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Abstract —We present a local distributed algorithm that, given a wireless ad-hoc network modeled as a unit disk graph U in the plane,
constructs a planar power spanner of U whose degree is bounded by k and whose stretch factor is bounded by 1 + (2sin 7 )P, where
k > 10 is an integer parameter and p € [2, 5] is the power exponent constant. For the same degree bound k, the stretch factor of our
algorithm significantly improves the previous best bounds by Song et al. We show that this bound is near-optimal by proving that the
slightly smaller stretch factor of 1 + (2sin -2~ )? is unattainable for the same degree bound k. In contrast to previous algorithms for the

k+1

problem, the presented algorithm is local. As a consequence, the algorithm is highly scalable and robust. Finally, while the algorithm is
efficient and easy to implement in practice, it relies on deep insights on the geometry of unit disk graphs and novel techniques that are

of independent interest.

Index Terms —Spanners, unit disk graphs, Gabriel graphs, Yao graphs, local distributed algorithms.

1 INTRODUCTION

A wireless ad-hoc network is commonly modeled as a
unit disk graph in the two dimensional Euclidian plane.
The points of the unit disk graph correspond to the
mobile wireless devices and its edges connect pairs of
points whose corresponding devices are in each other’s
transmission range. The network is usually assumed
to be homogenous in the sense that all the devices
have the same transmission range equal to one unit.
Each edge is associated with a power or energy cost
to support the corresponding link in the network. The
cost is usually assumed to be the Euclidian distance
between the endpoints raised to some power p, which is
a constant in the interval [2, 5].

Two neighboring points communicate by sending a
message through their connecting edge, while distant
points communicate through messages relayed by in-
termediate neighbors. The communication cost between
two distant points is the sum of the costs of the edges on
the path formed by the intermediate points. A smallest
cost path between any pair of points is a path con-
necting the pair of points that has the smallest energy
cost. Energy consumption is a critical issue for (battery-
powered) mobile devices, and the primary goal becomes
to construct a backbone topology for the network, useful
for routing and other purposes, that is energy efficient.
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There are many desirable requirements on this back-
bone topology. We list some of them below.

« Bounded degree: Because of interference and con-
tention issues, a major requirement on the network
topology is that each device maintains links to only
a constant number of devices in its transmission
range. This will also allow the devices to attenuate
their transmission power to levels required to reach
the selected devices only.

e Planarity: The network topology should be
amenable to guaranteed and efficient routing.
The folklore “right hand rule” (in face routing),
discussed in [1], is one of many routing rules that
require the network to be planar.

« Energy efficiency: For each pair of points, the back-
bone topology should contain a path connecting the
two points whose cost is close or equal to the cost
of a smallest cost path connecting the pair in the
original network.

o Scalability /Robustness: The network topology
should react to the growth/change in the topology
of the underlying network in a graceful and
controlled manner. Compared to that of other
types of communication networks, the topology
of wireless ad hoc networks is highly volatile,
changing rapidly and unpredictably due to the
movement of points and a possible adverse
environment. For example, when points enter/exit
the network, or move in the plane, the backbone
topology should be maintained without wide-
spread and drastic changes.

The requirements on the algorithm constructing the
backbone topology is for it to be distributed, simple,
and local. The notion of locality has been defined by
Linial [2], Peleg [3], and Wattenhofer [4]. Intuitively, a
distributed algorithm is said to be g-local if the compu-



TABLE 1
Degree bounds (A) and stretch factors (p) of the
algorithms with power exponent p = 2.

tation at each point of the network depends solely on
the initial states/information of the points at distance
at most ¢ from the point (i.e., within ¢ hops from the
point). More formally, a distributed algorithm is g-local
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from centralized control. Obviously, a local distributed
algorithm is much more desirable for a wireless ad-
hoc network because it allows each point to perform its
operations independently and simultaneously.

The corresponding topology control problem consists
therefore of finding a low cost constant degree planar
subgraph of the unit disk graph using a local distributed
algorithm. This subgraph is referred to as a power spanner
of the unit disk graph, and the low cost requirement
can be quantified as follows: a subgraph is a power
spanner with stretch factor p if the cost of the smallest
cost path in the subgraph between any pair of points is
at most p times the cost of the smallest cost path in the
original graph itself. The problem of computing efficient
topologies for wireless ad-hoc networks was extensively
studied in various settings (see for instance [5], [6], [7],
[8], [9], [10], [11], [12], [13]). Moreover, Scheideler gives
an excellent survey on power spanners and their use in
wireless ad-hoc networks [14].

For the problem of constructing power spanners of
unit disk graphs, Wattenhofer et al. [13] derived al-
gorithms with arbitrarily small stretch factor but un-
bounded degree. To bound the degree, their stretch
factor needs to be at least 2. Song, Wang, Li, and
Frieder proposed distributed “localized” algorithms [5]
with guarantees on the maximum degree and stretch
factors. Given a parameter k£ > 6, their first algorithm
(referred to as Or dYaoGG) computes a power spanner
of maximum degree k£ + 5 and maximum stretch fac-
tor p = 1/(1 — (2sin7)?). In their second algorithm
(referred to as SYaoGG), given a parameter £ > 9,
they obtain a bound of £ for the maximum degree and
p=(v2)?/(1 - (2v2sin +)P) for the stretch factor.

Even though the afore mentioned algorithms were “lo-
calized” in the sense that each point only communicates
with its neighbors, a close examination shows that these
algorithms process the points in some implicit order
and require information propagation in the network (see
Remark 2.3 for more details). In particular, in these
algorithms the computation of a point may depend
on the initial state of points that are far away (more
than a constant number of hops away). Therefore, these
algorithms are not local distributed algorithms according
to the definition given by [2], [3], [4] (described above).
In fact, a localized but not local distributed algorithm
may not differ much from a centralized algorithm since
it can simulate a centralized algorithm by collecting
information through propagation and processing it at a
certain point/node in the network.

In this paper, we present a local distributed algorithm
(referred to as KPX) that constructs a power spanner
of a unit disk graph. The backbone/spanner and the
algorithm have the following properties.

¢ Bounded degree: For any parameter k£ > 10, the
backbone constructed by the algorithm has maxi-
mum degree A = k.

« Planarity: The backbone constructed is a planar
graph.

¢ Energy efficiency: The stretch factor of the spanner
is bounded by p = 1+(2sin 7 )?. For the same degree
bound, this bound on the stretch factor significantly
improves the previous best bounds by Song et al.
[5] (see Table 1 for a comparison between these
bounds). Furthermore, we show that this stretch
factor is tight by proving that constructing a power
spanner of a unit disk graph with degree bound of &
and a stretch factor smaller than p = 1+ (2sin 75)?
is not possible.

¢ Locality: The computation performed by any point
in the unit disk graph is solely dependent on the
coordinates of the point itself and the coordinates
of its neighbors. As a matter of fact, the distributed
algorithm for constructing the backbone can be
implemented using 2 synchronous communication
rounds, and hence is a 2-local distributed algorithm.

« Simplicity: Although our proofs rely on sophisti-
cated analysis of the geometry of unit disk graphs,
the algorithm is very simple and uniform. In par-
ticular, the storage space used by each point is
proportional to its degree in the graph, and the total
number of exchanged messages during the whole
computation is proportional to the number of edges
in the unit disk graph.

« Scalability /Robustness: Due to its local nature, our
algorithm is highly scalable and robust. The com-
munication complexity grows as a linear function
in the size of the network. When the topology of
the underlying network changes, the optimal power
spanner can be maintained without affecting the
points beyond the vicinity of the changes because
the computation performed by any point is solely
dependent on the coordinates of the point itself and
those of its neighbors.

Moreover, for a unit disk graph of n points and m
edges, the algorithm exchanges no more than O(m)



messages and has a local processing time of O(AlgA) =
O(nlgn) at a point of degree A.

The paper is organized as follows. Section 2 reviews
the necessary definitions and background. In section 3
we define the notion of a generalized Gabriel graph of a
unit disk graph and prove some structural properties
about generalized Gabriel graphs. In Section 4 we define
the notion of a canonical path between a pair of points
in a generalized Gabriel graph. In Section 5 we present
the algorithm. We conclude the paper in Section 7 by
comparing our results to the previous results in the
literature.

2 PRELIMINARIES

A wireless network consists of a set of n points in the
two dimensional Euclidian plane. Each point has a trans-
mission range of one unit; in other words, two points
A and B can transmit to each other if their Euclidian
distance, denoted by |AB], is at most 1 unit. It is assumed
that each point knows its coordinates through a Global
Position System (GPS). A unit disk graph U is therefore
defined on the n points as follows: for every two points
Aand B, ABis an edge in U if and only if |[AB| < 1. The
edge AB is embedded in the plane as the straight line
segment AB. The unit disk graph U is assumed to be
connected. The power required to support a link/edge
AB in U is commonly assumed to be |AB|P, where p is a
constant in the interval [2, 5]. Two far apart points A and
B communicate through intermediate points that form
a simple path A = My, My, ..., M, = B in U. The energy
cost of this path is:

r—1
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j=0

Among all paths between A and B, a path in U with
the smallest energy cost is defined to be a smallest cost
path and we denote its cost as cy(A, B). A subgraph H
of U is a power spanner if there is a constant p such that
for every two points A, B € U we have: cg(4,B) <
pcu (A, B). The constant p is called the stretch factor of
H. The following lemma is from [5]:

Lemma 2.1 ([5]): A subgraph H of graph U has stretch
factor p if and only if for every edge AB € U, ¢y (A, B) <
peu(A, B) = plABJP.

In this paper we present an algorithm that constructs a
bounded degree planar power spanner of U with a very
small power stretch factor p. Much of the previous—and
our current—work on bounded degree planar power
spanners is based on the concepts of Gabriel and Yao
subgraphs. We review these concepts next.

The Gabriel subgraph G of a unit disk graph U (embed-
ded in the plane) is obtained by removing every edge
AB € U such that there is a point M € U, M ¢ {A, B},
with |[MA|? + |[MBJ]? < |AB|?, ie., M is contained in
the closed disk of diameter AB ([15]). The following
properties were shown in [5].

Proposition 2.2 ([5]): Let U be a unit disk graph and let
G be the Gabriel subgraph of U.

1. G is planar.

2. G is connected.

3. The power stretch factor of G is 1.

4. If AB is an edge in U, then AB € G if and only
if for every point M in U the angle ZAM B in the
interior of triangle AAM B is acute.

The Yao subgraph [16] with integer parameter £ > 6 of
a plane graph is constructed by repeating the following
step for every point M: k equally separated rays out
of M are arbitrarily defined, and k closed cones of size
2w /k are thus created; then, in each cone, the shortest
edge MN inside the cone (if any) is chosen and added
to the Yao subgraph.!

Remark 2.3: Song et al. [5] applied a Yao subgraph
construction to a Gabriel graph G. In order to bound
the maximum degree, they first (implicitly) oriented the
edges of the Gabriel graph G (using the classical acyclic
orientation of a planar graph) so that every point in G
has in-degree at most 5. Then, they applied the above
Yao step to every point of G but to the outgoing edges
only. The subgraph G’ thus obtained has then maximum
degree k+5. This graph orientation requires the points in
the network to be processed in a certain global order, and
hence their algorithm is not a local distributed algorithm.
Furthermore, the graph orientation results in the “+5”
issue in the degree bound.

In this paper, we overcome the above hurdles by
developing a simple, uniform, and local distributed al-
gorithm through a set of novel techniques. We start first
by introducing the notion of a generalized Gabriel graph.

3 GENERALIZED GABRIEL GRAPHS

Let U be a unit disk graph and let p € [2,5] be a constant.

Definition 3.1: The generalized Gabriel graph of U with
parameter p, denoted G?, is defined to be the subgraph
of U having the same point set as U, and such that an
edge AB € U is also an edge in G” if and only if there
does not exist a point M € U, M ¢ {A, B}, satisfying
\MA|P+ |MB|P < |AB|P.

Note that the Gabriel graph of a unit disk graph U
is the generalized Gabriel graph of U with parameter
p=2.

Let A and B be two points in U. Define the region
DP(A,B) to be the set of all points M in the plane
satisfying |[M AP + |[M B[P < |ABJ?. Note that D*(A, B)
is the closed disk of diameter AB.

Lemma 3.2: Let A, B, M, and M’ be points in U such
that M and M’ are on the same side of the straight
line AB. Suppose that the angles Z/BAM, ZABM,
ZBAM', and ZBAM' are not obtuse. If |MA|/|MB| =
|M'A|/|M'B|and ZAM'B > ZAM B then M' € AAMB.

Proof: Let o« = ZBAM, 3 = ZABM, o/ = ZBAM,
and ' = ZABM'. Consider the triangle AAM B. From

1. The requirement k > 6 is to ensure connectivity.



elementary trigonometry we have:
|MA|/|MB| = sin 8/ sin a. 1)

Similarly, by considering the triangle AAM'B we
have:

|M'A|/|M'B| =sin3'/sinc’. )

From the hypothesis, we have |[MA|/|MB| =
|M'A|/|M'B|. Combining this equality with Equali-
ties (1) and (2) above we obtain:

sin 3/ sina = sin 3’/ sina’. (3)

Since the angles «, o/, 8, 3’ are not obtuse, it follows
from Equality (3) that either o/ < aand ' < 3, 0or o/ > «
and 3’ > (. By the hypothesis, ZAM'B > ZAMB and
hence the proposition o > o and ' > § can be ruled
out. Therefore, we must have o/ < o and 3 < §. Since
both M and M’ lie on the same side of the line AB, it
follows that M’ is inside (or on) the triangle AAMB as
claimed. O

Lemma 3.3: Let A and B be two points in U. The
following are true.

1. DP(A, B) is a closed convex set.

2. DP(A, B) is symmetric with respect to the line AB,
and every point M in DP(A, B) lies between the
two lines/strips passing through A and B and
perpendicular to AB. In particular, every point M
in DP(A, B) satisfies ZABM < w/2 and ZBAM <
m/2. Moreover, both A and B lie on the boundary
of DP(A, B).

DP(A, B) contains D?*(A4, B).
4. Every point M € DP(A,B) satisties ZAMB >
arccos(1 — 273/%),
5. Let M; and M be two points in U such that
ZAM,B.1f M, € DP(A, B) then M, € DP(A, B).
Proof: Part 1: DP(A, B) is closed because it contains
all its boundary points. To show that D?(A, B) is convex,
assume without loss of generality that A = (—a/2,0) and
B = (a/2,0), where a = |AB| is a positive constant. This
can be assumed by affecting the appropriate rotation and
translation, which are convexity preserving. Then the
set of points DP(A, B) can be described by DP(A, B) =
{@.y) | (0 +0/2)% + )2 + (@ — a/2)? + 12)7/2 < a7},
Let L be any straight line with equation y = bz + ¢ and
define the function:

F(@) = ((w+a/2)*+(ba+e)* )P4 ((2—a/2) + (bato) P2,

The function f measures the value |[M AP + |M B|P for
an arbitrary point M = (z,y) on L. It can be verified
by the interested reader that f”(x) is non-negative, and
hence f is a convex function. This implies that for any
two points ¢' and D, and any point M on the line
segment C'D, the value of f at M does not exceed both
values of f at C'and D. In particular, if C'and D are two
points in DP(A, B), then every point on the line segment
CD is also in DP(A, B), and D?(A, B) is a convex set.

@

Part 2: If a point M satisfies |[MA|P + |MBP < |AB|P
then its symmetry M’ with respect to the line AB
satisfies |M'A|P+|M'B|P < |AB|? as well, and hence is in
DP(A, B). This shows that DP(A, B) is symmetric with
respect to AB. Now if a point M lies outside the two
lines passing through A and B and perpendicular to AB,
then the distance between M and either A or B is larger
than |AB|, and hence M cannot satisfy |MA|P+|MBJP <
|AB|P, and M ¢ DP(A,B). This also implies that for
a point M € DP(A,B) we have ZABM < 7/2 and
ZBAM < w/2. The statement that both A and B are
on the boundary of DP(A, B) follows from the fact that
they both satisfy the equation of the boundary curve of
DP(A, B), namely |[MAP + |MB? = |ABJ?.

Part 3: Consider an arbitrary point M € D?*(A, B).
Then |MA]? + |[MAP*> < |AB|?, and we have |MA4],
|[MB| < |AB|. For p > 2, we have |[MAP +
\MBP < |[MA]?|AB|P~2 + |MB]?|AB|P~2 < (|[MA]? +
\MB|?)|AB[P=2 < |ABJ]. This implies that M €
DP(A, B), and D*(A, B) C DP(A, B).

Part 4: Let My be a point in DP(A, B) that mini-
mizes LAMyB. Suppose that |[MoA| = z, |MoB| =y,
ZAMyB = « (the internal angle in the triangle AAMyB),
and |AB| = a. Considering the triangle AAM,B we can
write:

cos(a) = (2% +y* — a®)/2xy = x/2y + (v — @®) 22y. (4)

Since My € DP(A, B), we have 2P 4+ y? < aP. Since
z,y > 0, it follows that 2,y < q, and the term (y* — a?)
in Equation (4) is negative. This shows that, for a fixed
value y, cos(e) increases with z. Noting that 0 < o < 7, it
follows from all the previous facts that the largest value
for cos(a), and hence the smallest value for «, is attained
when z = (a? — y?)'/P. In this case we have:

cos(a) = ((a? —yP)7 +y? — a?)/2(a? —yP)vy. ()

By studying the variation of cos (a) as a function of y,
1
we can show that cos (a) is maximum when y = a/27 =
z, in which case we have:

cos(a) =1— 2l <1 273/5, (6)

for p € [2,5], and hence a > arccos(1 —273/%). It follows
that for every point M € DP(A, B) we have ZAMB >
arccos(1 — 273/%).

Part 5: Define the function . on the interval [1,00) as
follows. For a value o € [1,00), let M be a point on the
boundary of DP(A, B) such that |[MA|/|MB| = o, and
define h(c) = LZAM B. We first need to show that i is a
well-defined function.

Let o be a given fixed value in [1,00). Let M be a
point on the boundary of DP(A, B) and suppose that
|MA| = z, |MB| = y, and |AB| = a. Then we have
P + yP = aP. If we let z/y = o and solve for = and y
in the equation 2P + y? = a?, we get « = ac /(1 + o?)/P
and y = a/(1 + oP)'/P. Therefore, there are two points
My and M, symmetrical with respect to AB, which are
the intersection of the circle centered at A (resp. B) and



of radius ac/(1 + oP)Y/P (resp. a/(1 + o?)'/?) with the
boundary of DP(A, B). (It can be easily verified that the
intersection is precisely a set of two points.) The value
h(o) is hence h(c) = LAMyB = ZAM{B (since My and
M are symmetrical with respect to AB), which exists
and is unique. It follows that h is a well-defined function.

For o € [1,0), consider a point M on the boundary of
DP(A, B) such that |MA| =z, |[MB| =y, and 0 = z/y.
Note that, by the definition of h, h(c) = ZAMB. By
letting o = ZAM B, and by a similar analysis to that in
part 4 above, we can study the variation of the function
cos (o) given in Equation (5) as a function of o, by
replacing y by its value y = a/(1 + o?)'/P in terms
of 0. We can show that, for ¢ € [1,00), the function
cos o decreases with o, and hence h(c) = a = ZAMB
increases with o.

Now let M; and M> be two points of U satisfying
the conditions in part 5 of the lemma. Let M/ be the
point on the boundary of D?(A, B) such that ZAM{B =
h(|M7A|/|M:B|), and such that M; and Mj are on
the same side of AB. By the definition of h, we have
|M1A|/|MB| = |MjA|/|M{B|. Since M; and Mj are in
DP(A, B), by part 1 of this lemma, we have ZAM;B <
w/2, LBMyA < w/2, ZAM{B < w/2,and Z/ZBM{A < /2.
If Z/AM{B > ZAM,; B, then by Lemma 3.2 M lies strictly
inside the triangle AAM;B. Since M; € DP(A, B) and
DP(A, B) is convex, all points in the triangle ZAM; B
are in DP(A,B). But M{ is a boundary point lying
strictly inside AAM;B, a contradiction. It follows that
LAM:B > LAM{B = h(| M, A|/|M1B|).

Since ZAM>B > ZAM;B and |MiA|/|M1B|
|M2A|/|M2B| by the hypothesis, and since h is
increasing, it follows that ZAM.B > ZAMB >
h(|M7A|/| M1 B|) > h(|M2A|/|MsB]). Therefore,
LAM>B > h(|M2A|/|M2B]). Now by letting M} be
the point on the boundary of DP(A,B) such that
LAMIB = h(|M2A|/|M2B]|) and such that both M>
and M; are on the same side of AB, we can conclude
by a similar token to the above, that M, lies inside
AAMB. By the convexity of DP(A, B), M, € DP(A, B)
as claimed. O

The following proposition on the structural properties
of generalized Gabriel graphs is parallel to Proposi-
tion 2.2.

Proposition 3.4: Let U be a unit disk graph, p € [2,5]
a constant, and G” the generalized Gabriel graph of U
with parameter p. Then the following are true.

1. GP is planar.

2. GP is a connected.

3. The power stretch factor of G” is 1.

4. If an edge AB € U is not an edge in GP, then there
exists a point M € U such that ZAM B > «, where
ag = arccos (1 — 27%/°); on the other hand, if AB is
an edge in U and there exists a point M € U such
that ZAM B > m/2, then AB is not an edge in G?.

Proof: The proof of parts 1, 2, and 3 are similar to
those for the case of Gabriel graphs, which can be found
in the literature (for example, see [17], [8]).

Y

If an edge AB € U is not an edge in G?, then there
exists a point M € U, M # A,B, such that |[MA]? +
|IMA|P < |ABJ]?, and hence M € DP(A,B). By part 4
of Lemma 3.3, ZAM B > ag = arccos (1 — 273/5). On the
other hand, if AB is an edge in U and there exists a point
M € U such that ZAMB > 7/2, then M € D?*(A, B).
By part 3 of Lemma 3.3, M € DP(A, B) as well, and
|MA|P+|MAP < |AB/P. By the definition of generalized
Gabriel graphs, AB is not an edge in G”. O

Remark 3.5: The results in this section describe the
structure and the properties of the regions DP(A, B),
where A, B € U, and p € [2,5], as well as the properties
of generalized Gabriel graphs. The region DP(A, B) is
a closed convex set of points which is symmetric with
respect to AB and which encloses the disk of diameter
AB. Unfortunately, a point M € U cannot be classified
with respect to DP(A, B) solely based on the angle
ZAMB as is the case with the disk of diameter AB
(i.e., D*(A, B)). This leads to a major difference between
Gabriel graphs and generalized Gabriel graphs with
parameter p > 2. The existence of an edge AB € U in
the Gabriel graph G of U can be precisely characterized
as follows: An edge AB € U is in G if and only if there
does not exist any point M € U such that ZAMB > 7/2.
In contrast, for the case of generalized Gabriel graphs
such nice characterization does not exist, as one may
have noticed from part (iv) of Proposition 3.4. This is
mainly due to the fact that Gabriel graphs correspond to
generalized Gabriel graphs with parameter value p = 2,
and hence the curve describing the set of points M
satisfying |[M A2 + |[MB|*> = |ABJ? is a circle, which
could be described precisely as the set of points M
such that ZAMB = 7/2 (of course, in addition to the
two points A and B). For parameter values p > 2, this
is no longer the case. The set of points M satisfying
|MAJP+|MB|P = |AB|P for p > 2, can no longer be pre-
cisely described based on the angle ZAM B. Therefore,
dealing with generalized Gabriel graphs becomes much
more complicated than dealing with Gabriel graphs, and
generalized Gabriel graphs do not possess all the nice
properties of Gabriel graphs.

We close this section by showing how the generalized
Gabriel graph of a unit disk graph can be constructed
efficiently by a local distributed algorithm.

Theorem 3.6: Let U be a unit disk graph on n points
and m edges, and let p € [2,5] be a constant. The
generalized Gabriel graph G? of U can be constructed by
a local distributed algorithm exchanging O(m) messages
and with a local processing time of O(Alg A) = O(nlgn)
at a point with degree A.

Proof: Suppose that the parameter p is fixed. We say
that a point M € U kills an edge XY, or alternatively
XY is killed by M, if [MX|? + [MY|? < |XY|?, that is,
if M is within the region DP(X,Y). As a first step, the
algorithm starts by constructing the Gabriel graph G
of U. For that, each point A in U does the following.
It sorts its neighbors in a non-decreasing order of their
polar angles (with respect to itself). Let (Ay,..., Ax) be



the resulting list. Point A also creates a corresponding
ordered list of edges £ = (AA;, ..., AAL). Note that the
edges in £ appear in a counterclockwise order around A
starting with the edge AA;, which has the smallest polar
angle.

Point A starts by considering point A;. Then it scans
L starting at edge AA> removing from L every edge that
is killed by A;. Then A does the same going backward
starting with edge AA. The first traversal of £ going
forward corresponds to a counterclockwise traversal of
the edges in £ starting at the first edge after AA4; in £,
while the second traversal going backward corresponds
to a clockwise traversal of the edges in £ starting with
the first edge before AA;. Each traversal stops when it
encounters the first edge that is not killed by A;. After
that, A considers point A, and so on. In general, at step
i, A considers point A; and continues its traversals (from
where they were left) of the remaining edges in £, both
in clockwise and counterclockwise order, removing from
L every edge killed by A;. The process stops when the
last vertex Aj is considered and processed. After that,
point A chooses the endpoints of the remaining edges
in £ to be its neighbors in GZ.

To prove that the above algorithms is correct, it suffices
to show that each point A chooses an edge if and only
if its a Gabriel incident edge. Since A eliminates edges
only if they are killed by some neighboring point, no
edge eliminated by A can be a Gabriel edge. We show
the converse next.

Let AA, be an edge in U that is not a Gabriel edge.
We need to show that AA, will be removed from £ at a
certain point. First note that, by the definition of Gabriel
graphs, for any edge in U that is not a Gabriel edge,
there must exist a point in U that kills it. Moreover,
any point M that kills a Gabriel edge XY must be a
common neighbor (in U) of both X and Y. Since AA,
is not a Gabriel edge, there must exist a neighbor of A
that kills it. Let A; be a neighbor of A that kills AA,
such that the smaller of the two angles (clockwise and
counterclockwise) between AA; and AA, is minimized
over all neighbors of A that kill AA,. Let «w be the angular
sector between AA; and AA,, and assume, without loss
of generality, that o is counterclockwise. Since A; kills
AA,, and by our choice of 4;, the measure of the angular
sector « is a number in [0, 7). If @ = 0, then we assume
that A; is chosen so that |A4;] is the shortest among all
points A; satistying ZAA;, AA, = a and A; kills AA,.
Now we claim that A; kills every edge counterclockwise
from AA; lying within the angular sector «. In effect,
let AA; be such an edge. If ZAA;,AA; = 0, then by
the choice of A;, we have |A4;| < |AA;| and A; lies
on the segment AA;. Therefore, A; € D?*(A, A;) and
A; kills AA;. Now suppose that LZAA;, AA; > 0. Since
LAA;, AA, < a, and by the choice of A;, A; does not
kill AA,. Therefore, A; must be exterior to the triangle
NAA;A,; otherwise, by convexity of D?(A, A,) (part 1
of Lemma 3.3), A; kills AA, (since A; kills AA;). Conse-
quently, and because o < w, LAA;A; > LAAA, > /2.

The latter inequality is true because A; kills AA, and
D?(A, A,) is the disk of diameter AA,. It follows that A;
kills AA;.

Therefore, when the algorithm considers the point A;
and scans £ in a counterclockwise order, every edge in
L between AA; and AA, inclusive, is killed by A; and
will be removed from L.

This shows that the above algorithm constructs the
Gabriel graph of U correctly. Scanning the list £ of a
point A and killing edges takes time O(A), where A
is the degree of A. This is true since once an edge is
removed from L, it will never be reconsidered. So the
amortized time over all the points (A;,--- , Ax) consid-
ered by A is O(A). Therefore, the time spent by each
point is dominated by the sorting phase, which takes
O(AlgA).

Now we describe how the generalized Gabriel graph
GP can be constructed for an arbitrary value of the pa-
rameter p € [2,5]. First, the Gabriel graph is constructed
as described above and each point A keeps a list of the
Gabriel edges incident on it, sorted in a counterclockwise
order around the A. Let this list be (A1, -, Ax). (Note
that since GP is subgraph of G?, all the edges in G?
are present in G2.) Then point A repeats exactly the
same procedure described above, starting with point
Ay, killing consecutive edges both in clockwise and
anticlockwise order around A;, until this no longer can
be done, then proceeding to point As, and so on. The
only difference here is that a point M kills an edge XY
if and only if |[MX|P 4+ |MY|P < | XY|P.

To show that the algorithm computes the generalized
Gabriel graph correctly, we need to show that every
edge AA, that is not a generalized Gabriel edge must be
removed from £ at a certain point. We proceed as above;
the only difference here is that each edge in £ is a Gabriel
edge. Let AA, be a Gabriel edge that is not a generalized
Gabriel edge. Then there is a neighbor of A that kills
it. Let A; be a neighbor with the properties described
above, namely a neighbor minimizing the smaller of
the two angles between AA; and AA,. Let o be the
angular sector between AA; and AA,, and assume that
« is counterclockwise. Similar to the above, our task
amounts to showing that A; kills every edge within the
angular sector «v. Let AA; be such an edge. Then A; must
be exterior to the triangle AAA;A, by the choice of A;
and the convexity of DP(A, A,) (part 1 of Lemma 3.3).
We need to show that A; kills AA;, or equivalently,
[AAP + [AAyP < [AA;P.

Since A; kills AA, we have:

|[AA; [P + [AiAr P < |AALP. @)

From Inequality (7) we know that AA, is the longest
edge in the triangle AAA; A, and hence ZA;AA, < /2.
Since AA; is a Gabriel edge, by part 4 of Proposi-
tion 3.4 (applied with p = 2) we know that ZAA;A;
and LAA, A; are acute. By considering the quadrilateral
AA;A;A,, it follows from the above that ZA4;A4;A, >



m/2. By part 4 of Proposition 3.4, A; A, is not an edge in
GP and we have:

|Aid; [P + |4 AP < A AP, ©)
By the choice of A;, A; does not kill AA, and we have:
|AA; P+ |A;A, P > |AA, P, )
Combining Inequalities (7), (8), and (9), we derive:
|AA; [P+ [AA; [P < [AA; P,

and A; kills AA; as claimed.

This shows that the algorithm constructs G? correctly.
Observe that the information needed by a point to
construct its incident edges in G? is local: the point only
needs to know its coordinates and the coordinates of
its neighbors. Therefore, the above algorithm is a 1-local
distributed algorithm. Noting that the local time spent
by a point in constructing G? from G? is dominated by
the time spent by the point in constructing G2, and that
the only messages exchanged by the algorithm are the
messages in which points notify their neighbors of their
coordinates (and hence the total number of messages is
O(m)), the proof is complete. O

4 CANONICAL PATHS

We assume in this section that G” is the generalized
Gabriel graph of U with parameter p € [2,5]. From part
3 in Proposition 3.4, G* has a stretch factor of 1 but, as
in the case with Gabriel graphs, the degree of G? is not
bounded. To construct a backbone of U satisfying the
desired properties described in Section 1, we will need
to bound the degree of every point in G” by having every
point in G® choose a bounded number of incident edges,
thus constructing a subgraph G’ of G? in which the
degree of every point is bounded. Of course, G’ will no
longer have a stretch factor of 1. In fact, the stretch factor
of G' cannot be smaller than 1 + (2sin 77)” when the
degree bound is k, as we will prove in the next section.
Thus the choice of these selected edges from every point
has to be done in a careful manner so that the stretch
factor is still close to the above lower bound.

The proof of the following lemma is exactly the same
as that of Lemma 6 in [5].

Lemma 4.1 (Lemma 6, [5]): Let A, B, C be three points
in a generalized Gabriel graph G? such that CB and C'A
are edges in GP. Suppose that |CA| < |CB| and ZBCA <
a for some a € (0,7/2). Then |[CA|P + |AB|P < (1 +
(2sin §)P)|CBJP.

Our goal in this paper is to obtain a bound of 1 +
(2sin )P on the stretch factor. By Lemma 4.1, we can
achieve this by guaranteeing the following property in
G': For any edge CB < GP” that is not chosen in G’ there
exists a chosen edge C'A in G’ such that |CA| < |C'B]| and
/BCA <27 /k (this condition will be relaxed a little bit,
as we will explain in the next section), and such that
either AB € G’ or there exists a path between A and
B in G’ whose cost is not higher than |AB|?. We will

call such a path a canonical path and define it using the
notion of a canonical point.

Let A and B be two points in U such that AB € U but
AB ¢ G”.

Definition 4.2: We define the canonical point for the pair
of points (A, B) in U to be a point M € U, M ¢ {A, B},
satisfying |[M AP + |MB|? < |AB|P and minimizing the
area of the triangle AAMDB.

By the definition of generalized Gabriel graphs such a
point must exist.

Proposition 4.3: Let A and B be two points in U such
that the edge AB € U but AB ¢ G*, and let M be the
canonical point for the pair (A4, B). Then the following
are true.

1. There is no point of U inside the triangle AAMB.
2. Both M A and M B are edges in U.

3. ZAMB > oy, where ag = arccos (1 — 273/9).

4. ZABM < 7/2and ZBAM < m/2.

Proof: By the convexity of DP(A, B), if there is a
point M’ inside AAM B, then |M'A]P + |M'B|P < |AB|?
and the area of AAM'B is smaller than that of AAMB.
This is a contradiction to the minimality of the area of
the triangle AAM B by the definition of the canonical
point M of (A,B). Part 2 follows from the fact that
|MA|P 4+ |[MB]P < |ABJ?, and hence both M A and M B
are not longer than AB, which is an edge in U. Part 3
directly follows from part 4 of Lemma 3.3. Part 4 follows
from the fact that AB is the longest edge in the triangle
LAMB. O

Lemma 4.4: Let XY and X Z be two edges in GP. Then
no point of GP lies inside the triangle AXY Z.

Proof: Proceed by contradiction. If A is a point
inside AXYZ then the angles ZXMY, ZXMZ, and
ZY M Z add up to 27, and none of them is greater than
m. By part 4 of Proposition 3.4, the two angles ZXMY
and ZXMZ are acute forcing the angle ZYMZ to be
larger than . O

Definition 4.5: Let CA and CB be edges in GP. We
now define the canonical path Pap between X = A and
Y = B to be a path in GP constructed recursively as
follows: if XY € GP then edge XY is returned, otherwise
the concatenation of the canonical paths from X to M and
from M to'Y is returned, where M is the canonical point for
(X,Y).

Theorem 4.6: The cost of the canonical path between A
and B is at most |AB/P.

Proof: This follows inductively from the definition of
a canonical path. O

Let C'A and CB be edges in G? such that AB € U, and
let P4p be the canonical path between A and B. From
the definition of P4pg, the recursive construction of Psp
can be viewed as a sequence of steps Tap = {71,72,---},
where step +; defines a canonical point M; for a pair
of points A;, B;, and the first step defines the canonical
point My for the pair Ag = Aand By = B. Let F/(C, A, B)
be the union of ACAB and all the triangles defined in
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Fig. 1. The figure illustrates a region F(C, A, B) where
Pap is highlighted.

FAB/ i.e.,

F(C,A,B) = ACABU| JAAM,B,.

Note that F(C, A, B) is a continuous region in the plane
(see Fig. 1 for an illustration). If M is a point on the
canonical path, we define the angle at M to be the
angle inside the region F(C, A, B) and formed by edges
incident to M on the boundary of F(C, A, B). We have
the following proposition on the structure of F(C, A, B).
Remark 4.7: 1f the edges CA and CB in the triangle
AABC are in U, and if ZBCA < 2w /k, where k > 10 is
an integer constant, then the edge AB is also in U being
smaller than the larger edge between C' A and C'B, which
are both in U.
Proposition 4.8: Let CA and CB be edges in G” such
that ZBCA = o < 2n/k, where k£ > 10 is an integer
constant. Then the following are true. (See Figure 3 for
illustration.)
1. There are no points of U in the interior of
F(C, A, B).

2. Every edge in G? interior to F(C, A, B) must have
C' as one of its endpoints.

3. The angles ZCAB and ZCBA are at least 7/2—a >
w/2 —2mw/k.

4. Each angle at any canonical path point is at least
ap, where ag = arccos (1 — 273/5).

5. If there is an edge CM € GP inside F/(C, A, B) from
C to a point M on the canonical path such that CM
is not exterior to F(C, A, B), then the angle at M
is at least m —a > m —2n/k, and if L and N are the
points adjacent to M on the canonical path P4g,
then each of the angles ZCML and ZCMN is at
least 7/2 —a > /2 — 27 /k.

Proof: For part 1, note that by Lemma 4.4 there are
no points of U inside triangle AABC. It follows by an
inductive argument from part 1 of Proposition 4.3 that
there are no points in the interior of F(C, A, B).

For part 2, note first that if F'(C, A, B) contains an edge
in GP that does not connect C to a point of the canonical
path, then this edge must connect two points P, Q) # C
that are nonadjacent on the boundary of F(C, A, B). We
will show that this leads to a contradiction.

If the sequence of steps I'4p defining the canonical
path P4p is empty, then Psp consists of the edge AB

Z =P Vv

Fig. 2. PQ intersects one (left) or two (right) edges of
ANZVW.

and the statement is vacuously true. Suppose now that
I' 4B is nonempty.

Since PQ € F(C, A, B), there must exist a first step in
the sequence I'4p with a corresponding pair of points
(Z,V) whose canonical point is W, and such that PQ
intersects triangle AZVW. Since (Z,V) is the first pair
in this sequence of steps with this property, P() does not
intersect ZV. Therefore, P() either intersects ZWW only,
VW only, or both ZW and VW. We will first consider
the case when P(Q) intersects precisely one edge, say VIV.

Since W is the canonical point of (Z,V), by part 1
of Proposition 4.3, no point of G? is inside AZWV. By
assumption, P() intersects VW, this forces one endpoint
of PQ to be Z. Suppose now that P = Z. (See the left
side of Fig. 2 for an illustration).

Since PQ € GP, by part 4 of Proposition 3.4, we
have ZZWQ < 7/2 and £ZZV () < 7w/2. Since W is the
canonical point of (Z,V), by part 4 of Proposition 4.3,
we have ZWZV < 7 /2. Since the sum of the four angles
inside the quadrilateral ZVQW is 27, it follows that
ZVQW > w/2, and hence by part 4 of Proposition 3.4,
we have:

VQP+weP < [WVP. (10)
Also, since PQ € GP we have:
|[PQIP < [WQP + WP (11)

Because P = Z, and from Inequalities (10) and (11) we
have:

VQPF+|zelf < [WZPP +[WV[P

< |zZV. (12)

On the other hand, since ZZWQ < 7/2 and ZWZV <
m/2, the point @ is closer to the line ZV than W, and
hence the area of AZQV is smaller than the area of
AZWYV, a contradiction to the minimality of the area
of AZWYV by the definition of a canonical point.

Now let us consider the case when P(Q) intersects both
ZW and VW (see the right side of Fig. 2). Since the
angles ZWZV and ZWV Z are acute, both P and ¢ must
be on the same side of ZV; otherwise, either Z/PZ(Q or
ZPV(Q is not acute and P(Q ¢ GP. With proper renaming
of P and @, and Z and V, we can assume that the
intersection of PQ and ZW is closer to P than @, and



that |[PW| > |[WQ|. We leave the verification of this
statement to the interested reader.

Similar to the above, we can verify that the areas of
AZPV and AZQV are smaller than that of AZWYV.
We will prove next that either |V PP + |ZPP < |ZV|P
or |[VQIP + |ZQJP < |ZV|P is true, and hence derive a
contradiction to the minimality of the area of AZWV.

We will first prove that both ZZPW and ZVQW are
larger than 7/2. If ZZQW > ©/2, then |ZQ)| < |ZW| and
because LVQW > ZZQW, we also have |[VQ| < [VIV|.
This would imply that [VQ[P+|ZQP < [VW[P+|ZW P <
|ZV|P, a contradiction to the minimality of the area of
AZWYV. Thus we derive that ZZQW < 7/2. We also
have ZPWQ < 7/2 and LPZQ < /2 for PQ € GP. It
follows that ZZPW > m/2 because the sum of the four
angles inside the quadrilateral ZV QW is 27. Symmetri-
cally, ZVQW > 7/2, and by part 4 of Proposition 3.4,
this implies that:

WQP+ Ve < [WV[P, (13)

Now consider the triangles APWQ and AZW Q). Since
LZPW > /2 and |PW| > |WQ)| (by assumption), we
have |[ZW|/|[WQ| > |PW|/|IWQ| > 1. We also have 0 <
LZWQ < LPWQ < 7/2. By part 5 of Lemma 3.3, if
ZWPL WQP < |ZQP, then [PWP + [WQPP < |PQP,
a contradiction to the fact that PQ € GP. Hence:

1ZQPP < |ZW[P +[WQP. (14)

Combining inequalities (13) and (14), we have:
VR +12QF <|ZWP +[WV|P <2V,

contradicting the minimality of the area of AZWV'. This
completes the proof of part 2.

Part 3 follows from the fact that ZCAB,ZCBA < 7/2
in the triangle AABC (by part 4 of Proposition 3.4
because CA,CB € GP).

For part 4, the fact that each angle at a canonical
path point is at least ag follows from the definition the
canonical path by an inductive argument.

To prove part 5, suppose that there is an edge CM ¢
G? joining C to a point M on the canonical path between
A and B such that CM is not exterior to F(C, A, B).
Since all the boundary edges of F(C, A, B) are edges
in GP, and since CM € GP, then by the planarity of
GP (Proposition 3.4), the edge CM must lie completely
within the face F(C,A,B). Let N and L be the two
neighbors of M on the boundary of F(C, A, B), and sup-
pose, without loss of generality, that A lies on the path
joining C' to N on the boundary of F(C, A, B), and B on
that joining C' to L. Observe that the line segment joining
N to C must lie entirely within F(C, A, B), otherwise,
the point A would be interior to the triangle ACNM
contradicting Lemma 4.4—since both edges CM and
MN of ACNM are in GP. (Note that by the planarity
of G?, the edges CA and M N of GP do not cross, and
hence if A is not inside ACN A then it cannot be inside
the angular sector /NCM.) Similarly, the line segment

joining L to C' must lie entirely within F(C, A, B). It
follows from this fact that ZLCN < . Now in the trian-
gle AMNC, we have ZOCNM < 7/2 by Proposition 3.4
(since CM € GP), and hence ZCM N > 7/2—c. Similarly,
we have ZCLM < 7/2, and ZCML > w/2 — a. Now
in the quadrilateral CNML we have ZNML = 271 —
/LCN=/CNM—/CLM >2r—a—7/2—7/2=m—q.

[
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Fig. 3. lllustration for Proposition 4.8.

In order to guarantee that if the edge AB ¢ G’ (recall
that G’ is the desired backbone, which is a subgraph of
GP) then all the edges on the canonical path between A
and B are in G’, we introduce certain structures called
sectors to distinguish the edges on the canonical path.

Definition 4.9: Let A be a point in U and let £ > 10
be an integer constant. Define an S>» sector around A
to be a maximal sequence of ¢ > 2 consecutive edges
(called S>2 sector edges) incident on A such that the angle
between the first and the last is at least (£ — 1)ay, where
ap = arccos(l — 273/5) > 0.3897, and the angle between
every two consecutive edges in the sequence is at least
m/2 =27 /k. Define an S; sector around A to be a pair of
consecutive edges incident on A such that (1) the angle
between them is at least 7/2 —27/k, (2) one of the edges
is strictly shorter than the other, and (3) the shorter edge
(called an S; sector edge) does not belong to any S>o
sector. If an edge is an S>2 sector edge or an S; sector
edge, we call it a sector edge.

The following lemma guarantees that edges on canon-
ical paths are sector edges for both their endpoints.

Lemma 4.10: Let CA and CB be edges in G? such that
£ZBCA < o, where a = 27/k and k > 10 is an integer
constant. Then each edge WV on the canonical path Psg
between A and B is a sector edge for both W and V.

Proof: Consider an arbitrary edge WV on the canon-
ical path between A and B. We will show that WV
is either an S>o sector edge or an S; sector edge of
W. By symmetry, the same proof will carry for V. We
distinguish the following cases.

Case 1: W is A or B. First, suppose that W = B.
Since CB € G”, by part 3 of Proposition 4.8, ZCUBA >
w/2 — 2n/k. If the angle ZCBV(LCWYV) is less than
ZCBA, then by the planarity of G?, V must lie inside the
triangle AABC, a contradiction to Lemma 4.4. Therefore,
LCOWV > LCBA > w/2 — 2w /k. If WV does not belong
to an S>9 sector of W, WC and WV will form an S,



sector because, by Proposition 4.8, there is no edge inside
F(C, A, B) connecting W to points other than C, and
hence WC and WV are consecutive edges around W.
Moreover, since ZCAB and ZCBA are acute (because
CA and CB are in GP) and ZBCA < 2n/k, it is easy to
verify that |[AB| < |BC| when k£ > 10. Now since WV is
on the canonical path from A to B, [WV| < |AB| < |BC|,
and hence WV is the shorter edge of the S; sector
formed by WC (BC) and WV. This proves that WV
is either an S5 sector edge or an S; sector edge around
W. The case where W = A follows by symmetry.

Case 2: Now we can assume that W is a point on Pap
and W # A,B. By Proposition 4.8, the only possible
edge in G? inside F(C, A, B) incident to W is CW. We
distinguish two subcases based on whether or not there
exists an edge CW € GP interior to F(C, A, B). Let WV’
be the consecutive edge to WV on Pyp.

Subcase 2.1: CW is not an edge in GP. By part 4 of
Proposition 4.8, the angle at W is at least . Since the
only edge in G? inside F(C, A, B) that can connect to W
is CW, and CW does not exist, WV and WV’ are two
consecutive edges with ZVWV’ > ag, and hence must
be part of an S>» sector around W by the definition of
an S>2 sector.

Subcase 2.2: CW is an edge in GP. By part 5 of
Proposition 4.8, the angle at W is at least 7 — 27 /k, and
LCWV, LCWV' > 7/2 — 2r/k. This shows that the
consecutive edges WV, WC, and WV’ are part of an
S>9 sector, and hence WV is an S>, sector edge around
w. O

Figure 3 illustrates an example of a canonical path
between A and B, and the S; and S>2 sectors on this
path. Let us denote this canonical path from A to B
by (A = Moy, My, M2, M3, My, Ms = B). Assuming that
the conditions in the statement of Lemma 4.10 are true
(namely that CA and CB are in G?, ZBCA < q,
where o = 27/k and k& > 10), then by Lemma 4.10
it follows that (AC,AM;) and (BC,BMj) are S;
sectors, and that (M3 A, MiMs), (MaMy, MaC, MaMs),
<]V[3]V[2,M3M4>, and <]V[4]V[3,AI4B> are all 822 sectors.
Therefore, each edge on this path is a sector edge for
both its endpoints.

5 THE ALGORITHM

The algorithm constructs a bounded degree planar
power spanner of degree bounded by k£ and a stretch
factor bounded by 1+4(2sin (7/k))?, for parameter values
k > 10 and p € [2,5]. We assume that the integer
parameter £ > 10 and the power constant p € [2, 5] are
given.

5.1 Constructing the Generaliz ed Gabriel Graph

We start by constructing the generalized Gabriel sub-
graph G? of U. By Theorem 3.6, this step can be done
by a 1-local distributed algorithm: each point decides
which edges to keep based on its coordinates and the
coordinates of its neighbors.
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5.2 Computing the Approximation Angle

We would like to ensure that: (1) all edges of the S; and
S>2 sectors around any point in G? are selected (this
ensures that, for any two points A and B in GP, the
edges on the canonical path between A and B in GP
will be selected); (2) for any edge CB € GP incident on
a point C, there is a selected edge C'A incident on C with
ZCB,CA < 2n/k; and (3) for any point in G?, at most
k edges incident on the point are selected.

The above conditions, however, cannot be satisfied for
values of k € {10,11,12,13,14}. To see why this is the
case, suppose for instance that £ = 10, and suppose that
there are five equally spaced S>2 sectors around a point
C, each consisting of two consecutive edges making an
angle of precisely ag = arccos(1—273/5). Suppose further
that each of the five angular sectors separating any two
of the five S>2 contains edges that are shorter than the
S>2 edges. Then one readily sees that picking the ten
S>2 edges leaves us with no edges to pick. This makes it
impossible to satisfy the above condition since for those
shorter edges between the sectors that were not picked,
the condition is not satisfied. Observe here that, even
though for any edge C'B lying in a region between two
S>o sectors there is a selected edge that makes an angle
of at most 27/10 with CB, namely one of the boundary
edges of the S> sectors, this fact does not help satisfying
the desired condition because the boundary edge of the
S>o sector may be longer than CB.

To fix this problem, we first draw the following ob-
servation. The reason why we needed to satisfy the
condition that for every edge CB there is a selected
edge CA such that |CA| < |CB| and £ZBCA < 27/k,
is that we wanted to guarantee that |CA]P + |[ABJP <
(1 + 2Psin? (r/k))|CB|P (by Lemma 4.1), where (1 +
2Psin® (7/k)) is the desired stretch factor. It turns out
that even if the two edges CA and CB of G? are
such that |[CA| > |CB|, the inequality |CA|P + |ABJP <
(1+2Psin® (7/k))|CBJP is still satisfied as long as ZBC A
is smaller than a small “approximation” angle g, that
depends on k. Certainly this approximation angle will
be smaller than 27 /k. We will show next how a lower
bound on the angle ap, can be computed. With this in
mind, we can now make use of the selected boundary
edges of the S; and S>2 sectors to cover an additional
angular sector of size aqp, each.

Proposition 5.1: Let CA and CB be two edges in G”.
Let agpg = m/k, where k > 10 is an integer constant. If
£LBCA < agp, then

[CAP +|ABJ < (1 + (2sin 7)")|CBI".

Proof: Since CA € GP we have |CAP < |CBJP +
|AB|?, and hence
|CA|P + |AB|P < |CB|P + 2|ABJP. (15)

Since CA and CB are edges in GP, by part 4 of
Proposition 3.4, the angles Z/CAB and ZCBA are acute.



Algorithm Edge_Selection

INPUT: GP: q generalized Gabriel graph of a unit disk graph U
OUTPUT:  G': a bounded degree planar power spanner of U

1. for every S>3 sector around A do select all the sector edges;

2. for every S; sector around A do select the shorter edge in
the sector;

3. let Unselected(A) be the set of all edges incident to A that
are still unselected; remove from Unselected every edge e
such that the angle between e and a selected edge incident
to A is bounded by aapa;

4. let S be the sequence of remaining edges in Unselected(A)
in a clockwise (or anticlockwise) order;

5. while S # () do: place a cone of size 27 /k at the first edge
in the sequence S, select the shortest edge in this cone, and
remove all the other edges in this cone from the sequence
5;

6. send a message to every neighbor B notifying it of whether
the edge AB has been selected or not.

Upon receiving a message from a neighbor B, point A performs
the following steps:

1. decide the status of the edge BA as follows: BA € G’ if
and only if BA has been selected by both A and B;

2. if for every neighbor B the status of the edge BA has been
determined then A finishes processing.

Fig. 4. Construction of the spanner G'.

This implies that

|AB|/|CB| < tan(ogpe) < tan% < V2sin % (16)

The last inequality is true because cos % >1/ V2 for k >
10. Combining inequalities (15) and (16), we have

(1 +2(v/2sin %)p)\CBP 17)
< (142 sin%)p)|CB\p,

|CAPP + |ABP <
(18)

for p € [2,5]. O

5.3 The Algorithm Edge_Selection

This algorithm works for £ > 10. Every point A performs
the following algorithm until the status of each of its
incident edges has been defined, and at that point, A
finishes processing. We assume that the integer param-
eter £ > 10 and the power constant p € [2, 5] are given.
The algorithm is given in Fig 4.

The presented algorithm is a 1-local distributed algo-
rithm (assuming that the coordinates of the neighbors of
the points have been computed during the computation
of the generalized Gabriel graph). Moreover, no more
than O(m) messages are exchanged in the network since
only O(1) messages are exchanged along every edge. By
Theorem 3.6, constructing GP can be done by spending
no more than O(AlgA) = O(nlgn) local time at a
point of degree A. After the construction of G*, each
point maintains a list of its incident edges sorted in a
counterclockwise order around the point. With this in
mind, it is easy to see that each of the above steps in
the algorithm can be executed in O(A) = O(n) time by
a point of degree A. It follows that the total local time
spent by a point of degree A is O(Alg A) = O(nlgn).
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Let G’ be the subgraph of GP whose points are the
point of GP, and whose edges are the edges of GP chosen
by the above algorithm.

Theorem 5.2: The following are true.

1. The degree of G’ is bounded by k.

2. If CB is an edge in GP but is not an edge in
G’, then there exists an edge CA € G’ such that
either (1) ZBCA < agp, or (2) |CA| < |CB]| and
ZBCA < 27/k, and in both cases, all the edges on
the canonical path between A and B are in G'.

3. The stretch factor of G’ is bounded by 1+ (2sin T)P.

Proof: Part 1: Consider an arbitrary point A and
the edges incident to it in G’. By the Edge_Selection
algorithm, each edge incident to A in G’ must be selected
by both of its endpoints, and in particular must be
selected by A. To prove that the degree of A in G’ is
bounded by &, it suffices to show that A selects no more
than £ incident edges.

The proof is based on a mapping that maps each
edge selected by A to an angular sector around A.
We require that different edges be mapped to different
disjoint sectors (i.e., non-overlapping sectors). We say
that an edge AB covers an angle of measure J, denoted
by ¢¥(AB) = ¢, if it is mapped to an angular sector of
measure §. Because the sectors are disjoint, the sum of
the angles covered by the edges selected by A is at most
2.

Note that A selects three types of edges: the edges
selected by A in step 1 of the algorithm, which are
the S>o sector edges; the edges selected in step 2 of
the algorithm, which are the S; sector edges; and those
edges selected in step 5 of the algorithm, which will be
referred to as the cone edges.

If A selects only cone edges and no sector edges, then
the number of cones around A is at most [27/(27/k)] =
k, and hence A selects at most k edges. Therefore we can
assume that A selects at least one sector edge.

An S>5 sector consists of a maximal sequence of £ > 2
consecutive S sector edges such that the angle between
the first and the last is at least (¢ — 1)ap, and the angle
between any two consecutive edges in this sequence is
at least /2 — 27 /k. We divide the angular sector of size
(£—1)ayg into £ equal parts and map each S>2 sector edge
to one part. Thus, each S>» sector edge is mapped to an
angle of least (£ —1)ag/¢ > arccos(1 —273/5)/2 > 0.1947.
Moreover, since the S>> sectors do not share edges, it is
clear that the area mapped to by any S>2 sector edge
does not overlap with the area mapped to by another
distinct S>o sector edge, regardless of whether the two
edges are part of the same S>2 sector or not.

We map each S; sector edge to an area starting from
the S; sector edge and spanning an angle of 27/k.

This completes our mapping for the sector edges.

Before we map the cone edges, we create an area
around sectors called a “buffer area” as follows.

By Proposition 5.1, each sector edge covers an addi-
tional angle of aqp, = 7/k. Each such angle forms a
buffer area. In addition, since an S; sector spans an angle



of 7/2 — 27 /k, we also designate the difference between
the sector angle and the area that the sector edge is
mapped to as a buffer area. This buffer area measures at
least 7/2 — 2w /k — 27 /k > /2 — 4n/k > w/k for k > 10.
Now each sector (51 or S>2) has two buffer areas, each
measuring at least 7/k, surrounding the sector on either
side. Note that the buffer areas for different sectors may
overlap.

Now to map the selected cone edges, consider a
maximal sequence S. of ¢ > 1 consecutive cone edges.
The angle spanned by the cones corresponding to S.
(including the possible gaps between them) is at least
2(¢" — 1) /k because each cone in the sequence covers
an angle of 27/k, except (possibly) for the last one.
Since A selects at least one sector edge, there are 5>
or S; sectors at both ends of S., and hence there are
buffer areas at both ends of S.. Therefore, the angle
covered by S. plus these buffer areas measures at least
200 — )w/k + 2w /k = 2¢'w/k. Moreover, this area is
disjoint from all the angular sectors that have been
mapped to by the sector edges. Now we evenly divide
this area into ¢’ cone edges, each cone edge covers an
angle of at least (2¢'w/k)/{' = 27 /k. Note that the areas
that different maximal sequences of selected cone edges
are mapped to are disjoint.

This completes the mapping of all the selected edges.

Now 9 (AB), the measure of an angle covered by a
selected edge AB is bounded by:

0.1947, when AB is an S>3 sector edge;
Y(AB) > < 2m/k, when AB is an S; sector edge;
2r/k,  when AB is a cone edge.

Noting that all these areas are mutually disjoint, and
that the area around point A measures 27, it follows
that the number of edges selected by A is at most
|27/ min(y)| < k, when k > 10. This completes the proof
of part 1.

Part 2: If CB € GP is not in G’, then either C' or B
did not select CB. Without loss of generality, assume C
did not select CB. Then CB must have been removed
by C in either step 3 or step 5 of the Edge_Selection
algorithm.

If CB is removed by C in step 3, then there ex-
ists an edge CA € GP such that C selects CA and
ZBCA < agpy = m/k. Next we will show that CA is
an S>9 sector edge around A and hence will also be
selected by A. First note that the angle ZCBA < /2
by part 4 of Proposition 3.4. Since ZBCA < m/k,
LCOAB > w/2 —w/k > 21/5 > op. By Lemma 4.4, there
is no point inside the triangle AABC. Hence the angle
between C'A and a consecutive edge around A is at least
ag. This implies that AC belongs to an S>» sector of A
and will be selected by A. Since C'A is selected by both
of its endpoints, CA € G'.

On the other hand, if CB is removed by C in step
5, then there exists an edge CA € GP such that CA is
a cone edge selected by C, and hence |C'4| < |CB| and
/BCA < 27/k. Therefore /CAB > (r—27/k)/2 > 27 /5.
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Fig. 5. A figure illustrating the lower bound on the
stretching factor.

By the same argument as above, C' A will also be selected
by A, and hence is present in G’. This proves the first
half of part 2.

By Lemma 4.10, every edge UV on the canonical
path between A and B is a sector edge for both of
its endpoints U and V, and hence is guaranteed to be
present in G'. This completes the proof of part 2.

Part 3: If CB € U is not in G’, we will show that there
exists a path from C to B in G’ whose cost is at most
(1+4(2sin 7)?)|CBJ?. Since the power stretch factor of G?
is 1 by Proposition 3.4, we only need to consider the case
where CB € GP? is not in G'. By part 2, in this case there
exists an edge CA € G’ such that either ZBCA < agpq
or |[CA| < |CB| and ZBCA <27 /k.

If ZBCA < agpg, by Proposition 5.1, we have |CA|P +
ABIP < (1 + (2sing)P)|CBP. If |CA] < |CB| and
£ZBCA < 2n/k, by Lemma 4.1, we also have |CA|P +
|ABIP < (14 (2sin)?P)|CBJ?.

Furthermore, by Theorem 4.6, the cost of canonical
path from A to B is at most |[AB|?, and by part 2 all
the edges on the canonical path between A and B are
in G'. This proves that if an edge CB € G? is not in G’,
then there is a path from C to B in G’ whose cost is at
most (1 + (2sin 7)P)|CBJP. The power stretch factor of
G'is 1+ (2sin 7)? as claimed. 0

5.4 Optimality

The stretch factor of 1 + (2sin 7 )? obtained above is
almost optimal in the sense that constructing a power
spanner of a unit disk graph with degree bound of &
and a stretch factor smaller than p = 1+ (2sin 77)?
is not possible. Consider the following example (see
Figure 5). Point A has k+1 neighbors, evenly distributed
on a circle centered at Ay. The angle between any two
consecutive edges incident to Ag is 27/(k+1). In order to
bound the degree of Ag by £, at least one edge incident
to Ap has to be be removed. Suppose AgA; is removed,
then the cost of sending a message from Ay to A; is
at least [AgAa[P + |A2A1P > (1 + (2sin 77)P)[AoAa [P
This implies that a power spanner of a unit disk graph
with degree bound of k has a stretch factor at least

p=1+4(2sin kL_I_l)p.



6 ROBUSTNESS

In this section we will formally show that the algorithm
presented in this paper is highly robust to topological
changes. When the topology of the underlying network
changes because of the introduction of a new point, or
the deletion or motion of an existing point, the power
spanner constructed by the algorithm Edge_Selection
can be maintained efficiently without affecting the points
beyond the vicinity of the change. Intuitively, this should
be true due to the local distributed nature of the algo-
rithm.

Since the motion of a point is equivalent to its deletion
and reinsertion at a different location, we only discuss
how to update the power spanner upon the insertion of
a new point and the deletion of an existing point. We
first discuss how such a topological change affects the
generalized Gabriel graph.

Let U be a unit disk graph and let G be its generalized
Gabriel graph. If a point A in GP is deleted, then this can
only cause the appearance of some edges in G”, namely
those edges of U killed by the point A. Note that both
endpoints of any such edge must be neighbors of A. On
the other hand, if a point A is inserted into G?, then
this insertion can only cause the disappearance of some
edges from G”?, namely those that are killed by A. Again,
both endpoints of any such edge must be neighbors of
A. Therefore, we have the following theorems.

Theorem 6.1: Let U be a unit disk graph, G? the gen-
eralized Gabriel graph of U, and A a point in U. If U’
is the unit disk graph resulting from U by the removal
of A, then the generalized Gabriel graph of U’ can be
computed from GP by having every neighbor of A in U
recompute its set of neighbors in the generalized Gabriel
graph of U’.

Theorem 6.2: Let U be a unit disk graph and let G?
be its generalized Gabriel graph. If U’ is the unit disk
graph resulting from the insertion of a new point A
in U, then the generalized Gabriel graph of U’ can be
computed from G* by having every neighbor of A in U’,
in addition to point A itself, compute its set of neighbors
in the generalized Gabriel graph of U’.

Theorem 6.1 and Theorem 6.2 show that the change
in the generalized Gabriel graph due to the inser-
tion/delation of a point is very local, only affecting the
neighbors of the point.

Now we discuss how the insertion and deletion of a
point in U affect the power spanner G’ of U constructed
by the algorithm Edge_Selection.

Let GP be the generalized Gabriel graph of U. Suppose
that a point A € U is deleted from U and let U’ be
the resulting unit disk graph. Let H? be the generalized
Gabriel graph of U’. From the above discussion, we
know that H? can be constructed from G” by having
each neighbor of A in U compute its neighbors in H?.
Let N(A) be the set of neighbors of A in U. Note that
in the algorithm Edge_Selection, every point selects its
edges in the spanner G’ from its set of incident edges in
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GP. Then adjacent points exchange messages along their
common edge deciding whether to keep the edge or not.
Only edges that are selected by both endpoints are kept.
For a point M in U’, its sets of incident edges in U and
U’ are different if and only if M € N(A). Let N(N(A))
be the set of neighbors in U’ of those points in N(A).
For any point M € U’ — (N(A) U N(N(A))), and for
any neighbor M’ of M in U’, the set of neighbors of
M and M’ are unchanged by the deletion of A from U,
and hence their sets of selected edges in the algorithm
Edge_Selection are unaffected by the deletion of A.
Therefore, to update the spanner G’ upon the deletion
of A, we reapply the algorithm Edge_selection to H?,
but only to points in N(A), to determine for each point
its new set of selected edges for the new power spanner.
Then each point in N(A) exchanges messages with its
neighbors in U’ to agree on the common selected edges.
We conclude that the topological change in the power
spanner upon the deletion of a point from U is local,
and affects points that are only within two hops from
the deleted point. The case is similar when a new point
is inserted into U. We have the following theorem.
Theorem 6.3: Let U be a unit disk graph, G? its gen-
eralized Gabriel graph, and G’ its power spanner con-
structed by the algorithm Edge_Selection. If U’ is the
unit disk graph resulting from the insertion (resp. dele-
tion) of a point A in (resp. from) U, and if H? is
the generalized Gabriel graph of U’, then the power
spanner of U’ can be computed from G’ by applying
the algorithm Edge_Selection to points in H” that are
within two hopes from A in U.
The above theorem shows that the algorithm
Edge_Selection is highly robust to topological change.
We also illustrate the robustness of the algorithm
empirically. Figure 6 illustrates the changes incurred
upon the insertion of a new point. The figure on the
left shows a power spanner computed by the algorithm,
and a newly inserted point in red color. The figure on
the right shows the edges that will be added in red
color, and those that will be deleted in blue dashed color.
The changes are restricted to the two-hop vicinity of the
inserted point.

Fig. 6. lllustrations for the robustness of the algorithm.



7 EXPERIMENTS AND DISCUSSIONS

We have shown that theoretically, our algorithm com-
putes a power spanner whose stretch factor and max-
imum degree combination is better than what can be
obtained using previous algorithms. In order to un-
derstand how our algorithm compares to the previous
ones empirically, we performed experiments in which we
compared power spanners obtained by three different
algorithms: SYaoGG and Or dYaoGG from [5], and KPX
from the present paper.

In our experiments, we placed n nodes on a 1500 x 1500
grid, uniformly at random, and we set the transmission
range of each node to 600. We then ran two sets of
simulations.

In the first set, we used n = 30,60, 90,...,270, 300,
power exponents 2 and 4, and values of k£ = 10,12, 14, 16.
For each simulation, we fixed values of n, power, and
k, and we ran all three algorithms on 100 different,
randomly generated graphs of size n.

For power exponent 2, our experiments did not show
significant differences between the performance of our
algorithm and that of the other two. This is under-
standable because the full strength of the techniques in
our algorithm (KPX)—such as the notion of generalized
Gabriel graphs for example—comes out when the power
exponent is greater than 2. This is confirmed by our
experiments when we set the power exponent to 4. As
can be seen from the top two graphs in Figure 7, the
average stretch factor and the average maximum degree
obtained by the algorithm KPX—over the 100 graphs—
are both substantially smaller than those obtained by the
other two algorithms. The same is true for the maximum
stretch factor and the maximum maximum degree—over
the 100 graphs—as shown in the bottom two graphs
of Figure 7. The graphs in Figure 7 correspond to our
simulations when k = 10, but similar behavior holds for
larger k.

In the second set of simulations, we investigated the
relationship between the input k, the actual maximum
degree and the stretch factor obtained by the three
algorithms. For that purpose, we used n = 300, power
exponent 4, and values of £ = 10,11,...,16. We ran all
three algorithms on 500 different randomly generated
graphs, and recorded the stretch factor and the maxi-
mum degree of the obtained spanners.

In Figure 8 we show the maximum stretch factor ob-
tained by each algorithm—over the 500 input graphs—
for each value of k. We also plot the theoretical upper
bound (1 + (2sin F)*) on the stretch factor of our al-
gorithm. The maximum stretch factor returned by our
algorithm is almost always substantially below the the-
oretical upper bound, which suggests that our algorithm
will in practice do even better than what the theoretical
upper bound suggests. Our algorithm also does bet-
ter than Or dYaoGG and SYaoGG While the algorithm
Or dYaoGG obtains stretch factors that approach the ones
obtained by our algorithm, it is important to remember
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that algorithm Or dYaoGGis not local.
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When the three algorithms are run with a specific
input value £, they are guaranteed to return a spanner of
maximum degree k. In our experiments, and as can be
seen in Figure 7, however, the actual maximum degree of
the obtained spanner is always less than the input bound
k. We use Table 2 to analyze the actual maximum degrees
and stretch factors obtained by the three algorithms. In
it we show the number of spanners obtained—in our
simulations over 500 random input graphs—with given
maximum degree and stretch factor range. Note that
for more than half of the graphs, algorithm SYaoGG
constructs spanners with degree 7 or more and stretch
factor 1.1 or more. The algorithm O dYaoGG improves
on the stretch factor but not on the degree bound. Our lo-
cal distributed algorithm amazingly computes spanners
with maximum degree 5 and stretch factor 1 more than
85% of the time!

TABLE 2

The number of spanners with given maximum degree and stretch factor range
returned by the SYaoGG (top), OrdYaoGG and KPX (bottom) algorithms.

AW I[576 ] 7 |38
—1.0000 |00 | 13| 34 | 4
<T0001 (0[]0 0] 0 |0
<1001 |0 0|0 ] 1 |1
< 101 0[0| 3 | 1L |0
<11 0[O0 18] 71 | 9
S 11 00|74 | 228 | 33
o\ A I[5]6] 7 | 8
=1.0000 | 0 | 0 | 65 | 281 | 51
<1000 |[O|[O| 0] 0 |0
<100 0|0 1] 5 |0
<101 0[0| 7 | 2 | 4
<11 00|12 3 | 11
S 11 0[0] 0] 1 |0
o\ A I 5 678
—1.0000 | 27 | 427 | 36 | 0 | O
<1000 |0 | 0 | 0|00
<1001 |0 | 0 |0 |00
< 101 T 5 | 1]0]0
<11 0 2 | 1T]0]0
S 11 0 0 |0 |00

It is clear for both sets of simulations that algorithm
KPX is superior both theoretically and experimentally.
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