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Abstract—Many recent advances in MAC protocols for wireless
sensor networks have been proposed to reduce idle listening, an
energy wasteful state of the radio. Low-Power-Listening (LPL)
protocols transmit packets for ti s (the “inter-listening interval”),
thereby allowing nodes to sleep for long periods of time between
channel probes. The inter-listening interval as well as thepartic-
ular type of LPL protocol should be well matched to the network
conditions. In this paper, we propose network-aware adaptation
of the specific succession of repeated packets over theti interval
(the “MAC schedule”), which yields significant energy savings.
Moreover, someLPL protocols interrupt communication between
the sender and the receiver after the data packet has been
successfully received. We propose a new and simple adaptation
of the “transmit / receive schedule” to synchronize nodes ona
slowly changing path so that energy consumption and delay are
further reduced, at no cost of overhead in most cases. Our results
show that using network-aware adaptation of the MAC schedule
provides up to 30% increase in lifetime for different traffic
scenarios. Additional adaptation of the transmit / receiveschedule
to automatically synchronize the nodes can reduce packet delivery
delays by up to 50%, providing an additional decrease in energy
consumption of 18%.

Index Terms—Low-Power-Listening, MAC, Path Synchroniza-
tion, Adaptation.

I. I NTRODUCTION

A PPLICATIONS for wireless sensor networks (WSN) are
becoming increasingly complex, and they require the

network to maintain a satisfactory level of operation for
extended periods of time. Consequently, sensor networks have
to make the best possible use of their initial energy resources,
specifically by constantly adapting their protocols to the
changing conditions in the network. Both protocol-specific
and cross-layer schemes have offered a plethora of energy
reducing techniques. In particular, there are several protocols
that focus on reducing energy at the data link / MAC layer,
which constitutes the scope of this work. In this paper, we
investigate how to keep the radio in its energy-conserving sleep
mode for as long as possible.

We offer three ways to adapt several key aspects of MAC
protocols. The first idea presented in this paper discusses
switching between MAC schedules to adopt the most energy-
efficient pattern of packet transmissions and receptions. Be-
cause different areas in the network experience different and
changing loads of traffic, the MAC protocol should utilize the
schedule most economical for the local conditions. Secondly,
we propose to synchronize nodes so as to reduce transmission
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time and thus energy consumption and packet delivery delays.
A third technique controls the inter-listening time to conditions
in the network and is exposed in [1].

As new sensor network platforms have appeared on the
market, a simple observation was made that idle listening,
far from being negligible, was a major source of energy
consumption [2] [3] [4]. Low-Power-Listening (LPL) and
Preamble Sampling (PS) MAC protocols were introduced as
a result. In his taxonomy of MAC protocols [5], Langendoën
identifiesLPL and PS protocols as two branches of random
access MAC protocols, with the only difference thatLPL
MAC protocols need not know anything about their neighbors
and their wake-up schedules. Both types of MAC protocols,
including B-MAC [2], WiseMAC [6], SyncWUF [7] and X-
MAC [8], use the insight behind Aloha with PS [9]: the
sending node occupies the medium for longti

1 intervals to
signal its imminent packet transmission. Receiving nodes are
thus allowed to sleep for at most the duration of this preamble
(ti s), and they must stay awake when they sense a busy
medium until the packet transfer is complete. In this work, we
consider only theLPL branch of the Langendoën taxonomy
(although many of our results can be transposed to other
MAC protocols), and we define “(LPL) MAC schedule” as the
pattern of packet transmissions occurring within theti interval.

Changes in radios have forced researchers to abandon B-
MAC and a few otherLPL protocols in some cases: although
it paved the way to new MAC protocols, B-MAC, which uses
a variable-length preamble to signal the impending packet
transmission, can no longer be implemented as proposed on
the new IEEE 802.15.4 compliant platforms because this
standard has a fixed preamble length of only a few bytes.
We assume such a target radio, and make design and research
decisions accordingly—thus B-MAC is not included in our
work. After the introduction of new radios, researchers intro-
duced newLPL andPSprotocols: X-MAC [8], C-MAC [10],
WiseMAC [6], CSMA-MPS [11] and SpeckMac [12] are
among the most popular contributions. These protocols are
based on repeating either the data packet itself (SpeckMAC
and CSMA-MPS), or an advertisement packet (X-MAC / C-
MAC), in place of a long preamble. The details of the
transmission schedules (the “MAC schedules”) are given in
Figure 1.

In the initial part of this work, we prove that while theLPL
family of MAC protocols generally lowers energy consump-

1The notationti was borrowed from the work in [2].
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Fig. 1. MAC schedule for B-MAC, X-MAC, MX-MAC, and SpeckMAC.

tion without resorting to explicit exchange of active / inactive
schedules between nodes, low duty cycles (or equivalently,
high ti values) drastically favor receiving nodes over mostly-
sending nodes and induce higher delays and contention. As
Figure 1 shows, for theseLPL protocols, only one data packet
can be transmitted perti cycle, which can cause a packet to
experience high delay over several hops, and the network to
deliver small data rates. Concern for delay may force network
designers to select a high duty cycle that would limit energy
savings. We address this problem in the second part of our
work by synchronizing the transmitting / receiving schedules
of nodes on a slowly-changing routing tree.

This paper’s contributions are threefold:

• We propose switching MAC schedules from a pool of
MAC protocols at the transmitter to minimize energy
consumption based on parameters such as packet size,
whether the packet is broadcast or unicast, and the
estimated ratio of transmit to receive packets in the local
neighborhood. The protocols are “compatible” because
they are interchangeable: the receiver does not need to
know what specific schedule is being used, it simply
wakes up and senses the channel everyti seconds and
sends an ACK frame when required by the received
packet. As a consequence, this protocol, calledMiX-MAC,
requires no overhead, and our implementation of this
approach shows that lifetime gains can reach up to 30%.

• Because we utilize existing MAC protocols for our pool,
we provide a detailed study of two existingLPL MAC
protocols, X-MAC and SpeckMAC, in a head-to-head
comparison, showing the advantages and disadvantages of
each approach for both unicast and broadcast packets. We
also identify MX-MAC, a modified version of CSMA-
MPS, that is compatible with the X-MAC and SpeckMAC
schedules.

• We propose to synchronize nodes along a slowly-
changing routing path so as to minimize energy con-
sumption and packet delay,without explicit scheduling

between nodes or overhead of any sort. Only threeLPL
protocols can be selected to synchronize on unicast pack-
ets: X-MAC, C-MAC and MX-MAC. These protocols
form a subfamily ofLPL protocols that can be interrupted
by the receiver. For unicast packets, the sender stops
its stream of advertisement (X-MAC / C-MAC) or data
(MX-MAC) packets after receiving an acknowledgement
frame. Sender and receiver can then be synchronized to
wake-up sequentially within a short interval. Conversely,
SpeckMAC, which cannot be interrupted, needs explicit
notification within nodes to synchronize.

This paper continues with a discussion of related work
in Section II. Section III then introduces MiX-MAC, one of
the main concepts of this work. Section IV provides details
of our implementation of various MAC protocols on the
Tmote Sky motes, as well as results from experiments with
this implementation, showing the advantages of MiX-MAC.
We introduce node synchronization, the second concept of
this work, in Section V. Section VI provides simulation and
implementation results showing the benefits of synchronizing
transmit / receive schedules for the individualLPL protocols
as well as for MiX-MAC. Finally, Section VII concludes this
work.

II. RELATED WORK

Aloha with Preamble Sampling (PS) was one of the first
channel probing schemes proposed for wireless sensor net-
works [9]. In this approach, packets are sent with a preamble
greater than or equal to the channel check intervalti. Nodes
periodically wake up and sense the medium. If the channel is
busy, the probing node stays in receive mode until the data
packet transmission is complete. Otherwise, the probing node
goes back to sleep. El-Hoiydi developed an analytical model
for Aloha with PS and studied its performance using four
metrics: throughput, delay, power consumption, and lifetime.
The transmit and receive powers assumed by El-Hoiydi in [9]
led the author to recommend limiting the use of Aloha with
PS.

Following Aloha with PS, El-Hoiydi et al. introduced
WiseMAC [6], a MAC protocol that reduces the preamble
length before sending a data packet by exchanging wake-
up schedules between neighbors. However, WiseMAC as
originally proposed (like B-MAC) cannot be implemented on
802.15.4 radios2. Moreover, piggybacking scheduling infor-
mation to acknowledgment frames, as required by WiseMAC,
supposes that hardware acknowledgments may not be used.
Hardware ACK frames are considerably faster than software
acknowledgments (by a factor of two to five depending on
packet size and code optimization) and allow the radio to
return to sleep much earlier, resulting in significant energy
savings. For these reasons, and because it is classified under
the PS family of MAC protocols, it was not included in most
of our study. We show that explicit scheduling between nodes

2An updated version of WiseMAC was proposed for 802.15.4 compliant
radios, where a repetition of frames, similar to SpeckMAC’sschedule,
replaced a long preamble.
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is unnecessary because it can be achieved implicitly with X-
MAC, C-MAC, or MX-MAC.

B-MAC [2] with LPL was the first MAC protocol to
introduceLPL schedules for recent radios (with WiseMAC
being the first forPSMAC protocols). Polastre et al. provide
a model forLPL with strong consideration for the target radio.
The authors thoroughly compare B-MAC to S-MAC [3] and
T-MAC [4]. To curb limitations imposed on the receiving
node to stay awake for the time of the preamble, Polastre et
al. propose sending packets with half-sized preambles. Post-
B-MAC protocols include X-MAC [8] and SpeckMAC [12].
Both protocols are of the channel-probing family and tried
to improve theLPL scheme presented by B-MAC. Further
explanation of these protocols is provided in Section III.

Although more recent, C-MAC [10] uses the same schedule
as X-MAC and is therefore included in our work under the
same principles that govern X-MAC.

In [12], Wong and Arvind propose SpeckMAC, a family
of LPL MAC protocols, which include SpeckMAC-B and
SpeckMAC-D. The SpeckMAC protocol family is intended
for miniature motes called specks. SpeckMAC-B stands for
Back off and replaces the long preamble with a sequence
of wake up packets containing the destination target and the
time when the data packet will be sent. This allows receiving
nodes to sleep for the remainder ofti and activate just in
time for data reception. However, this scheduling supposes
fine time synchronization between nodes, which we do not
assume in this work. Wong and Arvind develop a model
for the SpeckMAC protocols and study their impact on the
ProSpeckz platform (a larger speck of size one square inch),
while comparing them to B-MAC. SpeckMAC-D is described
in Section III-D and Figure 1.

Keshavarzian et al. proposed to stagger wake-up schedules
for random access protocols [13]. Several cases, depending
on the direction (forward or backward) of the traffic, are con-
sidered. The “shifted even and odd” wake-up pattern reduces
packet delivery delays: all nodes shift their wake-up schedule
by T /2 with respect to their previous hop, whereT is the inter-
listening time. At worst, the delay is(h + 1)T

2 . The ladder
pattern forces nodes to wake up only a few milliseconds after
their previous hop. Multi-parent ladders account for the case
when networks have multiple branches: the inter-wake-up time
T is divided to accommodate various branches.

Similarly, Lu et al. proposed DMAC [14], a MAC protocol
whose goal, much like ours, is to stagger wake-up schedules
over paths of a data-gathering tree. DMAC defines receive
and transmit slots for unicast packet exchange at every node.
In order to achieve synchronization, the slots are staggered
along paths through the explicit exchange of schedules among
neighbors. Because a node must know the RX / TX slots
of its neighbors, DMAC requires local time synchronization.
Additionally, broadcast packets from the data sink to the
leaf nodes are only supported in specific slots, which may
cause increased latency and energy waste when these slots
are not used. Our transmit / receive schedule synchroniza-
tion approach conserves synchronization for these centrifugal
flows. The improvements obtained by DMAC are significant
and convincing, and we faced many of the same hurdles as

Lu et al. However, our scheme achieves similar resultswithout
the overhead and limitations supposed by DMAC and comes
at specifically no additional cost when the interruptibleLPL
protocols X-MAC, C-MAC or MX-MAC protocols are used
within the scope of applications chosen for D-MAC.

Much work has been dedicated to the task of adapting
MAC protocols to conditions in the local neighborhood of
a node [4] [15] [16]. The authors in [15] propose several
variants of 1-hopMAC, which is a receiver-based cross-layer
routing and MAC protocol. Watteyne et al. propose switching
between two different schedules based on a routing function
f . MiX-MAC follows a similar idea, although it utilizes a
wider range of parameters to compute switching thresholds.
Moreover, MiX-MAC considers schedules for broadcast pack-
ets, which is not addressed in [15]. In [4], van Dam and
Langendöen propose to improve S-MAC by a novel adaptive
active / sleep duty cycle. Their protocol, T-MAC sends packets
in bursts during active periods, and if no activity is detected
during a small window of time, nodes return to sleep. As
a consequence, nodes have a shorter duty cycle under T-
MAC. In [16], Pham and Jha introduce MS-MAC, an S-MAC
based protocol that adapts S-MAC’s listening, sleeping and
synchronization cycles to anticipated node movements. Node
displacement is calculated from changes in signal strength;
in case of rapid movements, a sending node hastens packet
transmissions before a connection is lost.

In this paper, we build on this past body of work, utilizing
the idea of adapting to current network conditions and specif-
ically focusing on adaptingLPL MAC protocols, which have
proven quite energy-efficient for low data-rate wireless sensor
network applications.

III. M IX-MAC: A H IGHLY ADAPTABLE MAC PROTOCOL

A. Principles of MiX-MAC

No protocol in theLPL family outperforms the others over
all potential conditions in the network. Selecting a MAC pro-
tocol supposes a compromise between excellent performance
under certain circumstances (hoped to be the common case),
and suboptimal operation otherwise. Various protocols may
perform differently according to the broadcast / unicast nature
of the exchanged packets, the size of the packets, or whether
a node is mostly receiving or sending packets. Adapting
the MAC schedule allows optimal performance across those
parameters.

Additionally, adaptation must occur during runtime since
the traffic patterns in the network may not be knowna-priori.
In a tracking application for instance, the appearance of an
object modifies the ratio of broadcast-to-unicast packets and
their sizes. A MAC protocol chosen for its good performance
when no object is detected would probably be sub-optimal
when a target is being tracked.

We propose creating a pool of MAC schedules that are
compatiblewith one another: while the sender may decide
which schedule to follow based on the parameters mentioned
above, the receiver need not be informed of the changes in
MAC schedules. For instance, a sender choosing a certain
MAC schedule may expect an ACK frame between packet
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transmissions; it will thus stay in receiving mode for a given
time before it returns to transmitting mode. At the other endof
the communication, a receiver simply wakes up periodically,
and occasionally receives packets. If a received packet is
marked with an acknowledgment request, it immediately sends
an ACK frame. Switching between interchangeable MAC
schedules guarantees that gains in energy and latency are
achieved without any overhead other than the computation
required to determine the best schedule to use. We call this
approach, whereby the MAC schedule is adapted over time,
MiX-MAC.

A small look up table within MiX-MAC helps in deciding
what schedule is best suited for the current node, network
and application conditions. This solution proves inexpensive
in terms of computation power during runtime. The threshold
values dictating a change in the MiX-MAC schedule can
be established before deployment using simulation and im-
plementation results. As we will show, inaccuracies in the
estimates of current node, network and application conditions
do not have a major impact on the performance of MiX-MAC.

Existing MAC protocols were included as part of the pool of
compatible MAC schedules: X-MAC [8] and SpeckMAC [12],
which were introduced around the same time. However, we
also added an adaptation of CSMA-MPS, called MX-MAC.

B. X-MAC: A Short Preamble MAC Protocol

Under the X-MAC [8] schedule, a sender repeats the trans-
mission of an advertisement packet containing the address of
the intended receiver. Upon hearing the advertisement packet,
the receiver replies with an ACK, which is followed by
the transmission of the data packet by the sender. Figure 1
illustrates this process.

In [8], Buettner et al. do not propose implementing X-MAC
for broadcast packets. X-MAC cannot broadcast packets as is,
as the flow of advertisement packets cannot be answered by
an ACK packet. A natural extension to X-MAC is to repeat
advertisement packets forti and then send the data packet;
however, receiving nodes have to wait until the completion
of the advertisement cycle before they can receive the data
packet—and go back to sleep (on average, they must wait for
ti

2 + ttxPacket). In such cases, X-MAC performs equally to
B-MAC, with the added advantage that it can be implemented
using fixed preambles.

C. MX-MAC: a LPL Variant of CSMA-MPS Compatible with
X-MAC and SpeckMAC Schedules

In [8], Buettner et al. make a convincing case for the energy
and latency gains achieved by their proposed X-MAC protocol.
Although efficient for unicast packets, this simple scheme is
not well suited for broadcast transmissions. One additional
drawback to X-MAC is its sensitivity to the hidden node
problem and the persistence of a high risk of false positive
packet reception acknowledgements. Indeed, early ACKs are
sent and received before the data packet is transmitted, which
does not guarantee successful reception of the packet.

Although it was introduced prior to X-MAC, CSMA-
MPS [11] can be seen as a modification of X-MAC suitable for

broadcast transmissions. CSMA-MPS repeats the data packet
with its own wake-up schedule information and waits for
ACK frames between transmissions. A received ACK signifies
that the data packet has been correctly received and stops
the transmission flow of data packets. This renders the MAC
protocol immune to false positive packet receptions.

Although Mahlknecht et al. do not mention this point
directly, the MAC schedule they propose can be adapted to
broadcast packet transmissions so long as the sender does not
request acknowledgment of the frames. Consequently, multiple
receivers of the same packet may wake up, stay in RX mode
until the full reception of a packet, and go back to sleep.

However, because CSMA-MPS must include scheduling
information in every frame, which we do not need thanks to the
implicit synchronization presented in Section V, and because
it decouples channel probes from transmissions (much like
WiseMAC, but unlike X-MAC), the MAC schedule presented
by Mahlknecht et al. is not fully compatible with X-MAC
and SpeckMAC. This is the reason why Langendöen [5]
classifies it on thePS branch of MAC protocols. Therefore,
we introduce MX-MAC, theLPL pendant to CSMA-MPS.
Figure 1 illustrates the timeline for MX-MAC. In MX-MAC,
the data packets contain no scheduling information, and a node
may wake up only once perti period to probe the medium
and possibly send a packet immediately following the probe.

D. SpeckMAC: Repeating the Data Packet

Another medium sensing protocol is SpeckMAC (precisely,
SpeckMAC-D) [12]. In SpeckMAC, if a sender wants to
transmit a packet to a receiver, it performs a clear channel
assessment (CCA), and if successful, starts repeating the
packet for at leastti seconds. When a receiver wakes up, it
checks the medium. If busy, it listens until it has received a
full data packet or until it realizes that it is not the intended
destination for the packet. Figure 1 illustrates the transmission
schedule for SpeckMAC.

MiX-MAC alternatively uses the MAC schedules of X-
MAC / C-MAC, MX-MAC or SpeckMAC based on a look-
up table. In order to implement MiX-MAC, we must populate
the table and find the appropriate switching thresholds through
simulations and actual implementation of various scenarios, as
discussed next.

IV. T INYOS IMPLEMENTATION OF LPL PROTOCOLS

This section comparesLPL MAC protocols implemented
in TinyOS for the Tmote Sky platform in order to find the
switching thresholds of the MiX-MAC look-up table.

A. Reconstruction Model

We accurately evaluate the lifetime of a mote by measuring
the energy consumed under various basic operations using a
fast data acquisition board. We measured the energy and time
spent probing the medium, starting a transmission, sending
one packet and switching the radio back to TX mode, stoping
a transmission after a successful and failed (only for X-MAC
and MX-MAC schedules) transmission, and receiving a packet.
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Fig. 2. Relative difference between real life scenarios andtheir prediction
through the reconstruction model for various values of the rates of sent and
received packets.

Every scenario is then reconstructed with Matlab by adding
the energy expended during each operation.

Our measurements show that it takes a little under32 µs to
send one byte (we measured31.89 µs exactly), which is con-
firmed by the CC2420 datasheet. Moreover, our measurements
allow us to determine theradio switch time (after sending a
frame, the CC2420 radio automatically switches to RX mode,
therefore it must be turned back to TX mode before the next
packet transmission) for each protocol. For SpeckMAC based
schedules, this time is772 µs, and it is 1.351 ms for MX-
MAC and X-MAC—as they have to listen for ACK frames
between packets. These radio switch times depend heavily
on the TinyOS code and may differ from one programmer’s
implementation to the next.

In order to verify the accuracy of our reconstruction tech-
nique for determining node lifetime, we ran several scenarios
where we directly measured node lifetime. Based on these
experiments, the error of our reconstruction model does not
exceed 3%, as shown in Figure 2. We have observed that most
of the error emanates from the estimation of the idle power,
which tends to vary over time due to temperature changes in
the acquisition circuit.

B. Protocol Design Choices

We tried to optimize as many aspects of the MAC schedule
as possible: the time separating two clear channel assessments
(CCA) as well as the number of CCAs when sensing the
medium, the number of CCAs before a packet transmission,
the behavior of a node when it detects another ongoing
transmission (what a sender should do when hearing another
stream of packets during its switch to RX mode after every
frame), etc. Since our goal is only tocompareMAC protocols
without bias toward one schedule, we endeavored to optimize
the behavior of all three MAC protocols. Because all MAC
schedules are meant to be compatible, they were implemented
by the same TinyOS code. Consequently, all three protocols
have the same essential parameters such as the number of
CCAs and the time separation between them.

1) Time Separation Between CCAs:Two CCAs are usually
sufficient to detect an ongoing transmission, provided they
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Fig. 3. Probability to successfully hear an ongoing stream of packets as a
function of the packet size (L) and t2CCAs , for an RX / TX switch time
tswitch = (a)770 µs (SpeckMAC), and (b)1, 350 µs (X-MAC / MX-MAC).

are separated by the correct time. We developed an analytical
model to calculate the probability that a node would correctly
hear an ongoing stream of packets as a function of the time
between CCAs (t2CCAs), the sender’sradio switch time, and
the size of the packets. Figures 3(a) and 3(b) plot the numerical
value of this probability of successfully receiving the frame
for the two radio switching times that we measured (770 µs
and 1, 350 µs). These figures show that good choices for
t2CCAs tend to be around600 µs and 1, 100 µs. From the
perspective of energy consumption, a shorter time separation
between consecutive CCAs is beneficial because it shortens
the time spent probing the medium.

Our Tmote Sky implementation helped us refine these
values: because this model is an ideal representation of the
radio, we coded values fort2CCAs that were much smaller
than 600 µs and 1, 100 µs in order to account for the
slower execution of the whole protocol stack on the Tmote
Sky. Figure 4(a) shows the packet delivery ratios for two
nodes randomly sending 100 packets to each other, including
collisions, missed packets, bad radio states, etc. As the packet
size increases, it is generally easier for a receiver to heara
transmission, which is confirmed by our analytical model. The
dotted line shows a value fort2CCAs that was not retained
because of poor reliability.

We found that an acceptable coded value fort2CCAs is
between320 µs and512 µs for SpeckMAC, and512 µs for
MX-MAC and X-MAC, which represent the best compromise
between energy use in very low traffic networks and fairness
to all protocols. For MiX-MAC, which must use compatible
parameters for all MAC schedules, we sett2CCAs to 512 µs
for all protocols.

For packet sizes close to their maximum value (128 B), we
found the radio to “jam” under SpeckMAC: the radio would
issue RXFIFO overflows because the FIFO was filled before
it could be read, and hence the packet delivery ratios in this
case dropped significantly.

2) The X-MAC Design and Choice of Advertisement Packet
Size: As Figure 4(a) shows, the packet delivery ratio for
packets of size11 B is only 65% for X-MAC, even with
t2CCAs set to 512 µs. This prompted the choice of larger
advertisement packets (40 B), as is supposed by C-MAC [10].
In order to remain compatible with the other protocols, we
considered all40 B long packets to be advertisements. The
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Fig. 4. (a) Comparison of the packet delivery ratio of the MACschedules
as a function of packet size and time between CCAs. (b) Throughput for
ti = 1 s.

receiver, upon reading a40 B packet from its RXFIFO stays
awake to receive the subsequent data packet. In other words,
when a MAC protocol needs to send a40 B packet, it has to
use the X-MAC schedule.

3) MAC Schedule Compatibility:Through design choices,
we allowed the three MAC protocols to be compatible. The
same TinyOS code can let a mote send and receive packets
using the MX-MAC, X-MAC or SpeckMAC schedules.

More importantly, the basic principle behind schedule com-
patibility is that a receiver does not need to know the ongoing
schedule, and simply ACKs packets that request it. For MX-
MAC packets and for X-MAC advertisements, theacknowl-
edgement requestfield must be set to one. If no ACK is
requested, the receiver simply turns off after the packet has
been received.

C. Determination of the Switching Thresholds

In order to populate the MiX-MAC look-up table, we must
compare the X-MAC, MX-MAC and SpeckMAC-D schedules
and determine which is most appropriate to the current set of
parameters on the network.

1) Reliable Throughput or Goodput:In order to evaluate
the throughput of the MAC protocols, we let one node send
100 packets to three different neighbors. Retransmissions
may occur for MX-MAC and X-MAC, and250 ms after a
successful transmission, a stream of packets is sent to the next
neighbor, resulting in packet rates sometimes higher than1/ti

for MX-MAC and X-MAC, as these protocols are interruptible
and thus do not always transmit for the fullti period. This
should ensure that the application packet generating rate is
not a limiting factor.

Figure 4(b) shows the number of bits transmitted in one
second. For larger than20 B packets, MX-MAC performs
best. This is because MX-MAC and X-MAC are interruptible,
and thus take on averageti/2 s to send a packet, and can
attempt the next packet transmission250 ms later provided
the source node is sending to different destinations. As the
packet size increases, packets are received more reliably,
which increases the goodput by up to 50%.

Since X-MAC uses fixed sized advertisement packets
(40 B), its throughput increases linearly with the data packet
size as shown by the figure. However, its performance is not
equal to that of MX-MAC since MX-MAC’s larger packets
get transmitted more reliably (as shown in Figure 4(a)). Fora
different reason, SpeckMAC based schedules are also linear:
SpeckMAC can send only one packet perti period. When the
packet size increases, so does the throughput.

These results teach us that MiX-MAC can select the MAC
schedule that will yield the best goodput for a certain packet
size andti value. The results in Figure 4(b) suggest that for
ti = 1 s, the X-MAC schedule yields the best throughput for
small packets (less than40 B), while the MX-MAC schedule
has the best performance for larger packets.

2) Lifetime for Unicast Packets:Figure 5(a) shows the
lifetimes for MX-MAC, X-MAC, and SpeckMAC schedules
on the Tmote Sky platform (powered by two high capacity AA
batteries of4 Ah) for various{n; m} values and15 B unicast
packets—n designates the rate of received packets, andm3

the rate of transmitted packets. SpeckMAC does not perform
as well as MX-MAC and X-MAC. Figure 5(a) shows that X-
MAC performs best for smaller packets. This holds only when
the node is mostly sending. This is because the advertisement
packet size is40 B (not the original X-MAC’s11 B), which
increases the chance of being heard during a transmission, and
thus saves retransmissions. At the same time, an increase in
packet size increases the energy consumption by only3−4%.
This is because the radio transmits forti s or until interrupted,
whatever the packet size.

The advantages of X-MAC are reduced further when the
data packet size reaches that of the advertisement size because
the advertisement packet is no longer easier to hear than the
data packet.

This section shows that for packets smaller than40 B, and
for cases when the node is mostly sending, X-MAC allows
the node to increase its lifetime. In other cases, MX-MAC
leads to a longer lifetime. If the main concern of the network

3m andn may be the same if the node is a relay that does not introduce
new packets onto the network.n = 0 would typically designate a source
node, andm = 0 a sink node.
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Fig. 5. Comparison of the MX-MAC, X-MAC and SpeckMAC schedules
for unicast packets for scenarios where the node is mostly sending. Packets
are15 B (a) or 40 B (b).

application is lifetime, MiX-MAC can thus switch between
X-MAC and MX-MAC schedules under the conditions of
Figures 5. This is possible because while the receiver does
not get to pick the MAC schedule, the sender can select
the appropriate MAC given current network and neighbor
conditions. The receiver does not need to be informed of any
changes in MAC scheduling. Based on the packets received,
the receiver knows which schedule the transmitter is following.

3) Lifetime for Broadcast Packets:Contrary to unicast
packets, one MAC schedule consistently spares the energy of
the node, over the range of packet sizes. Figure 6(a) shows that
X-MAC performs very poorly, as expected (Section III-B).
Moreover, the lifetime increase provided by SpeckMAC is
modest (2%) when the node is mostly sending as shown
in Figure 6(b), and larger (10%) when the node is mostly
receiving.

These relatively small lifetime increases hide the fact that
with the SpeckMAC schedule, the destination nodes are much
more likely to correctly receive the packets (Section IV-B1).
Thus, using the SpeckMAC schedule for broadcast allows for
longer lifetime and more reliable communication.

The results for the broadcast case show that MiX-MAC
should always select the SpeckMAC schedule: as it will enjoy
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Fig. 6. Comparison of the MX-MAC, X-MAC and SpeckMAC schedules
for 40 B broadcast packets when the node is (a) mostly receiving (b) mostly
sending.

small gains in lifetime, and it will greatly improve packet
delivery reliability compared to MX-MAC and X-MAC.

D. MiX-MAC Achieves the Upper Bound of Node Lifetime

In order to show the benefits of MAC schedule adaptation,
we present the lifetime of a node sending unicast packets of
different size. MiX-MAC selects either the MX-MAC or X-
MAC schedules based on the packet size.

1) Picking the right MAC schedule:The previous results
show that all MAC protocols sacrifice performance in unicast
mode to that of the broadcast mode or vice-versa. MiX-
MAC performs well against every combination of parameters
because it constantly picks the best MAC schedule for these
parameters.

MiX-MAC adopts SpeckMAC’s schedule for broadcast
packets, and for unicast packets, it uses four axes to decide
the appropriate schedule. These includeti value, packet size,
estimated ratio of transmitted vs. received packets, and the
ACK requirements determined by the upper level protocols or
services.

The simplified look-up Table I gives the optimal schedule
derived from reconstruction results as a function of several
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TABLE I
LOOK UP TABLE TO DETERMINE WHICH PROTOCOL(SPECKMAC-D (S),

X-MAC (X), OR MX-MAC (M)) PERFORMS BEST IN TERMS OF LIFETIME.

Unicast Broadcast

Mostly Sending Mostly Receiving

Pkt size m = 0.005 n = 0.005

n = m =

0.05 1 0.05 1

15 B X M X X S

40 B X M X X S

80 B M M M M S

120 B M M M M S
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Fig. 7. A simple mapping function lets the protocol switch between schedules
in order to increase the lifetime.

parameters. There exists an inherent trade-off between thesize
and complexity of the look-up table, and the granularity of
switching MAC schedules over all the considered parameters.

2) Implementation Example:In this section, we present the
node lifetime as a function of packet size in Figure 7 as an
easy-to-read graph of schedule switching benefits.

The figure shows that MiX-MAC increases the lifetime by
up to 30% compared to using the fixed schedules of X-MAC,
MX-MAC, or SpeckMAC. While the mapping may not be
perfect, the error of the point at which schedules are switched
stems from the fact that schedules have very similar energy
patterns at these packet sizes. The error in schedule switching
is thus inherently small.

As can be seen in the figure, for the values of{m; n}
presented here, the lifetime may actually increase with the
size of the packets sent. This is because a sending node is on
for a fixed amount of time, and more reliable communications
help avoid retransmissions as shown in Section IV-C1.

3) Effects of erroneous estimates resulting in suboptimal
scheduling decisions:Since MiX-MAC picks schedules from
a pool of existing protocols, erroneous estimates for theti
value that yields the longest lifetime (due, for example, toan
inaccurate measurement ofm or n) would equally affect the
performance of X-MAC, MX-MAC, and SpeckMAC.

However, if the lookup table were to point to an incorrect
schedule, due for instance to an outdated or inaccurate estimate

of the number of transmissions over receptions ratio, the
network would simply operate at the level of performance of
the chosen MAC protocol, without further degradation because
of the absence of packet overhead for MiX-MAC. For small
estimate errors around the points where schedules are switched
(the intersections in Figure 7), the difference between the
energy consumption of the optimal schedule and that of other
schedules is small. A small error around these points cuts
lifetime by only a few percentages, as our experiment suggests.

Elsewhere, a small estimate error has no effect: because the
error is too small to impose a different schedule, the sending
node picks the same schedule as the optimum. For very large
estimate errors (for which the point of switching schedulesis
between the estimate and the actual value of a parameter), the
resulting performance loss may be significant; however, large
estimate errors (over 20%) should be rare by nature.

With this section, we saw that adapting the best-suited MAC
schedule could increase node lifetime by up to 30%. The focus
that we adopted was that of a node, without consideration for
its neighbors. This meant that the transmit / receive schedules
of nodes along a path were independent of one-another. We
now shift focus to whole paths and try to synchronize nodes
along routes in order to obtain further energy savings.

V. NODE SYNCHRONIZATION ALONG A PATH

One of the major drawbacks ofLPL MAC protocols is that
they tend to place a significant burden on the sending node for
medium to low duty cycles, even if we adapt the transmission
schedule via MiX-MAC. The choice of a network-wideti
value is a delicate decision: a programmer may wish to elect
a large value, but such a low duty cycle may waste energy
when transmitting packets, making it an unlikely choice.
While researching MiX-MAC, we conjectured that certainLPL
protocols could be synchronized in a way that would allow
staggering wake-up schedules. This section details the various
synchronization techniques that can be used to minimize
delays and energy consumption. While synchronization along
a path comes with virtually no overhead, the rare case when
packets need to be exchanged on a bidirectional path requires a
small amount of overhead (three extra packets per bidirectional
path).

In the following, the term “interruptible LPL” orint-LPL
refers to the subfamily ofLPL MAC protocols whose stream
of packets can be interrupted by an acknowledgement frame;
to the best of our knowledge, these are limited to the three
MAC protocols X-MAC, C-MAC, and MX-MAC.

We chose to study MiX-MAC with only the MX-MAC
schedule, although the results in this section of the paper can
be easily extended to the whole family ofint-LPL protocol
schedules. Unlike X-MAC / C-MAC, MX-MAC is equally
adapted to unicast and broadcast packets, and risks of false
acknowledgement are smaller with MX-MAC. Most impor-
tantly, Section IV showed that the small advertisement packets
in X-MAC can be hard to hear, leading to rather poor link
quality. Since our study applies to routing trees with at least
two hops, the chance of packet delivery failure over one of the
many hops on the routing path would be prohibitively high
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Fig. 8. Synchronization principle for three nodes running an int-LPL protocol.

with X-MAC. We thus selected MX-MAC with50 B packets,
although the principle of transmission / reception schedule
adaptation holds for allint-LPL protocols. For this data packet
size, the packet delivery ratio over one hop is close to 98%,
which translates into a packet failure rate of about 92% over
a four-hop path, assuming independent links. For simplicity
purposes, packets are delivered in a best-effort manner, and
unsuccessful transmissions result in dropping the packet.

A. Synchronization Over a Unidirectional Path

This section expands our previous work on path synchro-
nization [17] in order to study how to fuse the benefits of such
an approach with MiX-MAC.

1) Principle: Under the MX-MAC schedule, a node learns
of the active schedule of its destination when it receives an
ACK frame after successfully transmitting a data packet. It
is this particularity that allows nodes running MX-MAC to
synchronize.

Consider two nodes0 and 1, with a unidirectional link
from 0 to 1. After transmitting the ACK frame following the
reception of a packet, node1 sets its timer to wake upti s
later. The sending node0 also sets a timer (upon receiving the
ACK), in this case forti minus a smallsynchronization back-
off tS > 0. For the synchronization to take place,tS must be
greater thantRx, the time to receive a packet (one frame) and
send an ACK frame. This allows node0 to wake up slightly
before node1 during the next rounds, thus reducing the time
for which node0 is transmitting.

The requirement of unidirectionality is a minor one: WSNs
are usually characterized by centrifugal broadcast packets
(from the Data Sink to the peripheral nodes) and centripetal
unicast packets (from the nodes to the Data Sink). Broad-
cast packets are commonly used to establish routes, refresh
information about the end application, etc. On the other hand,
unicast packets tend to flow from the periphery of the network
to the data sink. For the nodes to correctly synchronize, the
unicast packets must follow a slowly-changing route. More-
over, regardless of the direction taken by broadcast packets,
the schedule for broadcasting packets under MX-MAC does
not break the existing synchronization between nodes, as the
broadcast schedule may not be interrupted by an ACK frame.

The synchronization process for more than two nodes is less
intuitive. Synchronization over multiple hops is achievedby
following the same rules: a sender must always back-off by
the same amount of time after it has successfully sent a packet
(i.e., received an ACK). For the case of three nodes, full route

synchronization is not achieved until after two packets have
been sent, as illustrated in Figure 8.

2) Synchronization Process:The number of unicast packets
required to synchronize all nodes over a temporarily fixed
routing path is a function of the number of hops. This
observation, confirmed by simulation results, can be modeled
as follows.

Let n = h be the number of hops from node0 to noden.
τ j
k designates the time, moduloti, at which nodek wakes up

to probe the medium or send a packet, and after it has sent the
jth packet. At the beginning, wake-up times are separated by
random periods of time. The effects of missing the beginning
of a transmission (causing the receiver to receive the next
frame in the stream) are negligible compared totS . When node
0 sends the first packet to node1, both nodes synchronize and
their wake-up times differ by the synchronization timetS . The
propagation of the first packet over the path leads to changes
in the nodes’ wake-up times as follows:

τ1
0 = τ0

1 − tS

τ1
k−1 = τ0

k − tS

τ1
n−1 = τ0

n − tS = τn − tS

After the second packet is sent, the last three nodes are
synchronized (τn, τn−1 andτn−2):

τ2
0 = τ1

1 − tS

τ2
n−2 = τ1

n−1 − tS

= (τn − tS) − tS = τn − 2tS

Therefore, after thejth packet, the lastj + 1 nodes are
synchronized, and we haveτ j

n−l = τn − ltS for all l ≤ j.
Other nodesk = n− l, such thatj < l ≤ n, still have random
time separations between their wake-up times. The nodes are
all synchronized whenτn

0 = τn − ntS after at mostj = n
packets have been properly sent4.

Once the path is synchronized, the end-to-end delay can be
expected to be equal totS+(n−1)(ti+tS)+tRx, as suggested
by Figure 9.

This short analysis also shows that clock drift has little effect
on path synchronization because this process uses only the
nodes’ relative—not absolute—positions in time. Synchroniza-
tion is reinforced with every packet sent, making this protocol
resilient as long as the clock drift is significantly smallerthan
tS , which can be expected. The measured clock drift for the
Tmote Sky is at most5 ppm. This means that the relative drift
between two motes isαdrift ≤ 10−5. If T is the time between
two packet streams, then we must haveT < (tS−tRx)

αdrift
. In our

implementations, we commonly used atS value of 50 ms,
leading to T < 3, 600 s: in order to guarantee the proper
preservation of the nodes’ synchronized wake-up schedules,
a unicast packet must be sent at least every hour on the path.
For WiseMAC,T is only half that because nodes use absolute
schedules to synchronize themselves and because they must
avoid overhearing. Therefore, nodes running WiseMAC should
start sending2tS before their next-hop wakes up. The results
in Section VI-A3 take this into consideration.

4Synchronization will happen as long as thejth packet reaches at least
noden − (j − 1).
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Fig. 9. Node0 pipelines packets and increases the packet rate.

3) Urgent Packets:Regular packets are forwarded in the
next duty cycle after they have been received. On the other
hand, urgent packets can be retransmitted immediately after
they have been received. If a packet is marked as urgent (the
implementation details are not relevant to, and beyond the
scope of, this work) because of application or QoS require-
ments, the radio is kept on, waiting for the routing protocol
to request relaying the packet. When the “send” command
is issued, the MAC protocol immediately starts the stream
of packets. In order to be successful, the packet transmission
must start before the next hop probes the channel. The delay
associated with urgent packets is less thanti s, thus greatly
reducing the packet delivery latency over regular packets.Over
synchronized paths, the delay of urgent packets is equal to
ntS + tRx.

The decision to send urgent packets within the sameti
period, but to exclude regular packets from immediate re-
transmission is a design choice motivated by practical imple-
mentation considerations. Support for urgent packets requires
protocols from the Data Link layer to the Routing Protocol to
collaborate and capably handle urgent deliveries. Today, this
is rarely the case. Processing on each packet (snooping, queue
reordering, next-hop calculation, loading the radio FIFO,etc.)
must be very limited in order to meet the next-hop’s wake-up
time. If tp is the processing time, we must havetRx +tp < tS .

In spite of these caveats, a protocol designer may wish to
treat all packets as urgent ones, and would thus benefit from
very short delays.

4) Pipelining of Packets on a Synchronized Path:Because
packet transmissions happen in a sequential way, packets can
be pipelined over the path so that a packet is sent every2ti,
as illustrated by Figure 9. Pipelining is only possible with
synchronized nodes because if nodes are not synchronized and
try to transmit packets every2ti s, they would interfere with
one another and exacerbate the hidden node problem, common
to all LPL protocols.

B. Synchronization Over Several Unidirectional Paths and
Conflict Resolution

In some specific cases, the risk for packet collision still
exists on synchronized paths. This is particularly true when a
routing tree is formed of two or more (nf ) parallel branches:
nodesi hops away from the destination tend to wake up at
the same time, causing contention. This node configuration is
illustrated by Figure 10(a).

(a)

(b)

Fig. 10. (a) Synchronized nodes along two parallel paths: nodes
{10, 11, 12, 30} form one path, and{20, 21, 22, 30} another one. The dotted
lines indicate that the nodes can communicate with each other (and thus
interfere). (b) Mitigation of the problem.

The incidence of this problem depends on several factors
such as the routing protocol (which may forward packets along
parallel paths for robustness), the network topology (nodes
from the same region may report highly redundant information
if no packet fusion or aggregation strategy is employed) and
the application (which may require high data rates from co-
located sources).

Several techniques may be used to mitigate this phe-
nomenon, including information exchange among neighbors,
packet rate reduction, etc. However, the node schedule already
offers a good solution to prevent collisions and to guarantee
fairness among information flows. If two neighboring nodes
are part of two different synchronized paths as Nodes12 and
22 are in Figure 10(a), they will attempt to send packets at
about the same time. However, if node12 can send its packet,
it will wake up slightly after node22. This is because node
12 will back off by tS from the moment it receives an ACK
frame, which happens after the time it takes to receive the
data packet (tRx)—a few tens of milliseconds. In effect, after
successfully transmitting a packet, a node’s wake-up schedule
gets delayed bytRx, which separates it from other contenders
and allows other flows access to the common destination. This
process is not dependent on the number of flows converging to
the same node, rather,tRx limits flow fairness as it should be
above∼ ti·nf ·2αdrift. Figure 10(b) illustrates this with a time
line: after sending a packet, nodes12 and22 are separated by
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Fig. 11. Bidirectional path synchronization time line.

tRx s. They alternatively wake up before the other one as they
send packets, guaranteeing fairness between the two branches
of the routing tree.

C. Synchronization Over a Bidirectional Path

Although uncommon in WSNs, some network topologies
and applications may send unicast packets over paths that
are in part or in whole bidirectional. This could be the case
when several data sinks are deployed in the network. We
developed an algorithm that coordinates bidirectionalityon a
path, although it induces overhead.

Let nodesi and j be the two ends of a sub-pathPi→j . In
order to synchronize nodes overPi↔j , the MAC protocol must
allow packets to travel in only one direction at a time during
synchronized rounds. Furthermore, cross-layer information
such as the number of packets sent per round, and the number
of hops fromi andj is needed.

Upon forwarding the last packet of the synchronized round,
each node backs-off by−tS(2hk,{i,j} − 1) s, wherehk,{i,j}

is the number of hops from nodek to i or j. For space
considerations, and because this case is the exception rather
than the norm, we do not explain the bidirectional synchroniza-
tion algorithm in detail. However, it is similar to the crossed-
ladders pattern of [13] and is available (with simulation results)
in [17]. We provide Figure 11 to illustrate this bidirectional
synchronization process.

VI. SIMULATION AND IMPLEMENTATION OF

SYNCHRONIZATION PRINCIPLES

A. Simulations

In this section, we explore the advantages and limits of
node synchronization through Matlab simulations. We use the
same accurate Matlab model for time and energy consumption
as that of Section IV. Thus, the results provided by this
section are those of an implementation reconstruction, rather
than those of a simulation. However, to distinguish between
direct results from our implementation, we use the words
reconstructionor simulation.

In this section, 10 nodes are randomly placed to form
a multi-hop network. Unless otherwise specified, a source
node sends40 B packets at a rate of1/2 ptk.s−1. The time
separating two frames in the same stream is1.351 ms, and
the synchronization back-offtS is 50 ms.
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Fig. 12. On the path{1, 5, 4, 3, 10}, the nodes synchronize correctly after
only a few packets.

1) Synchronization Principle:We simulated a scenario in
which ti = 1.5 s. Notice that thetS value is about twice the
reception time of a50 B packet. The duty cycle was chosen to
be fairly low, since we expect that the improvements brought
by path synchronization will allow theti value to increase.

Figure 12 shows that five nodes synchronize on the tem-
porarily fixed path{1, 5, 4, 3, 10}. In the Figure, a triangular
marker△ represents a probe,◦ a packet to send,∗ a successful
packet reception and× a failed one. After one packet, nodes
3 and10 have staggered probes, nodes4, 3 and10 after the
second packet.

This scenario also illustrates the behavior of the nodes
when synchrony is lost: in the worst case scenario, it would
take n packets to reconstruct a synchronized path. However,
complete loss of synchronization is highly unusual because
whenever a node fails to receive a packet from its neighbor,
it simply wakes upti seconds later,i.e., in the same relative
time position.

2) Packet Delay:Next, we investigate the packet delay after
the nodes have been synchronized. We define packet delay as
the time between the first attempt to send a packet and the
successful reception of this packet, noting however that the
packet could have been created at mostti s before the first
transmission attempt. We consider that if a synchronized path
is incapable of transmitting the required packet rate (the node
queue keeps expanding),ti needs to be lowered in order to
accommodate higher traffic. We offer a solution to do so in [1].

a) Delay of Non-Urgent Packets:Figure 13 shows the
packet delay of non-urgent and urgent packets. The first eight
packets show how wake-up schedule synchronization reduces
the delivery delay for the node configuration of the previous
section. The packet delay then hovers around4.74 s, which is
approximately equal totS + 3(ti + tS)+ tRx (tRx is modeled
by a random variable with a normal distribution, to account
for randomly waking-up during frames).

The first packet is sent without any synchronization between
the nodes, and its delay is9.7 s, a value that depends on the
initial random wake-up times. In this case, synchronization cut
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Fig. 13. Packet delay on the same path as Figure 12. Packets9 through20
are marked as urgent.

TABLE II
ENERGY CONSUMPTION AND PACKET DELAY.

MX-MAC WiseMAC

Sync Non-sync

Energy Delay Energy Delay Energy Delay

Parameter (J) (s) (J) (s) (J) (s)

h 1 1.59 0.065 12.73 0.76 2.53 0.13

2 1.50 1.63 9.76 2.91 2.57 0.87

(ti = 3 1.49 3.21 9.37 6.10 2.60 1.52

1.5 s) 4 1.54 4.91 9.00 10.63 2.61 2.28

5 1.45 6.34 8.80 13.54 2.61 5.15

ti 0.5 1.77 1.74 5.73 3.08 2.72 1.12

1 1.67 3.26 8.99 6.62 2.62 2.11

(h = 4) 1.5 1.54 4.91 9.00 10.63 2.61 2.28

2 1.31 6.26 9.10 13.98 2.59 2.92

the packet delay by over 50%.
b) Packet Delay of Urgent Packets:Packets9 through

20 of Figure 13 are marked as urgent: they are delivered
almost immediately, with a delay of around220 ms, which
corresponds tontS + tRx whenn = 4. The simulation shows
that the synchronization is not broken by urgent packets.

3) Energy Consumption:In order to fairly evaluate the
energy benefit of node synchronization (and not just ofLPL
schemes), we compared the energy consumption of the pro-
posed scheme with that of nodes running MX-MAC where
neighbors wake up randomly within theti time interval.

Table II gives the average energy consumption of nodes on
a path for MX-MAC and WiseMAC. Node0 is furthest from
noden = h, the destination. With our naming convention,h
is also the maximum number of hops on the path. Because the
destination nodeh is always receiving, its energy consumption
is very low and depends only on theti value (asti increases,
nodeh still uses the same amount of energy to receive packets,
but it performs fewer channel probes). Thus, we excluded the
energy consumption of nodeh from the average.

Typically, the non-synchronized nodes consume on average
six times as much energy as the synchronized case. The reason
for this difference is given by the average delay shown in the
Table. Whenh = 1, the packet delay is aboutti/2 ≈ 0.76 s
when the nodes are not synchronized, andtS + tRx ≈ 65 ms
otherwise. This means that non-synchronized nodes must

spend much more time with their radio active and transmitting
than synchronized nodes. Consequently, the per-node average
energy consumption greatly increases, by a factor of about
ti/2(tS+tRx).

When the number of hopsh is fixed and equal to4, an in-
crease inti reduces the per-node average energy consumption.
This is only true when nodes are synchronized: ifti increases,
non-synchronized nodes must spend more time transmitting
(for ti/2 s on average). On the other hand, synchronized nodes
must send for approximatelytS + tRx s, whatever the duty
cycle. However, as the duty cycle decreases, the nodes have to
spend less energy probing the medium, and thus synchronized
nodes see their global energy consumption reduced. The same
is true of WiseMAC, which reduces energy consumption for
lower duty cycles.

Compared to WiseMAC, MX-MAC with synchronization
consumes 30% less energy because it combines probes and
transmissions, and because it uses hardware acknowledge-
ments, which allow shorter packet reception times. However,
the delivery delay of regular packets of MX-MAC is larger
than for WiseMAC (it would be smaller for urgent packets).

B. Implementation on Tmote Sky

We implemented the principles behind node synchronization
in TinyOS for the Tmote Sky platform. We present results from
this implementation.

1) Methodology:Once the MX-MAC code was set on the
motes, gathering results about packet delays appeared to be
an intractable issue. In order to visualize synchronization, we
needed to deploy a network of more than one hop. We chose to
replicate the case ofh = 4 (in a linear topology), often used
in our simulations. In order to demonstrate synchronization,
we opted to let Matlab—not the motes themselves—collect
information about the packets. This is because in very time-
sensitive MX-MAC, time stamping operations can be a deli-
cate task for which CPU resources may not always be available
on the motes. This, however, meant that all motes had to be
in range of one-another and of the computer running Matlab,
and had to be loaded with predefined neighbor graphs.

Yet, with this solution, motes that in a real deployment
would not have to compete for the channel could now hear
each other, artificially degrading the performance of the pro-
tocol. However, because of the nature of synchronized paths,
packet collisions from motes placed at different levels of the
routing tree did not compete for the medium at the same time,
thus considerably alleviating this problem.

Our results are obtained from a mote receiving all packets
transmitted over the channel and forwarding them to Matlab.
Consequently, we cannot display channel probes, since they
are “silent” (the radio is in RX mode only). We present results
in spite of these caveats.

Finally, we cannot show the energy consumption of our
implementation using the motes only. The Tmote Sky can
only measure its internal voltage through the ADC, which is
typically noisy, and the battery voltage does not evolve as
a linear function of the remaining energy. Because the MX-
MAC protocol is very energy efficient, the voltage drop over a
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practical period of time is well within the natural ADC noise,
with or without node synchronization. This method would
therefore be less precise than the reconstruction technique used
throughout the paper and introduced in Section IV-A.

2) Synchronization Principle:The goal of this section is to
prove that node synchronization is practical and offers results
in actual platform implementations.

Figure 14 shows that the motes on the four-hop path
P0→1→2→3→4 successfully synchronize after the predicted
number of packets. They also send packets in about4.5 s
once they are synchronized, which is the delay predicted by
the simulation model (within 4%, probably because Matlab
starts time-stamping packets onlyafter the first one has been
received, and stopsbeforethe ACK frame is sent).

3) Urgent Packets:Next, we present the delay of urgent
packets in Figure 15 and confirm the results obtained through
the reconstruction model. Packets7 through10 are marked as
urgent, and their delay hovers between766 ms and172 ms,
the actual value of the delay being hard to measure due to the
typically slow link between the mote and the PC. It also shows
that urgent packets do not break the path synchronization.

4) Packet Pipelining:Finally, Figure 16 shows the medium
activity when the source node0 sends a packet every2ti.
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Thanks to node synchronization, packet transmissions can be
staggered over non-continuous wireless links. The packet rate
can then climb to1/2ti

pkt.s−1, even though the packet delay
remains the same.

These results show that node synchronization over a tem-
porarily fixed path is practical.

C. Combined Effects of MiX-MAC and Node Synchronization

Figure 17 shows the cumulative increases in node lifetime
with MiX-MAC and synchronization. The conditions of the
simulation are the same as in Section IV-D2, although the
results were averaged over fewer iterations. As in Figure 7,
MiX-MAC achieves the highest lifetime for most packet sizes,
with and without node synchronization, although synchroniza-
tion greatly increases the lifetime of nodes running MiX-
MAC (by up to 95%). When packets fail to be heard at the
receiver, synchronization does not help in any way: the packet
will have to be retransmitted, regardless of when the receiver
woke up—and missed— the packet. However, since MiX-
MAC selects the protocol with the highest delivery reliability
for each packet size, packet failures are less common, and
synchronization can then play its full role of saving energy
and reducing packet delay.
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D. Discussion

The TinyOS implementation demonstrated the feasibility
of compatible MAC schedules and the benefit of switching
between them. No extra overhead was required, save the
memory required for the look-up table. MiX-MAC may adopt
the MAC schedule most adapted to conditions in the network
to increase lifetime or throughput.

On top of the gains obtained through MAC schedule adap-
tation, we also propose a simple approach to synchronizing
nodes on a temporarily-fixed path for the sub-family ofint-
LPL protocols. Through analysis, we proved that the path is
automatically synchronized aftern = h packets have been
sent from node0 (the farthest) to noden. In other words, the
requirement to have a fixed path is a weak one since it needs
to be constant for onlyh packets.

Synchronization of transmit / receive schedules has several
benefits: it drastically reduces the packet delay, and it reduces
the energy use at every node by a factor of aboutti/2tS

,
removing the limit standing in the way of lower duty cycles.

In addition, we proposed several strategies to increase the
packet rate and further reduce the packet delay. Pipelining
packets over synchronized paths doubles the packet rate.
Urgent packets are delivered almost immediately, taking the
delay fromtS + (n − 1)(ti + tS) + tRx to ntS + tRx.

Although MiX-MAC and node synchronization may be
implemented without the benefit of the other, their combined
impact on node lifetime and packet delivery delay exceeds that
of each approach independently. This is because MiX-MAC
may select the most reliable MAC schedule, which in turns
greatly facilitates node synchronization.

VII. C ONCLUSIONS ANDFUTURE WORK

Existing MAC protocols employ identical schedules for
both unicast and broadcast packet transmissions or, when
impossible, simply modify their “unicast schedule” to work
with broadcast packets. For instance, IEEE 802.11 cannot
perform an RTS / CTS handshake for broadcast packets, and
thus only utilizes CSMA for broadcast packets, regardless of
the impact on lifetime or contention.

In this paper, we propose adapting the MAC schedule to
node and network conditions to improve performance under a
wide range of conditions and for both unicast and broadcast
packets. The MAC schedule should be chosen to maximize the
lifetime of the network, which includes reducing contention.

Through simulation and implementation on the Tmote Sky
platform with TinyOS, we showed that MiX-MAC can signif-
icantly increase per-node lifetime and that node synchroniza-
tion is both possible and practical.

Maybe most importantly, the improvements on the node
lifetime and packet delays require no overhead or cost in most
WSN cases: nodes do not need to exchange On / Off schedules
with their neighbors, and in the unidirectional case, no explicit
synchronization phase or messages are required. Simply by the
sheer MAC schedules used by MX-MAC and X-MAC / C-
MAC can the nodes organize themselves automatically.

In future work, we plan to increase the number of param-
eters and metrics to switch MAC schedules. We also plan

to investigate further node synchronization for special node
deployment cases, such as those that require bidirectionality.
This will require developing cross-layer routing protocols and
applications capable of taking advantage of the MAC sched-
ules: for instance, it may be beneficial to let the application
send a packet a little before the end of theti interval.
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