=
&
S
£ 20% 9
3 | Type Frame ——
P Type Frame —=—
B Type Frame ——
0% h h .
5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Window Size

100%

80%

60%

40%

20%

Cumulative Distribution Function

0%

100%

80%

60%

40%

20%

Cumulative Distribution Function

0%

17

(b) Relative Error

The Accuracy of Frame Decode Times Predictor
Under Relative Error 5% with Different Window Size

R
EE AT S & * R T
A

N
.

DDD
B

| Type Frame ——
P Type Fr‘ame e

35 40 45

.
10 15 20 25 30
Window Size

(b) Relative Error

50

The Accuracy of Frame Decode Times Predictor
Under Relative Error 5% with Different Window Size

R R UL UL LR N

ooBoooa
®Gaoogg
OBomooogg
00000000 EEg 4
B8E80nnnagg

| Type Frame ——
P Type Fr‘ame e

35 40 45

.
10 15 20 25 30
Window Size

(b) Relative Error

50

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor

Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size

100% e T T T T 100% T T T L e
c BE R EeEE e uNNNENEN0REEEEEEEEEENonoN0Eag G c
S S
g oo L '
S S 0B0@edgaeaggoon
2 60% E 2 60% E
5 5
=l)
k4] k]
Q0% | 1 8 40% 1
o [
= =
& &
S S
£ 20% 1 £ 20% 1
=1 S
© | Type Frame —— © | Type Frame ——

P Type Frame —=— P Type Frame —=—
0% h A . 0% h A .
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 12 : Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 640x272 with the Window
Size

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size
100% T T T T T T T T 100% T T T T T T T T
. . b b b b b b b
S BEEEE A aE G E TRt S
g 80% | "97838090008060000 0000 mg00a00,) g 80% | 1
S 5
= v @EBggg
c c oo
S 60% |- 1 S 60% |- SRREECELETTEEL 1
E 3 °890880006000000
Z Z
8 0% [1 8 40% - 1
o [
= =
& g
2 20% | 1 g 20% | 1
=1 S
© | Type Frame —— © | Type Frame ——
P Type Frame —=— P Type Frame —s—
0% h A . 0% h A .
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 13 : Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 640x352 with the Window
Size

Absolute Error with History Size 8 Relative Error with History Size 8
100% / F + -.- + 100% T T t t +—F %
95% 9
§ 95% |- 1 & 90% 1
5 15
c c
z I
-) —
8 o
5 5
2 a
s 90% - 9 s 80% 9
2 k]
a a
o o
2 Z 5% —
s s
S S
E s 5 ™
3 85% f 1 3 7% 1
| Frame —+— 65% | Frame ——
P Frame —s— P Frame —=—
B Frame —— B Frame ——
80% ; 60% ! .
0 5 10 15 20 25 30 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error

(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 14 : The Accuracy of MPEG 1/2 Frame Decode Times Predictor uR@splution 352x288

18

Cumulative Distribution Function

100%

95%

90%

85%

80%
0

The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8

/ & & & i &

| Type Frame —+—

. . . P Type Frame —s—

Cumulative Distribution Function

5 10 15
Absolute Error (ms)

(a) CDF of Absolute Error

20 25

30

100%

95%

90%

85%

80%

75%

70%

65%

o

The Accuracy of Frame Decode Times Predictor
Under Relative Error with Window Size 8

t t &

| Type Frame —— |

P Type Fr‘ame =

%
5% 10% 15% 20% 25%

30%
Relative Error

(b) CDF of Relative Error

35% 40% 45%

50%

Figure 15 : The Accuracy of MPEG 4 Frame Decode Times Predictor undsolRgon 352x240

Cumulative Distribution Function

100%

95%

90%

85%

80%
0

The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8

| Type Frame ——
P Type Framg —s

Cumulative Distribution Function

5 10 15
Absolute Error (ms)

(a) CDF of Absolute Error

20 25

30

100%

95%

90%

85%

80%

75%

70%

65%

60%

5%

The Accuracy of Frame Decode Times Predictor
Under Relative Error with Window Size 8

| Type Frame —— |

P Type Fr‘ame e

. . . .
10% 15% 20% 25% 30%
Relative Error

(b) CDF of Relative Error

35% 40% 45%

50%

Figure 16 : The Accuracy of MPEG 4 Frame Decode Times Predictor undesolRgon 512x288

Cumulative Distribution Function

100%

95%

90%

85%

80%
0

Absolute Error with History Size 8

t & & &

| Frame ——
P Frame —a—

Cumulative Distribution Function

5 10 15 20
Absolute Error (ms)

(a) CDF of Absolute Error

25

30

100%

95%

90%

85%

80%

75%

70%

65%

60%
5%

Relative Error with History Size 8

| Frame ——
P Frame —a—

10% 15% 20% 25% 30%

Relative Error

(b) CDF of Relative Error

35% 40% 45%

50%

Figure 17 : The Accuracy of MPEG 4 Frame Decode Times Predictor undeolRton 640x272

19

The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8

100% T & & &

c

8

3]

S 95% - 9
iy

c

2

5

2

S 90% 4
2

(s}

o

=

< 85% |- 1
5

5

o | Type Frame —+—

P Type Frame —&—
80% . . . h h
0 5 10 15 20 25 30

Absolute Error (ms)

(a) CDF of Absolute Error

Cumulative Distribution Function

100%

95%

90%

85%

80%

75%

70%

65%

o

The Accuracy of Frame Decode Times Predictor
Under Relative Error with Window Size 8

| Type Frame —— |

. P Type Fr‘ame =

%
5%

. . . .
10% 15% 20% 25% 30% 35% 40% 45%

Relative Error

(b) CDF of Relative Error

50%

Figure 18 : The Accuracy of MPEG 4 Frame Decode Times Predictor undsolRgon 640x352

20

