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Abstract—Location and intersensor distance estimations are important functions for the operation of wireless sensor networks,

especially when protocols can benefit from the distance information prior to network deployment. The maximum multihop distance that

can be covered in a given number of hops in a sensor network is one such parameter related with coverage area, delay, and minimal

multihop transmission energy consumption estimations. In randomly deployed sensor networks, intersensor distances are random

variables. Hence, their evaluations require probabilistic methods, and distance models should involve investigation of distance

distribution functions. Current literature on analytical modeling of the maximum distance distribution is limited to 1D networks using the

Gaussian pdf. However, determination of the maximum multihop distance distribution in 2D networks is a quite complex problem.

Furthermore, distance distributions in 2D networks are not accurately modeled by the Gaussian pdf. Hence, we propose a greedy

method of distance maximization and evaluate the distribution of the obtained multihop distance through analytical approximations and

simulations.

Index Terms—Wireless sensor networks, multihop distance, analysis, simulation, estimation.

Ç

1 INTRODUCTION

METHODS providing information on the distribution of
the euclidean distance between nodes in wireless

sensor networks (WSN) are regarded as versatile tools for
protocol parameter tuning and performance modeling.
Therefore, internode distance estimation is of profound
importance for various WSN applications. For instance,
when urgent data are disseminated from a source node via
broadcast, it is critical to estimate the covered distance as a
result of a sequence of data forwards. Similarly, estimation
of the hop distance between two network locations is
equivalent to estimating the minimum number of hops,
which leads to maximization of the distance covered in
multihop paths. Furthermore, hop distance estimation is
closely related with transmission delay estimation and
minimization of multihop energy consumption.

The current literature on the maximization of the multi-

hop distance is limited; however, there are several studies

that focus on estimation of single-hop or multihop distances.

Methods in [1] and [2] estimate the distances to designated

anchor nodes using optimization algorithms. There are also

analytical methods that address the probabilistic evaluation

of the euclidean distances such as that given in [3] and [4]. In

[3], the probability distribution of the single-hop distance

between two randomly chosen neighbors is investigated. In

[4], the distribution of the remaining distance in multihop
greedy forwarding to a destination node is derived.
Furthermore, in [5], the distribution of euclidean distances
to nth neighbor in a Poisson point process is analyzed.

Hop distance estimation between two locations is
studied analytically in [6] and [7]. In [6], connectivity
probability in one or two hops is derived and connectivity
in multiple hops is studied with analytical bounds.
Furthermore, analytical bounds of the expected hop
distance are derived and supported by simulation results.
In [7], the expected number n of relay nodes between two
randomly located sensors is analytically computed via
iteration based on expressions for connectivity in one or two
hops. In [8], the distribution of hop distance and its
expected value are analyzed with simulations. It is shown
that beamforming antennas significantly reduce the hop
distance compared to omnidirectional antennas for medium
and large networks with random node locations.

The maximum euclidean distance metric is first investi-
gated in [9] for 1D networks. The distribution of the
maximum distance taken in a single hop is derived
analytically. In our previous study [10], we showed that
the distribution of maximum multihop euclidean distance
in a 1D network has an increasingly Gaussian character for
increasing hop distance values. This result is used in [11] to
develop a Bayesian decision mechanism to determine the
number of hops for a given euclidean distance. An
application of [10] to planar sensor networks is [12] which
uses the Gaussian pdf to verify sensor positions. In [12], 1D
network results are mapped to planar networks by defining
a thin rectangular corridor between two locations. Since the
definition and calculation of multihop path distances in a
planar network are considerably complex compared to a 1D
network, the distribution model is not highly accurate.
Hence, results of [10] are largely limited to 1D networks.

In this paper, we propose a greedy method which is
aimed at maximizing the multihop distance in 2D networks
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with random node locations. Our method is based on
restricting the propagation direction outward from the
propagation source in each hop and greedily searching the
furthest neighbor each time. This is similar to the approach
in [10]; however, we demonstrate that Gaussian pdf, which
is shown to accurately model distance distributions in 1D
networks [10], cannot represent distance distributions in 2D
networks. The accuracy of the Gaussian pdf model depends
on the number of hops and the chosen parameters, which
affect the obtained error ranges. We show that a transfor-
mation of the well-known Gamma distribution effectively
approximates the obtained maximum distances in a 2D
network. For the same range of number of hops, uniform
accuracy is provided by the proposed method in this paper.
Compared to the Gaussian pdf model in [10], a much more
consistent and accurate representation of maximal multihop
distance pdf as well as hop distance pmf in 2D networks is
obtained. Using the pdf obtained by the transformation of
Gamma distribution, we derive the expected value and
standard deviation of the euclidean multihop distance and
calculate the parameters of the Gamma distribution. The
accuracy of the Gamma-approximated distribution is
demonstrated through comparisons with simulation results.

The rest of the paper is organized as follows: In Section 2,
multihop distance in data dissemination scenarios is defined
and its similarity to well-known distributions is statistically
inspected. In Section 3, multihop distance is analyzed and
approximation expressions of its standard deviation and
expected value are derived. Section 4 presents an analytical
way of estimating the hop distance for a given euclidean
distance using the results of Section 3. In Section 5,
simulation and numerical results are provided. Finally,
Section 6 concludes the paper.

2 GREEDY MAXIMIZATION OF MULTIHOP

EUCLIDEAN DISTANCE

2.1 Network Model

WSNs considered in this study consist of sensors with
circular communication ranges of radius R. Node locations
are static and uniformly distributed with a planar density
�. Hence, the number of points n that can be found in a
given area A has a Poisson distribution given by
pnðnÞ ¼ ð�AÞ

ne��A

n! . It is assumed that nodes can receive every
packet transmitted within their communication ranges.

2.2 Definition of Maximum Multihop Euclidean
Distance

In a 2D network of randomly located nodes, there exists
only one node with the maximum distance that can be
reached in a given number of hops. Due to spatially random
node locations, the position of this node as well as its
distance to the source node is random. However, analytical
computation of the maximum euclidean distance in N hops
involves considering all nodes in the previous hops and
recursively reaches the source node of the multihop
propagation, which becomes intractable even for small
instances. Hence, we propose a greedy method of max-
imization of the euclidean multihop distance. By selecting
locally maximally distant nodes, the multihop propagation
intends to reach further distances to the source node. After

selecting an initial propagation direction, the following
iterative definition is provided for our greedy distance
maximization scheme. It should be noted that our method
does not locate the node with maximum distance to the
source node for a given number of hops, yet it maximizes
the euclidean distance toward a chosen initial direction
greedily. For the definition of this distance, consider Fig. 1a
for subsequent descriptions.

Let Pi�1 be the node with the maximum euclidean
distance, selected by the greedy selection, to a source
sensor S in i� 1 hops. Furthermore, let the line li�1

originating from S and passing through Pi�1 act as a
direction line which defines the outward propagation from
S. Then, in the ith hop of the multihop path, node Pi�1

chooses the neighbor node Pi whose euclidean distance to S
is the largest among all neighbors of Pi�1. Such a node Pi
may not be located on the line li�1 since node density is
finite. In fact, the line segment between Pi�1 and Pi has an
angle of deviation from li�1 denoted by �i. The length of this
line segment is the distance of the ith hop denoted by ri.
Furthermore, we limit the search area of the new node Pi to a
maximum angular deviation such that �i is upper bounded.
Finally, the euclidean distance of Pi to the source sensor S is
denoted by di and represents the euclidean distance in a
multihop path of i hops in an outward direction from S.

Fig. 1b demonstrates an example of a multihop path
generated with this definition. After locating the maximally
distant node Pi to S in each hop i, the propagation direction
is changed and becomes the line li passing through S and
the new node Pi. For a different initial direction, other
distances can be obtained. Hence, our method maximizes
the distance greedily while fixing the direction of propaga-
tion outward from the source node. Due to the uniformly
distributed node locations, the distribution of di is identical
for all propagation directions and denoted by pdi

ðdiÞ.

2.3 The Probability Distribution of Multihop
Euclidean Distance

In our previous study [10], the distribution of the maximum
distance for a given number of hops in linear networks is
modeled by the Gaussian pdf. The mean r of the maximum
distance of a single hop is numerically found by the implicit
equation ln ð1� �r

�R��r�1Þ ¼ �r, where � is the linear node
density and R is the sensor communication range. The
expected value of the multihop maximum distance dN of
N hops is then found by E½dN � ¼ Nr and the variance of dN
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Fig. 1. Iterative definition of maximum multihop euclidean distance.
(a) Definition of di and (b) multihop path of five hops.
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is calculated by �2
dN
ffi E½ð

PN
i¼1 riÞ

2� �N2r2, which involves
a recursive computation. The results in [10] illustrate that
the distribution of the multihop maximum distance in 1D
networks can be modeled by the Gaussian distribution with
high accuracy. This model is referred as the “1D Model”
throughout the rest of this paper.

In contrast to 1D networks, a multihop path in a planar
network is generally not located on a line. However, one
can define a thin rectangular corridor with a small width W
between two locations and search the multihop path within
this corridor. Using this mapping, nodes can be assumed to
be in a linear formation. Hence, the equivalent 1D network
density becomes � ¼W�, where � is the actual node
density on the 2D network. With this approximation, the
1D Model can be applied to planar networks to represent
the maximum multihop distance distribution with a
Gaussian pdf [12].

The simulation results for multihop maximum distance
distribution pdi

ðdiÞ for i � 8 and the Gaussian pdf found by
the 1D Model are illustrated in Fig. 2a with W ¼ R.
Although Gaussian pdf accurately models 1D network
distance distributions [10], it fails to represent the distribu-
tions in planar networks. However, since applications such
as distance estimation and localization are sensitive to even
small amounts of errors in intersensor distances, a more
accurate model that can better represent distance distribu-
tions is required.

In a 2D network with random node locations, a path with
N hops can have a length of at most NR, with a sensor
communication range of R. However, due to the finite node
density �, the actual maximum distance dN is smaller; hence,
NR is an upper bound for dN . If we define this difference as

x ¼ NR� dN, then x is a random variable. To determine the
similarity of its distribution to well-known distribution
types, Kolmogorov-Smirnov (KS) Test is applied to a
simulation data set of the random variable x. The data set
is collected from 10,000 different networks with uniformly
distributed node locations and a sensor communication
range of R ¼ 100 m. The KS test suggests that a data set is
similar to a given distribution type if the KS statistic is lower
than the critical value of the test for the chosen significance
level. The critical value of the KS Test for a significance level
of 0.05 is determined and then compared with each KS
statistic that is obtained by x values in simulations
corresponding to different hop distance values.

Fig. 3 demonstrates the test results for two node density
values, � ¼ 0:001 nodes=m2 and � ¼ 0:002 nodes=m2, and for
various distribution types. The highest similarity results are
obtained for Gamma distribution. For � ¼ 0:002 nodes=m2,
the test results for the Gamma distribution are consistently
below the critical value computed by the KS Test. This
suggests that the distribution of x is similar to Gamma
distribution. The Maximum Likelihood (ML) Estimation of
the distribution of x with the Gamma pdf, as illustrated in
Fig. 2b for a node density � ¼ 0:001 nodes=m2, also clearly
demonstrates this similarity.

By modeling the distribution of x using Gamma
distribution, the distribution of the maximum euclidean
distance dN can be defined since di ¼ iR� x. When the
distribution of x obtained by ML estimation is transformed
with di ¼ iR� x, the ML estimate of the maximum
distance distribution di is obtained, which is shown in
Fig. 2c for � ¼ 0:001 nodes=m2. This figure suggests that the
pdf of di can be obtained through a simple linear
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Fig. 2. Distribution estimations using 1D Model with Gaussian pdf and ML Estimation with Gamma pdf, � ¼ 0:001 nodes=m2. (a) pdi
ðdiÞ estimated by

the 1D Model, (b) pxðxÞ and ML estimation, and (c) pdi
ðdiÞ and ML estimation.

Fig. 3. Kolmogorov-Smirnov Test applied to x. (a) � ¼ 0:001 nodes=m2. (b) � ¼ 0:002 nodes=m2.
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transformation applied to a Gamma pdf. The Gamma pdf
of the random variable x is given by pxðxÞ ¼ xa�1 bae�bx

�ðaÞ ,
where �ð:Þ is the Gamma function �ðzÞ ¼

R1
0 tz�1e�tdt, and

a and b are shape and scale parameters, respectively.
Furthermore, the mean and variance of the Gamma
distribution in terms of a and b are given by E½gðx; a; bÞ� ¼
ab and varðgðx; a; bÞÞ ¼ ab2, respectively.

The maximum likelihood estimation provides the para-
meters a and b which uniquely define the Gamma
distribution. However, ML estimation requires simulation
data to estimate the pdf. In contrast, our aim is to avoid the use
of simulation data, and compute the parameters a and b

analytically. Hence, the analysis in this paper aims to
analytically compute E½di� and �di

and models the distribu-
tion of dN using the Gamma distribution with parameters a
and b that are calculated using E½di� and �di

, i.e.,

b ¼
�2

di

E½di�
and a ¼ E½di�2

�2
di

:

3 ANALYSIS

3.1 Greedy Maximization of Multihop Distance

In Fig. 4a, the search area for a next hop sensor is modeled
by an angular communication range with a “radial range”
R, which is equal to the radius of the sensor communication
range, and an “angular range” � < �. The bisector direction
line represents the outward direction from the source
sensor S.

Maximization of multihop distance, as defined in
Section 2.2, is obtained by choosing the next sensor node
within the angular communication range such that its
distance to the source sensor S is maximum. In Figs. 5a and
5b, no nodes are found in regions A1 and A2, and da and db
constitute the maximum distance to S. ra, rb, and rc denote
the radial distance of the selected next node to P . However,
the shapes of the regions created by this choice depend on
the location of the node and distances da and db which
complicate the analysis.

On the other hand, in Fig. 5c, the node with the
maximum distance to node P is chosen as the next node.

Note that the region A3 can easily be defined by the
difference between two arcs centered at P . However, this is
an approximation since any node in region K in Fig. 4b is
more distant to S compared to the radially most distant
node to Pi�1. In fact, the largest amount of error occurs if a
point exists in location T , as shown in Fig. 4b. The distance
of T to S is dmax ¼ dprev þ ri � ", where ri is the distance of
the radially distant node Pi to node Pi�1 and " is a negligible
small number. However, the distance of Pi to S is

dapp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
prev þ ri2 þ 2ridprev cos ð�=2Þ

q
:

The maximum percent error in the approximation is then

�maxðri; �Þ

¼
dprev þ ri � "�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
prev þ ri2 þ 2ridprev cos ð�2Þ

q��� ���� 100

dprev þ ri � "
:

ð1Þ

Denoting the probability that the maximum single-hop
distance is ri ¼ ri as pri

ðriÞ, the expected value of the upper
bound of percentage error can be calculated by evaluating
(1) for � 2 ½0; �� and ri 2 ½0; R�, as in (2). The derivation of
pri
ðriÞ is provided in Section 3.3.2

E½�maxðri; �Þ� ¼ 100

Z �

0

Z R

0

�maxðri; �Þpri
ðriÞ

1

�
dri d�: ð2Þ

Simulation results demonstrate that the amount of error
in the approximation is negligible and upper bounded. In
Fig. 6, the percentage errors are all lower than 2 percent for
all values of �. Fig. 6a illustrates the expected value of the
upper bound of the percentage error with respect to
multihop distance for different values of the angular range
� in case of � ¼ 0:001 nodes=m2. Furthermore, Fig. 6b shows
the expected value of the upper bound of the percentage
error for different values of the node density � with respect
to multihop distance for � ¼ �=3.

3.2 Maximum Multihop Distance Approximated as a
Sequence of Single-Hop Maximum Distances

To maximize the multihop distance, the maximum dis-
tances of individual single hops are considered within their
angular communication ranges. Note that this is an
approximation as mentioned in Section 3.1. In Fig. 7, node
Pi�1 forwards the packet to the radially furthest node Pi.
Furthermore, it is known that no sensor node is located in
the shaded area Ai (hence, the area V � i) since otherwise
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Fig. 4. Angular range model and model-related approximation.
(a) Angular model and (b) model approximation.

Fig. 5. Choice of next node in angular range.

Fig. 6. Average upper bound of model-based error, R ¼ 100 m.
(a) Different angles � and (b) different density values �.
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such a node would be the furthest node and ri would be
larger. In the rest of the paper, areas which contain no
sensor nodes are referred to as “vacant area.”

In Fig. 7, the next nodes of the multihop transmission at
individual hops are searched within angular communica-
tion ranges that are pointed outward from the source node
S. The lines li�2, li�1, and li designate the bisectors of the
angular slices at hops i� 1, i, and iþ 1, respectively. Hence,
the multihop distance is established by a sequence of single-
hop distances. The next section outlines the calculation of
the maximum single-hop distance.

3.3 Analysis of Single-Hop Maximum Distance

During the analysis of single-hop maximum distance ri, the
following facts should be considered:

. The vacant region Vi�1 is known to contain no sensors.

. ri is a random variable whose range is upper
bounded by R and is independent of the angular
deviation �i.

. The angular deviation �i is a random variable
uniformly distributed over a range ½� �

2 ;
�
2� and is

independent of ri.

The analysis of single-hop maximum distance is differ-
ent for the first hop from intermediate nodes since the first
hop does not consider a vacant region V0 which does not
exist by definition. However, the introduction of the vacant
region Vi�1 into the analysis of ri is inevitable for
intermediate nodes and requires some additional calcula-
tions due to the shape of Vi�1. Therefore, the single-hop
maximum distance r1 is analyzed first, followed by the
analysis of ri for i ¼ 2; 3; . . .

3.3.1 First-Hop Maximum Distance

The analysis of first-hop maximum distance r1 is the
starting point of our analysis of the more general
intermediate-hop distance ri. In Fig. 8, the location of the
source sensor S, which is known deterministically, is the
apex of the angular slice of the first hop. The following three
conditions should be satisfied for the furthest distance r1 to
be equal to a specific value r1: First, there should be a point
on the circular arc a1 on which every point is r1 away from
S. Second, there should be no sensors within the region

designated as A1. Third, there should be at least one point in
the area S2, as shown in Fig. 8, which is in the angular
communication range of the second hop. The last condition
should be met as otherwise connectivity is lost.

Since point locations are uniformly distributed, the
number of points that can be found within a given area
has a Poisson distribution. Furthermore, the number of
points that are found in nonintersecting areas are indepen-
dent random variables. Considering these facts, the prob-
ability that the three conditions are met can be defined as a
function g = Prob(A sensor on arc a1)�Prob(No sensors in
A1)�Prob(At least one sensor in S2). For an infinitesimal
radial width dr1, Prob(A sensor on arc a1)¼ ��r1dr1.

Using the definition of Poisson distribution and by the

approximation AreaðS2Þ ffi �ðR2�ðR�r1Þ2Þ
2 , g becomes a func-

tion of r1 given by

gðr1Þ ¼ ��r1e
�
��ðR2�r2

1
Þ

2

�
1� e�

��ðR2�ðR�r1Þ2Þ
2

�
dr1: ð3Þ

To find the probability distribution function of r1, the
function gðr1Þ should be normalized over the range of
values that r1 can take. The pdf of r1 is then given by

pr1
ðr1Þ ¼ gðr1Þ

.Z R

0

gðr1Þdr1:

Then, the expected value E½r1� of the first-hop maximum
distance r1 can be found by the following expression:

E½r1� ¼
Z R

0

r1pr1
ðr1Þdr1: ð4Þ

The variance of r1 can be calculated as �2
r1
¼ E½r1

2� �
E½r1�2. Here, the second moment E½r1

2� of r1 is determined
using the following equation:

E
�
r2

1

�
¼
Z R

0

r1
2pr1
ðr1Þdr1: ð5Þ

3.3.2 Intermediate-Hop Maximum Distance

The analysis of the maximum distance ri of intermediate
hops is similar to the analysis of r1. However, the vacant
regions Vi need also be considered.

In Fig. 9a, the lower bound of the range of values that ri

can take is determined by the vacant region Vi�1. However,
the shape of Vi�1 depends on the previous distance ri�1 and
the previous angle of deviation �i�1. Therefore, it is not
possible to define an exact lower bound on the range values
that ri can take for given values of ri�1 and �i�1. Hence, an
approximate lower bound which takes the area of Vi�1 into
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Fig. 8. Analysis of first-hop maximum distance.

Fig. 9. Analysis of intermediate-hop maximum distance. (a) Vacant
region Vi�1 and (b) req.

Fig. 7. Multihop distance formation.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 08,2010 at 21:26:41 UTC from IEEE Xplore.  Restrictions apply. 



account should be determined since this area contains no
sensors. This is shown in Fig. 9b, where req, called equivalent
radius, is the radius of angular slice with the same area as
Vi�1. The Appendix presents the calculation of req for given
values of ri�1 and �i�1.

Calculation of intermediate-hop maximum distance.
req is the lower limit of the intermediate-hop maximum

distance ri�1 and is a function given by reqðri�1; �i�1Þ.
Denoting ri�1 ¼ E½ri�1�, the pdf of ri is given as

gðriÞ ¼ ��rie�
��ðR2�r2

i
Þ

2

�
1� e�

��ðR2�ðR�riÞ2Þ
2

�
;

pri
ðriÞ ¼

gðriÞZ R

reqðri�1;�i�1Þ
gðriÞdri

: ð6Þ

Hence, the expected value E½ri� and the second
moment E½ri

2� of ri are calculated using (7) and (8),
respectively. The variance of ri can be calculated with
�2

ri
¼ E½ri

2� � E½ri�2, where

E½ri� ¼
1

�

Z �
2

��2

Z R

reqðri�1;�i�1Þ
ripri
ðriÞdrid�i�1; ð7Þ

E
�
r2

i

�
¼ 1

�

Z �
2

��2

Z R

reqðri�1;�i�1Þ
r2
i pri
ðriÞdrid�i�1: ð8Þ

3.3.3 Last-Hop Maximum Distance

Since there is no condition that the next hop should exist for
the last hop N , the pdf of the last-hop maximum distance rN

is obtained as follows:

gðrNÞ ¼ ��rNe�
��ðR2�rN 2Þ

2 ;

prN
ðrNÞ ¼

gðrNÞZ R

reqðrN�1;�N�1Þ
gðrNÞdrN

: ð9Þ

Using (9), the expected value and the second moment of

the last hop are found, as given by (10) and (11). Note that the

variance of the last-hop distance is �2
rN
¼ E½r2

N� �E½rN�2,

where

E½rN� ¼
1

�

Z �
2

��2

Z R

reqðrN�1;�N�1Þ
rNprN

ðrNÞdrN d�N�1; ð10Þ

E
�
r2

N

�
¼ 1

�

Z �
2

��2

Z R

reqðrN�1;�N�1Þ
rN

2prN
ðrNÞ drN d�N�1: ð11Þ

3.4 Analysis of Multihop Maximum Distance

This section outlines how the mean E½dN� and standard

deviation �dN
of the maximum multihop distance distribu-

tion pdN
ðdNÞ are calculated.

3.4.1 Expected Multihop Maximum Distance E½dN�
Fig. 10 illustrates the relation between the single-hop

distance ri and the multihop distance di in hop i and the

multihop distance di�1 of the previous hop i� 1. Denoting

� ¼ {�1; �2; �3; . . .g and r ¼ {r1; r2; r3; . . . }, we have

E½di� ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i�1 þ r2
i þ 2ridi�1 cos �i

q� 	
¼ E½gðr; �Þ�;

where g is a function of r and �. Hence,

E½di� ¼
Z R

reqðri�1;�i�1Þ

Z �
2

��2
. . .

. . .

Z R

reqðr1;�1Þ

Z �
2

��2
fðr; �Þd�1dr1 . . . d�idri;

ð12Þ

where fðr; �Þ ¼ gðr; �Þ � pr;�ðr; �Þ and pr;�ðr; �Þ is the joint
probability distribution function.

The computation of the right-hand side of (12) is costly
and not scalable in number of hops. One possible approx-
imation is the representation of E½di� as an iterative relation
dependent on the expected value E½di�1� ¼ di�1 of the
previous hop. This representation is given by

E½di� ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di�1

2 þ ri
2 þ 2ridi�1 cos �i

q� 	
:

Denoting

sðdi�1; ri; �iÞ ¼ pri
ðriÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di�1

2 þ ri2 þ 2ridi�1 cos �i

q
;

the computation of E½dN� is outlined iteratively as follows:

1. d1 ¼ r1 ¼ E½r1�, as given by (4).
2. E½ri� ¼ ri by (7) for 1 < i < N .
3. For 1 < i < N ,

di ¼
1

�2

Z �=2

��=2

Z R

reqðri�1;�i�1Þ

Z �=2

��=2

sðdi�1; ri; �iÞ d�idrid�i�1:

4. Expected multihop distance is then found by

dN ¼
1

�2

Z �=2

��=2

Z R

reqðrN�1;�N�1Þ

Z �=2

��=2

sðdN�1; rN; �NÞ

d�NdrNd�N�1:

3.4.2 Standard Deviation �dN
of Multihop Maximum

Distance

To compute the variance �2
di
¼ E½di

2� �E½di�2, the moment

E½di
2� can be found by

E
�
d2

i

�
¼ E

�
d2

i�1

�
þ E

�
r2

i

�
þ 2E½ridi�1 cos �i�:

Since �i is independent of di�1 and ri, E½ridi�1 cos �i� ¼
E½ridi�1�cos �i, where cos �i is the expected value of cos �i

calculated over the range �i�½��=2; �=2� and is equal to
cos �i ¼ 2

� sin �
2 . Hence, we obtain

E
�
d2

i

�
¼ E

�
d2

i�1

�
þ E

�
r2

i

�
þ 2E½ridi�1�

2

�
sin

�

2
; ð13Þ
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Fig. 10. Calculation of E½dN�.
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where E½ridi�1� ¼ Covðri;di�1Þ þ E½ri�E½di�1�. Since the
correlation of ri with rj for j < i� 1 is negligible compared
to the correlation of ri, we have

E
�
d2

i

�
¼ E

�
d2

i�1

�
þ E

�
r2

i

�
þ 2 Covðri; ri�1Þ þ E½ri�E½di�1�ð Þ 2

�
sin

�

2
:
ð14Þ

Finally, the iterative computation of E½d2
N� is outlined as

follows:

1. E½r2
1� ¼ E½d2

1� by (5).
2. E½r2

i � is found by (8).
3. E½d2

i � is calculated using (14).
4. E½r2

N� is found by (11).
5. E½d2

N� is computed by substituting E½r2
N� and

E½d2
N�1� in (14).

3.5 Approximation Accuracy for Different Angles �

Before moving to the performance analysis of the derived
approximation expressions, the effect of � on the accuracy
of the derived expressions is evaluated. Fig. 11a illustrates
the average percent error in E½dN�. For each value of �, the
error of E½dN� approximation decreases with increasing
node density and settles to a value less than 0.2 percent,
except for � ¼ �=6 which requires a larger node density to
stabilize. One obvious observation is the decreasing amount
of percent error in E½dN� approximation for larger angles,
which shows that our approximation is more accurate when
single hops cover larger angular ranges.

The choice of a large angle, however, causes instability in
the approximation of the standard deviations shown in
Fig. 11b. Despite the decrease in the percent error, the
percentage error of �dN

has a noticeable incline when � ¼
5�=12 for node densities larger than � ¼ 0:001 nodes=m2.
The increasing error for large angles is due to the multi-
plication of the two approximated values of E½di�1ri� and
cos�i in (13). Although these two terms are approximated
with high accuracies of the order of 2.5 and 0.62 percent,
respectively, their multiplication creates significant terms
when � and � are large.

With a less than 2 percent error in approximated E½dN�
and a reasonably low error of 5 percent in �dN

estimation,
we choose the slice angle as � ¼ �=3 for the practical range
of node density values used in our numerical studies. The
subsequent performance analysis of the approximations are
based on the multihop distances with � ¼ �=3.

3.6 Multihop Distances with Shadow Fading Model

The hop distances to a broadcast source in a planar sensor
network depends on the positions of the sensors as well as

their transmission and sensing range patterns. The unit disk
model has been widely used in the current literature for
modeling wireless sensor networks and designing commu-
nication protocols [4], [6], [3], [16]. The unit disk model
defines the communication range as the minimum radius of
a circular reception area within which all transmissions are
successfully received if no interference or packet collisions
exist. In the event that the wireless medium is subject to the
effects of fading, the reception power at receiver nodes is
affected by the distance to the transmitter and decays
exponentially with distance. Furthermore, with the pre-
sence of Gaussian noise, the received power becomes a
random variable. This makes the reception of a packet a
probabilistic event dependent on the distance to the
transmitter node, the statistical characteristics of the
channel noise, transmission power, and the threshold of
reception power. Using the Shadow Fading Model with n
denoting the path loss component, the path loss PLðdÞ at a
distance d from the transmitter is given by [15]

PLðdÞ ¼ PLðd0Þ þ 10:n:log
d

d0


 �
þX�; ð15Þ

where d0 is the reference distance and X� is a zero-mean
Gaussian random variable. Considering this path loss and
denoting the received power at distance d as PRðdÞ, the
probability that a packet is successfully received by a sensor
at a distance d away from the transmitter node, PrðdÞ, is
given by

QðzÞ ¼ 1

2�

Z 1
z

exp
�x2

2
dx;

QðzÞ ¼ 1�Qð�zÞ;
ð16Þ

PrðdÞ ¼ Pr½PRðdÞ > �� ¼ Q � � PrðdÞ
�

� 	
; ð17Þ

where � is the receive threshold and (16) is the Q-function.
When the packet transmissions occur in an environment
subject to random path loss, hop distance patterns are also
affected by this change. Since now the nodes may not
receive a packet with insufficient reception power, the
maximum multihop distance that a packet can traverse in a
given number of hops is effectively reduced. Hence, the
greedy multihop maximization model, as explained in
Section 3, has to consider this change. This can be achieved
by including the probability of packet reception given by
(17) in (3), (6), and (9). Hence, (3) now becomes:

gðr1Þ ¼ Prðr1Þ:��r1e
���ðR

2�r12Þ
2

�
1� e�

��ðR2�ðR�r1Þ2Þ
2

�
dr1; ð18Þ

where Prðr1Þ is found by (17). Note that PrðdÞ is, in fact, the
probability of reception as provided by any fading model
which is a function of communication radius, not necessarily
the Shadow Fading Model. Hence, our model captures the
effect of a given fading model by a multiplicative probability
factor in distance probability functions in (3), (6), and (9).

4 ESTIMATION OF HOP DISTANCE

Apart from the estimation of coverage area boundaries as
shown in previous section, an interesting application of the
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Fig. 11. Average percent error in approximation of E½dN� and �dN
.

(a) Percent error in dN and (b) percent error in �dN
.
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maximum euclidean distance distribution is the estimation of
hop distance between two locations. In fact, hop distance is
usually a more popular metric in WSN research since
parameters like multihop end-to-end delay and total trans-
mission power can be estimated by hop distance. In this
section, hop distance N for a given euclidean distance D is
estimated using the Gamma pdf Model of maximum multi-
hop distance distribution di, where i ¼ 1; 2; 3; . . .

The posterior distribution of N for a given D is

P ðNjDÞ ¼ P ðDjNÞ:P ðNÞPNmax

i¼1 P ðDjiÞ:P ðiÞ
; ð19Þ

where P ðiÞ is the probability that a randomly selected node
is i hops away from the source node.

The maximum a posteriori (MAP) estimate of N is

bNMAP ¼ arg max
N

P ðDjNÞ:P ðNÞPNmax

i¼1 P ðDjiÞ:P ðiÞ

 !
: ð20Þ

The probability P ðiÞ can be approximated by calculating
the area where nodes with hop distance i are located and
then taking the ratio of this area to the area of the whole
network. Assuming that a maximum hop distance of Nmax

is created as a result of the broadcast, we have

P ðiÞ ffi
�
�
d2
i � d2

i�1



�dNmax

2
: ð21Þ

Hence, (20) is modified to obtain:

bNMAP ¼ arg maxN
P ðDjNÞ:

�
d2
N � d2

N�1


PNmax

i¼1 P ðDjiÞ:
�
d2
i � d2

i�1


 !
: ð22Þ

Note that the value of Nmax depends on factors like
topology size, node locations, sensor communication range,
and node density.Nmax is lower bounded by bDM=Rc, where
DM , say, is the maximum distance to the source sensor found
in the topology, which is possible in case of infinite node
density. Since node density is finite and connectivity patterns
vary for different topologies, an exact value of Nmax is
difficult to estimate. However, in (22), Nmax is canceled out
when taking the ratio of P ðNÞ and P ðiÞ , yet it still appears as
an upper bound of the summation. The pdf P ðdiÞ has low
tails as observed in Fig. 2c, and the proportion of the pdf
terms for higher hop distances in the summation diminishes
quickly and become negligibly small as i increases. Hence,
for computational purposes,Nmax in (22) can be chosen as an
arbitrarily large number.

Equation (22) provides the MAP estimation of the hop
distance for a given euclidean distance D. However, the
posterior probability P ðDjNÞ is unknown for individual
values of hop distance i. On the other hand, the distribution
of di for i ¼ 1; 2; 3; . . . is modeled by the Gamma pdf and
can be used to calculate P ðDjNÞ by meeting the following
requirements [13]:

1. D�R � dN�1 < D.
2. 0 < dj < D�R; 8j < N � 1.
3. There must be at least one point in the area A, as

shown in Fig. 12.

Hence, P ðDjNÞ is equal to

P ðDjNÞ ¼ Probfd�R � dN�1 < Dg:
Probf0 < dj < D�Rg:ð1� e�AÞ:

ð23Þ

Area A is calculated using the following equations:

x ¼ D
2 þ d2

i�1 �R2

2D
;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
i�1 � x2

q
;

�1 ¼ arctan
y

D� x
� ���� ���;

�2 ¼ arctan
y

x

� ���� ���;
A ¼ �1ðR2Þ � yðD� xÞ þ �2d

2
i�1 � yx:

ð24Þ

Hence, P ðDjNÞ is found by

P ðDjNÞ ¼
Z D

d�R
pdN�1

ðdN�1ÞddN�1;

YN�2

j¼1

Z D�R

0

pdj
ðdjÞddj

 !
:ð1� e�AÞ:

ð25Þ

Finally, (25) is plugged in (22) to calculate the MAP
estimation of hop distance for a given euclidean distance D.

5 NUMERICAL RESULTS

In this section, the results of our analytical approximations for
the expected value and standard deviation of the maximum
euclidean distance dN are presented and compared with the
simulation results. Furthermore, the distribution of dN is
approximated using a transformed Gamma distribution for
various node densities. The simulation results are the
averages of 10,000 independent topologies for all values of
the node density, � ¼ 0:0005; 0:00075; 0:001; 0:0015, and
0:002 nodes=m2. In each simulation, the source sensor is
placed in the middle of a topology of size 1;600 m� 1;600 m.
The communication range of sensor nodes is R ¼ 100 m and
the angular range is � ¼ �=3. The simulations are carried out
by a broadcast from the source sensor to the network and
determining the hop distances of individual nodes to the
source. For each hop distance, the greedy propagation locates
the node with the maximum distance to the previously
selected node toward the direction of propagation as outlined
in Section 2.2. The separation between the source sensor and
this new node is recorded as the multihop distance for that
particular hop distance in that simulation.
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Fig. 12. Area A should contain a node.
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5.1 Mean and Standard Deviation of ri

Fig. 13a illustrates the comparison between the simulated
and analytical expected single-hop maximum distance
E½ri�. The increase in the accuracy of the approximations
with increasing node density can be observed. Further-
more, E½ri� becomes larger with the increase in node
density. The approximated single-hop distances are close to
the simulation results and the accuracy is enhanced for
higher node densities.

The approximation result of the single-hop standard
deviation �ri

is shown in Fig. 13b. With larger node density,
the accuracy of the approximation of �ri

increases while the
magnitude of �ri

decreases.

5.2 Mean and Standard Deviation of dN

Fig. 14a illustrates the comparison between analytical and
simulated E½dN� in case of different node density values �.
It can be observed that E½dN� monotonically increases for
increasing node density. Furthermore, the approximations
closely match the simulation values with negligible errors
which become even smaller for higher node densities.

The standard deviation of dN is shown in Fig. 14b as an
error bar around the expected value. In this figure, only the
highest and the lowest density values used in the simula-
tions are shown for better visualization of the error bars.
The accuracy of the approximated �dN

is higher for the
higher node density. Furthermore, the increase in standard
deviation for increasing hop distance N and lower node
density can be observed.

5.3 Approximation of the pdf of dN

The pdf of the maximum euclidean distance dN correspond-
ing to a hop distance N is approximated by a “transformed”

Gamma distribution, as explained in Section 2.3. After
calculating E½dN� and �dN

, the parameters a and b of the
Gamma distribution of the remaining distance x are
calculated. Then, transformation di ¼ iR� x is applied to
get the analytical approximation of the distribution of dN.

In Fig. 15, our approximation of multihop distance
distribution is illustrated for low and high node density
values � ¼ 0:0005 nodes=m2 and � ¼ 0:002 nodes=m2, re-
spectively. The distribution of dN becomes more peaked
with increasing node density and the pdf curves corre-
sponding to different values of hop distance N get more
separated from each other due to the decrease in �dN

caused
by larger node density.

The comparison of the 1D Model [10], [12] and the
proposed 2D Model is demonstrated in Fig. 16. In this
figure, the root-mean-square error (RMSE) between the
model pdf and the distribution obtained by simulations is
shown. Different corridor widths (W ) are evaluated for the
1D Model. In most cases, the least RMSE is obtained for
W ¼ R. It is observed that the RMSE of the 2D Model is
less than the RMSE of the 1D Model regardless of the
corridor widths W . Furthermore, the RMSE of the 2D
Model is more invariant to changing hop distance values
when compared with the RMSE of 1D Model. In summary,
Fig. 16 clearly illustrates that our proposed 2D model is a
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Fig. 15. Approximation of pdN
ðdN Þ for low and high density. (a) � ¼

0:0005 nodes=m2 and (b) � ¼ 0:002 nodes=m2.

Fig. 16. Root-mean-square error of 1D and 2D Models. (a) � ¼
0:0005 nodes=m2, (b) � ¼ 0:001 nodes=m2, and (c) � ¼ 0:002 nodes=m2.

Fig. 14. Approximation of E½dN� and �dN
. (a) Approximation of E½dN�

and (b) approximation of �dN
.

Fig. 13. Approximation of E½ri] and �ri . (a) Approximation of E½ri� and
(b) approximation of �ri .
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more accurate representation of the planar multihop
maximum distance distribution.

5.4 Edge Effects

The analysis in Section 2 reveals the relationship between
hop distance and euclidean distance in the greedy multihop
forwarding mechanism, as outlined in Section 2.2. In this
section, we study the effect of topology borders on the
proposed estimation method.

Topology borders limit the distance that can be taken in a
multihop path. For an n-hop path (if it exists) toward a
border, the search area of the final hop (hop n) may not be
sufficiently large to form an angular slice, as defined in
Section 2.2. This is an edge effect which reduces the multihop
path distance.

The edge effect is not observed on an n-hop path when
the distance to the border is sufficiently large. For a
communication range of R, a distance of nR from the
source node to the border ensures that the angular slice
search area of each hop of the greedy multihop forwarding
can be formed without being limited by the border. Hence,
scenarios with source node located at the center of
topologies of size 2nR� 2nR avoid the edge effect on paths
of length n and less.

The average multihop distance is determined via
simulations for each hop distance value n. To find the
average distance in n hops for a selected source node
location, 2,000 independent topologies are formed, and for
each topology, a single sample multihop path of n hops is
located. This path is determined by choosing a random
initial direction (as outlined in Section 2.2. Note that if this
random initial direction does not produce a multihop path
of length n, we aggressively scan the whole area for an
angle that produces an n-hop path for that particular
simulation topology. With this setting, some of the n-hop
paths experience distance limitation by the border since the
distance of the source node to the border is not guaranteed
to be sufficiently large to avoid the edge effect. Further-
more, note that with a random choice of propagation
direction, not all the n-hop paths experience a distance
reduction. However, on average, the effect is a decrease in
the expected multihop euclidean distance of a randomly
chosen n-hop path. In the simulations, it is observed that the
reduction in the multihop euclidean distance is largely
caused by the decrease in the distance taken in the final hop
under the edge effects.

In Fig. 18, we study the effect of edges on the multihop
distance estimation in terms of the average of percent error
defined by % error ¼ 100� ja�eja , where a and e denote an

analytical and a simulation result for a multihop distance
value, respectively. First, the source sensor is placed away
from the topology center and at increasingly closer locations
toward one of the edges. For a topology of size 5R� 5R,
these locations are arbitrarily chosen to be at coordinates
ð�4R, 0Þ, ð�3R, 0Þ, ð�2R, 0Þ, and ð�R, 0Þ, where ð0, 0Þ is the
topology center. Fig. 17 demonstrates the topology shape
and the chosen source node locations. Fig. 18a shows the
average percent error in multihop distance estimation with
this set of source locations at topologies of node density
� ¼ 0:001 nodes=m2. Note that for each source location
value, a new set of 2,000 independent topologies of random
node locations are formed. For each topology, a single-
sample multihop path is selected for each hop distance n.
Second, we place the source node at randomly selected
locations and vary the node density. Similarly, we form
2,000 independent topologies for each node density value.
The average percent error results are illustrated in Fig. 18b.

In Fig. 18a, when the source node is sufficiently close to
the edge, the percent error graphs make a peak. For instance,
the graph for source location ð�2R; 0Þ has a peak at hop
distance 4. Note that the shortest distance of this location to
the edge is 3R. Paths of length 3 and less are not affected by
the edge and have comparable percent error with those of
topologies with source node at the center. However, for 4-
hop paths, we observe a peak in percent error as some of
these paths experience a distance reduction in their final
(4th) hops. On the other hand, it is less likely that paths of
higher hop distance are formed toward the edge at this
proximity to the edge; hence, longer paths can be established
in directions away from the edge. Therefore, the average of
the percent error in distance estimation is less for higher
values of n. Similar trends are observed at other source
locations, although the peak of the graph is observed at a
smaller hop distance value for locations closer to the edge.
Another observation in Fig. 18a is that the average percent
error value of the peak location is higher when the source is
closer to the edge. As mentioned before, the peak location is
found at a smaller hop distance when the source node is
closer to the edge. Furthermore, the edge effect is pre-
dominantly on the final hop a multihop path and reduces its
span, with an amount of reduction comparable for all values
of hop distance. Hence, for a smaller hop distance, the
corresponding euclidean distance is smaller and the ratio
between the distance reduction and the path distance gets
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Fig. 17. Topology shape and source locations.

Fig. 18. Percent error in expected multihop distance estimation due to
the edge effect. Topology size: 5R� 5R. Different source locations.
(a) Source node approaching an edge and (b) random source locations,
different node density values.
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higher, producing a higher percent error in distance
estimation. (Recall that the estimated multihop distance is
close to the multihop value as obtained without the edge
effects.)

In Fig. 18b, three different node density values are tested
to study the edge effect on distance estimation. The results
demonstrate that for a smaller node density, the edge effect is
less pronounced. This is an expected result since the edge
effect reduces the final hop distance of a multihop path,
which has a stronger limitation on higher densities with
larger single-hop spans. As the node density gets smaller, the
node with the maximum distance in the final hop is located
closer to the most recently selected node (as outlined in
Section 2.2) and its location is limited less frequently by the
topology border. The diminishing character in the average
percent error values is caused by the decrease in the ratio
between the amount of distance in the final hop to the
multihop path distance as the hop distance increases.

5.5 Approximation of Hop Distance pmf, P ðNjDÞ
The MAP estimator of hop distance N for given euclidean
distance D presented in Section 4 and given by (25) is
studied for randomly selected values of D. Figs. 19 and 20
illustrate the probability mass function obtained by simula-
tions and (19) for randomly deployed networks with
uniform node density values � ¼ 0:001 nodes=m2 and
� ¼ 0:002 nodes=m2, respectively. The results show that
the most likely hop distance is estimated accurately for all
euclidean distances and for both node density values.
Furthermore, there are two major hop distances that are
observed for each euclidean distance D when node density
is � ¼ 0:001 nodes=m2, whereas only a single-hop distance
has the dominant probability value in the pmf when the
node density is increased to � ¼ 0:002 nodes=m2 indicating a
more deterministic distribution.

6 CONCLUSION

Determination of the maximum multihop euclidean dis-
tance corresponding to a given hop distance in a 2D
network is a complex problem. In this paper, we propose a

greedy distance maximization model which approximates

the maximum multihop euclidean distance in planar net-

works. We demonstrated that the Gaussian pdf used to

model the maximum multihop distance distribution in 1D

networks does not accurately represent the planar distance

distribution. Using maximum likelihood estimation of

distance distributions, we conjectured that the maximum

distance can be accurately modeled by a transformation of

the Gamma distribution. Furthermore, we provided expres-

sions for the expected value and standard deviation of this

distribution, which can be used to compute the parameters

of the distribution and defines it uniquely. In order to

investigate the accuracy of the model, extensive simulations

are made. Distribution results are also used to estimate hop

distance in a planar network using an MAP estimator.

APPENDIX

CALCULATION OF req
Derivation of the equivalent radius req at a hop i is carried

out according to Fig. 21 in Cartesian coordinates and
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Fig. 20. Estimation of hop distance pmf for � ¼ 0:002 nodes=m2.

Fig. 21. Calculation of equivalent radius req.

Fig. 19. Estimation of hop distance pmf for � ¼ 0:001 nodes=m2.
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requires determining the area of the vacant region Vi�1 for
the given values of ri�1 and �i�1.

The x- and y-axes lines in (21) are any two lines that are
perpendicular to each other passing through the source
sensor node S which is the origin of the Cartesian
coordinate system. li�1 and li�2 are the bisector lines of
the angular communication ranges of nodes Pi�1 and Pi�2,
respectively. Furthermore, the lines lA and lB designate the
angular range of the sensor Pi�1. Points A and B are the
intersection points of the circular arc of the communication
range of Pi�2 with lA and lB, respectively.

As can be observed in Fig. 21, the area of the vacant
region is defined by the circular arc of the communication
range of Pi�2 and the points AðxA; yAÞ, BðxB; yBÞ, and
Pi�1ðxi�1; yi�1Þ. Hence, first, the Cartesian coordinates of
the point Pi�1ðxi�1; yi�1Þ are calculated by xi�1 ¼ xi�2 þ
ri�1 cosð�i�2 þ �i�1Þ, and yi�1 ¼ yi�2 þ ri�1 sinð�i�2 þ �i�1Þ,
where �i�2 ¼ arctanðyi�2

xi�2
Þ. This requires the coordinate

information Pi�2ðxi�2; yi�2Þ. Note that the choice of the x-
and y-axes lines only makes a rotation of all sensor locations
around the origin S without changing their relative
positions. Hence, as long as the distance di�2 between Pi�2

and S is preserved, the choice of the axis lines determines
the Cartesian coordinates ðxi�2; yi�2Þ and vice versa. There-
fore, we can choose any pair of coordinates ðxi�2; yi�2Þ that
satisfies the distance expression di�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i�2 þ y2

i�2

p
.

Second, the coordinates ðxA; yAÞ and ðxB; yBÞ are calcu-
lated using the equations of the lines lA and lB and the circular
communication range of the sensor Pi�2. This calculation
requires the coordinates ofPi�1ðxi�1; yi�1Þ as well as the angle
�i�1 given by �i�1 ¼ �i�2 þ arccosðdi�2þri�1 cos �i�1

di�1
Þ, where

distance di�1 is calculated by

di�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
i�2 þ ri�1

2 þ 2ri�1di�2 cos �i�1

q
:

Fig. 22 outlines the calculation of the area of the vacant
region Vi�1 using the coordinates of the points AðxA; yAÞ,
BðxB; yBÞ, Pi�1ðxi�1; yi�1Þ, and Pi�2ðxi�2; yi�2Þ. As can be
seen in this figure, areas of A1 and A2, and the area of the
region Vi�1 add up to the area of the angular slice defined
by the points Pi�2, A, and B. Hence, the areas A1 and A2 are
first determined and then their sum is subtracted from the
area of the angular slice to find the area Vi�1. First, the
lengths la and lb are calculated. Then, using the definition of
the semimeter s of a triangle and Heron’s formula [14] , the
areas A1 and A2 are calculated by

AreaðA1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAðsA �RÞðsA � ri�1ÞðsA � laÞ

p

and

AreaðA2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sBðsB �RÞðsB � ri�1ÞðsB � lbÞ

p
;

where sA ¼ 1
2 ðla þRþ ri�1Þ and sB ¼ 1

2 ðlb þRþ ri�1Þ. The
area of the angular slice defined by points Pi�1, A, and B in
Fig. 22 is equal to AreaðSliceðPi�2; A;BÞÞ ¼ 	R2

2 , where

	 ¼ 	1 þ 	2 ¼ arccos
R2 þ ri�1

2 � la2

2Rri�1


 �
þ arccos

R2 þ ri�1
2 � lb2

2Rri�1


 �
:

Hence, the area of the vacant region Vi�1 and the equivalent
radius req is given by

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AreaðVi�1Þ

�

r
and AreaðVi�1Þ is given as

AreaðVi�1Þ ¼
	R2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAðsA �RÞðsA � ri�1ÞðsA � laÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sBðsB �RÞðsB � ri�1ÞðsB � lbÞ

p
:
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